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ABSTRACT  

Multi-isotope fingerprinting (sulphur, oxygen and strontium isotopes) has been tested to study 

the provenances of medieval and Renaissance French and Swedish alabaster artwork. Isotope 

signatures of historical English, French and Spanish alabaster source quarries or areas reveal 

highly specific, with a strong intra-group homogeneity and strong inter-group contrasts, 

especially for Sr and S isotopes. The chosen combination of isotope tracers is a good basis for 

forensic work on alabaster provenance allowing verification of hypotheses about historical 

trade routes as well as identification of fakes and their origin. The applied analytical 

techniques of continuous flow isotope ratio mass spectrometry (CF-IRMS) and thermal 

ionisation mass spectrometry (TIMS) only require micro-samples in the low mg range thus 

minimising the impact on artwork. 

Keywords: alabaster, provenance, sculpture, multi-isotope tracing, forensics, sulphur, 

oxygen, strontium, isotopes. 
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Introduction 

Gypsum alabaster (CaSO4·2H2O) and to a much lesser extent anhydrite alabaster (CaSO4) 

have been used throughout history for artworks and as ornamental stone due to their fine-

grained texture and colour. Alabaster is white in its pure form, often with Fe-rich brown 

veins, suggesting marble, but its softness makes it easier to work. When considering stone 

monuments, like other types of artefacts, it is crucial for art historians or museum 

conservators to correctly assign the provenance of the raw materials. This allows them to 

validate or invalidate hypotheses about historical trade routes based on iconographic or 

stylistic comparisons. The fact that it is easy to work makes alabaster a prime material for 

forgery and spectacular alabaster fakes are known, like the supposed Egyptian “Armana 

princess” (Hardwick 2009) and the “Assyrian” reliefs both forged by Shaun Greenhalgh of 

Bolton early this century and sold to reputable museums as genuine for considerable sums of 

money (http://en.wikipedia.org/wiki/Shaun_Greenhalgh). A thorough characterisation of the 

raw material of different provenances would help with forensic studies to recognise and 

backtrack such forgeries. Yet,in contrast to marble artwork, only a few studies have so far 

addressed the mineralogical, geochemical and isotopic fingerprints of the raw source alabaster 

compared to those of alabaster sculptures (e.g. Gale et al. 1988; Costagliola et al. 2001; 

Ligeza et al. 2001; Castro et al. 2008; Playà et al. 2012). It has been shown that sulphur and 

oxygen isotopes of gypsum plaster can be used to trace its origin (Usdowski 2001; 

Kloppmann et al. 2011), and this combination of isotopes together with 87Sr/86Sr ratios were 

used in the present pilot study of isotope fingerprinting undertaken on French and Swedish 

alabaster artworks. Significant contrasts between marine gypsum deposits of different ages 

and locations can be expected due to the systematic shifts of δ34S, δ18OSO4 and 87Sr/86Sr in 

seawater over the geological timescale (Burke et al. 1982; Claypool et al. 1980; Denison et al. 

1998). These changes are preserved in the isotope signatures of evaporite layers formed from 

the seawater. Gale et al. (1988) were the first to combine strontium isotopes with sulphur 

isototopes to assess the provenance of Minoan Bronze Age alabaster artwork found in Crete, 

Thera and on the Greek mainland (Mycenae, Tiryns). The strong isotopic contrast of marine 

Mio-Pliocene gypsum deposits in central Crete with Triassic or Permo-Triassic evaporites 

from western Greece allows confirming the local origin of Cretan artwork and Cretan 

provenance for part of the mainland artworks (Mycenae). 
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Additional variations in S and O isotopes for a given formation can also be due to input 

from non-marine sulphur sources such as the oxidation of sulphides or presence of organic 

sulphur, which are typically depleted in 34S with respect to marine sulphate. Recycling of 

older sulphate deposits by dissolution and redeposition causes further variation (Taylor 1983). 

Strontium can also be provided from silicate and carbonate weathering so that continental 

inputs can potentially mix with marine Sr in coastal evaporite basins. Strontium derived from 

Rb-containing silicate weathering will have higher 87Sr/86Sr ratios, as 87Rb decay produces 

radiogenic 87Sr.  

 

Sulphur and oxygen are major components in calcium sulphates and Sr easily substitutes for 

Ca in the gypsum crystal lattice, or is found in the form of tiny celestite crystals (SrSO4), so 

that microsamples (in the low mg range) are sufficient to perform the chosen isotope analyses 

(S and O by continuous flow isotope ratio mass spectrometry (CF-IRMS) and Sr by thermal 

ionization mass spectrometry (TIMS)). The small samples required considerably limit the 

impact on artwork. The present study investigates the possibility of linking alabaster artwork 

to source quarries or areas by using multi-isotope fingerprinting. The artwork studied came 

from French and Swedish museums and historical monuments. The choice was guided by 

whether or not conservators or art historians had already established relatively strong 

hypotheses on the provenance of the raw materials. The possible source samples were 

collected as close as possible to the historical quarries, in different regions of France, 

Northern Spain and England.  

 

Materials and Methods 

Sampling:  

Nine samples of medieval and Renaissance sculpture fragments of different provenances in 

France (Burgundy, Lorraine, Roussillon, Pyrenees) and Sweden were analysed together with 

twenty one samples taken from or near ancient gypsum quarries (Fig. 1, Table 1, Table 2) 

from France (Jura, Alps, Provence, Burgundy, Lorraine), Spain (Aragon and Catalonia), 

England (Derbyshire and Staffordshire). 

 

Ebro Valley (Aragon, Spain): The abundance of continental Miocene evaporites in the 

middle Ebro Valley (Perrier 2002; Utrilla et al. 1992) allowed the extraction of large 
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quantities of plaster-grade gypsum and alabaster for building stones and ornate carvings. 

These range from antiquity, including the Roman Caesaraugusta city (Lapuente et al. 2009) to 

the present. The development of alabaster artwork mainly from the 14th to 17th century was 

closely related to the extension of the Kingdom of Aragon and had its climax in the 16th 

century with monumental altarpieces in the cathedrals of Zaragoza, Huesca, Logroño, Velilla 

de Ebro, and Tarragona (Barral I Altet and Manote 1987; Perrier 2002). 

 

Beuda (Girone, Catalonia, Spain): The approximately 1000 m thick marine evaporitic 

Beuda Formation made up of alternating shales and anhydrite was deposited in a restricted 

basin in the South Pyrenean foreland in the Eocene (upper Lutetian, Vergès et al., 1992). The 

Beuda alabasters are among the most highly reputed materials for medieval sculpture, not 

only within the zone of influence of the crown of Aragon, but also north of the Pyrenees and 

as far as the kingdom of Naples (Español 2003). The first quarries were opened around 1327-

28 and the material was used in Catalonia, Aragon, Valencia, French Roussillon and Bézier 

region as well as in Southern Italy. Alabaster from the Girona province was highly prized for 

its purity up to the middle of the 15th century (Español 2003). 

 

Sarral (Tarragona, Catalonia, Spain): The lacustrine Eocene (Priabonian) gypsum of the 

southern margin of the Ebro basin (Ortí et al. 2007) was formed in shallow hypersaline lakes, 

fed by groundwater that had dissolved Mesozoic (Triassic and lower Jurassic) evaporites 

(Utrilla et al. 1992; Ortí et al. 2011). The Sarral deposits were used from the Middle Ages to 

present time (Ortí Iglesias 2005). During the 14th and 15th centuries, alabaster workers for the 

Aragonese crown seem to have preferred Beuda alabaster. However, the first sculpture 

workshops opened in the 16th century and from then on the Sarral alabaster was widely used 

(Ortí Iglesias 2005).  

East Midlands (England): The calcareous Mercia Mudstone Group (formerly called the 

Keuper Marls*) of the East Midlands contains several evaporite horizons that have been 

exploited for alabaster since medieval times (Cannan 2010; Young 1990). These include 

                                                 

* The lithostratigraphic term “Keuper” is strictly speaking only valid for the Germanic Trias 
north of the Alps and corresponds roughly to the chronostratigraphic term of the “Upper 
Triassic” (Carnian, Norian and Rhaetian stage), starting in fact in the Landinian (Middle 
Triassic). Given the scarcity of fossil remains in the Keuper sediments, it is difficult to link 
them precisely to the chronostratigraphic stages and we will, in the following, employ 
“Keuper” as lithostratigraphic term. 
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workings in the Tutbury Gypsum at Chellaston in Derbyshire and Fauld in Staffordshire, plus 

the Newark Gypsum from near Newark in Nottinghamshire; all three sites were sampled for 

our study. In this area gypsum beds were deposited in hypersaline lakes on a large peneplain 

with periodic marine influx (Taylor 1983). The first documented alabaster carvings from 

Tutbury go back as far as AD 1160-70 (Firman 1984). By the end of the 15th century, 

Nottingham had become an important centre of the alabaster industry and of the international 

trade in altarpieces, exported to Denmark, Holland, France, Spain, Italy (Firman 1964). A 

major factor in the decline of Nottingham alabaster workshops was the fact that in 1550 the 

English Parliament banished all religious representations, with the exception of tombs and 

effigies. Consequently, large quantities of alabaster artwork in England were destroyed or 

exported, mainly to France (Firman 1964; Edwards 1966). However, extraction continued and 

English alabaster was exported and used in workshops on the Continent including Mechelen 

in Belgium which was the veritable hub of the alabaster trade in Europe in the 16th to 17th 

centuries (Wustrack 1982; Boye Petersen and Boye Petersen 1999). 

 

Lorraine (France): Upper Triassic gypsum and anhydrite deposits outcrop frequently in the 

Eastern Paris Basin, originating from a lagoonal/marine transgression, during the opening of 

the Germanic basin (Pomerol 1974). Even without historical and textual references the 

possibility of alabaster extraction in the Lorraine region exists. In the northern part of 

Lorraine, near Metz and Thionville, the Upper Keuper formation consists of red marls 

including gypsum and anhydrite layers or lenticular masses. The sampled Klang quarry was 

exploited for plaster during the 19th and 20th centuries, but could also be an alabaster source as 

it is located not far (15 km) from the Mosel River, which was an important transport route 

during Roman and medieval times, being a tributary of the Rhine. Other quarries, nearer to 

Nancy, exploit Upper Triassic formations, including a massive anhydrite unit associated with 

marls and halite. 

 

Burgundy (France):  The Upper Triassic gypsum outcrops at a few places in Burgundy, 

close to the western limits of the evaporitic Keuper basin. It was exploited both for plaster and 

as alabaster for sculpture. Two historical quarries have to be cited. The first one is located at 

Berzé-la-Ville (Saône-et-Loire), where gypsum alternates with clay deposits, attributed to 

lower Keuper. This quarry, located near Cluny, was under control of Cluny abbey and used 

for the Jacques d’Amboise palace at the beginning of the 16th century. The alabaster of Cluny 

was widely known, according the correspondence of 1510 between Marguerite d’Autriche 
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and Jean Lemaire (Poiret 2003). The second one is the Mâlain quarry, sampled for our study, 

located at 20 km from the west of Dijon (Côte-d’Or), in a Carnian (and/or Norian) clay and 

dolomite formation. It was possibly mainly exploited for plaster, but may have been an 

alabaster source as early as Roman times (1st century), when the city was called Mediolanum 

(Roussel 1979)   

 

Jura (France): In the French Jura, marine Upper Keuper gypsum and anhydrite layers 

alternate with marls, dolomites and sandstones. Most of the gypsum quarries which provided 

alabaster are located in an allochthonous series that was deformed, but remained 

unmetamorphosed. Gypsum and anhydrite have been extracted for sculpture mainly at Salins-

les Bains, which was sampled for our study at the Saint-Lothain and Poligny quarries. Saint-

Lothain is attested as a source by textual references (Poiret 2003) for the construction of the 

rood screen, altarpiece, tombs (delivered in 1512) and architectural ornamentation of the 

Royal Monastery of Brou (Bourg-en-Bresse, France). Daville (1936) also suspects Roman 

activity in this quarry. 

 

French Alps: Massive Triassic gypsum and anhydrite layers have been and are still 

exploited on the French side of the Alps. These marine evaporites were tectonically 

overprinted during the Alpine orogeny (Miocene), and more or less metamorphosed. Two 

alabaster workings are noteable and have been sampled for this study. The Notre-Dame-de-

Mésage quarry, near Grenoble, is well known and has been exploited in modern times, 

probably mainly during the 19th century (Debelmas 1990). However earlier uses, even for 

export, are suspected. Alabaster from this quarry is supposed to have been used in 1519-1520 

for three tombs produced by Martin Claustre, sculptor in Grenoble, for the chapel of castle of 

Thouars (in western France) at the behest of Louis II de la Trémoille (Marchegay 1876; 

Reymond 1907). There are also quarries in the Maurienne valley, analysed in our study, 

which are nowadays exploited for gypsum plaster, where it is possible to obtain the more or 

less coarse grained variety of alabaster. In the past, this alabaster was used locally in 

architecture and for the ornamentation and sculpture in the cathedral of Saint-Jean-de-

Maurienne. 

 

Provence (France): Has alabasters of similar age and overall geological context to those 

from Provence and the southern French Alps. In Provence, Triassic gypsum horizons also 

formed diapirs during Jurassic and Eocene/Oligocene extensional phases along main regional 
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faults. The sampled Beaumes-de-Venise alabaster belongs to a Triassic gypsum diapir that 

rose during the Rupelian (Upper Oligocene) along the Nîmes fault. Gypsum has been 

extracted from tens of outcrops for plaster production. Alabaster is present in small amounts 

and it was used locally for vernacular sculptures until the 19th Century (Guiomar 2005). It 

could have played a role in the manufacture of decorative sculptures when the papacy was 

settled in Avignon and later when King René reigned over Provence in the 14th and 15th 

centuries.  

location of Figure 1  

The provenance and other background information for the investigated artworks are 

provided in Table 2 and Figure 1.  

 

Uppsala Cathedral, Sweden Gustav Vasa monument: This alabaster monument, carved in 

the late 16th century by the Flemish sculptor Willem Boy (around 1520-1592) carries four 

small obelisks, one of which was damaged by a fire in the cathedral in 1702. The remnants, 

sampled for our study, have been preserved, after the obelisk was replaced by a plaster 

version in the 1890s. In a letter dated June 11th 1572 it is stated that Willem Boy was leaving 

Antwerp to go to England to get alabaster for the rest of the Vasa monument after having 

finished the statues of the king and his two first wives in 1571. The complete monument was 

delivered to Uppsala in the 1570s, but because of a fire in the cathedral it remained unfinished 

until 1583 when the inscriptions were carved. 

 

Oudart de Bournonville Tomb (Museum of Fine Arts, Arras, France): Fragments of this 

funeral monument from northern France were discovered in 1840 in the church St-Martin of 

Hénin-Beaumont in the Pas-de-Calais and are now conserved in Arras Fine Art Museum. It 

was sculpted in 1585 from alabaster that was probably reused from a previous monument. A 

Nottingham provenance was supposed by conservators because of painting traces on the 

sheltered side, indicating a first use that has not been determined. The design of these paint 

remains are typically of the "Nottingham fashion" (Sautereau 2008). 

 

Sculpted facade of Jacques d'Amboise Palace (Cluny, Saône et Loire, France): The facades 

of the two towers of this palace, constructed at the end of the 15th century for Jacques 

d’Amboise, abbot of Cluny from 1485 to 1510, are entirely ornamented with alabaster 

sculptures. The raw material is likely to come from the close-by Berzé-la-ville quarries on the 

Abbey territory. 
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“Retable de la Déploration” altarpiece (Nancy, France): This altarpiece, conserved in the 

Musée Lorrain in Nancy (eastern France), was sculpted in the 16th century. According to the 

museum inventory, the sculptural origin of this piece is unknown, but it is stylistically 

attributed to a south Netherlands workshop. 

 

Statue of St Antoine - Jube of Royal Monastery of Brou (Bourg-en-Bresse, France): The 

church of the Royal Monastery of Brou was built between 1513 and 1532 for Margaret of 

Austria. It hosts seven statues, formerly part of the rood screen, including the statue of St 

Antoine which like five others is made from alabaster that is attributed to the Saint Lothain 

quarries (Briat-Philippe 2006; Sarda 2006). This location is situated 100 km north of Bourg-

en-Bresse and 30 km from the sampled quarries in Salins-les-Bains. 

Statue of Notre-Dame de Bethléem (Narbonne, France): This statue, 180 cm in height, is 

part of the sculptural decoration of a chapel of Narbonne Cathedral to which it has conferred 

its name. Both in style and material it is different from the rest of the sculptural content of the 

chapel, even though it is considered as contemporary (3rd quarter of the 14th century; 

Pradalier-Schlumberger 1998).  

 

High altar of Perpignan Cathedral (France): The high altar of the Gothic cathedral was 

carved over a long period (1573-1631) by two successive workshops (Claudio Parret and later 

Jordi Lleonart) using a white alabaster very likely from Beuda, Catalonia (Hernandez 2002). 

 

Analyses:  

The isotopic composition of sulphur is expressed in the usual delta notation as a per mil 

(‰) deviation of the heavy-to-light isotope abundance ratio (34S/32S, 18O/16O) in the sample 

(δ34S), with respect to the Canyon Diablo troilite (CDT) standard. Oxygen isotopes are 

reported as δ18O with respect to the standard mean ocean water (SMOW) standard. Strontium 

isotopes are reported as 87Sr/86Sr ratios. 

 

The samples for sulphur and oxygen isotopes were crushed and shaken for 72 h in contact 

with 100 ml of Millipore® distilled water adapting the Italian standard method for 

determining soluble salts in stone samples (NORMAL 1983). Sulphates were precipitated as 

BaSO4 from the filtered solution by adding BaCl2 solution. The precipitate was then filtered 
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off and left to dry and a fraction (≈350 µg) of BaSO4 was mixed with vanadium pentoxide in 

a tin capsule (Giesemann et al. 1994), injected in a flash combustion elemental analyzer 

(Flash EA) where BaSO4 is reduced to SO2 at 1700-1800°C. The purified SO2 is analysed for 

S isotopes by a continuous flow isotope ratio mass spectrometer (CF-IRMS: Thermo Delta 

Plus XP). An aliquot of the BaSO4 (≈200µg) is placed in a silver capsule, injected in a high 

temperature conversion elemental analyzer (TC/EA) reactor with a graphite insert at 1450°C. 

The resulting CO is analysed by CF-IRMS for oxygen isotopes. Sulphur and oxygen isotopes 

are always measured twice. We also tested direct injection of the CaSO4·2H2O into the Flash 

EA and TC/EA units as an alternative to BaSO4 precipitation. Whereas sulphur isotope ratios 

are very coherent for both methods (δ34Sdirect = 1.07, δ34SBaSO4 = 1.27, R2=0.954 for n=22 δ34S 

values determined on the same samples), oxygen isotopes obtained by direct introduction of 

gypsum show a systematic shift towards lower δ18O values. This is probably due to the 

isotope exchange of crystal water oxygen with SO2; we consider that this method is unreliable 

for oxygen isotopes except probably for anhydrite samples. Analytical uncertainty is 

estimated at 0.4‰ for both δ34S and δ18O. A theoretical minimum requirement of 5 mg of 

BaSO4 for quadruple analysis corresponds to 3.7 mg of gypsum sample. In practice, to take 

into account precipitate losses on filters and to be able to repeat the analysis in case of 

problems, around 7 mg of gypsum should be available as a minimum.  

 

Chemical purification of Sr was performed using an ion-exchange column (Sr-Spec) before 

mass analysis according to a method adapted from Pin and Bassin (1992), with total blank <1 

ng for the entire chemical procedure. After chemical separation, around 150 ng of Sr was 

loaded onto a tungsten filament with a tantalum activator and analysed with a Finnigan 

MAT262 multi-collector thermal ionisation mass spectrometer (TIMS). The measured 
87Sr/86Sr ratios were normalised to an 88Sr/86Sr of 0.1194 and then adjusted to the NBS987 

standard value of 0.710240. An average internal precision of ± 10 x 10-6 (2σm) was currently 

obtained during this study and the  reproducibility of the 87Sr/86Sr ratio measurements was 

tested through repeated analyses of the NBS 987 standard for which we obtained a mean 

value of 0.710230 ±  9 x 10-6 (2σ; n = 12) during the period of analysis. Depending on the Sr 

content of the samples (from 3500 to 290 mg/kg), between 1 and 5 mg of alabaster would be 

sufficient for Sr isotope analysis, but since the results are not known in advance a 5 mg 

sample should be considered as a minimum.  

  



 10 

Results and Discussion 

Quarry samples 

 

The δ34S values of all the French samples from the Alps and the alpine foreland (Provence, 

Jura) fall in a narrow range of +15.9 to +17.0 ‰ vs. CDT, whereas δ18O values are much 

more variable for this group (+11.2 to +17.5 ‰ vs. SMOW) falling in the typical range for 

Keuper evaporites (Fig. 1). Samples form Côte d'Or (F, Burgundy) and Sarral (E, Catalonia) 

plot in the same characteristic range as samples of Upper Triassic age (Pearson et al. 1991). 

Catalan samples from Beuda are significantly enriched in 34S with a δ34S around +20 ‰ with 

the lowest δ18O values of the data set (+11.3 to +11.8 ‰) similar to values reported for the 

same site by Inglés et al. (2009) and Utrilla et al. (1992); in comparison, Spanish samples 

from Aragon and French samples from Lorraine are depleted in 34S (δ34S of +10.4 to +14.5 

‰). The English samples of Triassic Chellaston and Tutbury gypsum fall within the 

previously published δ34S range of +12 to +14 ‰ (Taylor 1983).  

 
87Sr/86Sr ratios for raw alabaster vary significantly from 0.7076 to 0.7096 and allow the 

discrimination of French Alps alabaster sensu lato from the Upper Triassic East Midlands 

alabaster which has a much more radiogenic and very well defined signature (0.709151 ± 

0.000058, n=5). This is again very similar to the previous work of Taylor (1982) on the 

Tutbury and Fauld gypsum deposits which had a mean value of 0.709156 ± 0.000060 (n=8) 

and no significant difference between white parts and brown veins. The Spanish Catalan 

marine Eocene alabaster from Beuda has a value of 0.70781 and a very low variation 

(±0.000013, n=3) and falls in the range of Triassic gypsum from French Alps and foreland, 

but can be discriminated by higher δ34S values. This is contrary to the continental Eocene 

gypsum of Sarral, which is indistinguishable from the French Keuper samples, a sign of the 

recycling of Triassic evaporites into the Eocene. The Ebro basin Miocene gypsum shows a 

relatively wide range both for δ34S and 87Sr/86Sr (Fig. 3). The depletion in 34S of the 

continental Miocene gypsum of the central Ebro basin has been explained by S reduction in 

organic-rich lake sediments and subsequent oxidation (Utrilla et al. 1992).  

 

The East Midlands samples and the Mâlain Burgundy samples contain much more 

radiogenic 87Sr than upper Triassic (Keuper) marine deposits (Burke et al. 1982). Here, 

continental influence has to be suspected with significant input from silicate weathering. The 



 11 

highest 87Sr/86Sr ratio of 0.709614 was observed for the Upper Triassic (Upper Keuper) 

Mâlain sample from Burgundy. 

 

Combining δ34S and 87Sr/86Sr leads to a strong discrimination (Fig. 3) with well-defined and 

clearly distinguished fields, partly due to the variations over time of seawater signals, partly 

due to the contribution of non-marine sources, especially for strontium. Strontium 

concentrations are much less discriminating as local variations can be quite important (e.g. by 

a factor of 3 for the Beuda quarry and by a factor of 6 for East Midlands (Nottingham) 

alabasters) whereas 87Sr/86Sr ratios are very homogeneous for each site.  

 

Artwork 

The studied artwork from Roussillon region in southern France (Narbonne (NDB) and 

Perpignan (PER-1 and PER-B) cathedrals), shows a clear Beuda (Catalonia)-type signature 

for all three isotope systems; this attribution was also suspected on the basis of stylistic and 

historical analyses (Hernandez 2002). No alabaster was available to quarry in the Roussillon 

area and the raw material had to be imported from the other side of the Pyrenees, first by ox-

cart for over 50 km to the Roses (Girona) harbour, then onwards by ship (Hernandez 2002). 

 

An English origin was confirmed for the tombstone sculpture of Oudart de Bournonville 

(TOB) and for the funeral monument of Gustav Vasa of Uppsala (UPPS) in Sweden. Both 

funeral monuments (1570 and 1562-83 respectively) fall in the period after 1550 when the 

manufacture of images was forbidden by the English Parliament. Even if memorial tombs 

were still allowed to be made, it was mainly the raw material rather than carved alabaster that 

was now exported. This continued a long tradition of commerce in uncarved alabaster with 

France that is noted as early as 1414 (Edwards 1966) and which also took place with other 

countries. At this time, Mechelen (Belgium, Figure 1) had become an important centre for 

alabaster sculpture under the patronage of the Duchess of Burgundy, Margaret of Austria 

(Boye-Petersen and Boye-Petersen 1999). The local workshops here used raw materials from 

different origins including Alsace-Lorraine (France) the Harz mountains (Germany) and 

England (Wustrack 1982). The sculptor of the Gustav Vasa funerary monument, Willem Boy, 

worked in Mechelen from 1562-65 through 1566-68 and between 1570-75 (Bengtsson 2010), 

it is therefore likely that the sculpture transited via the Mechelen workshop.  
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A local origin is also possible for the analysed artwork from Burgundy and Jura. The statue 

of St Antoine from Bourg-en-Bresse (STA) shows isotopic similarities to the Jura gypsum, as 

expected given the textual sources indicating Saint-Lothain quarry as its origin. However, 

alabaster from the Palais Jacques d’Amboise (PJA) at Cluny in the Burgundy region is quite 

enriched in 87Sr; this is also a feature that characterises the sample from Mâlain (Burgundy), 

even if the original quarry is most probably that of Berzé-la-Ville, located at less than 10km. 

No clear hypothesis can be formulated on the provenance of the alabaster used for the 

Retable de la Déploration (RDD) altarpiece conserved in Nancy (France). δ18O and δ34S 

values indicate a Keuper deposit, which could be affiliated to the East Midlands quarries, but 
87Sr/86Sr ratios seem too low. In the present study, the only analysed Lorraine alabaster 

deposit is from Klang (Moselle), which shows a rather different isotope signature, much more 

depleted in 34S and with a lower 87Sr/86Sr ratio (Fig. 3). Here, clearly, more data on regional 

and supra-regional historical alabaster quarry sources are needed to establish the multi-isotope 

method as an operational tool for alabaster provenance studies 

 

Conclusions 

The chosen combination of isotope tracers (S, O, Sr) is proving promising for forensic work 

on alabaster provenance in Europe for several reasons: 

•  The elements S and O are major constituents of calcium sulphate and are associated 

with Sr as a ubiquitous minor compound. This fact together with the chosen 

analytical techniques (continuous flow IRMS, TIMS) permits the use of 

microsamples in the low mg range ensuring that damage to sculptures is minimal. 

• Both S and Sr show high intra-group homogeneity and strong inter-group contrasts, 

conditio sine qua non for forensic work on artwork provenance. The oxygen 

isotopes are more variable for most of the groups and show some overlap for 

different deposits. 

•  The low analytical errors on all the parameters might allow for further refinement, in 

particular within the groups that have large geographic extents such as the French 

alpine and peri-alpine Keuper evaporite province.  

 

Our study confirms that, even if local to regional supply was used whenever possible, as 

demonstrated by the examples from French Jura and Burgundy, renowned sources of 

Renaissance alabaster had international dissemination (Fig. 1). The Beuda quarries are 
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proved to have delivered raw material to the French regions north of the Pyrenees; trade 

with the Kingdom of Naples is testified for the middle of the 15th century (Espanol 2003); 

English quarries in the larger vicinity of the important Nottingham workshop exported 

alabaster, directly or indirectly, as far as Sweden, Iceland (Reykjavik) and Spain (Santiago 

de Compostela) (Edwards 1966).  

 

Despite this work, the database on samples from historical quarries needs to be considerably 

enlarged to take into account the variability of raw materials from Europe and the 

Mediterranean basin (Woods 2010). It also needs to be extended to extra-European sources 

especially when aiming to backtrack forgery. It is likely that some overlap of isotope 

signatures cannot be avoided, especially within the widespread Messinian evaporites that are 

present from Tuscany to Sicily (Costagliola et al. 2001). Other sources of medieval and 

Renaissance alabaster artwork that need considering in future research include the Permian 

(Zechstein) evaporites from the periphery of the German Harz mountains and from Lower 

Silesia (Poland); Polish Miocene gypsum from Podolia (present Ukraine) quarried from 1560 

onward; Belgian alabaster and English deposits in Somerset and Cumbria. 

Given the need to track down and exclude modern alabaster forgeries, such as the faked 

"Assyrian" carvings that were probably made with imported Italian alabaster, a worldwide 

isotope database of ancient and modern alabaster sources would be invaluable.  

location of Tables 1 and 2 

 

 

location of Figure 2  

 

location of  Figure 7  
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Table 1 
 

Sample Provenance Quarry/Situation Geological age Legend  87Sr/86Sr 2σ(m) 
87Sr/86Sr 

δ34S (‰ 

vs. 

CDT)  

 δ18O SO4 (‰ 

vs. SMOW) 

Sr 

mg/kg)    

39-02 Zone 

blanche 

Salins-les-Bains, Jura quarry in the town centre 

(46°57'00'' N - 05°52'45''E) 

Trias, upper 

Keuper 

F-Jura1 0,708099 0,000010 16,3 13,1 696 

39-02 Zone 

veinée 

Salins-les-Bains, Jura quarry in the town centre 

(46°57'00'' N - 05°52'45''E) 

Trias, upper 

Keuper 

F-Jura2 0,708104 0,000008 16,4 14,0 848 

39-14a Salins-les-Bains, Jura quarry « Le Boisset » (46°54'35''N 

- 05°53'48''E) 

Trias, upper 

Keuper 

F-Jura3 0,708030 0,000008 16,4 14,2 1170 

73-06a Saint-Jean-de-

Maurienne, Savoie, 

Alps 

quarry « Les Rossières » 

(45°15'35'' N - 06°19'15''E) 

Trias F-Maur1 0,707682 0,000008 16,1 11,7 1414 

73-06c Saint-Jean-de-

Maurienne, Savoie, 

Alps 

quarry « Les Rossières » 

(45°15'35'' N - 06°19'15''E) 

Trias F-Maur2 0,707655 0,000010 16,3 11,2 1700 

Mâlain Mâlain, Côte d'Or, 

Burgundy 

quarry (47°20'00''N - 04°47'25''E) Trias,  Carnian or 

Norian 

F-Mala1 0,709614 0,000008 15,9 13,7 794 

84-70a Beaumes-de-Venise, 

Vaucluse, Provence 

outcrop domaine d'Urban 

(44°07'48''N - 05°01'35''E)  

Trias F-Beau1 0,707680 0,000008 16,7 17,5 458 

84-70b Beaumes-de-Venise, 

Vaucluse, Provence 

outccrop domaine d'Urban 

(44°07'48''N - 05°01'35''E)  

Trias F-Beau2 0,707959 0,000008 17,0 14,0 3522 

 38-32 Notre-Dame-de-

Mésage, Isère, Alps 

quarry (45°04'20''N - 05°44'35''E) Trias, Keuper F-Mésa1 0,707835 0,000009 16,0 12,7 1840 

F
ra

nc
e 

57-17 Klang-Moselle, 

Lorraine 

quarry (49°19'15''N - 06°21'40''E) Trias, Upper 

Keuper 

F-Mose1 0,708418 0,000008 10.4 15,7 958 
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Quinto de 

Ebro 

Quinto de Ebro, Aragon   Miocene E-QEbr1 0,707939 0,000008 14.5 14,5 926 

Fuentes de 

Ebro 

Fuentes de Ebro, 

Aragon 

quarry (41°30'14.91'' N- 

0°37'49.71''W) 

Miocene E-FEbr1 0,708510 0,000008 11.1 16,0 494 

Sarral Sarral, Catalogne quarry (41°26'31.64''N-

1°13'15.56''E) 

Eocene E-Sarra1 0,707886 0,000008 16.5 14,7 2782 

Beuda 1 Beuda, Catalogne quarry (42°14'12.01''N - 

2°44'02.35''E) 

Eocene E-Beud1 0,707794 0,000008 19.8 11,3 2792 

Beuda 2 Beuda, Catalogne quarry (42°14'12.01''N - 

2°44'02.35''E) 

Eocene E-Beud2 0,707781 0,000008 20.2 11,8 982 

S
pa

in
 

Beuda 3 Beuda, Catalogne 42°14'12.01''N - 2°44'02.35''E Eocene E-Beud3 0,707769 0,000009 19.8 11,6 836 

Chellaston Chellaston, Derbyshire outcrop close to the Medieval 

quarry  ( 52°52'21.39"N-  

1°25'36.03"O) 

Trias, Keuper GB-Nott1 0,709209 0,000009 13.7 14,2 290 

Triassic 3 Newark 

Nottinghamshire 

Kilvington quarry, 52°58'51.65"N   

0°48'44.12"O 

Trias, Keuper GB-Nott2 0,709058 0,000007 14.0 14,1  944 

 

Tutbury 6 Fauld Mine, 

Staffordshire  

 Fauld Mine Staffs. White parts  

52°50'37.85"N 1°44'16.94"O 

Trias, Keuper GB-

Nott3a 

0,709182 0,000007 13.3 11,7 1507 

  

Tutbury 6 Fauld  Mine, 

Staffordshire 

 Fauld Mine Staffs . Brown 

veins 52°50'37.85"N 1°44'16.94"O 

Trias, Keuper GB-

Nott3b 

0,709134 0,000007 13.2 11,1 1655 

 

E
ng

la
nd

 

Tutbury 7 Fauld Mine, 

Staffordshire 

 Fauld Mine Staffs .52°50'37.85"N 

1°44'16.94"O   

Trias, Keuper GB-Nott4 0,709170 0,000006 13,6 11,8 961   
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Table 2 
C

o
u

n
tr

y
 

Sample Artwork  / current location Original monument/ Situation Legend 
87

Sr/
86

Sr 2σ(m) 

87
Sr/

86
Sr 

δ34S (‰ 

vs. CDT)  

 δ18O SO4 (‰ 

vs. SMOW) 

Sr 

mg/kg)   

TOB Lion 4 Oudart de Bournonville Tomb  - Museum of 

Fine Arts, Arras, France 

Church St-Martin de Hénin- 

Beaumont, Pas-de-Calais, France  

(50°25' 15" N, 02° 56' 54" E) 

TOB-4 0.709204 0.000008 13,2 13,7 992 

TOB 

Fragment C 

Oudart de Bournonville Tomb  -Museum of 

Fine Arts, Arras, Pas-de Calais,France 

Church St-Martin de Hénin-

Beaumont, Pas-de-Calais, France  

 (50°25' 15" N, 02° 56' 54" E) 

TOB-C 0.709179 0.000009 13,12* nd 921 

71-09 Sculpted facade of Jacques d'Amboise 

Palace-Cluny ,Saône et Loire; France 

Jacques d'Amboise Palace, Cluny, 

Saône et Loire, France  

46° 26' 02" N, 04 39' 33" E) 

PJA 0.709279 0.000008 14,9 13,2 1064 

Inv. 61-9-13 Retable de la Déploration alarpiece 

 

Musée historique Lorrain, Nancy, 

France 

(48°41’ 49” N, 06° 10’ 47” E) 

RDD 0.708690 0.000008 13,1 14,2 1050 

Bg. B Jub. 

Ant. 

Statue of St Antoine - Jube of Royal 

Monastery of Brou, Bourg-en-Bresse, Ain, 

France 

Jube of Royal  Monastery of Brou, 

Bourg-en-Bresse, Ain, France  

(46° 11' 53" N, 05° 14' 11" E) 

STA 0.708008 0.000008 15,2* nd 1116 

F
ra

n
ce

 

11-49a Statue of ND de Bethléem - Chapel ND de 

Bethléem, Cathedral of Narbonne, Aude, 

France 

Chapel ND de Bethléem, 

Cathedral of Narbonne, Aude, 

France 

(43° 11' 05" N, 03° 00' 05" E) 

NDB 0.707772 0.000007 20,3* 13,4 964 
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PER-1 Altarpiece, of Perpignan Cathedral  - 

Pyrénées-Orientales, France 

Choir of cathedral, Perpignan, 

Pyrénées-Orientales, France 

(42° 42' 2.51" N et 2° 53' 50.43" E) 

PER-1 0.707768 0.000007 20,1 11,1 834 

PER-B Altarpiece of Perpignan Cathedral - 

Pyrénées-Orientales, France  

Choir of cathedral, Perpignan, 

Pyrénées-Orientales, France 

(42° 42' 2.51" N et 2° 53' 50.43" E) 

PER-B 0.707789 0.000009 20,0 10,4 915 

S
w

e
d

e
n

 UPPS1 Gustav Vasa monument, fragments of 

broken obelisk  - Uppsala Cathedral, 

Sweden 

 59°51'29.49"N  

17°38'3.54"E 

Uppsala Cathedral, Sweden 

UPPS 0.709205 0.000008 13,5 12,7 1153  

* δ34
S obtained by direct reduction of gypsum 
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Figure 1 Locations of the investigated historical alabaster exploitations (�) and alabaster 

artwork (�), arrows indicate the possible links between investigated historical alabaster 

exploitations and artwork as concluded from this study.  
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Figure 2 : Sulphur and oxygen isotope ratios of alabaster quarries and artwork. For 

comparison: Keuper and continental Permian signatures (Pearson et al. 1991), Beuda quarries 

(Utrilla et al. 1992). 
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Figure 3 : Sulphur and strontium isotope ratios of alabaster quarries and artwork. For 

comparison: isotope signatures of Tutbury gypsum (Taylor 1982) 
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a b 

Figure 4 (a) High Altar of the Perpignan Cathedral, 1573-1690.  4 (b) Alabaster blocks in the 

Beuda quarry, Catalonia, Spain. 

a b 

Figure 5 (a) Funeral Monument of King Gustav Vasa of Sweden, Uppsala Cathedral 1562-

1583. The discussed replaced obelisk is the second from the right; 5 (b) Alabaster extraction 

underground at Fauld Mine from the Tutbury Seam, East Midlands (UK). 

 


