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Abstract The impact of the ocean surface roughness on the ocean L-band emissivity is investigated using
simultaneous airborne measurements from an L-band radiometer (CAROLS) and from a C-band scatterome-
ter (STORM) acquired in the Gulf of Biscay (off-the French Atlantic coasts) in November 2010. Two synergetic
approaches are used to investigate the impact of surface roughness on the L-band brightness temperature
(Tb). First, wind derived from the scatterometer measurements is used to analyze the roughness contribution
to Tb as a function of wind and compare it with the one simulated by SMOS and Aquarius roughness models.
Then residuals from this mean relationship are analyzed in terms of mean square slope derived from the
STORM instrument. We show improvement of new radiometric roughness models derived from SMOS and
Aquarius satellite measurements in comparison with prelaunch models. Influence of wind azimuth on Tb
could not be evidenced from our data set. However, we point out the importance of taking into account
large roughness scales (>20 cm) in addition to small roughness scale (5 cm) rapidly affected by wind to inter-
pret radiometric measurements far from nadir. This was made possible thanks to simultaneous estimates of
large and small roughness scales using STORM at small (7–16�) and large (30�) incidence angles.

1. Introduction

Remote sensing of sea surface salinity (SSS) is very challenging because the signal-to-noise ratio is very small
and because the influence of SSS on the L-band radiometric signal is of the same order as one of the other
geophysical parameters, in particular sea surface roughness [Dinnat et al., 2003; Yueh et al., 2010]. The first
two satellite missions carrying a L-band radiometer, Soil Moisture and Ocean Salinity (SMOS) launched in
2009 and Aquarius launched in 2011, already give very interesting results [e.g., Font et al., 2012; Lagerloef
et al., 2012; Lee et al., 2012; Alory et al., 2012; Reul et al., 2013] but mainly for signals with high contrast in SSS
(>0.5 pss)—we used the Practical Salinity Scale (pss-78) as recommended in IOC et al. [2010] as remote sens-
ing measurements rely on sea conductivity, that we simplify for convenience here as pss. To achieve the
objective of 0.1–0.2 pss over spatiotemporal scales of 100 3 100 km2 to 200 3 200 km2 and 10–30 days, the
impact of sea surface roughness has to be corrected with a good accuracy.

In the 1970s, several experiments studied wind (sea roughness and foam) and SSS influence on L-band brightness
temperature (Tb), evidencing the technical difficulty for building a satellite instrument with sufficiently low radio-
metric noise to provide useful information to the scientific community. A renewal of interest occurred at the end
of the 1990s with technology improvements [Lagerloef et al., 1995] that lead to the preparation of the two satellite
missions. Measurements on platform or tower [Camps et al., 2004; Gabarr�o et al., 2004], as well as airborne meas-
urements [Etcheto et al., 2004; Reul et al., 2008], permitted to sample various and well-documented geophysical
conditions and to validate the SMOS prelaunch roughness models at the first order. But these measurements
were acquired in regions relatively close to coasts, in enclosed sea so that one may expect local conditions to be
different from the ones over open ocean. Using simultaneous airborne radar measurements of wind speed and
radiometric L-band signal further from the coast, Yueh et al. [2010] showed an upwind-crosswind signature for
wind speed at 14 and 24 m/s and derived the Tb sensitivity to wind speed for incidence angles up to 80�.

Based on new SMOS and Aquarius satellite data, new roughness models have been proposed. Guimbard
et al. [2012] and N. Reul and J. Tenerelli (personal communication, 2012) proposed new empirical roughness

Special Section:
Early scientific results from the
salinity measuring satellites
Aquarius/SAC-D and SMOS

Key Points:
� Confirm new L-band radiometric

roughness models improvement
� H-pol Tb double dependence on

both wind speed and filtered mss
� Wind azimuth influence on CAROLS

Ta lower than 0.2 K (wind speed
>12 m/s)

Correspondence to:
A. C. H. Martin,
admartin@noc.ac.uk

Citation:
Martin, A. C. H., J. Boutin, D. Hauser,
and E. P. Dinnat (2014), Active-passive
synergy for interpreting ocean L-band
emissivity: Results from the CAROLS
airborne campaigns, J. Geophys. Res.
Oceans, 119, 4940–4957, doi:10.1002/
2014JC009890.

Received 4 FEB 2014

Accepted 6 JUL 2014

Accepted article online 11 JUL 2014

Published online 11 AUG 2014

MARTIN ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4940

Journal of Geophysical Research: Oceans

PUBLICATIONS

http://dx.doi.org/10.1002/2014JC009890
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9291/specialsection/SACDSMOS/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9291/specialsection/SACDSMOS/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9291/specialsection/SACDSMOS/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9291/
http://publications.agu.org/


models using SMOS data as function of only wind speed (no wind direction dependency). Yin et al. [2012]
adjust a physical model on the SMOS data. The resulting model is a function mostly dependent on wind
speed, and on wind direction to a lesser extent. However, it has not been possible to evidence a wind direc-
tion dependency from SMOS data, likely because of their large noise. Using Aquarius L-band measurements,
which have a better instantaneous radiometric accuracy than SMOS, Yueh et al. [2013] proposed a new
roughness model function of wind speed and wind direction. Despite these new roughness models, SMOS
SSS accuracy [on the order of 0.15–0.3 pss in the tropics and subtropics, Boutin et al., 2013; Hernandez et al.,
2014] is not as good as expected if one considers only the radiometric noise as uncertainty source [Boutin
et al., 2004]. It is suspected that inaccuracies in forward models may be one significant source of
uncertainty.

The aim of this study is to assess the improvements of the new satellite roughness models, to understand
their weaknesses, and to investigate part of signals not explained by forward models presently used for
SMOS or Aquarius. Data used have been acquired during the CAROLS (Combined Airborne Radio-
instruments for Ocean and Land Studies) campaign of November 2010 using a high accuracy L-band radi-
ometer (called CAROLS for Cooperative Airborne Radiometer for Ocean and Land Studies) and a C-band
scatterometer (called STORM for Système de T�el�ed�etection pour l’Observation de la Mer).

In section 2, we describe the airborne campaign as well as the radiometric and radar data. Section 3
presents the models of antenna temperature (TA) excess induced by sea surface roughness after integration
on the CAROLS antenna pattern. Section 4 presents the results using the synergy between CAROLS and
STORM. These results are discussed in section 5 and key results are summarized in section 6.

2. Campaign and Data Description

2.1. CAROLS Campaign
The CAROLS campaigns were performed from 2007 to 2010 over the ocean in the Bay of Biscay off the coast
of France and Spain. In this paper, we concentrate on the last series of campaigns in November 2010
because it offered the most variable geophysical conditions. The CAROLS L-band radiometer and the
STORM C-band scatterometer were installed on the French research airplane ATR42. The campaign’s aim
was to study the impact of sea surface roughness on radiometric signal. Four flights were carried out at an
altitude of about 2000 or 3000 m above the sea surface at an airspeed of about 100 m/s. The sea surface
temperature (SST) and salinity were monitored in situ from the RV ‘‘Côte de la Manche’’ (CDLM) along the
main part of the flight track (complete sampling in 7 days) with values ranging from 12.5�C to 15.5�C and
35.3 pss to 35.8 pss, respectively (Figure 1a). The wind conditions are summarized in Table 1 ranging from
4 to 15 m/s.

Figure 1. (a) Flight track superimposed on a bathymetry base map. In two tones of blue for morning flights (19th and 27th), in red and
orange for evening flights (22th and 25th). (b) Sea surface salinity measured along the main part of flight tracks by the RV CDLM.
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The airplane took off from Brest (48.4�N–4.5�W) and flew over the Bay of Biscay (Figure 1) mainly by night
(sunrise and sunset at, respectively, 7h40 and 16h30 UTC). Two flights occurred in the early morning
(November 19th, 6h00–10h10 UTC and 27th, 05h30–07h15 UTC) and two in the evening (November 22nd,
19h00–23h00 UTC and 25th, 18h45–23h00 UTC). All the flights began westward up to the meteorological
buoy Pharos at (48.5�N–5.6�W) (out-of-order during the campaign). The evening flights pursued southwest-
ward up to (45.2�N–7�W) then eastward via the meteorological Gascogne buoy at (45.2�N–5�W) up to the
Gironde mouth (45.5�N–1.6�W) and return to Brest via Gascogne and Pharos buoys. The morning flights fol-
lowed the path Pharos, Gascogne, Gironde mouth for go and back except for on the 27th when the airplane
continued after the Gironde mouth over the land up to Toulouse.

The aircraft attitude was measured by an inertial unit (a SAGEM sampling at 25 Hz) providing a relative pre-
cision better than 0.05� on the incidence angle (standard deviation on the roll angle of 0.04�).

2.2. CAROLS Radiometric Data
The CAROLS L-band radiometer [Zribi et al., 2011] was designed and built as a copy of the EMIRAD II radiom-
eter [Rotb�ll et al., 2003] constructed by the Danish Technical University team. It is a fully polarimetric and
direct sampling correlation radiometer (sampling rate of 139.4 MHz). In this study, we use only the horizon-
tal (H) and vertical (V) polarized antenna temperature (TA), Th and Tv, respectively. The radiometric sensitiv-
ity is better than 0.1 K over 1 s integration time and the stability better than 0.1 K over 15 min before
internal calibration [Zribi et al., 2011]. To assure measurement quality, an internal calibration is performed
every 120–300 s according to the radiometer stability. This calibration has been improved since the previ-
ous study on CAROLS data over the ocean [Martin et al., 2012]. It now uses two internal loads with a Tb at
318 K (50 X load at 45�C) and at 54 K (using an Active Cold-FET Load) which is more adapted to radiometric
measurements over the ocean (Tb between about 40 and 150 K). The antenna system includes a waveguide
orthomode transducers and a Potter horn with a main lobe of 37� half-power beam width pointing at about
34� on the right-hand side of the aircraft.

A sequence of acquisition includes two steps: an internal calibration followed by an acquisition period. The
internal calibration goes on for 20 s (10 s on each load). The acquisition period goes on for 120–300 s. This
latter period is made up by 800 ms record of radiometric signal every second. The remaining 200 ms every
second are not used. Raw data sampling is of 1 ms and includes kurtosis estimated from fast data acquired
at a sampling rate of 139.4 MHz.

Postprocessing applied on raw data changed slightly compared to Martin et al. [2012] because using this
latter postprocessing, we observe some remaining Radio-Frequency Interferences (RFI). The method to sort
out observations possibly affected by RFI was based on a kurtosis criterion threshold. Only kurtosis between
2.9 and 3.1 is kept [Method F_K1 in Pard�e et al., 2011]. Kurtosis criterion has been largely used for radiomet-
ric measurements e.g. [Ruf et al., 2006; Skou et al., 2010] but partly fails on our data since high TA remains
despite normal values of kurtosis (excess TA up to 60 K in V-pol and 30 K in H-pol). In Appendix A, we pro-
posed a modified algorithm for ocean radiometric measurements, which is more restrictive than the previ-
ous one. About 10% of the data integrated over 800 ms are flagged as RFI.

Full postprocessing applied on raw data consists of:

1. Correction for cable attenuation and reflection [Zribi et al., 2011].

2. Removing data flagged as RFI according to the algorithm described in Appendix A.

3. Computing the median TA of each 800 ms block.

Table 1. Wind Conditions Measured by STORM and by the Meteorological Gascogne Buoy

Flight Time STORM Data Gascogne Buoy

Day Time (UTC) Wspd (m/s) Wdir (�/North) nb Hs (m) Wspd (m/s) Wdir (�/North)

19 05h45–10h50 5–13 150–270 43 4.2–3.5 5.6–7.5 190–240
22 18h40–23h10 4–9 300–30 68 1.5 2.7–7.2 330–0
25 18h30–22h50 9–15 310–30 63 3.0–3.6 9.8–11.5 340–0
27 05h20–07h20 10–14 310–10 10 2.5 9.4–10.8 330–350
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4. Removing data acquired at incidence angles more than 61� away from the median incidence angle of
each flight (boresight pointing at around 34�).

5. Averaging data on STORM time step (around 2 min).

According to the antenna aperture, altitude, and speed of the aircraft, the average radiometric footprint is
about 2000 or 3000 3 12000 m2.

2.3. STORM Radar Data
STORM is a C-band (5.35 GHz) scatterometer [Mouche et al., 2005; Hauser et al., 2008] from which estimates
of sea surface wind speed and waves mean square slopes (mss) are derived. We recall below its main char-
acteristics. STORM is a multipolarization radar, but in this study, we used only VV-polarized data. It includes
a large antenna beam (30� in elevation plane and 7.6� in azimuth plane) pointing at 20� incidence angle
and scanning in azimuth at about one turn per minute. The data processing provides a normalized radar
cross section (r0) as a function of incidence angle every 1� from about 7� to 35� and as a function of azi-
muth directions every 0.4� over 360�.

Calibration of the radar was completed using ground target. Comparison of STORM estimated wind speed
with Gascogne buoy wind speed lead to an additional bias correction of 11.54 dB.

We use the methods described in Hauser et al. [2008] to estimate wind speed and mss. Wind speed is esti-
mated at 30� incidence angle using the empirical model CMOD2-I3 [Bentamy et al., 1994]. We choose this
empirical model, because it has been calibrated with in situ observation, contrary to the latest empirical
model CMOD5 [Hersbach et al., 2007], which has been fitted using ECMWF wind speed. Anyway differences
of omnidirectional values of r0 between CMOD5, CMOD4, and CMOD2-I3 in the conditions of moderate
wind speed and moderate incidence angles of our study are not significant [Mouche, 2005; Hersbach et al.,
2007]. Differences in up/downwind and up/crosswind anisotropy between these models are more signifi-
cant but do not affect the wind speed retrieval, since wind direction is derived without the use of any model
and wind speed retrieval relies on the omnidirectional values.

At 30� incidence angle, signal measured by STORM is mainly caused by Bragg scattering from sea waves of
about 5 cm. The mss is estimated through r0 variations between 7� and 16� incidence angle. This estima-
tion assumes a modeling of r0 by geometric optics approximation and a Gaussian distribution of sea sur-
face slopes. According to Hauser et al. [2008], estimated STORM mss are integrated over all wavelengths
greater than 12 cm.

3. Excess TA Induced by Sea Surface Roughness

To derive the excess antenna temperature induced by sea surface roughness (and foam), TA;rough, we sub-
tract TA simulated for a flat sea (using flat sea emissivity model, adding atmospheric and galactic contribu-
tions, and including attitude correction), T mod

A , from measured TA (TA;CAROLS), i.e.:

T mes
A;rough5TA;CAROLS2T mod

A ðflatseaÞ; (1)

where T mod
A uses the same forward models as those used in Martin et al.[2012] and are integrated on CAR-

OLS antenna pattern (whole front pattern) using the Terrestrial Radiometry Analysis Package developed by
Reul et al. [2006, 2008]. Geophysical parameters needed to compute the forward model are obtained as fol-
lows: SSS and SST are derived from the CDLM in situ measurements (between 20 and 27 November) and
extrapolated to the CAROLS ground track using a nearest neighbor method in space; atmospheric pressure
and relative humidity are taken from the ERA Interim reanalysis [Dee et al., 2011] (6 h, 0.75� resolutions).

Measured TA;rough are compared with various simulated ones (T mod
A;rough). These simulated T mod

A;rough are deduced
from either empirical or physical models.

3.1. Physical Basis
Two main physical roughness models are used in L-band radiometry: a small perturbation method, small
slope approximation (SPM/SSA), called here SSA [Johnson and Zhang, 1999], and a two-scale model. The
two-scale model takes into account the tilting effect of large ocean waves on small waves (SSA
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Figure 2.
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parameterization) and add a hydrodynamic modulation of the waves [Yueh, 1997; Dinnat et al., 2003]. Differ-
ence between Tb simulated with a given wave spectrum using either a two-scale or a SSA model is on the
order of 0.1 K for omnidirectional component [Dinnat et al., 2003].

Johnson and Zhang [1999] shows that TA;rough according to the SSA model is a function of the surface curva-
ture spectrum filtered by a scattering weighting function over the roughness wavelength domain. An azi-
muthal harmonic decomposition permits to separate an omnidirectional and a second harmonic term. The
weighting functions for both the omnidirectional and second harmonic terms are function of the incidence
angle [Johnson and Zhang, 1999, Figures 1–3].

To analyze our data, the weighting functions have been integrated on CAROLS antenna pattern (Figure 2a)
in both polarization for the omnidirectional component according to the following equation:

Wc;0ðHÞ5
ðH1p=2

H2p=2
Gðh2HÞ:g0c;0ðb; hÞ:dh; (2)

using same notations as in Johnson and Zhang [1999], with h the incidence angle; b5k=k0 the wavenumber k
normalized by the electromagnetic wave number k0; c the H or V polarization; g0c;0 the nonintegrated weight-
ing function; G the antenna gain pattern; H534� the CAROLS pointing incidence angle and ½H2p=2; H1p=2�
the front pattern of the antenna.

The sign of the H-pol weighting function (Figure 2a, dashed line in the top) remains negative whatever
the wave number. It implies that TA increases when curvature spectrum increases, i.e., when wind speed
increases. The amplitude of the H-pol weighting function (dashed line in Figure 2a) shows maximum
between about 12 and 100 cm and plateau for waves between 2 and 12 cm and larger than 2 m. V-pol
weighting function (solid line in Figure 2a) shows a lower and narrower maximum than in H-pol at
about 12 cm, a higher plateau for small roughness scale (2–12 cm) and a moderate local maximum
around 50 cm. However, large waves have a negative influence on TA (positive weighting function)
which tend to limit TA increase with wind speed. Large waves have a lower absolute influence on V-pol
than on H-pol. These weighting functions integrated on CAROLS antenna pattern (Figure 2a) are
smoother than the 30� nonintegrated weighting functions [Johnson and Zhang, 1999, Figures 2c and
2d].

Using the same decomposition as in Johnson and Zhang [1999], we can derive an omnidirectional mss
weighting function. We remark that this weighting function integrates homogeneously (in logarithmic
scale) wave spectrum from largest wave scale up to 12 cm (Figure 2a in magenta).

To discuss wave spectrum impact on simulated TA;rough, curvature spectrum multiplied by the CAROLS scat-
tering weighting functions is represented in Figures 2b and 2c. We use two different wave spectra as exam-
ple: Durden and Vesecky [1985] with its amplitude multiplied by a factor 1.25 (DV1.25) (blue curve in Figure
2a) as adjusted from SMOS data [Yin et al., 2012; Kudryavtsev et al., 2003] (KHCC) (red curve in Figure 2a).
Both curvature spectra are similar for long wavelengths (>4 m) but differ significantly in the range 2–60 cm
where the incertitude on the curvature spectrum remains large.

The roughness contribution TA;rough is derived from the integration of these curvature spectra on logðk=k0Þ
[Johnson and Zhang, 1999]. Figures 2b and 2c point out that TA;rough is sensitive to roughness wavelengths
from 100 m to about 1 cm. Although the maximum value of the weighted curvature spectrum is higher for
KHCC (Figure 2c) than for DV1.25 (Figure 2b), the wind speed sensitivity in the range 5–13 m/s is quite simi-
lar (Figures 2d and 2e) for both conditions. These figures are analyzed more deeply in section 5.2.1.

Figure 2. (a) Weighting functions integrated on CAROLS antenna pattern at 34� for V (black plain line) and H (black dashed line) polarization.
Curvature spectrum (DV1.25 in blue, KHCC in red) is plotted for wind speeds of 5, 9, and 13 m/s. The curves are in logarithmic scale
(abscissa and ordinate) as function of wave number ratio (i.e., wave number normalized by the radiometer wave number). Weighting func-
tions signs are plotted at the top of the figure. Purple rectangle indicates the range of wavelength onto which mss is integrated and the
blue vertical arrow represents radar weighting function for VV polarization at 30� shifted by 288 dB. (b and c) Weighting function multiplied
by the curvature spectrum for, respectively, DV1.25 and KHCC. All curves are as a function of wave number ratio. Signs are the same as for
Figure 2a. (d) Difference between the curves at 9 and 13 m/s with the curve at 5 m/s represented in Figure 2b. (e) Same as Figure 2d for
curves represented in Figure 2c. These last two figures represent the sensitivity of the filtered spectrum to the wind speed over the
wavelength.
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3.2. Radiometric Roughness Models
Various models are used to simulate the excess TA induced by the sea surface roughness and foam, called
in the following (radiometric) roughness models. Four roughness models are compared here: three models
used in various versions of SMOS data processing and one model used in Aquarius data processing. Two of

Figure 3. (top) Omnidirectional, (middle) first, and (bottom) second harmonics of wind azimuth of TA induced by sea surface roughness for various forward models as a function of wind
speed. (left) V-pol and (right) H-pol. Models are: SMOS M1v5 (black diamond), Aquarius CAP (dashed line), SMOS M1v3 (plus), SMOS M2v3 (circle), and regression2 (thick line).
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these are new models derived
from satellite measurements,
called here ‘‘Aquarius CAP’’
[Yueh et al., 2013] and "SMOS
M1v5" [Yin et al., 2012] (used in
ESA processor version 5) and
two are SMOS prelaunch mod-
els, called ‘‘SMOS M1v3’’ [Din-
nat et al., 2003] and ‘‘SMOS

M2v3’’ [Johnson and Zhang, 1999; Kudryavtsev et al., 2003] (used in ESA processor up to version 3). The main
characteristics of these four models are summarized in Table 2. The two new models which are derived
from satellite measurements used two different wind products to derive these models. SMOS M1v5 used
wind provided by ECMWF and Aquarius CAP used wind retrieved from SSMIS measurements. The wind ref-
erence does not show significant differences for SMOS M1v5 [Yin et al., 2012, Figure 4].

Since differences between the three new SMOS roughness models are much less than differences between
the SMOS prelaunch models M1v3, M2v3 and M1v5, only one of the three new models implemented in the
ESA processor v5 is used in this study (M1v5). M1v5 includes an azimuthal dependence of Tb, contrary to
the other two new (v5) SMOS roughness models. M1v5 is based on the same physical modeling founda-
tions as M1v3 but with respect to M1v3, the amplitude of the wave spectrum and the dependence of the
foam coverage with the wind speed have been adjusted in order to better fit SMOS measurements. The
multiplicative factor applied to the wave spectrum was reduced from 2 in M1v3 to 1.25 in M1v5.

T mod
A;rough are integrated on CAROLS antenna pattern for the three SMOS models. For the Aquarius CAP model

that is only available for the three Aquarius incidence angles (about 29�, 38�, 46�), we interpolate linearly
the Aquarius CAP coefficients to CAROLS boresight incidence angle.

The four satellite roughness models can be decomposed as cosine series of wind azimuth relatively to
antenna boresight (u):

T mod
A;rough;pðU;uÞ5T mod

A;rough;p;0ðUÞ1T mod
A;rough;p;1ðUÞ:cos u1T mod

A;rough;p;2ðUÞ:cos 2u; (3)

with p the polarization (H or V) and U the wind speed. Omnidirectional (T mod
A;rough;p;0), first (T mod

A;rough;p;1), and sec-
ond (T mod

A;rough;p;2) harmonics components integrated on CAROLS antenna pattern (except for the Aquarius CAP)
are plotted in Figure 3. An empirical relationship found from the CAROLS data is also shown in Figure 3. It was
obtained from a fit by a second-order polynomial of TA;rough with STORM wind speed, and is called in the fol-
lowing ‘‘regression2’’ (see details in next section). It does not take into account any azimuthal dependence
and it was obtained with wind speed derived from STORM measurements during the campaign going from
about 3 to 15 m/s.

Variations of T mod
A;rough;p;0 with wind speed obtained with the SMOS M1v5 and the Aquarius CAP new roughness

models in the 3–15 m/s range are in rather good agreement, both models showing a quadratic dependence with
wind speed for both polarizations (Figure 3, top). In contrast, SMOS M1v3 and M2v3 models exhibit a quasi-linear
dependence with wind speed. This is because in opposite to M1v5 and CAP models, they neglect influence of
foam. There are large differences in wind speed sensitivity in comparison with the M1v5 and CAP, particularly for
M2v3 in V-pol and M1v3 in H-pol at moderate wind speed (<10 m/s). The empirical model, called regression2 (see
next section for details) is much closer to M1v5 and CAP models than to the prelaunch SMOS models. However, it
presents a slightly lower sensitivity to wind speed than M1v5 and CAP on the range wherein the fit was computed.

For all models, the contribution of the first and second harmonics is much less than the omnidirectional
component (less than 10% of T mod

A;rough;p;0 for the new models), being only a fraction of a Kelvin at most wind
speeds. The first harmonic’s influence is larger in V-pol than in H-pol for all models, (note: M2v3 and regres-
sion2 do not include this harmonic). There is a good agreement between SMOS M1v5 and Aquarius CAP
T mod

A;rough;1 in H-pol and in V-pol up to 11 m/s.

The second harmonic has a very small (less than 0.1 K) influence for SMOS M1v3 and M1v5, and for Aquar-
ius CAP up to 11 m/s. Of note, T mod

A;rough;2 for Aquarius CAP and SMOS M1v5 are of opposite sign in the range

Table 2. Roughness Models Main Characteristics

Name EM Model Wave Spectrum Foam References

Aquarius CAP Empirical Yueh et al. [2013]
SMOS M1v5 Two scale DV x1.2 Yes Yin et al. [2012]
SMOS M1v3 Two scale DV x2 No Dinnat et al. [2003]
SMOS M2v3 SSA/SPM KHCC No SMOS Team [2008]
regression2 Empirical Figure 4
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4–9 m/s, because the CAP model changes sign. SMOS M2v3 shows a much larger influence of the second
harmonic in comparison with other models up to 15 m/s, and comes in a relative closer agreement with the
Aquarius CAP model at the largest wind speeds.

Effects of roughness model integration on CAROLS antenna pattern was tested with the three SMOS
models presented here. The main difference with the nonintegrated model for the omnidirectional
component is a positive and quasi constant bias in H-pol (0.2 K using SMOS M1v5) and a negative bias
and trend with wind speed in V-pol (0.2 K at 5m/s and 20.03 K/(m/s) using SMOS M1v5) and slightly
positive in H-pol (not shown). This could partly explain the positive bias in T mod

A;rough;V;0 for Aquarius CAP
compared to SMOS M1v5 (Figure 3) while uncertainties on the absolute calibration of the radiometers
could also create such differences. The effect of the integration for the first harmonic indicates that
Aquarius CAP T mod

A;rough;1 should be increased with respect to the value shown in (Figure 3); hence Aquar-
ius CAP first harmonic is higher than other models, especially at high wind speed. There is no signifi-
cant effect of integration on the CAROLS antenna pattern for the second harmonic for any of the three
models.

To avoid problems due to absolute calibration of radiometric measurements, models offset or
the nonintegration of CAP on the CAROLS antenna pattern, we centered each measured or
simulated TA;rough by the mean on the whole campaign where CAROLS and STORM data are
available.

Figure 4. TA;rough as a function of (a) STORM wind speed, (b) Era Interim wind speed, (c) STORM MSS. R2 coefficient using a linear (R2
lin) or quadratic (R2

qua) dependency with wind speed or
mss and the number of data are indicated in the inset of each figure. Linear and quadratic regression coefficient is indicated on the plots. The four flights are represented with four different
symbols, in chronological order of flights: circle, plus, triangle, and square.
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4. Results Using Synergy Between CAROLS and STORM Observations

4.1. Excess TA Versus STORM and ERA Interim Roughness Parameters
Excess antenna temperature due to roughness has been estimated using the CAROLS data set (180 data points
over four flights) using equation (1) and related to wind or mss derived from the STORM measurements (colocated
and at the same scale) or wind provided by the ECMWF ERA Interim wind fields reanalysis (Figure 4). Linear and
quadratic regression has been computed to determine which parameter is best suited to explain T mes

A;rough variations
at the first order. A quadratic function of STORM wind speeds explains more than 85% of the T mes

A;rough variance for
both polarizations, whereas the one derived with ERA Interim wind speeds explains less than 64%. Figure 4b high-
lights a weak dynamic range of ERA Interim wind speeds, mostly concentrated around 5 and 10 m/s; this could be
the reason for the poorer performance at explaining our measurements compared to STORM wind speeds. STORM
mss achieves similar performance as STORM wind speed to explain H-pol variability but is slightly worse in V-pol (still
much better than ERA Interim).

Figure 5 shows STORM wind speed and T mes
A;rough along the flight track for the 25 November 2010 flight. It high-

lights the high spatiotemporal variability of wind speed and resulting T mes
A;rough sampled up to every 2 min and

12 km. Wind speed can change by more than 4 m/s over just a few minutes/dozen km. Wind speed reanaly-
sis and satellite measurements (SSMIS data considered) are not able to sample the variability measured by
the airborne scatterometer STORM (Figure 5). Having simultaneous measurements of sea surface roughness
(e.g., wind speed) for interpreting L-band radiometric measurements are a great help. In the following of the
paper, STORM wind speed and wind direction will be used to compute T mod

A;rough.

4.2. Measured and Simulated TA

Comparisons of centered T mes
A;rough and T mod

A;rough give correlation (Pearson coefficient) higher than 0.9 in H and V-
pol for all models except SMOS M2v3 (Table 3). The root-mean-square (rms) difference is the lowest for
regression2 even though this empirical model does not take into account any azimuthal component. SMOS
M1v5 rms difference is smaller than that of SMOS M1v3, especially in H-pol. Aquarius CAP has a slightly larger
rms difference than SMOS M1v5, perhaps due to a nonintegration on CAROLS antenna pattern. SMOS M2v3
is not as good as other models, particularly in V-pol. Part of the rms difference could be associated to scaling
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Figure 5. TA;rough (solid line and plus symbol, in K) and wind speed (in m/s) temporal evolution along the flight track for the flight 69 (25
November 2010). STORM wind speed in dashed line and circle symbol, ERA Interim wind speed in blue and SSMI wind speed in red. SSMI
wind speed is collocated with the nearest neighbor value in time (90% at less than 63.6 h).
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effect of the nonlinear relation between TA

and wind speed. Indeed, SMOS and Aquar-
ius models have been fitted with a footprint
of about 50–150 km, whereas the aircraft
integrated footprint is about 2 3 12 km. For
each model, the rms difference is about one
order of magnitude higher than expected
from the radiometric noise only
(NEDT< 0.02 K over 2 min integration time).

4.3. Residuals Analysis
In the previous section, we pointed out good agreement between measured and simulated TA;rough but with a rms
difference higher than expected from instrument noise alone. To interpret these differences, we analyze the part of
T mes

A;rough signal that is not explained by the roughness-component of the models T mod
A;rough, i.e., the residuals defined

as the difference between measurement and model after removing the mean value on the whole campaign:

DTA;rough5 T mes
A;rough2T mes

A;rough

� �
2 T mod

A;rough2T mod
A;rough

� �
; (4)

Table 3. Centered TA;rough : CAROLS Versus Models (n 5 180)

Correlation rms Difference (K)

H V H V

Aquarius CAP 0.92 0.91 0.29 0.25
SMOS M1v5 0.92 0.91 0.27 0.21
SMOS M1v3 0.91 0.90 0.31 0.22
SMOS M2v3 0.88 0.70 0.32 0.37
regression2 0.93 0.92 0.25 0.20

Figure 6. TA;rough residuals in H-pol as a function of STORM wind speed using (a) SMOS M1v5 and (b) Aquarius CAP models. (c and d) Same as Figures 6a and 6b but for V-pol. The solid
line indicates the estimate of the mean and dashed lines the confidence intervals, assuming a normal distribution. Means and confidence intervals are calculated at 2 m/s intervals. The
four flights are represented with four different symbols, in chronological order of flights: circle, plus, triangle, and square.
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where �X indicates data averaging over the whole campaign. In the following, we analyze the TA;rough resid-
uals as function of wind speed and wind direction. If roughness models are correct, the residuals should not
depend on these two parameters.

4.3.1. Residuals Dependency on STORM Wind Speed
DTA;rough obtained with SMOS M1v3 and M2v3 follow a quadratic dependency with wind speed (not shown)
since the quasi-linear dependence with wind speed of these models do not reproduce the quadratic
dependence highlighted in Figure 4a. In addition, the residuals reveal that SMOS M2v3 tends to underesti-
mate wind speed sensitivity in V-pol by about 0.1 K/(m/s) and SMOS M1v3 tends to overestimate wind
speed sensitivity in H-pol up to about 9 m/s by about 0.1 K/(m/s) (not shown). Aquarius CAP and SMOS
M1v5 residuals are much lower and do not show such a clear dependency on wind speed (Figure 6). Hence,
these CAROLS results confirm the main improvements of the new SMOS and Aquarius models with respect
to the prelaunch SMOS models. However, Aquarius CAP residuals in V-pol present a slight negative slope
with wind speed which indicates a slight overestimation of wind speed dependency (Figure 6d) of about
0.02 K/(m/s). We remark a lower scattering of the data in V-pol for moderate wind speed (<9 m/s) (std of
about 0.15 K) than for higher wind speed (std >0.25 K). We find this feature again with SMOS M1v5 and
regression2 residuals in V-pol (Figure 6c). In H-pol, regression2, SMOS M1v5, and Aquarius CAP residuals
have a std slightly higher than in V-pol, although less than 0.3 K whatever the wind speed. Despite this high
noise, residuals of Aquarius CAP and SMOS M1v5 tend to show a slight underestimation of the wind speed
correction for low wind speed (<7 m/s) (Figures 6a and 6b).

4.3.2. Residuals Dependency on Wind Azimuth
Regression2 residuals do not significantly depend on the first and second harmonic of the wind
direction whatever the range of wind speed (not shown) although regression2 has no dependency
with wind direction. To assess the absence of significant wind azimuthal dependency on TA;rough,
we analyze residuals of the four other models which take into account a wind direction dependency.
DTA;rough obtained with models reported in Table 4 are significantly correlated (better than 99.9%)
with cos u or cos 2u for various wind speed range (Table 4). 95% confidence intervals of linear
regression slope are indicated in the table. The slopes obtained are about opposite to the T mod

A;rough

correction for the first or second harmonic (Figure 3, and reported in Table 4 for a reference wind
speed of 9 m/s).

SMOS M1v3 and Aquarius CAP residuals present linear regression slope along cosu for moderate wind
speed (<9 m/s) opposite and of about the same order of magnitude as the first harmonic. This suggests
an undetectable first harmonic signature on our CAROLS data. For higher wind speed, our data set and
large residual noise do not permit to conclude despite strong differences between models in V-pol (Fig-
ure 3c). In H-pol, no significant influence is observed relatively to the first harmonic for any roughness
model.

The second harmonic is too large for M2v3 whatever the polarization and wind speed range (Table 4).
Residuals correlation with cos 2u is higher (>0.6 in absolute value) for moderate wind speed (<9 m/s) than
for higher wind speed (correlation of 0.5). Aquarius CAP second harmonic in both polarization tend to be
slightly too large at high wind speed (>9 m/s); although residuals correlation is weak (around 0.3) it is signif-
icant at a confidence level of 99%.

4.3.3. Residuals Dependency on mss Anomaly
For a fully developed wind-sea, there is a unique relation between wind speed and mss. In reality, sea is
never fully developed and integrates wind variation’s history (changes in speed and direction). These

Table 4. Regression Slope Between Residuals and First or Second Harmonics, When It Is Significant at a Level Better Than 99.9%a

Regressed Variable WS Range (m/s) Pol. Regression Slope Contribution at 9 m/s

Aquarius CAP cos u <9 V 20.053 to 20.146 0.085
SMOS M1v3 cos u <9 V 20.054 to 20.154 0.117
SMOS M2v3 cos 2u All H 0.305 to 0.198 20.247
SMOS M2v3 cos 2u All V 20.226 to 20.350 0.241

aLast column recalls the value of the first and second harmonics for a wind speed of 9 m/s.
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variable conditions affect dif-
ferently the various wave
roughness scales. Small scales
tend to fluctuate more rapidly
than larger scales. As STORM-
derived wind speed and mss
are sensitive to different
roughness scale, we define the
mss anomaly as the deviation
of mss from a fit between mss
and wind speed derived from
all STORM measurements (Fig-
ure 7).

As L-band radiometry is sensi-
tive to a large range of rough-
ness scale [Johnson and Zhang,
1999], our aim is to study if we
could evidence a relationship
between mss anomaly and
radiometric signal. In the fol-

lowing, we will define small scales as the wavelengths smaller than 10 cm, medium scales the wavelengths
between 10 cm and 10 m, and large scales the wavelengths above 10 m.

This comparison between radiometric signal and mss anomaly is shown in Figure 8, left. It shows a posi-
tive correlation between TA;rough residuals in H-pol and mss anomaly. Two distinct point clouds appear,
with a split at a mss negative anomaly value of about 431024. TA difference between the two point
clouds (distribution peak, Figure 8, right) is about of 0.3 K. We found similar feature for Aquarius CAP and
SMOS M1v5 models. In V-pol, no significant relation is found between TA;rough residuals and mss anomaly
for any model.

5. Discussion

In the above analysis, we
implicitly consider differences
between measured and simu-
lated TA as originating from
imperfections in the rough-
ness models. However, TA

residuals potentially contain
errors on all other compo-
nents of the forward model,
radiometric measurements
errors being expected to be
an order of magnitude
smaller. We now investigate
the order of magnitude of
potential errors on each
model component other than
roughness before discussing
results of TA residuals analysis.

5.1. Error Sources
5.1.1. Flat Sea Model
The emissivity model for a flat
sea depends on sea surface
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Figure 7. STORM total effective mean square slope as function of STORM wind speed. Black
curve fits data according to a power law (coefficient indicated in the legend). The four
flights are represented with four different symbols, in chronological order of flights: circle,
plus, triangle, and square.

Figure 8. (left) TA;rough residuals as a function of mss anomaly in H-pol for regression2 model
and for all wind speeds (symbols in white and in black). The solid line indicates the estimate
of the mean and dashed lines the confidence levels, assuming a normal distribution. Means
and confidence levels are calculated at 631024 mss anomaly intervals, provided there are
more than five points. The four flights are represented with four different symbols, in chro-
nological order of flights: circle, plus, triangle, square. The vertical line indicate mss anomaly
of 2431024. (right) Histogram of TA;rough;H residuals for mss anomaly (%). Empty symbols
and white bars correspond to mss anomaly lower than 2431024 and filled symbols and
black bars to higher values.
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dielectric constant (related to SSS and SST) and incidence angle. Differences in T mod
A ðflatseaÞ simulated with vari-

ous dielectric constant models [Meissner and Wentz, 2012; Lang et al., 2010; Blanch and Aguasca, 2004] relative to
the Klein and Swift [1977] model (used here) is always less than 0.06 K after removing mean campaign bias
according to the campaign sea surface condition. We estimate also a maximum error in our extrapolated SSS
and SST at ocean fronts of the order of 0.2 pss and 1�C. It results in TA error of less than 0.1 K on few areas. Error
due to relative uncertainty on incidence angles (<0.05�) could bring errors in TA lower than 0.07 K in V-pol, and
0.04 K in H-pol. Errors on roll and pitch angles being roughly Gaussian, the averaging process should reduce
again the noise from attitude.

5.1.2. Atmospheric Model
Root-mean-square error on atmospheric pressure (the atmospheric parameter that has the strongest impact
on Tb at L-band) from Era Interim reanalysis is of the order of 1 hPa [Dee et al., 2011], introducing an error
on TA less than 0.01 K.

5.1.3. Galactic Signal
A study led by J. Tenerelli (personal communication, 2011) points out that effective galactic signal scattered
by sea surface is in fact intermediate between specular reflection from a flat sea and the output of the scat-
tered model [Tenerelli et al., 2008] for a wind speed of 3 m/s. In our study, scattering of the galactic signal
was estimated with Tenerelli et al. [2008] model forced by the STORM wind speed, always higher than 3 m/s.
Hence, the scattering by the sea surface is expected to be much overestimated. In order to bound the error
on the simulated scattered galactic signal, we compute the difference between our scattered estimate and
the specular reflection of the galactic signal. Differences are up to 0.36 K for T1 (5Tv1Th) with a standard
deviation of 0.1 K. Only one flight direction (airplane flying southwest, 15% of the data set) in the evening
shows differences higher than 0.2 K. These data correspond to Cygnus and Cassiopeia reflected in CAROLS
main lobe. Removal of these data does not change significantly results shown in previous sections neither
standard deviation value of TA residuals.

5.1.4. Neglected Parameters
In the forward model, we neglect influence of sun, rain, and swell. Flights have been planned to have no influ-
ence of the sun (night flight). Only two and half hours of measurement of the first morning flight (19 Novem-
ber) occurred after the sun rise. TA residuals do not highlight significant signal when sun or rain (<4 mm/h
according to SSMIS) occurred. In all the four flights, sea state was characterized by either wind-sea or mixed
sea conditions (swell 1 wind-sea) as indicated by the WaveWatch3 model run by the PREVIMER forecast sys-
tem [Lecornu and De Roeck, 2009]. However, adding swell to the wind-sea wave spectrum in the forward
model (SMOS M1v3) does not change TA by more than 0.03 K for incidence angle between 0� and 50�. This
model has been developed and validated at higher frequency [Yueh, 1997] and needs to be validated for
L-band. The model includes hydrodynamic modulation as a function of the mean square slope.

5.2. TA Residuals Analysis
5.2.1. Wind Speed and Direction Influence
We find that simulations performed with roughness models that take into account quadratic dependence
on wind speed better compare with CAROLS measurements. This quadratic dependence is either obtained
using a foam parameterization (SMOS M1v5) or empirically (Aquarius CAP and regression2).

Independently to this aspect, we discuss here differences between analytic models (i.e., SMOS M1v3, M1v5, and
M2v3) to understand the impact of the various roughness scales on the signal. This discussion is not suitable for
empirical model in which all roughness scales are integrated. To that purpose, we deepen the analysis began in
section 3.1 on the weighting functions and on the wave spectra (Figure 2). Wave spectra DV1.25 and KHCC are
similar for high wavelengths (>4 m) but show differences in the range 2–60 cm (Figure 2a). KHCC shows higher
value in the range 10 cm to few meters than DV1.25 but with a lower dynamic range with changes in wind
speed. Therefore, the peak in the H-pol filtered KHCC (Figure 2c) is higher than for DV1.25 (Figure 2b), but the
sensitivity to wind speed (area differences between curves) is similar in this wavelength range. In the wave-
length range 1–10 cm, wave spectra vary differently from each other (Figure 2a), but the sensitivity to wind
speed is similar, bringing almost similar sensitivity to the filtered wave spectra (Figures 2d and 2e). Without tak-
ing into account foam impact, KHCC and DV1.25 wave spectrum simulate same wind speed sensitivity in H-pol
(in agreement with Figure 3b, with SMOS M2v3—KHCC wave spectrum—and M1v5 at wind speeds lower than
10 m/s to limit foam’s influence). In V-pol, the higher dynamic of DV1.25 compared to KHCC makes the
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difference of sensitivity (out of foam) between SMOS M1v5 and SMOS M2v3. SMOS M1v3 uses the DV2 wave
spectrum, i.e., a wave spectrum 60% higher than DV1.25. Wind speed sensitivity of SMOS M1v3 is therefore 60%
higher than SMOS M1v5 at moderate wind speed (i.e., when foam can be neglected). This analysis points out
the importance of having a good parametrization of wavelengths between 1 cm and about 1 m.

Regarding the wind direction influence, our data set does not show an azimuthal signal related to the wind
direction. Yueh et al. [2010] show a wind azimuthal influence which is significant for wind speed of 14 m/s
and higher. In our data set, only four measurements occurred with a wind speed higher than 14 m/s which
is insufficient to conclude. Nevertheless, we point out a too large sensitivity of the second harmonic of
SMOS M2v3 which is likely due to a too high value of the second harmonic of KHCC curvature spectrum at
wavelength higher than 10 cm [Guimbard, 2010, Figure E.3] where the second harmonic weighting function
shows a plateau [Johnson and Zhang, 1999, Figure 2a]. We find that the wind direction influence on TA has
to be smaller than 0.2 K, our residual noise, for wind speeds less than about 12 m/s (75% of data set).

5.2.2. Medium and Large Roughness Scale Influence
One important result of this study is to point out a TA double dependency in H-pol on wind speed (centime-
ter roughness scales) and to filtered mss (which takes into account all scales higher than 12 cm). We inter-
pret this double dependency as a quicker response of small roughness scales to local wind speed than that
of medium and large roughness scale. This may happen in case the sea is not fully developed, either for a
developing sea or a decreasing sea, or in response to variations in local wind compared to the averaged
wind. We test the impact of a developing sea on TA and mss using two wave spectrum models, KHCC and
[Elfouhaily et al., 1997] (ECKV), which simulate wave spectrum according to sea development, i.e., time (or
space) since wind blows, through the wave age parameter. The results are presented in Table 5.

According to the ECKV wave spectrum, wave age (young sea versus mature sea) impacts mainly wave-
lengths higher than 60 cm. Thus, it affects more largely H-pol (positively) than V-pol (negatively), for which
weighting functions exhibit a plateau at high wavelengths (Figure 2a). TA simulated for a young sea (inverse
wave age X52) compared to TA simulated for a fully developed sea is decreased by about 0.6 K in H-pol
and increased by about 0.3 K in V-pol.

Wave age influence on KHCC wave spectrum is based on the ECKV model for the larger scales, but it
increases (nonuniformly) the wave spectrum for a young sea in the range from 5 to 6 m. It results in a V-pol
TA increasing by 0.5 K for a young sea. In H-pol, there is a small decrease for a young sea at low wind speed;
the reduction in TA becomes larger above around 7 m/s (up to about 0.5 K).

Filtered mss decrease for a young sea by about 0.005 (ECKV wave spectrum) and 0.003 (KHCC wave spec-
trum) whatever the wind speed is.

In summary, simulations with ECKV wave spectrum are in qualitative agreement with Figure 8, with a posi-
tive correlation of TA and mss variations and with a higher response in H-pol than in V-pol.

However, the ECKV wave spectrum variations which explain TA variation are related to relatively large scales
of roughness which take time to develop (a few hours). We observe these variations at large spatiotemporal
scales (1 h, 100 km) but also at smaller scales (5 min, 20 km). This suggests that wave age is not sufficient to
explain mss and TA variations, but that one should probably also take into account local variation of wind
(e.g., wind gust) or other parameters such as sea surface currents.

These results have been obtained at an incidence angle of 34� for an antenna pattern of 37� half-power beam
but we can extrapolate them to general incidence angle thanks to the Johnson and Zhang [1999] weighting
functions. At nadir, we expect to have no sensitivity to large wave scales (mss) [Johnson and Zhang, 1999,

Table 5. Changes in TA and Filtered mss Variations According to Observations and Models for a Young Sea (X52) Compared to (Minus)
a Fully Developed Sea (X50:84)

Observation ECKV KHCC

dmsseff 20.002 20.005 20.003
DTA;rug (K) H V H V H V

� 20:3 � 0 � 20:6 � 10:3 [20.5; 0] [0; 10.5]
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Figure 1c] whereas at large incidence angle (60�), we expect to be highly sensitive to large wave scale with an
opposite variation between the H and V polarization [Johnson and Zhang, 1999, Figure 3c].

6. Conclusion

Using collocated L-band radiometric and scatterometer observations, we found that the roughness contribution
to the L-band antenna temperature may be parameterized at the first order (explaining 85% of the variance) by
a quadratic law in wind speed. The model is in agreement with the most recent models used for the roughness
correction on SMOS data, which include foam effects, as well as one of the models derived from Aquarius meas-
urements. We also show that collocating meteorological model wind fields (at 6 h, 0.75� resolution) to airborne
radiometer data is not well suited to study the roughness contribution to TA (Era Interim explains only 65% of
the variance). The quadratic empirical model (regression2) based on the campaign data set, although not taking
into account any wind direction influence, gives slightly better statistical results than the most recent satellite
roughness models (Aquarius CAP and SMOS M1v5). This is probably explained by the fact that the satellite mod-
els are derived using a global data set under varying roughness conditions while regression2 uses a more lim-
ited regional data set and the fact that the statistical results mentioned above have been obtained using data
used to perform the fit. As a consequence, it is possible that the improved performances of the latter model for
the particular region under study translate into less versatile performances at global scales.

To understand the performance of the various roughness models, we analyze the residuals between CAR-
OLS and various forward models. At low to moderate wind speeds, medium to large roughness scales (esti-
mated through STORM mss) have a similar (even higher sometimes) impact on the antenna temperature
than wind direction. We confirm this link between medium and large roughness scales and TA theoretically,
according to wave age, using the [Elfouhaily et al., 1997] and [Kudryavtsev et al., 2003] wave spectra. These
models using only a wave age parameterization are probably too simple to describe the observed ocean
sea state. Further study using numerical wave models such as WaveWatch III [Tolman, 2009] and local
parameters to simulate realistic wave spectrum, and therefore realistic TA and mss, would be interesting.
Residuals analysis also indicates for Aquarius CAP a too high first harmonic of wind direction in V-pol for
wind speed lower than 9 m/s and a slightly too large second harmonic for wind speed higher than 9 m/s in
both polarizations. It shows also a slight overestimation of the omnidirectional wind speed correction on TA

in V-pol of about 0.02 K/(m/s) but this could be due to the nonintegration on CAROLS antenna pattern. No
significant dependency of residuals on wind speed or wind direction is observed when using SMOS M1v5.
These conclusions are based on the relatively limited data set acquired in the Gulf of Biscay during the CAR-
OLS experiment. They will have to be confirmed in future studies with measurements acquired in other
regions and geophysics conditions.

Although we investigated many parameters which influence the TA, we are not able to fully reconcile the
CAROLS radiometric noise with the root-mean-square error between measured and simulated TA. The meas-
urements error is lower in V-pol at moderate wind speed (<9 m/s) (0.15 K) than at higher wind speed or in
H-pol (about 0.25 K). Hence, it could be linked to roughness influence not fully taken into account. Never-
theless, it is amongst the smallest observed error with similar instruments during other airborne campaigns.

Appendix A: RFI Detection and Mitigation Algorithm

Various methods exist to sort measured data affected by RFI. One type of method largely used for radiomet-
ric measurements [Ruf et al., 2006; Skou et al., 2010] is based on a threshold applied on the kurtosis of the
antenna temperature distribution. Applied on our CAROLS raw data (kurtosis estimated on a distribution of
139.400 samples per 1 ms integration intervals), it turned out to be not fully appropriate: indeed after rejec-
tion using this criterion, high CAROLS TA remain despite normal values of kurtosis (excess TA up to 60 K in V
and 30 K in H on 1 ms measurements). Besides, we observe that the estimated kurtosis increases slightly
with the measured TA (varying from 2.91 to 2.97 when TA in H or V-pol varies from 70 to 240 K—not shown).
Therefore, it turns out that the kurtosis is a function of polarization and incidence angle. We do not under-
stand the origin of this variation but it could be linked to the digitization process [De Roo and Misra, 2008].
To avoid this issue, we propose an adaptive algorithm to filter RFI. For each block of 800 ms:

1. median calculation of TA and k for the two polarizations;
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2. standard deviation estimation using interquartile range (stdiqr) of TA;1ms and k1ms for the two polarizations;

3. outlier flag for each measurements if: jX2medianðXÞj > 3:stdiqrðXÞ for one of the four X; where X is TA;1ms

or k1ms in H or V-pol; and

4. RFI flag up when more than 2% of measurements are flagged as outlier.
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