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Satellite remote sensing data can be used to model
marine microbial metabolite turnover
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Sampling ecosystems, even at a local scale, at the temporal and spatial resolution necessary to
capture natural variability in microbial communities are prohibitively expensive. We extrapolated
marine surface microbial community structure and metabolic potential from 72 16S rRNA amplicon
and 8 metagenomic observations using remotely sensed environmental parameters to create
a system-scale model of marine microbial metabolism for 5904 grid cells (49 km2) in the Western
English Chanel, across 3 years of weekly averages. Thirteen environmental variables predicted the
relative abundance of 24 bacterial Orders and 1715 unique enzyme-encoding genes that encode
turnover of 2893 metabolites. The genes’ predicted relative abundance was highly correlated
(Pearson Correlation 0.72, P-value o10�6) with their observed relative abundance in sequenced
metagenomes. Predictions of the relative turnover (synthesis or consumption) of CO2 were
significantly correlated with observed surface CO2 fugacity. The spatial and temporal variation in
the predicted relative abundances of genes coding for cyanase, carbon monoxide and malate
dehydrogenase were investigated along with the predicted inter-annual variation in relative
consumption or production of B3000 metabolites forming six significant temporal clusters.
These spatiotemporal distributions could possibly be explained by the co-occurrence of anaerobic
and aerobic metabolisms associated with localized plankton blooms or sediment resuspension,
which facilitate the presence of anaerobic micro-niches. This predictive model provides a general
framework for focusing future sampling and experimental design to relate biogeochemical turnover
to microbial ecology.
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Introduction

The oceans comprise 72% of the planet’s surface
area, and harbor microbial communities responsible
for 98% of the ocean’s primary productivity
(Jørgensen and Boetius, 2007). Efforts to characterize
the microbial ecology of the oceans have always
relied on local longitudinal (Gilbert et al., 2012) or
geospatially distributed (Fuhrman et al., 2008)
observations to make inferences about the ecological
dynamics of microbial community structure and
function as a product of local niche variability.
Such inferences make extrapolative assumptions

regarding the variation in niche dynamics both in
space and time, which is essential as mapping the
real-time response of microbial communities across
the global ocean would be prohibitively expensive.
Researchers have therefore chosen to model the
microbial dynamics of marine ecosystems to
develop a predictive understanding of the microbial
response to environmental change. However, cap-
turing these dynamics has focused on predicting the
relative abundance of key taxonomic groups, with
only limited characterization of functional capacity
(Follows and Dutkiewicz, 2011; Larsen et al., 2012;
Ladau et al., 2013; Toseland et al., 2013; Fierer et al.,
2013). Going beyond predictions of the membership
of microbial communities, to predict their functions,
has been an elusive goal. However, physical,
chemical and biological data collected in the
Western English Channel (WEC) provide a unique
opportunity to generate and validate microbial com-
munity distribution models (Fierer and Ladau, 2012)
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that can predict microbial metabolic potential.
Station ‘L4’ of the Western Channel Observatory is
an oceanographic time-series and marine biodiver-
sity reference site (http://www.westernchannelob
servatory.org.uk) that contains a rich resource of
oceanographic, climatological, remote sensing,
biogeochemical and biological data, including mole-
cular characterization of the microbial community
with 16S rRNA (bacteria and archaea) and shotgun
metagenomic and metatranscriptomic sequence data
(Gilbert et al., 2009, 2010, 2012; Caporaso et al.,
2012; Gibbons et al., 2013). We combined this
community sequence data resource with synoptic
environmental parameter data predicted from
remote sensing satellite image models (SIMs) covering
the whole English Channel (http://ncof.npm.ac.uk/),
an indispensable tool for assessing environmental
conditions over wide spatial and temporal scales in
macroecological systems (Graetz, 1990; Paul Bissett
et al., 2001; Brewin et al., 2010; Wang et al., 2010)
and microbial systems (for example, Doney et al.,
2004; Glöckner and Joint, 2010). Remote sensing
measures reflected or emitted electromagnetic radia-
tion without requiring a physical presence in the
region being monitored; in situ environmental
conditions can then be extrapolated by correlation
with shifts in the spectral reflectance using SIMs.
Because remote-sensing data can be captured inex-
pensively at large scales and relatively fine spatio-
temporal resolution, and is already being collected
by various national and international agencies (for
example, National Aeronautics and Space Admin-
istration and the European Space Agency), it
represents a valuable resource for extrapolating
ecosystem dynamics. The unique combination of
available sequence data describing the microbial
community and SIM data at the WEC site has
enabled the development of two tools for creating
community distribution models: Microbial Assem-
blage Prediction (MAP; Larsen et al., 2012) and
Predicted Relative Metabolic Turnover (PRMT;
Larsen et al., 2011). MAP predicts microbial com-
munity structure as a function of SIM data by
creating a Bayesian co-dependency network where
the SIM data are parents to microbial taxa, and
microbial taxa can also be parents to other microbial
taxa; this artificial neural network was trained on
longitudinal data describing microbial community
structure from the L4 site (Gilbert et al., 2012) and
these predicted community structures agreed well
with the actual community structures (Bray–Curtis
dissimilarity 0.897; Larsen et al., 2012). This model
forms the basis of the current study. PRMT is a
translation tool that uses the changing relative
abundance of functional genes in metagenomic data,
or functional transcripts in metatranscriptomic data,
between samples to predict the changing capacity of
that community to consume or generate metabolites,
for example, CO2, NO3, NH4, CH4 and so on (for
example, Larsen et al., 2011; Scott et al., 2014;
Mason et al., 2014). Negative PRMT scores indicate

increased relative metabolite production and hence
accumulation, and positive scores indicate relative
metabolite consumption. PRMT does not predict
fluxes of metabolites or gases, nor does it provide a
direct quantitative approach for measuring the con-
centration of metabolites in a sample. It does,
however, translate the metabolic potential of a
microbial assemblage by utilizing the relative abun-
dances of all annotated genes encoding potential
enzyme functions that influence the consumption or
production of metabolites, to improve an estimation
of the relative likelihood that a metabolite will be
consumed or accumulated by that assemblage com-
pared with another assemblage. PRMT was pre-
viously validated against measured concentrations
of marine metabolites from the L4 site, demonstrating
that it was possible to predict the changing capacity
of the community to mediate the transformation of
those metabolites from the changing relative abun-
dance of gene fragments that code for enzymes in
metagenomic data (Larsen et al., 2011).

Here we combine MAP and PRMT approaches to
generate a system-scale model of marine microbial
metabolism as a function of environmental properties
that were estimated from remotely sensed spectral
reflectance data. SIM data are used to predict
community structure with MAP, and community
structure is used to predict the community metagen-
ome (as the relative abundance of unique enzyme
activities, using a technique similar to PiCRUST
(Langille et al., 2013), which is translated, using
PRMT, into the relative capacity of the community to
consume or generate different metabolites; Figure 1).
Although it is impossible to absolutely validate these
models, as data simply does not exist, we have
correlated these statistical models against observed
amplicon and metagenomic shotgun sequencing data
collected from the L4 station (Gilbert et al., 2010,
2012). In addition, although PRMT scores are only an
indication of the relative potential of the predicted
assemblages to turnover metabolites, we show that
the PRMT scores for CO2 correlate appropriately with
1700 in situ data points for the fugacity of CO2

(fugacity is an effective measure of the pressure of a
gas that replaces real mechanical pressure in equili-
brium equations) acquired from the Surface Ocean
CO2 Atlas (SOCAT; http://www.socat.info). We dis-
cuss how these measurements can be used to make
informed predictions about the distribution and
temporal dynamics of functional metabolisms in this
ecosystem.

Materials and methods

Data used to train the MAP-PRMT model

L4 Station amplicon and metagenomic sequence
data. The L4 Station of the Western Channel
Observatory is an oceanographic time-series and
marine biodiversity reference site (http://www.
westernchannelobservatory.org.uk) that provides a
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rich collection of bacterial and archaeal 16S rRNA,
and shotgun metagenomic and metatranscriptomic
sequence data sets over seasonal cycles (Gilbert
et al., 2010, 2012). The average water depth for the
English Channel is 125 m, and remains relatively
well mixed throughout the year but with defined
seasonal stratification (Smyth et al., 2009). These
amplicon and metagenomic sequence data describe
the taxonomic and functional dynamics of the
microbial communities and are abundantly contex-
tualized with environmental parameters, including
in situ measured physical, biological and chemical

variables (Southward et al., 2005; Smyth et al.,
2009). Eight samples taken at the L4 WEC station
over Spring, Summer and Winter 2008 were pro-
cessed to generate shotgun metagenomic sequence
data (Gilbert et al., 2010). These were used as a
baseline to extrapolate microbial functional poten-
tial across time and space in the English Channel
and validate predictions of the relative abundance of
metagenomic sequences predicted to code for
proteins with annotated enzyme activities. To facil-
itate the predictions of population and functional
structure, the WEC region is divided into 5904

Figure 1 The procedure for modeling eco-scale metabolome from SIM data in the WEC follows three principle steps, outline here in
cartoon form. In the first step (a), SIM data (labeled SIM-1 to 3) are used to predict the community structure of microbial taxa (labeled T-1
to 4) using an artificial neural network trained on SIM data and 16S rRNA amplicon data. The output of this step is a vector describing
the relative abundance of taxa for a given set of SIM data. The output of step (a) is used as the input for step (b). The vector of microbial
community structure is transformed into a predicted metagenome. Each element in the matrix in b is the average number of genes for an
enzyme activity (labeled EC-1 to 6) in each microbial taxa T. The output is a predicted metagenome described as a vector of enzyme
function counts. The output from b is normalized by the average enzyme function counts for all predicted metagenomes and used as
input for step (c). In c, metagenome is used to predict the metabolic turnover for metabolites mediated by the enzyme functions in b. The
matrix in c is a metabolomic network derived from enzyme functions in metagenome and the set of metabolites (labeled M-1 to 7) inferred
by those enzymes. The output of step (c) is a vector of PRMT-scores (Predicted Relative Metabolic Turnover), a quantification metric for
predicted relative turnover of every metabolite in the metabolomic network. Steps a–c are performed for every location and every time
point in the WEC for which SIM data are available.
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(123� 48) grid cells (Larsen et al., 2012), and
predictions were generated for weekly averages from
2007 to present day.

Remote sensing SIM data. SIM data were used as
generated for the WEC Ecosystem model (ECOOP;
WMS 1.3.0 data from National Centre for Ocean
Forecasting GODIVA). These data are derived from
moderate-to-high temporal frequency coarse spatial
resolution satellite data such as Moderate Resolution
Imaging Spectrometer (daily–weekly; 250 m–1 km
resolution) and Advanced Very High Resolution
Radiometer (daily; 1B4 km resolution). These time-
series satellite data were correlated with ocean
environmental parameters (for example, sea surface
temperature, chlorophyll and phosphate concentra-
tions, and dissolved oxygen) measured at the sampling
locations using rigorous algorithms and models
(Kilpatrick et al., 2001; Carder et al., 2004) to generate
spatially explicit and contiguous information. The
remotely sensed environmental information is avail-
able for the L4 Station (http://ncof.npm.ac.uk/ncWMS/
godiva2.html; Southward et al., 2005; Smyth et al.,
2009) for dates between 2007 and April 2010. Thirteen
SIM data types (dissolved O2, phosphate, nitrate,
ammonium, silicate, chlorophyll A, photosynthetically
active radiation (PAR) irradiance, small particulate
organic carbon (POC), medium POC, large POC, labile
dissolved organic carbon (DOC), semi-labile POC and
bacteria) were used in the MAP model for the current
study. SIM data are reported for 1200 hours each day.

SOCAT. The SOCAT is the database of a global
ocean fCO2 (fugacity of CO2) measurements pre-
sented in a common format (Pfeil et al., 2013).
Fugacity is a relative measure of gas pressure, which
replaces mechanical pressure in equilibrium equa-
tions; this is the metric used to represent the
pressure of CO2 in the water column samples from
the SOCAT database. There were 1798 points for the
year 2008 in the SOCAT database of marine fCO2

that overlapped in time and space with the
previously generated English Channel microbial
community distribution model predictions and
available SIM data (Larsen et al., 2012). Of these
data points, we used 244 collected between 1100
hours and 1300 hours, corresponding to the approx-
imate time of SIM data collection (1200 hours) to
correlate predicted PRMT scores for CO2 against
in situ measured fCO2.

Prediction of microbial community structure
The MAP model (Larsen et al., 2012) extrapolates
community structure (relative abundance of defined
taxonomic units, for example, bacterial Orders) as a
functional of SIM data. MAP requires a set of
sampled microbial assemblages (16S rRNA ampli-
con sequence data) and corresponding measures of
environmental parameters (for example, SIM data;

Figure 1a). These data are used to generate a directed
acyclic graph, called the Environmental Interaction
Network (EIN). Nodes in the EIN are environmental
parameters and measures of microbial taxonomic
relative abundances. Edges in the EIN represent
potentially causal relationships between environ-
mental parameters and microbial taxa, or between
different microbial taxa. Root nodes in the EIN are
exclusively comprised of the environmental para-
meters. We use the previously developed network
created using Bayesian network prediction methods
(BANJO v 2.0.1 (Yu et al., 2004; Smith et al., 2005))
from the MAP model (Larsen et al., 2012). Let px

i be
the proportion of a single taxa i in sample x. The
community structure for a sample is given by an
array of length T:

px�! ¼ fpx
1;p

x
2 . . . px

Tg ð1Þ
where T is number of represented taxa. Each px�! is

normalized such that the sum of community
abundance values in a single sample equals 100.
The value of each taxa (where each taxon is a node
in the EIN) in a sample, px

i , is predicted as a function
of the values of the m parents of the ith taxa in the
EIN network:

px
i ¼ f ðpx

i;1;p
x
i;2 . . . px

i;mÞ ð2Þ
Parents of a given taxon may be other taxa or

environmental parameters. As the EIN is a directed
acyclic graph with root nodes representing environ-
mental parameters, all predicted values for taxo-
nomic abundances are ultimately functions of
environmental parameters. The functions to predict
the taxa values are generated using an evolutionary
optimization algorithm tool EUREQA (v 0.83 beta
software (Schmidt and Lipson, 2009)). Here we use
the previously generated MAP functions (Equation
2) to predict the relative abundance of the 24 most
abundant bacterial Orders in the WEC from 24
monthly measurements of 16S rRNA V6 community
structure corresponding to 2007–2008 of the 6-year
time-series from L4 (Gilbert et al., 2012). This model
was generated using 16S RNA gene sequence
observations collected over a 2-year period
(2007–2008) at the L4 Station (Larsen et al., 2012)
and 13 environmental parameters calculated from
SIM data (including dissolved O2, phosphate, nitrate,
ammonium, silicate, chlorophyll A, photosyntheti-
cally active radiation irradiance, small POC, medium
POC, large POC, labile dissolved organic carbon,
semi-labile POC and bacteria). As previously
reported, the predicted microbial community struc-
tures matched observed community structures well
(average Bray–Curtis similarity score of 89.7
(s.d.¼ 2.32) over the 24 monthly observations).

Prediction of enzyme relative abundance
The community structure of a sample can also be
used to predict the community functions of that
population, given as relative abundances of specific
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functional gene annotations represented as Enzyme
Commission (EC) numbers. This involves collation
of all available genomes from a given taxon group
(for example, Order level) to enable an averaged
predicted metagenome for a given community
(Figure 1b). Let gx

i be the abundance of a single-
enzyme function i in sample x. The functional
structure for a sample is given by an array of length
EC:

gx�! ¼ fgx
1 ; g

x
2 . . . gx

ECg ð3Þ

Where EC is the number of represented EC
number annotations for unique enzyme activities.

To predict the functional structure gx�!, the popula-
tion structure of the sample px

i is ‘weighted’ by the
average distribution of genes coding for specific
enzyme annotation for all annotated genomes
belonging to taxa t. Let the enzyme by taxa matrix
be, E:

gx�! ¼ E px�! ð4Þ

We calculate E by using a database, such as the
collected annotated genomes in kyoto encyclopedia
of genes and genomes (KEGG), to determine the
average EC number counts for each taxa present in
the community. In the current study using the 24
bacterial taxa in the previously published MAP
model, we used a total of 1398 representative
sequenced and annotated genomes present in the
KEGG database to determine E (Supplementary Data:
Predicted average abundance of EC annotations per
bacterial Order (Supplementary Table 1); Complete
listing of KEGG genomes used (Supplementary
Table 2)). All gx

i are normalized by quantiles across
all x samples and log2 transformed, g0x

�!
. The 1042

enzymes that overlap between the predicted
and observed metagenomic data are shown in
Supplementary Table 3.

Prediction of Microbially Mediated Relative Metabolite
Turnover (PRMT)
PRMT is a method for quantifying the predicted
difference in relative metabolic turnover between
samples as a function of the abundances of genes
predicted to code for enzyme activities in metage-
nomic sequence data (Larsen et al., 2011). PRMT
scripts are available at http://www.bio.anl.gov/
PRMT.html. Let the enzyme by metabolic reaction
matrix be M. M is of the dimensions EC by m, where
m is the number of metabolites predicted from the
given number of enzyme functions (Figure 1c). The
metabolic turnover scores between samples, x and y,
are given by:

cx;y
��! ¼ Mð g0x

�!
� g0y
�!
Þ ð7Þ

We calculate M by using a database such as the
KEGG reactions to determine the counts of com-
pounds involved in reactions dictated by the

enzymes present in the normalized and log2 trans-
formed metagenomes, g0x

�!
and g0y

�!
.

The resulting set of value, cx;y
��!, is a vector of PRMT

scores of length m for the comparison of PRMT of
each metabolite in M for population x relative to
population y.

We previously demonstrated that the PRMT
analysis of metagenomes collected in the WEC
strongly correlated with corresponding measured
environmental parameters (Larsen et al., 2011).
Importantly, although there is a linear relationship
between the relative abundance of genes encoding
enzymes and PRMT scores for a given metabolite,
there is also a nonlinear relationship between each
of the genes encoding enzymes that may be used to
predict a given metabolite. Therefore, the contribu-
tion of each enzyme is weighted based on the
network topology, and a supposed equilibrium
between production and consumption. All scripts
used for PRMT are available via http://bio.anl.
gov/prmt.html. All PRMT scores provided in this
work are presented in Supplementary Material
(Supplementary Table 4).

Validation of predicted relative abundances of enzyme
activities and CO2 relative turnover
To determine whether the predicted gene and
enzyme activity relative abundances were represen-
tative of the observed metagenomes sequenced from
the L4 site, eight metagenomes (relative abundances
of functional genes) were predicted using the
method outlined above, for the dates and times for
which the observed metagenomes exist for the L4
site in the WEC (Gilbert et al., 2010). As the method
outlined above only predicts the relative abundance
for the annotated enzyme activities associated with
the taxonomic Orders that were generated by the
MAP model, not all EC annotations present in
the observed shotgun metagenomes were found in
the predicted metagenome. In fact, only 1042
enzyme functions were in common between the
predicted metagenomes and the observed metagen-
omes. However, a Pearson Correlation Coefficient
(PCC) was used to determine the correlation
between the predicted and observed relative abun-
dances of the 1042 unique enzyme activities (as EC
number annotations) found in common between
these two data sets. Total enzyme function counts
from both data sets were log transformed before
calculating correlations.

We also validated the method by comparing the
CO2 metabolite turnover predictions generated from
PRMT to measured metabolic parameters. Currently,
the L4 site in the Western Channel Observatory is
the most characterized location in the English
Channel (Smyth et al., 2009), and we previously
used metabolite concentrations measured in situ at
this site to validate PRMT, whereby we were able to
predict changes in the concentrations of chlorophyll
A (PCC � 0.98), organic nitrogen (PCC � 0.99),
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organic carbon (PCC � 0.98), nitrate (PCC � 0.98),
ammonia (PCC � 0.81) and orthophosphate (PCC
� 0.93) to a high degree of accuracy (Larsen et al.,
2011). However, only one uniformly measured
in situ metabolite concentration spanned the Eng-
lish Channel over multiple years: the fugacity of CO2

in the SOCAT database. We used these reported
values collected across the WEC region at a variety
of dates. PRMT scores were simulated for locations
and times that mapped the 1744 observed WEC
SOCAT fCO2 data points, of which 244 mapped to
the times and locations for which the SIM data were
generated; these were used for determining correla-
tions between the calculated PRMT-CO2 and mea-
sured fCO2. The significance of all correlations was
determined using a bootstrap approach. The Bray–
Curtis score between the predicted and actual
community structure was determined, and all pre-
dicted data were randomly permuted 10 000 times
(randomizing both the sample day and taxa). Then,
for each permutation, the Bray–Curtis score was
recalculated. Each time a random permutation of
data returned a Bray–Curtis value higher than the
initial Bray–Curtis value it was recorded, and a
P-value was calculated. The seasonal variance over
metabolites with non-zero PRMT scores (2494 out of
2893 possible metabolites) over 3.5 years of weekly
averages of the channel were grouped using
K-means clustering. Clustering was performed in
Multi Experiment Viewer (MeV) v4.5.1 (http://
www.tm4.org/) for six clusters, using Euclidian
distance. Clustering was run iteratively until con-
vergence, with no clusters taking longer than eight
iterations. The six resulting clusters followed pat-
terns of seasonal variation, with cluster (i) (108
metabolites) with high PRMT scores in summer,
cluster (ii) (114 metabolites) up in winter, cluster
(iii) (103 metabolites) dipping sharply in winter,
cluster (iv) (163 metabolites) spiking in winter,
cluster (v) (1189 metabolites) slightly up in
winter and cluster (vi) (817 metabolites) slightly
up in summer.

Results and discussion

Validation of microbial community structure and
annotated enzyme function predictions
We demonstrate that satellite data describing surface
water reflectance properties can be used to predict
not only the microbial community structure (as
previously shown; Larsen et al., 2012), but also the
relative abundances of annotated genes that encode
enzyme activities, which can then be translated into
the changing capacity of the community to consume
or generate metabolites. As demonstrated pre-
viously, the MAP model can be used to predict,
with significant accuracy, the community structure
(relative abundances of the 24 most abundant
bacterial Orders) in a longitudinal data set to a
Bray–Curtis dissimilarity score of 0.897 (Larsen

et al., 2012). We now extend this work by predicting
the relative abundances of genes in these commu-
nities, and validate these predictions by compar-
isons to sequenced metagenomes. A significant
correlation of 0.718 (P-value o10� 6) was observed
when comparing the relative abundances of the
1042 annotated enzyme activities (Supplementary
Table 3) for eight predicted metagenomes from this
study that overlap in time and space with eight
observed metagenomes from a previous study
(Gilbert et al., 2010). This provides confidence that
the predicted community structure and functional
potential generated for the 5904 sites in the WEC
significantly represented observed structure. This
method is limited to genes that can be annotated to
known enzyme activities, and the attribution of
these functions to known taxa is limited to the level
of bacterial Order. However, the framework can
easily be extended when new gene annotations and
genomes become available. Although predicting
species level descriptions, that is, not generalizing
functional predictions to the level of bacterial Order,
would be extremely useful, genomes that effectively
describe the species level functional potential are
lacking for many taxa, which seriously impacts the
effectiveness of species level predictions. It is more
effective to generalize at a higher taxonomic level
(Langille et al., 2013). Also extrapolating over such
wide geographic and temporal ranges necessitates a
certain degree of taxonomic generalization, to
reduce the likelihood of over fitting local genomic
adaptations. That the predicted relative abundance
of annotated enzyme-encoding genes used to gen-
erate PRMT scores was significantly correlated with
observed metagenomic data, builds on previous
evidence that a metagenome can be predicted by
correlating functional gene abundance to microbial
community structure as measured by 16S rRNA
amplicons (Langille et al., 2013).

Comparison of metabolic predictions with observed
fCO2

Although the model can be used to accurately predict
the microbial community structure and the relative
abundance of functional genes at a particular site, its
true value is in the potential to extrapolate and
generate modeled hypotheses regarding predictions
of metabolite turnover, that is, the emergent meta-
bolic properties of the microbial assemblage for a
given location and time as a function of environ-
mental niche space (for example, predicted from SIM
data). To determine whether extrapolations of the
relative turnover of metabolites reflected what was
observed across the channel, we compared the results
against in situ metabolite measurements from multi-
ple times and sites. However, such data were only
available for one metabolic measurement, the fuga-
city of CO2 (fCO2), as provided by the SOCAT
database. Therefore, we predicted the relative turn-
over of CO2 for 244 locations and time points in the
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English Channel where available SIM data and in situ
fCO2 measurements overlapped. Enzymes that med-
iate the bidirectional conversion of metabolites to
CO2 do not directly contribute to the predicted PRMT
scores for CO2; therefore, unidirectional enzymes
have greater significance. In this calculation, genes
encoding 1.4.4.2, 2.3.1.-, 2.7.2.2 and 3.5.1.54
(Supplementary Figure 2) provide the greatest con-
tribution to CO2 accumulation. Comparing PRMT
scores for CO2 with 244 observed fCO2 data points
provided a significant correlation of � 0.4
(Po0.0001). Therefore, when the model predicted
an increased relative capacity for the synthesis, and
hence accumulation of CO2 (negative PRMT score),
the observed fCO2 was greater than the average across
the 5904 grid cells for that time point, which
suggested a local increase in the relative pressure of
CO2. Conversely, when the model predicted an
increase in the relative capacity for the consumption
of CO2 (positive PRMT score), the observed fCO2 was
relatively lower, which suggested a decrease in the
relative pressure of CO2. This result demonstrates
that the model is able to reflect dynamics in the
metabolic turnover of CO2 across the English Channel
and over time, indicating that other predicted
metabolite turnover scores may also be representa-
tive. We propose that these predictions could be used
to help direct efficient sampling efforts to investigate
specific microbial biogeochemical processes. Impor-
tantly, Although cyanobacteria and bacterial hetero-
trophs will impact the fugacity of CO2, we do not
know the degree of their influence. The moderate, but
significant, correlation between predicted turnover
and fCO2 observed here may reflect a limited
influence, which is probably less important than
the physical equilibrium dynamic of CO2 at the
water–atmosphere interface. Therefore, despite this
significance, these PRMT scores and this correlation
should in no way be used to infer true fCO2

dynamics, yet the PRMT scores of all metabolites
(as outlined below) can be used to explore interesting
extrapolated dynamics across a region and through
time.

Extrapolating central carbon metabolism across the
WEC
To highlight the model’s potential to capture func-
tional gene abundance and metabolite turnover
features across the channel, and to demonstrate
how the predicted relative abundances of genes
relate to the PRMT scores for the metabolites they
mediate, the changing relative abundance of three
genes associated with CO2 metabolism were pre-
dicted, and compared with the relative turnover of
CO2 (Figure 2). Predictions of microbial community
structure (relative abundance of bacterial orders),
functional gene abundance and PRMT scores were
generated for 5904 grid cells (49 km2) in weeks
commencing 17 March, 23 June, 22 September and 8
December 2008, which were arbitrary chosen

weekly averages for which adequate SIM data were
available (Figure 2; Supplementary Figure 1). This
resulted in a total of 566 784 predictions of the
relative abundance of the 24 most abundant bacterial
Orders; 40 501 440 functional gene relative abun-
dance predictions; and 68 321 088 separate PRMT
scores. We chose to demonstrate these predictions
using three central carbon metabolism enzymes
associated with CO2 production and consumption:
cyanase, carbon-monoxide (CO) dehydrogenase and
malate dehydrogenase (Supplementary Figure 2).
These three enzymes (or more accurately, the
relative abundance of the genes that encode them)
were chosen to represent three different types of CO2

metabolism, which are differentially affected by
environmental conditions, are representative of
different microbial populations, and exemplify
how these differences interact synergistically to
affect predicted CO2 turnover (PRMT score). Cya-
nase is involved in toxicity; CO dehydrogenase is
considered an obligate anaerobic system of carbon
fixation and is found in both bacteria and archaea
(although it is also found in aerobic carboxydo-
vores); and malate dehydrogenase is part of the
reversible conversion of malate to oxaloacetate, and
forms part of both the oxidative (tricarboxylic acid
cycle, TCA) and reductive TCA (rTCA) in bacteria.

Strikingly, our model predicts a very similar
distribution for the normalized copy number of genes
encoding these pathways for the weekly averages in
March and December (Figure 2). Although this could
be an artifact, it may also indicate that the community
functional potential for these genes is relatively
similar in these 2 months, which have somewhat
similar environmental characteristics, for example,
low temperature and high inorganic nutrient con-
centrations (Smyth et al., 2009). This would need to
be validated by in situ observation, but such an
endeavor is outside the scope of the presented work.
The spatial variance in the predicted copy number of
the gene encoding cyanase during June and Septem-
ber suggests spatial heterogeneity in cyanase meta-
bolism increases during these months. The predicted
copy number of the gene encoding carbon-monoxide
dehydrogenase demonstrates high relative abundance
along the north coast of France and the southern Irish
Sea in June and September, which is replaced by
relatively higher copy numbers in the mid channel
during the March and December (Figure 2). The
predicted normalized copy number of the gene
encoding malate dehydrogenase shows the most
homogeneous distribution. Cyanase (4.2.1.104) med-
iates the bi-directional bicarbonate-dependent degra-
dation of cyanate to CO2, to detoxify cyanate to
carbamate, which spontaneously degrades to NH3

and CO2. The cynS gene in marine cyanobacteria is
thought to have a role in detoxification of cyanate,
which builds up becaue of urea and carbamoyl
phosphate metabolism (Kamennaya and Post, 2011).
Although difficult to test with these data, areas of
increased cynS abundance may represent regions that
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require such de-toxicity, which is supported by its
increased abundance across the channel during
the months of high phytoplankton productivity
(March and September). This is consistent with
previous observations from various marine basins
(Red Sea, Mediterranean Sea, Indian Ocean and
Southern Ocean) that periods of high productivity
induce labile dissolved organic matter and nitrogen
(urea and amino acids), which can trigger cyanase
production (Kamennaya and Post, 2013). Carbon-
monoxide (CO) dehydrogenase (1.2.99.2) is central to
the carbonyl branch of the reductive acetyl-CoA
pathway, and is considered to be the most ancient
autotrophic carbon fixation pathway becaue of its
presence in both the bacteria and archaea (Hügler and
Sievert, 2011). However, the genes associated with
these predictions are almost exclusively bacterial in
origin. CO dehydrogenase is mostly an obligate
anaerobic system of carbon fixation, which would
suggest a significant increase in anaerobic micro-
niches associated with the phytoplankton and zoo-
plankton blooms occurring mid-channel during the
summer months. Although aerobic CO oxidation can
also be indicated by this gene, it is limited to

specific organisms belonging to the Actinobacteria,
Proteobacteria and Firmicutes (Martin-Cuadrado
et al., 2009), and in this model CO dehydrogenase
is mostly associated with Desulfobacterales and
Sphingomonadales, which to the best of our knowl-
edge do not comprise carboxydovores. This suggests
that the majority of predicted CO dehydrogenase
activity may be anaerobic. Malate dehydrogenase
(1.1.1.37) is primarily responsible for the reversible
redox of malate to oxaloacetate, and forms part of
both the oxidative (TCA) and rTCA in bacteria and
the dicarboxylate/4-hydroxybutyrate cycle in
archaea. Therefore, this enzyme occurs in both
aerobic and anaerobic systems, and indeed could
represent both pathways in the predictions of CO2

turnover. However, it is more likely that the presence
of this gene in surface waters is indicative of the
aerobic heterotrophic metabolism as part of the TCA
cycle. In the March and December predictions,
malate dehydrogenase shows a considerable reduc-
tion in relative abundance within the same spatial
region as CO dehydrogenase (Figure 2), which may be
indicative of a region of reduced oxygen potential
leading to the selection of the reductive acetyl Co-A

Figure 2 Maps of the Western English Channel showing the changing relative abundance of three central carbon metabolism genes and
PRMT scores for carbon dioxide over 4 monthly averages in 2008. The three top rows show weekly averages for the relative gene copy
number for Cyanase (4.2.1.104), Carbon-monoxide dehydrogenase (1.2.99.2) and Malate dehydrogenase (1.1.1.37). As the predicted
metagenomes are created by merging the relative proportions of genomes from taxa closely related to the 16S rRNA taxa, the copy number
refers to the number of copies of that gene found in that predicted metagenome, as these numbers are often very small we decided to
show the absolute value rather than the relative percentage. These are 3 enzymes (out of 30) that contribute to the PRMT scores for CO2 as
calculated in the fourth row. For each graph, values were averaged across each day within a week during the given month. The predicted
copies of a gene in each calculation are normalized, and therefore are not absolute. PRMT scores in red suggest a relative capacity of that
assemblage to consume CO2, whereas scores in blue suggest a relative capacity to accumulate CO2.
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carbonyl pathway over the TCA cycle. The Orders
Rhodobacteriales and Flavobacteriales show the
strongest correlation with the changing relative
abundance of malate dehydrogenase (0.425 and
0.409, respectively).

The predicted relative abundances of these three
genes, along with 27 others (Supplementary Figure
S2) were used to generate a prediction of CO2

turnover (PRMT score) for each of the 5904 grid
cells for the 4 weekly averages (Figure 2). Over
the whole WEC, predicted CO2 accumulation
(production; negative PRMT score) was highest in
March, which corresponds to an increase in
heterotrophic activity in the channel as temperatures
increase, phytoplankton bloom and bacteria take
advantage of inorganic and organic nutrient-rich
waters (Southward et al., 2005; Smyth et al., 2009).
As these are weekly averages, it is likely that this
prediction reflects a post-phytoplankton bloom
condition. Meanwhile, also during March the waters
in the southern Irish Sea and off the coast of
Cherbourg, France, are predicted to have increased
CO2 consumption, possibly resulting from increased
cyanobacterial photosynthetic activity during
isolated spring blooms, which presents another
example of an opportunity to predict events that
could direct empirical evidence gathering. During
June, the whole channel starts to show increased CO2

consumption, which is potentially due to an increase
in primary productivity. The greatest consumption
(positive PRMT scores) was predicted off the south
coast of England in June, which have also been
shown to be highly productive (Smyth et al., 2009).
During September, this CO2 consumption maximum
spreads through the central channel, and then by
December, the central Channel is starting to return to
CO2 production, and therefore a potential dominance
of heterotrophy, while the southern Irish Sea and
North Coast of France still maintain relatively
positive PRMT scores, suggesting CO2 consumption
and the domination of photosynthetic activity. It
must be noted that as PRMT scores are relative, all
calculations result from a balance between mostly
bacterial autotrophic and heterotrophic processes.
During March, the accumulation of CO2 is well
distributed, suggesting a dominance of heterotrophic
activity. However, there are isolated locations in
the southern part of the Irish Sea and in the eastern
region of the WEC, which have slightly positive
PRMT scores for CO2 that suggest some catabolism,
and hence could be indicative of small phytoplank-
ton blooms. The PRMT scores for CO2 do not
mirror the similarity in the relative abundances of
genes coding cyanase, and CO and malate dehydro-
genase observed during March and December sug-
gests that the PRMT algorithm, which for CO2 is
based on the changing relative abundance of genes
coding 30 different enzymes (Supplementary
Figure 2), is capturing a complex emergent property
of the differential abundances of this combination of
genes.

Extrapolating system-scale predictions across multiple
years
Available SIM data (weekly averages from January
2007 to April 2010; Supplementary Figure 1) were
used to generate predictions of the changing PRMT
scores for 2494 metabolites over 172 weeks, which
were clustered by K-means to identify six highly
significant groups of inter-annual PRMT score
variance (Supplementary Figure 3). These represent
calculations of weekly averages, as a channel-wide
average with standard deviations for all 5904 grid
cells. The six clusters were defined by different
patterns in predicted turnover of the constituent
metabolites (Supplementary Figure 3i-vi); (i) 104
metabolites that showed accumulation in winter
and consumption in summer; (ii) 114 metabolites
that showed consumption in winter and accumula-
tion in summer; (iii) 103 metabolites that showed a
long period of consumption over summer and a
short period of accumulation in the winter; (iv) 163
metabolites that showed a long period of accumula-
tion over summer and a short period of consumption
in the winter; (v) 1189 metabolites that showed
much smaller PRMT scores than clusters i–iv that
generally showed slightly more consumption in the
winter than summer; and finally (vi) 817 metabolites
that similarly showed smaller PRMT scores than
clusters i–iv, and that generally showed slightly
more consumption in the summer than the winter.
To highlight the potential biological importance of
each cluster, we sub-selected a representative
metabolite for each (Figure 3). Importantly, with
over 2494 metabolites to choose from, this selection
is somewhat arbitrary, and influenced by the inter-
ests and experience of the authors; however, we
selected three metabolites, which show novel
patterns that may require experimental and observa-
tional validation but highlight the potential of these
models to generate novel findings and hypotheses;
and three metabolites that validate existing knowl-
edge about their response to seasonal stimuli.

Trimethylamine N-oxide (TMAO; Figure 4a),
which is a common eukaryotic osmolyte, repre-
sented cluster (i) (Supplementary Figure 3). Marine
bacteria reduce TMAO to trimethylamine (TMA),
which is the cause of the fishy smell in food spoilage
and body odor. TMAO reduction and TMA oxida-
tion have an important role in anaerobic bacterial
respiration (Barrett and Kwan, 1985). Our model
suggests that TMAO is significantly reduced in the
summer months (consumption), and that TMA is
oxidized to TMAO resulting in accumulation during
the winter months, with a sudden increase in
catabolism of TMAO each spring, potentially due
to the rapid increase in zooplankton biomass in the
channel (Smyth et al., 2009). In methylotrophic
bacteria, TMA is oxidized to TMAO as a carbon,
nitrogen and energy source, TMAO is then demethy-
lated to dimethylamine and formaldehyde, and
dimethylamine is ultimately oxidized to CO2

(Barrett and Kwan, 1985). To test these predictions,
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we would need to explore the abundance of genes
and enzyme activities relating to TMAO metabolism
across a trophic gradient (for example, coastal to
oligotrophic open ocean). To our knowledge, this is
the first report detailing the seasonal and inter-
annual variability in TMAO metabolism, which
suggests that TMAO may be an important carbon,
nitrogen and energy source for microbial metabo-
lism during the summer in the channel. There are
periods of high variability in PRMT scores for

TMAO (for example, spring and fall 2007, summer
2008, spring 2009, spring 2010); we chose to explore
the spatial variance for December 2009, which
showed an increase in consumption in isolated
regions of the southwest coast of England, and
the North coast of France, whereas the rest of the
channel had little variation (Figure 4a). Although
some periods of apparent instability in the PRMT
scores can be explained by the temporal anoma-
lies in the SIM data, which occasionally result in a

Figure 3 Temporal extrapolation of the relative abundance of microbial orders, and predicted relative metabolic turnover scores for six
key marine metabolites. Data are presented as weekly average of 5904 (49 km2) grid cells across the whole English Channel. Standard
deviation is calculated from seven days’ of whole English Channel predictions.
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longer than usual gap between data points
(Supplementary Figure 1), none of the high-varia-
bility events noted for TMAO fall within these
periods. We therefore hypothesize that localized
phytoplankton and zooplankton blooms within the
channel caused significant regionalization of TMAO
metabolism, and generate pockets of bacteria that
exploit this resource. This could lead to localized
blooms of bacteria within anaerobic micro-niches
associated with fecal matter or decaying organic
matter associated with a collapsing phyto-/zoo-
plankton bloom (Ditchfield et al., 2012).

Phosphatidylethanolamine (PE; Figure 3b) repre-
sents cluster (ii). PE is often associated with
heterotrophic bacteria in marine surface waters
(Popendorf et al., 2011), and our model predicts
that it is generally consumed during the winter and
accumulated during the summer. We hypothesize
that this is due to a dramatic increase in bacterial
biomass during the summer months with more than
1 million cells per ml (Gilbert et al., 2012). Our
model predicts many periods of highly variable
PRMT scores for PE (Figure 3), some of which
correlate with the temporal anomalies in SIM data
(Supplementary Figure 1). However, periods
through fall-spring 2007, winter-spring 2009 and
winter-spring 2010 show extensive variability; again
we focused on December 2009 (Figure 4b), which
showed an inverse of the spatial turnover scores
shown by TMAO, which is unsurprising because
these fall into two contrasting clusters
(Supplementary Figure 3). One way to explain the
inverse relationship between TMAO and PE is that
when localized blooms of phyto- and zoo-plankton
decay, a bloom of TMAO-reducing bacteria can occur
in the anaerobic microniches leading to an increased
consumption of TMAO, but also an increased

accumulation of PE due to the increase in bacterial
biomass. However, this hypothesis remains to be tested.

In cluster (iii), methanethiol (Figure 3c) represents
a key intermediary product in the degradation
of algal osmolyte dimethylsulfoniopropionate
(DMSP). The model predicts general consumption
of methanethiol during the spring, summer and fall,
and then a short phase of accumulation of this
metabolite during December and January each year,
which corresponds nearly precisely with measured
concentrations of total DMSP in the WEC (Archer
et al., 2009). These predictions represent the first
time it has been possible to track this important
intermediate in marine surface sulfur metabolism
over multiple years. In December 2009, high spatial
variance corresponds to increased consumption in
the Southern Irish Sea, and in the central channel
(Figure 4c), whereas the remainder of the channel
shows isolated regions of accumulation, which
we hypothesize is due to regionalized blooms of
DMSP-degrading bacteria.

In cluster (iv), phosphonoacetate (Figure 3d)
represents organic phosphate metabolism, with
bacterial degradation of the recalcitrant carbon–
phosphorus bond as a source of acetate and
phosphate (Gilbert et al., 2009); the model confirms
previous findings that microbial catabolism of
phosphonoacetate occurs primarily during the win-
ter months, which suggests that bacteria are exploit-
ing a metabolic niche during these months when
inorganic phosphate is in high concentrations
(Smyth et al., 2009). However, December 2009
shows extensive variability in PRMT scores, which
may possibly be explained by the extensive regio-
nalization of phosphonoacetate catabolism across
the channel, which could result from isolated
plankton blooms (Figure 4d).

Figure 4 Spatial variation in the predicted turnover of representative metabolites for the six clusters based on a monthly average for
December 2009, when each has a considerable discord predicted scores across the channel. (a) Trimethylamine N-oxide (TMAO);
(b) phosphatidylethanolamine; (c) methanethiol; (d) phosphonoacetate; (e) acetate; (f) carbon dioxide (CO2). Regions of deep blue or
white repeated for TMAO, phosphatidylethanolamine, methanethiol, phosphonoacetate and CO2 represent regions where the PRMT
scores vary at a very fine scale. To visualize the majority of the channel, these regions of observation are sacrificed.
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Cluster (v) is represented by acetate (Figure 3e), a
microbial fermentation product oxidized by aerobic
heterotrophic bacteria (as an electron donor) to CO2

via the citric acid cycle, or by anaerobes via the
anaerobic carbonyl branch of the reductive acetyl-
CoA pathway (Thauer et al., 1989), in which CO-
dehydrogenase has a key role (Hügler and Sievert,
2011). As a key metabolite involved in aerobic
energy production, which is both rapidly consumed
and generated, the low PRMT scores are not
surprising, as genes for both consumption and
production of acetate are likely to be found in
similar relative abundances in this environment,
which would lead to reduced relative dynamics in
the metabolic turnover across seasons. However, the
relative increase in consumption of acetate over
winter results from a potential relative decrease in
fermentative-generation of acetate during this per-
iod, which may then become the dominant process
in summer, because of an extensive pulse of organic
matter from phytoplankton generation. This hypoth-
esis is supported by existing understanding of
acetate metabolism in marine surface waters
(Thauer et al., 1989). Spatial variance in PRMT-
acetate for December 2009 (Figure 4e) suggests that
the channel is divided into defined regions with
either relatively greater consumption or accumula-
tion (Figure 3e).

In cluster (vi), like cluster (v), the metabolites all
have low PRMT scores (Figure 3). Carbon dioxide
represents this cluster (Figure 4f), and demonstrates
robust inter-annual turnover, with accumulation of
CO2 in the winter, most likely due to a hetero-
trophic/autotrophic ratio of 40.5, which is then
reversed in summer. Spatial variability during
December 2009 (Figure 4f) is different from the
weekly average in December 2008 (Figure 2). How-
ever, the consumption of CO2 is still high in the
southern Irish Sea, but in 2009, the southwest
channel shows significantly greater accumulation,
suggesting a collapsed phytoplankton bloom and a
subsequent respiration bloom. This region of poten-
tially reduced photosynthesis is mirrored in the
acetate map (Figure 4e), with greater accumulation
of acetate during this time at this location, suggest-
ing a reduction in CO2 fixation.

Conclusions

Here we present the first microbial distribution
model to predict relative metabolic turnover over
broad spatial and temporal scales, highlighting the
potential of these models to generate hypotheses that
direct future sampling to improve the utility of
existing data. This advance represents the next
generation of bacterial species distribution models,
which previously considered only taxonomic diver-
sity (Larsen et al., 2012; Ladau et al., 2013). It is now
possible to extrapolate microbial metabolic potential
over vast distances and time scales, as long as

corresponding environmental data, including data
obtained by inexpensive remote-sensing techniques,
exist. This provides an alternative to undirected
large-scale observational studies, especially because
the predictions here generate discrete biogeographic
and biogeochemical hypotheses that may then be
validated with directed experiments and observa-
tional studies.

The model demonstrated the co-occurrence of
potentially anaerobic and aerobic metabolism,
which was highly localized. It is possible that this
could result of sudden regional increases in anaero-
bic microsites because of decaying biomass after the
summer productivity maximum. Another possible
explanation is that storm events could lead to the
resuspension of sediments and the introduction of
anaerobic microorganisms into the surface water
column. Although the same modeling approaches
can be used for eukaryotes or viruses, we would
need complementary data.

Although our model is predicated on remotely
sensed satellite imagery linked to in situ data, it is
also possible to use any environmental raster data
sets to drive predictions in different ecosystems.
With recent efforts in microbial niche modeling
showing promise in extrapolating microbial com-
munity structure across the global ocean (Ladau
et al., 2013) and continental soils (Fierer et al.,
2013), it is possible that such models could also help
to extrapolate metabolic potential across similar
scales. As such, this modeling represents a unique
opportunity to predict microbially mediated biogeo-
chemical processes, and even, in the future, infer
how they will respond to changes in climate.
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