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Abstract Since the onset of glaciation following the Oligocene (30–28 Ma), the prevalence of 19 

increasingly cold conditions has shaped the evolution of the Antarctic biota. Two hypotheses, post-20 

glacial recruitment from extra-regional locations and in situ persistence, have been proposed to explain 21 

the biogeography of the contemporary species-poor terrestrial Antarctic biota. Bryophytes, which form 22 

a major group of the Antarctic flora, exhibit a strong, inherent ability to survive cold conditions but 23 

also have high long-distance dispersal capacities, which are compatible with both hypotheses. Here, we 24 

test these hypotheses by means of population genetic and phylogeographic analyses of the 25 

cosmopolitan moss Bryum argenteum. We find evidence for at least three independent colonisation 26 

events of the species in Antarctica. Ancestral area reconstruction coupled with molecular dating 27 

suggest colonisation times of the different Antarctic clades ranging from four million years for the 28 

oldest lineage to half a million years for the youngest lineage. This suggests multiple colonisation 29 

events of Antarctica by this species during several glacial cycles within the Pleistocene, Pliocene and 30 

possibly late Miocene. This is the first study to demonstrate in situ persistence of bryophytes in 31 

Antarctica throughout previous glaciations.  32 

 33 
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Introduction 35 

 36 

The prevalence of increasingly cold conditions has shaped the evolution of the Antarctic biota since its 37 

separation from the other Southern Hemisphere continents during the final stages of the breakup of the 38 

supercontinent Gondwana (Convey and Stevens 2007; Convey et al. 2009; Fraser et al. 2012). Climate 39 

cooling was accompanied by a decrease in diversity of the angiosperm-dominated vegetation that 40 

inhabited the Antarctic Peninsula and parts of the continent during the Eocene. A mosaic of southern 41 

beech and conifer-dominated woodlands and tundra, comparable to that in parts of southern South 42 

America (Patagonia) today, characterised the region throughout the Oligocene (approximately 34–23 43 

Ma). By the middle Miocene (approximately 16–11.6 Ma), localized pockets of tundra persisted until 44 

at least 12.8 Ma (Anderson et al. 2011). The transition to cold-based, alpine glacial regimes 45 

characterized by perennially dry and frozen conditions from 13.85 Ma has not subsequently been 46 

reversed (Lewis et al. 2008). Since the late Miocene, the Antarctic ice sheets have repeatedly thickened 47 

and advanced beyond their current limits onto the continental shelf. Ice sheets are believed to have 48 

overrun most currently ice-free areas during glaciations in the Pliocene (5–2.6 Ma) and the Pleistocene 49 

(2.6 Ma–10 ka), including the Last Glacial Maximum (LGM; around 22–17 ka) (Convey et al. 2009, 50 

and references therein; Mackintosh et al. 2013). The terrestrial biota remaining in Antarctica today is 51 

depauperate in terms of species diversity, and is often cryptic, the major groups of organisms 52 

represented including micro-invertebrates, cryptogams and microbial groups (Convey 2013). 53 

Two main hypotheses have been proposed to explain how the contemporary terrestrial Antarctic 54 

biota endured the glacial events of the Pleistocene (Convey and Stevens 2007; Convey et al. 2008). The 55 

first, and long-held but generally untested, view is that the large majority of the Antarctic terrestrial 56 

biota was eradicated from both the Antarctic continent and the associated offshore islands and 57 

archipelagos of the Scotia Arc (including sub-Antarctic South Georgia). The considerably expanded 58 

and thickened ice sheets would have caused a complete loss of terrestrial exposures and habitats during 59 

the LGM, as is consistent with current glaciological model reconstructions. As a consequence most or 60 

all current Antarctic terrestrial biota would have had to (re-)colonise the continent after the LGM, 61 

either from disjunct populations or from refugia..However, while the long-distance dispersal (LDD) 62 

capacity of bryophytes would potentially have facilitated (re)colonisation on such a timescale, the 63 

ability to disperse over long distances is apparently more limited for many other groups of Antarctic 64 
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organisms. An additional weakness of the hypothesis is that many elements of the contemporary 65 

Antarctic biota show high levels of endemism (Øvstedal and Lewis Smith 2001; Pugh and Convey 66 

2008), which could not have arisen after the LGM. The persistence of such an endemic biota would 67 

require refugia beyond the current confines of Antarctica (for instance in the more distant sub-Antarctic 68 

islands or the other Southern Hemisphere continents), which would have been situated beyond the 69 

current distributions of many species. Therefore, this hypothesis would imply multiple colonisation 70 

events out of Antarctica when refugia were required, and subsequent extinction from them once 71 

Antarctica was recolonised. The alternative hypothesis is that species have survived in situ, in multiple 72 

refugia that must have been present in different regions across Antarctica. This hypothesis has received 73 

increasingly strong support in recent years from both molecular and classic biogeographical studies, as 74 

well as from geological and geomorphological evidence demonstrating the diachrony of ice-sheet 75 

expansions around Antarctica, and refining both the thickness and timing of previous episodes of 76 

maximum ice sheet extent (Convey et al. 2008, 2009; Pugh and Convey 2008; Vyverman et al. 2010; 77 

Fraser et al. 2012).  78 

Bryophytes (mosses and liverworts) are the dominant land plant flora in Antarctica, reaching their 79 

greatest diversity and extent in the Antarctic Peninsula and Scotia Arc (Ochyra et al. 2008; Convey 80 

2013). As a group, they are generally regarded as possessing strong LDD capacities, supported by both 81 

direct (Lönnel et al. 2012; Sundberg 2013; van Zanten 1978, 1981) and indirect (see Szövényi et al. 82 

2012 for review) evidence. These characteristics would, in principle, equip them well for recolonisation 83 

of Antarctica following any episode of regional extinction. . Elsewhere, recent evidence points to the 84 

major role of oceanic islands as glacial refugia for the subsequent (re-)colonisation of continents 85 

(Laenen et al. 2011, Hutsemékers et al. 2011). However, the geographic scale of Antarctic isolation 86 

from other landmasses, along with protection from direct north-south transfer by atmospheric and 87 

ocean currents, give the continent considerable geographic isolation (Barnes et al. 2006). Alternatively, 88 

a feature common among most bryophytes is their ability to grow at low (sub-optimal) temperatures. 89 

More than half of the 40 temperate species investigated by Furness and Grime (1982) showed a growth 90 

reduction of less than 50% at 5°C compared to growth at their optimal temperature, and this feature has 91 

also been described in Arctic and Antarctic bryophytes (Longton 1988). Indeed, many species, 92 

including some from the tropics, seem to be physiologically pre-adapted to cold and can survive 93 

temperatures ranging from -10 to -27°C (Glime 2007). Recently, La Farge et al. (2013) have provided 94 
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evidence for totipotent capacity (the ability of a cell to dedifferentiate into a meristematic state, and 95 

subsequently regrow) in Arctic bryophyte tissue buried by ice for 400 years, and Roads et al. (2014) 96 

have reported regrowth from gametophytes in moss banks preserved in permafrost for over 1.5 Ka. 97 

Furthermore, population genetic data for the temperate moss Homalothecium sericeum (Hedw.) 98 

Schimp. support persistence of the species in micro-refugia within the extensively glaciated northern 99 

Europe during the LGM (Désamoré et al. 2012). These examples suggest that bryophytes may be 100 

viable candidates to have survived Antarctic glacial cycles in situ. 101 

Using the cosmopolitan moss Bryum argenteum Hedw. as a model, Hills et al. (2010) interpreted 102 

the lower genetic diversity observed in Antarctic vs non-Antarctic samples as a consequence of a lower 103 

rate of DNA substitution and isolation in refugia within Victoria Land since the Pleistocene. However, 104 

in the absence of 1) evidence for heterogeneity of DNA substitution rate among lineages, 2) an explicit 105 

time frame, 3) representative sampling across the entire range of the species, and 4) explicit analyses of 106 

population genetic structure, the hypothesis of survival in extra-Antarctic areas with subsequent (re-) 107 

colonisation cannot be excluded.  108 

Here, we present a reconstruction of the phylogeography of B. argenteum at the global scale, and 109 

use molecular dating techniques to determine whether its presence in Antarctica is the result of recent 110 

(re-)colonisation from Pleistocene refugia outside Antarctica (H1), or whether it survived the 111 

Quaternary and Tertiary glaciations in situ (H2). If H1 holds true, we would expect Antarctic 112 

populations to be of recent, post-glacial origin, and therefore to show relatively little genetic 113 

differentiation from populations from other regions. Under that hypothesis, colonisation events might 114 

occur more frequently than under a scenario of long-term in situ persistence. Therefore, we would also 115 

expect under H1 a high gene flow from populations outside Antarctica, which could lead to a decrease 116 

in the signature of any founder effect. Conversely, if H2 holds true, we would predict that extant 117 

Antarctic populations derive from ancestors distributed on this continent before the LGM. We would 118 

further expect, provided that gene flow with the sub-Antarctic islands and other Southern Hemisphere 119 

areas has been limited, Antarctic populations to be genetically isolated from other regions and exhibit a 120 

clear phylogeographic signal (sensu Pons and Petit 1996).   121 

 122 

Materials and Methods 123 

 124 
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Specimen sampling and molecular protocols  125 

 126 

Bryum argenteum is a cosmopolitan, weedy moss species that thrives in disturbed environments. Its 127 

natural occurrence in Antarctica is indicated by its presence in the earliest botanical records for the 128 

continent and its widespread distribution within the regions where it occurs (Ochyra et al. 2008; 129 

Cannone et al. 2013). A total of 154 accessions of B. argenteum were sampled from Africa, America, 130 

Asia, Antarctica, the sub-Antarctic islands, Australasia and Europe. From these accessions, 28 samples 131 

were taken from previously published papers (Hills et al. 2010; Pisa et al. 2013; Skotnicki et al. 2005) 132 

available in GenBank. The remaining samples were sequenced for this study, and included 47 133 

specimens collected by the authors and colleagues (all retained at the herbarium of the Universidad de 134 

Murcia) and 70 specimens held at the institutional herbaria of the British Antarctic Survey, California 135 

Academy of Sciences, Eszterházy Károly College, Institute of Terrestrial Ecology, Main Botanical 136 

Garden of the Russian Academy of Sciences, Moscow State University, New York Botanical Garden, 137 

Royal Botanic Garden Edinburgh, Swedish Museum of Natural History, University of Connecticut, and 138 

the private herbaria of D.T. Holyoak and B. Goffinet. Four of the closely related species to B. 139 

argenteum (Wang and Zhao 2009) were selected as outgroup species (Appendix 1). The geographic 140 

location of the accessions is detailed in Fig. 1.  141 

Total genomic DNA was extracted following the protocol described in Werner et al. (2002), or 142 

using the DNeasy Plant Mini Kit (Qiagen GmbH, Hilden, Germany). PCR amplification and 143 

sequencing of the nuclear internal transcribed spacer (ITS) region were performed using the protocol 144 

described in Pisa et al. (2013). Most of the amplifications were carried out using universal primers 145 

AB101 and AB102 (Douzery et al. 1999), with some nucleotide modifications to adapt these primers to 146 

B. argenteum. In some cases, sequences were generated using universal primers ITS-A and ITS-B as 147 

described in Blattner (1999), employing a similar PCR step as in Pisa et al. (2013), with exceptions 148 

being the use of the Taq PCR Core Kit (Qiagen GmbH, Hilden, Germany) and an annealing 149 

temperature of 50°C. Forward and reverse sequence fragments for both ITS1 and ITS2 were edited and 150 

assembled using Bioedit 7.05 (Hall 1999) and every polymorphism was checked from the 151 

chromatograms. The sequences were aligned by eye, adding gaps where necessary to conserve 152 

homology between sequences (Appendix 2). Gaps were counted with SeqState (Müller 2005) using 153 
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complex indel-coding. The number of polymorphic sites was calculated with DnaSP (Librado and 154 

Rozas 2009). 155 

ITS remains the most widely used source of information on genetic variation at the species level in 156 

plants and fungi (reviewed by Nagy et al. 2012), although its use in phylogenetics has been questioned 157 

due to the potential presence of paralogs and pseudogenes (see Nieto Feliner and Rosselló 2007 for 158 

review). In mosses in particular, evidence for ITS paralogy was recently reported (Košnar et al. 2012). 159 

We consider that the use of ITS in B. argenteum was justified in the current study as no conflicting 160 

base calls during direct sequencing were observed, suggesting that the presence of intragenomic 161 

paralogous copies is unlikely.  162 

 163 

Population genetic analyses  164 

 165 

The sequences were grouped into haplotypes using DnaSP. For each of the seven geographic regions 166 

defined above, we calculated haploid diversity (h), unbiased haploid diversity by population (uh) and 167 

frequency of endemic haplotypes (x) using GENALEX 6.5 (Peakall and Smouse 2006) and Tajima’s D 168 

using Arlequin 3.5 (Excoffier et al. 2005). Genetic differentiation among geographic regions and 169 

presence of phylogeographic signal in the data were assessed by means of comparative analyses 170 

employing fixation index (FST) and NST. NST is a measure of genetic differentiation among populations; 171 

it is analogous to FST but takes the genetic distances among genotypes (here, the pairwise distance 172 

among them) into account (Pons and Petit 1996). When NST>FST, it means that mutation rates are 173 

higher than dispersal rates between geographical regions, generating a phylogeographic pattern. The 174 

significance of FST and NST were tested by constructing the distribution of the null hypothesis by means 175 

of 9,999 random permutations of individuals among geographic regions, as implemented by Spagedi 176 

1.3 (Hardy and Vekemans 2002). The existence of a phylogeographic signal was tested by assessing 177 

the significance of the observed difference between NST and FST values by means of 9,999 random 178 

permutations of the allele distance matrix. Global F and N statistics among the seven geographic 179 

regions were computed, as well as pairwise statistics among regions. The correction of Benjamini and 180 

Yekutieli (2001) for multiple tests was applied to determine the significance of the pairwise statistics.  181 

 182 

Phylogeny, molecular dating, and ancestral area reconstructions  183 
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 184 

The phylogeny and divergence time among ITS genotypes within B. argenteum were investigated 185 

using BEAST v1.7.5 (Drummond et al. 2012). In the absence of fossil evidence, a prior on the absolute 186 

rate of molecular evolution was used, following the procedure described in Huttunen et al. (2008) and 187 

Aigoin et al. (2009). In the absence of a substitution rate for ITS in bryophytes, we used a normal 188 

distribution with a mean and standard deviation of 4.125e-3 and 1.807e-3 substitutions per site per 189 

million years, respectively, which corresponds to the average absolute substitution rates of ITS across a 190 

wide range of annual herbaceous species (Kay et al. 2006).  However, we consider that this rate is 191 

likely to overestimate substitution rates in mosses, which are longer-lived and rely for a large part on 192 

asexual reproduction. This is particularly the case in B. argenteum, which is thought to be sterile in 193 

Antarctica (Ochyra et al. 2008). On average, the substitution rate of 18S rDNA, the neighbouring 194 

region of ITS, in mosses is suggested to be less than half that of vascular plants (Stenøien 2008). It is 195 

likely that the substitution rate used here may therefore be an overestimate of the true rate for this 196 

species, and therefore that divergence times derived from this substitution rate may be significantly 197 

underestimated.  198 

The Hasegawa, Kishino and Yano (HKY) model with gamma distribution and invariant sites had 199 

the best Bayesian  information criterion (BIC) score for the ITS dataset using jModeltest 2.1.4 (Darriba 200 

et al. 2012). A relaxed clock with lognormal distribution was employed for the analysis. Before 201 

running the final dating analysis, the performance of five tree models (i.e. coalescent with constant size 202 

population, coalescent under an extended Bayesian skyline including the two linear and stepwise 203 

models, speciation under a birth-death process and speciation under Yule process) were compared by 204 

using a model selection procedure based on Bayes factors calculated in TRACER v1.5 (Rambaut and 205 

Drummond 2009). Overall, the model using the coalescent under a stepwise extended Bayesian skyline 206 

model (Heled and Drummond 2008) performed best (data not shown). Four independent Markov chain 207 

Monte Carlo (MCMC) analyses were each run for 100,000,000 generations for every model. Parameter 208 

values were sampled every 10,000 generations and convergence and acceptable mixing of the samples 209 

were checked using the program TRACER v1.5. After discarding the burn-in steps (2,000 trees), the 210 

runs were combined to obtain an estimate of the posterior probability distributions of the dates of 211 

divergence.  212 
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To estimate ancestral areas, we used the maximum likelihood dispersal–extinction–cladogenesis 213 

(DEC) method (Ree et al. 2005; Ree and Smith 2008a) as implemented in the software Lagrange build 214 

20091004 (Ree and Smith 2008b) on the BEAST chronogram. Each genotype was assigned to one or 215 

more of the seven geographic regions defined above. We conducted the analysis in Lagrange based on 216 

an unconstrained model permitting an equal probability of dispersal between all areas at any time. 217 

 218 

Results 219 

 220 

The complete alignment had a total length of 928 bp after the exclusion of the 5.8S rRNA gene. No 221 

further region was excluded from the alignment. There were 328 sites with gaps, corresponding to106 222 

indels and 111 polymorphic sites. The alignment excluding outgroup sequences had a total length of 223 

844 bp. There were 173 sites with gaps, corresponding to 78 indels and 81 polymorphic sites, allowing 224 

for the identification of 77 haplotypes (Appendix 1). Haploid diversity unbiased by population size was 225 

lowest in Antarctica (uh=0.62) as compared to other regions (0.79 - 0.94) (Table 1). The frequency of 226 

endemic haplotypes exhibited the reverse trend, reaching its highest value (x=0.90) in Antarctica. None 227 

of Tajima’s D statistics differed significantly from 0.  228 

There was a significant difference in genotype frequency among geographic regions (Global 229 

FST=0.146, P<0.0001). The global NST (0.267, P<0.0001) was significantly higher than FST (P<0.0001) 230 

providing evidence that, on average, the genotypes from the same region were more closely related 231 

than the genotypes from different regions. This geographic structure was largely due to the significant 232 

genetic isolation of Antarctica. The phylogeographic signal between Antarctica and any of the other six 233 

regions was consistently significant, whereas a significant phylogeographic signal could not be 234 

detected among any other pairs of regions (Table 2).  235 

Accessions from Antarctica belonged to three clades (Fig. 2). Clade I was mainly composed of 236 

Antarctic genotypes, with the exception of one European genotype and one common genotype shared 237 

between Antarctica, Europe, Asia and America. Clade II was composed of Antarctic, Sub-Antarctic, 238 

American and Austalasian genotypes. Clade III was composed of Antarctic and American genotypes. 239 

The Lagrange analysis indicated that the most recent common ancestor of clade I, which may have 240 

been distributed across Asia, Europe, and America, colonised Antarctica 4.36 Ma (Highest Posterior 241 

Density, HPD, 1.79-14.72). In clades II and III, the earliest colonisation of Antarctica dates back to 242 
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1.43 Ma (HPD 0.42-4.97) and 0.55 Ma (HPD 0.13-1.97), respectively, from an ancestor most closely 243 

related to American populations. Potential dispersal events from Antarctica to other regions are not 244 

excluded as genotypes in clade II located in Australasia and the sub-Antarctic islands come from 245 

ancestors distributed across Antarctica and America. 246 

 247 

Discussion 248 

 249 

Evidence for at least three distinct origins of B. argenteum in Antarctica was found, with colonisation 250 

times ranging between approximately 4.4 Ma (clade I), 1.4 Ma (clade II), and 0.6 Ma (clade III). 251 

However, as mentioned above, the substitution rate of Kay et al. (2006) is based on studies of annual 252 

herbaceous species, and is likely to be much higher than in mosses. A study on relative substitution 253 

rates amongst major plant groups showed that, on average, the substitution rate of 18s rDNA, the 254 

neighbouring region of ITS, is more than twice as high in vascular plants compared to mosses 255 

(Stenøien 2008). This suggests that the presence of B. argenteum in Antarctica may be considerably 256 

more ancient than estimated here. The current study therefore provides the first support for the long-257 

term persistence in situ of a bryophyte species in Antarctica, with time-scales in the order of millions of 258 

years. No evidence supporting strict post-Pleistocene (i.e. recent) colonisation (H1) was found in any 259 

of the lineages. Our results, however, do not exclude potential dispersal events from Antarctica to other 260 

regions and future studies with a larger sample size and obtained from more locations may identify 261 

evidence for recent colonisation events. 262 

In agreement with our finding of long-term persistence of B. argenteum in Antarctica, a significant 263 

phylogeographical signal was found in all pairwise comparisons between Antarctica and each of the six 264 

other global regions, while no such signal was identified amongst the latter. This indicates that extant 265 

patterns of genetic diversity of Antarctic B. argenteum populations are better explained in terms of in 266 

situ diversification than recruitment of migrants from other areas, resulting in the highest proportion of 267 

endemic haplotypes as compared to other regions of the world. Such an interpretation is consistent with 268 

recent developments in biogeographical knowledge of much of the contemporary terrestrial biota in 269 

Antarctica. Evidence for long-term history in situ has been reported in all major groups except the 270 

bryophytes, with timescales ranging from mid-Pleistocene (e.g. diatoms, rotifers, cladocerans) to 271 

Pliocene, Miocene and Gondwana-breakup (e.g. springtails, chironomid midges, mites, copepods, 272 
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microorganisms) (see Convey et al. 2008, 2009, and references therein; Vyverman et al. 2010). 273 

McGaughran et al. (2010), in a comparative phylogeographic study of different springrail (Collembola) 274 

species in Victoria Land and along the Scotia Arc and Antarctic Peninsula, identified analogous 275 

evidence of intraregional differentiation and hence colonisation patterns on timescales dating back to at 276 

least the earliest Pleistocene.   277 

How and where bryophytes and other terrestrial biota could have survived through glaciation events 278 

within Antarctica is not yet well understood. The lowest ITS haplotypic diversity within B. argenteum 279 

worldwide was observed in Antarctica, as in the cosmopolitan moss Ceratodon purpureus Hedw. 280 

(Brid.) (Clarke et al. 2008, 2009). Although the hypothesis of lower mutation rates in Antarctic B. 281 

argenteum populations cannot be ruled out (Hills et al. 2010), such a low regional genetic diversity can 282 

also be interpreted in terms of the sterile condition of B. argenteum in Antarctica (Ochyra et al. 2008), 283 

either due to the regional absence of one of the sexes in this dioicous species, and/or inhibition of sex 284 

expression due to prevailing cold and dry conditions (Longton 1988). Yet, analyses of patterns of 285 

genetic diversity in Antarctic populations of B. argenteum failed to evidence a significant bottleneck. 286 

This observation does not support the hypothesis of a substantial past decrease in population size and 287 

points to the persistence of sufficiently large and numerous populations of the species through time. In 288 

Antarctica, areas of heated ground associated with geothermal activity, where B. argenteum is known 289 

to occur (Convey et al. 2000), may be particularly relevant in considering the locations of some 290 

potential refuge sites (Convey and Smith 2006, Fraser et al. 2014). Although individually ephemeral, 291 

the presence of geothermal habitats may have extended over considerable time periods, as volcanism 292 

has been widespread throughout the Tertiary in parts of the northern Antarctic Peninsula and elsewhere 293 

in Antarctica (Baker et al. 1975, Convey et al. 2000; Convey and Smith 2006; Fraser et al. 2014). 294 

Therefore, geothermal habitats might have played a key role in the longer-term regional persistence of 295 

species with rapid colonisation capacities such as bryophytes, allowing survival through periods of 296 

apparently greater environmental extremes than are currently experienced (Convey and Smith 2006).  297 

 298 

Conclusion 299 

 300 

This study demonstrates for the first time in situ persistence of bryophytes in Antarctica throughout 301 

previous glacial cycles and contradicts the hypothesis of post-glacial recruitment from extra-regional 302 
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locations..Although B. argenteum, like other moss species, exhibits the lowest levels of genetic 303 

diversity worldwide in Antarctica, ITS variation is substantial within and among Antarctic populations, 304 

making it a highly suitable model for investigating fine-scale patterns of genetic structure and diversity 305 

at continental scale in order to reconstruct its biogeographic history. In particular, detailed 306 

phylogeographic information at the Antarctic scale would allow for testing Fraser’s et al. (2014) 307 

hypothesis that refugia indeed correspond to areas of high geothermal activity and contribute, together 308 

with information from other terrestrial organisms (Terauds et al. 2012), to enhancing the identification 309 

of bioregions that are not fully represented in the current Antarctic Specially Protected Area network.  310 

 311 

Acknowledgments 312 

 313 

The authors thank the curators of the herbaria AAS, ACHE, CAS, CONN, E, EGR, MHA, MW, NY, 314 

S, and also the private herbaria of D.T. Holyoak and B. Goffinet for the loan of material and to B. 315 

Albertos, R. Garilleti, B. Goffinet, J. M. González-Mancebo, F. Lara and M. Stech for collecting 316 

material used in this work. We also thank Oliva Martin-Sanchez for producing Fig. 1. This study has 317 

been supported financially by the Spanish Ministry of Science and Innovation (Projects CGL2008-318 

00275/BOS and CGL2011-22936/BOS) and by the European Regional Development Funds. E. M. 319 

Biersma is supported by a Natural Environment Research Council PhD studentship (ref 320 

NE/K50094X/1), and P. Convey by Natural Environment Research Council core funding to the British 321 

Antarctic Society programme ‘Environmental Change and Evolution’. This paper also contributes to 322 

the Scientific Commity on Antarctic Research ‘State of the Antarctic Ecosystem’ programme. J. Patiño 323 

and A. Vanderpoorten gratefully acknowledge financial support from the Belgian Funds for Scientific 324 

Research and the University of Liege. We thank three reviewers for helpful comments. 325 

 326 

References 327 

 328 

Aigoin DA, Devos N, Huttunen S, Ignatov MS, González-Mancebo JM, Vanderpoorten A (2009) And 329 

if Engler was not completely wrong? Evidence for multiple evolutionary origins in the moss 330 

flora of Macaronesia. Evolution 63:3248–3257 331 



13 
 

Anderson JB, Warnyb S, Askinc RA, Wellnerd JS, Bohatye SM, Kirshnera AE, Livseyf DN, Simmsf 332 

AR, Smitha TR, Ehrmanng W, Lawverh LA, Barbeaui D, Wisej SW, Kulhenekj DK, Weavera 333 

FM, Majewskik W (2011) Progressive Cenozoic cooling and the demise of Antarctica’s last 334 

refugium. Proc Natl Acad Sci USA 108:11356-11360. 335 

Baker PE, McReath I, Harvey MR, Roobol MJ, Davies TG (1975) The geology of the South Shetland 336 

Islands: V. Volcanic evolution of Deception Island. Br Antarct Surv, Sci Rep 78:1-8.  337 

Barnes DKA, Hodgson DA, Convey P, Allen C, Clarke A (2006) Incursion and excursion of Antarctic 338 

biota: past, present and future.  Global Ecol Biogeogr 15:121-142. 339 

Benjamini Y, Yekutieli D (2001) The control of false discovery rate under dependency. Ann Stat 340 

29:1165–1188.  341 

Blattner FR (1999) Direct amplification of the entire ITS region from poorly preserved plant material 342 

using recombinant PCR. BioTech 27:1180-1185. 343 

Cannone N, Convey P, Guglielmin M (2013) Diversity trends of bryophytes in continental Antarctica. 344 

Polar Biol 36:259-271. 345 

Clarke LJ, Ayre DJ, Robinson SA (2008) Somatic mutation and the Antarctic ozone hole. J Ecol 346 

96:378-385. 347 

Clarke LJ, Ayre DJ, Robinson SA (2009) Genetic structure of East Antarctic populations of the moss 348 

Ceratodon purpureus. Antarct Sci 21:51-58. 349 

Convey P (2013) Antarctic Ecosystems. In: Levin SA (ed) Encyclopedia of Biodiversity Vol. 1, 2nd 350 

edn. Elsevier, San Diego, pp. 179-188. 351 

Convey P, Smith RIL (2006) Geothermal bryophyte habitats in the South Sandwich Islands, maritime 352 

Antarctic. J Veg Sci 17:529-538.  353 

Convey P, Stevens MI (2007) Antarctic Biodiversity. Science 317:1877-1878. 354 

Convey P, Smith RIL, Hodgson DA, Peat HJ (2000) The flora of the South Sandwich Islands, with 355 

particular reference to the influence of geothermal heating.  J Biogeog 27:1279-1295. 356 

Convey P, Gibson J, Hillenbrand C-D, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008) 357 

Antarctic terrestrial life – challenging the history of the frozen continent? Biol Rev 83:103-358 

117. 359 



14 
 

Convey P, Stevens MI, Hodgson DA, Smellie JL, Hillenbrand C-D, Barnes DKA, Clarke A, Pugh PJA, 360 

Linse K, Cary SC (2009) Exploring biological constraints on the glacial history of Antarctica. 361 

Quaternary Sci Rev 28:3035-3048. 362 

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and 363 

parallel computing. Nat Methods 9:772. 364 

Désamoré A, Laenen B, Stech M, Papp B, Hedenäs L, Mateo RG, Vanderpoorten A. (2012) How do 365 

temperate bryophytes face the challenge of a changing environment? Lessons from the past 366 

and predictions for the future. Global Change Biol 18:2915–2924. 367 

Douzery EJP, Pridgeon AM, Kores P, Linder HP, Kurzweil H & Chase MW (1999) Molecular 368 

phylogenetics of Diseae (Orchidaceae): a contribution from nuclear ribosomal ITS sequences. 369 

Am J Bot 86:887-899. 370 

Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the 371 

BEAST 1.7. Mol Biol Evol 29:1969-1973. 372 

Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): An integrated software package for 373 

population genetics data analysis. Evol Bioinform Online 1: 47-50. 374 

Fraser CI, Nikula R, Ruzzante DE, Waters JM (2012) Poleward bound: biological impacts of Southern 375 

Hemisphere glaciation. Trends Ecol Evol 27:462-471. 376 

Fraser CI, Terauds A, Smellie J, Convey P, Chown SL (2014) Geothermal activity helps life survive 377 

ice ages. Proc Natl Acad Sci USA 111:5634-5639. 378 

Furness SB, Grime JP (1982) Growth rate and temperature responses in bryophytes II. A comparative 379 

study of species of contrasted ecology. J Ecol 70:525-536. 380 

Glime JM (2007) Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook sponsored by 381 

Michigan Technological University and the International Association of Bryologists. 382 

http://www.bryoecol.mtu.edu/ . Accessed 6 February 2014. 383 

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for 384 

Windows 95/98/NT. Nucleic Acids Symp Ser 41:95-98. 385 

Hardy OJ, Vekemans X (2002) SPAGeDI: a versatile computer program to analyse spatial genetic 386 

structure at the individual or population levels. Mol Ecol Notes 2:618-620. 387 

Heled J, Drummond A (2008) Bayesian inference of population size history from multiple loci. BMC 388 

Evol Biol 8:289. 389 



15 
 

Hills SFK, Stevens MI, Gemmill CEC (2010) Molecular support for Pleistocene persistence of the 390 

continental Antarctic moss Bryum argenteum. Antarct Sci 22:721-726. 391 

Hutsemékers V, Szövényi P, Shaw AJ, González-Mancebo JM, Muñoz J. Vanderpoorten A (2011) 392 

Oceanic islands are not sinks of biodiversity in spore-producing plants. Proc Natl Acad Sci 393 

USA 108:18989-18994. 394 

Huttunen S, Hedenäs L, Ignatov MS, Devos N, Vanderpoorten A (2008) Origin and evolution of the 395 

northern hemisphere disjunction in the moss genus Homalothecium (Brachytheciaceae). Am J 396 

Bot 95:720-730. 397 

Kay KM, Whittall JB, Hodges SA (2006) A survey of nuclear ribosomal internal transcribed spacer 398 

substitution rates across angiosperms: an approximate molecular clock with life history 399 

effects. BMC Evol Biol 6:36. 400 

Košnar J, Herbstová M, Kolář F, Koutecký P, Kučera J (2012) A case study of intragenomic  ITS 401 

variation in bryophytes: Assessment of gene flow and role of polyploidy in the origin of 402 

European taxa of the Tortula muralis (Musci: Pottiaceae) complex. Taxon 61:709-720.  403 

Laenen B, Désamoré A, Devos N, Shaw AJ, González-Mancebo JM, Carine MA, Vanderpoorten A 404 

(2011) Macaronesia: A source of hidden genetic diversity for post-glacial recolonisation of 405 

western Europe in the leafy liverwort Radula lindenbergiana. J Biogeogr 38:631-639. 406 

La Farge C, Krista H, Williams KH, England JH (2013) Regeneration of Little Ice Age bryophytes 407 

emerging from a polar glacier with implications of totipotency in extreme environments. Proc 408 

Natl Acad Sci USA doi:10.1073/pnas.1304199110.  409 

Lewis AR, Marchant DR, Ashworth AC, Hedenäs L, Hemming SR, Johnson JV, Lengh MJ, Machlus 410 

ML, Newton AE, Raine JJ, Willenbring JK, Williams M, Wolfe AP (2008) Mid-Miocene 411 

cooling and the extinction of tundra in continental Antarctica. Proc Natl Acad Sci USA 105: 412 

10676-10678. 413 

Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism 414 

data. Bioinformatics 25:1451-1452. 415 

Longton R-E (1988) The Biology of Polar Bryophytes and Lichens. Cambridge University Press, 416 

Cambridge.  417 

Lönnel N, Hylander K, Jonsson BG, Sundberg S (2012) The fate of the missing spores - Patterns of 418 

realized dispersal beyond the closest vicinity of a sporulating moss. Plos One 7:e41987. 419 

http://www.pnas.org/search?author1=Krista+H.+Williams&sortspec=date&submit=Submit�
http://www.pnas.org/search?author1=John+H.+England&sortspec=date&submit=Submit�


16 
 

Mackintosh AN, Verleyen E., O'Brien PE, White DA, Jones RS, McKay R, Dunbar R., Gore DB, Fink 420 

D, Post A.L, Miura H, Leventer A, Goodwin I, Hodgson DA, Lilly K, Crosta X, Golledge NR, 421 

Wagner B, Berg S, van Ommen T, Zwartz D, Roberts SJ, Vyverman W, Masse G (2013) 422 

Retreat history of the East Antarctic Ice Sheet since the Last Glacial Maximum. Quat Sc Rev. 423 

doi: 10.1016/j.quascirev.2013.07.024  424 

McGaughran A, Toricelli G, Carapelli A, Frati F, Stevens MI, Convey P, Hogg ID (2010) Contrasting 425 

phylogeographic patterns for springtails reflect different evolutionary histories between the 426 

Antarctic Peninsula and continental Antarctica. J Biogeog 37:103-119. 427 

Müller K (2005) SeqState. Primer design and sequence statistics for phylogenetic DNA datasets. Appl 428 

Bioinform 4:65-69. 429 

Nagy LG, Kocsubé S, Csanádi Z, Kovács GM, Petkovits T, Vágvölgyi C, Papp T (2012) Re-mind the 430 

gap! Insertion - deletion data reveal neglected phylogenetic potential of the nuclear ribosomal 431 

internal transcribed spacer (ITS) of Fungi. PloS One 11:e49794.  432 

Nieto Feliner G, Rosselló JA (2007) Better the devil you know? Guidelines for insightful utilization of 433 

nrDNA ITS in species-level evolutionary studies in plants. Mol Phylogenet Evol 44:911-919. 434 

Ochyra R, Smith RIL, Bednarek-Ochyra H (2008) The illustrated moss flora of Antarctica. Cambridge 435 

University Press, Cambridge. 436 

Øvstedal DO, Smith RIL (2001) Lichens of Antarctica and South Georgia. A guide to their 437 

identification and ecology. Cambridge University Press, Cambridge. 438 

Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for 439 

teaching and research. Mol Ecol Notes 6:288-295. 440 

Pisa S, Werner O, Vanderpoorten A, Magdy M, Ros RM (2013) Elevational patterns of genetic 441 

variation in the cosmopolitan moss Bryum argenteum (Bryaceae). Am J Bot 100:2000-2008. 442 

Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered 443 

alleles. Genetics 144:1237-1245. 444 

Pugh PJA, Convey P (2008) Surviving out in the cold: Antarctic endemic invertebrates and their 445 

refugia. J Biogeogr 35:2176-2186. 446 

Rambaut A, Drummond AJ (2009) Tracer. Version 1.5. Molecular evolution, phylogenetics and 447 

epidemiology Web. http://tree.bio.ed.ac.uk/software/tracer/. Accessed 10 December 2013. 448 



17 
 

Ree RH, Smith SA (2008a) Maximum likelihood inference of geographic range evolution by dispersal, 449 

local extinction, and cladogenesis. Syst Biol 57:4-14. 450 

Ree RH, Smith SA (2008b) Lagrange: likelihood analysis of geographic range evolution. Version 2.0. 451 

http://code.google.com/p/lagrange/. Accessed 11 December 2013. 452 

Ree RH, Moore BR, Webb CO, Donoghue MJ (2005) A likelihood framework for inferring the 453 

evolution of geographic range on phylogenetic trees. Evolution 59:2299-2311. 454 

Roads E, Longton RE, Convey P (2014). Millenial timescale regeneration in a moss from Antarctica. 455 

Curr Biol 24:R222 456 

Skotnicki ML, Mackenzie AM, Clements MA, Selkirk PM (2005) DNA sequencing and genetic 457 

diversity of the 18S–26S nuclear ribosomal internal transcribed spacers (ITS) in nine 458 

Antarctic moss species. Antarct Sci 17:377–384. 459 

Stenøien HK (2008) Slow molecular evolution in 18S rDNA, rbcL and nad5 genes of mosses compared 460 

with higher plants. J Evolution Biol 21:566–571. 461 

Sundberg S (2013) Spore rain in relation to regional sources and beyond. Ecography 36:364-373. 462 

Szövényi P, Sundberg S, Shaw AJ (2012) Long-distance dispersal and genetic structure of natural 463 

populations: an assessment of the inverse isolation hypothesis in peat mosses. Mol Ecol 464 

21:5461-5472. 465 

Terauds A, Chown SL, Morgan F, Peat HJ, Watts DJ, Keys H, Convey P, Bergstrom DM (2012) 466 

Conservation biogeography of the Antarctic. Divers Distrib 18: 726–741.  467 

van Zanten BO (1978) Experimental studies on trans-oceanic long-range dispersal of moss spores in 468 

the Southern Hemisphere. J Hattori Bot Lab 44:455–482. 469 

van Zanten BO, Pócs T (1981) Distribution and dispersal of bryophytes. Adv Bryol 1:479–562. 470 

Vyverman W, Verleyen E, Wilmotte A, Hodgson DA, Willems A, Peeters K, Van de Vijver B, de 471 

Wever A, Leliaert F, Sabbe K (2010) Evidence for widespread endemism among Antarctic 472 

micro-organisms. Polar Sc 4:103-113. 473 

Wang C-Y, Zhao J-C (2009) Phylogeny of Ptychostomum (Bryaceae, Musci) inferred from sequences 474 

of nuclear ribosomal DNA internal transcribed spacer (ITS) and chloroplast rps4. J Syst Evol 475 

47:311-320. 476 



18 
 

Werner O, Ros RM, Guerra J (2002) Direct amplification and NaOH extraction: two rapid and simple 477 

methods for preparing bryophyte DNA for polymerase chain reaction (PCR). J Bryol 24:127-478 

131. 479 

 480 

 

 

  



19 
 

Figure captions  481 

Fig. 1 Geographic locations of Bryum argenteum and outgroup accessions used. 482 

Fig. 2 Spatial and temporal dimensions of Bryum argenteum evolution. Chronogram of the fifty per 483 

cent majority-rule consensus of the trees sampled from the posterior probability distribution generated 484 

by the BEAST analysis of ITS sequences of the B. argenteum genotypes sampled worldwide. The 485 

maximum likelihood reconstruction of geographical range evolution under the unconstrained 486 

dispersal–extinction–cladogenesis (DEC) model (ln L=214.9) implemented in Lagrange is given in 487 

boxes at each node of interest. The geographical areas defined for this study and each haplotype are 488 

provided. The two series of reconstructions at each internal node indicate the ML ancestral range 489 

estimate for the upper and lower branch connecting that node, respectively. Boxes at terminal nodes 490 

indicate the geographic areas occupied by the accessions belonging to each haplotype. The vertical 491 

bars (I, II, and III) indicate the clades with Antarctic genotypes. Thicker branches indicate the support 492 

for the Antarctic clades (PP > 0.9). * indicates the support for clades with PP > 0.9. 493 
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Table 1 Sample size (N), number of genotypes (Na), haploid diversity (h), haploid diversity unbiased by 494 

population (uh), frequency of endemic haplotypes (x) and Tajima’s D (D) in seven geographic regions of the 495 

worldwide distributed moss Bryum argenteum based on the nuclear ITS locus  496 

Continental area N Na h uh x D 

Asia 20 17 0.89 0.94 0.71 -0.89 ( 0.19) 

America 27 19 0.87 0.91 0.63 - 1.27 (0.09) 

Europe 56 22 0.77 0.79 0.68 -0.86 (0.21) 

Australasia 7 6 0.80 0.93 0.83 0.35 (0.65) 

Antarctica 25 10 0.59 0.62 0.90 -0.93 ( 0.28) 

Africa 11 9 0.80 0.88 0.56 0.20 (0.61) 

sub-Antarctic islands 8 6 0.75 0.93 0.83 0.08 (0.36) 
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Table 2 Pairwise FST values (below diagonal) and NST values (above diagonal) among seven geographic 497 

regions of the worldwide distributed moss Bryum argenteum based on the nuclear ITS locus. The P-values (in 498 

brackets) are associated to the null hypotheses that FST=0 and that FST=NST respectively  499 

Continental 

area Asia America Europe Australasia Antarctica Africa sub-Antarctic 

Asia - 0.012 n.s. 0.157 n.s. 0.124 (0.0358) 0.383 (0.0003)* 0.060 n.s. 0.100 n.s. 

America 0.033 (0.0159)* - 0.135 n.s. 0.049 n.s. 0.479 (0.0001)* 0.027 n.s. 0.062 n.s. 

Europe 0.105 (0.0004)* 0.120 (0.0001)* - 0.180 n.s. 0.568 (0.0001)* 0.077 n.s. 0.181 n.s. 

Australasia 0.034 n.s.. 0.025 n.s. 0.122 (0.0085)* - 0.565 (0.0002)* 0.114 n.s. 0.016 n.s. 

Antarctica 0.186 (0.0001)* 0.210 (0.0001)* 0.272 (0.0001)* 0.251 (0.0001)* - 0.549 (0.0002)* 0.498 (0.0047)* 

Africa 0.056 (0.0082)* 0.044 (0.0334)* 0.107 (0.0031)* 0.066 (0.0466) 0.256 (0.0001)* - 0.073 n.s. 

Sub-Antarctic 0.096 (0.0007)* 0.088 (0.0046)* 0.156 (0.0015)* 0.077 (0.0468) 0.298 (0.0001)* 0.127 (0.0025)* - 

n.s. indicates that the test is not significant (P>0.05) 500 

* indicates that the test remains significant after the correction of Benjamini and Yekutieli (2001) for multiple 501 

tests at the p<0.05 significance level 502 
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Appendix 1 Accessions used in this study. For each sample the following information is given: Identification number, Bryum 

argenteum haplotype based on nrITS sequences, or species used as outgroup; geographic origin; herbarium where it is retained or 

publication source if published previously; collection data for the samples sequenced for this study; geographic coordinates for the 

ingroup samples; GenBank accession numbers for ITS1 and ITS2 separately, or for the whole ITS region in the case the number is 

given in the middle of ITS1 and ITS2 columns; and the geographic region from the seven regions considered.  

Id 
no. 

Haplotype id or 
outgroup species 

Geographic origin Herbarium or 
literature 

reference if 
  

Collection Coordinates 
in decimal 

degrees 

GenBank Accession N. Geographic 
region ITS 

ITS1 ITS2  
1 1 Antarctica, Beaufort Island  

 
Hills et al. (2010) - S 76.91667  GU907063 Antarctica 

E 166.90000 
2 1 Antarctica, Beaufort Island Hills et al. (2010) - S 76.91667  GU907064 Antarctica 

E 166.90000 
3 1 Antarctica, Canada Glacier, Taylor Valley, 

S. Victoria Land 
Skotnicki et al. 
(2005) 

- S 77.58333  AY611432 Antarctica 
E 163.25000 

4 1 Antarctica, Cape Hallet Hills et al. (2010) - S 72.30000  GU907066 Antarctica 
E 170.30000 

5 1 Antarctica, Cape Hallet Hills et al. (2010) - S 72.30000  GU907067 Antarctica 
E 170.30000 

6 1 Antarctica, Edmonson Point, N. Victoria 
Land 

Skotnicki et al. 
(2005) 

- S 74.33333  AY611430 Antarctica 
E 164.50000 

7 1 Antarctica, Granite Harbour Hills et al. (2010) - S 77.00000  GU907065 Antarctica 
E 162.50000 

8 1 Antarctica, Granite Harbour, S. Victoria 
Land 

Skotnicki et al. 
(2005) 

- S 77.00000  AY611434 Antarctica 
E 162.50000 

9 1 Antarctica, Marble Point Hills et al. (2010) - S 76.43333  GU907069 Antarctica 
E 163.83333 

10 1 Canada, Northwest Territories, District 
of Fanklin, Ellesmere Island 

NY 69323 G.W. Scotter 45657 N 79.71667  KF952783 KF952892 America 
W 85.83333 

11 1 Norway, Svalbard archipelago, 
Spitsbergen 

MUB 44625 M. Stech & J.D. 
Kruijer 08-088 

N 78,91667  KF952782 KF952891 Europe 
E 11,93333 

12 1 Sri Lanka (Ceylon), Central province, 
Nuwara Eliya District 

E 00416780 C.C. Townsend 
73/1779 

N 6.95694  KF952781 KF952890 Asia 
E 80.10889 

13 2 Spain, Canary Islands, La Gomera MUB 44654 J.M. González-
Mancebo et al. s.n.  

N 28.10737  KF952785 KF952894 Africa 
W 17.23866 

14 2 Spain, Canary Islands, La Palma MUB 44653 J.M. González-
Mancebo & J. Leal 

N 28.67562  KF952784 KF952893 Africa 
W 47.11100 

15 2 Spain, Granada province, Albuñol Pisa et al. (2013) - N 36.80025  KC493867 KC493893 Europe 
W 3.21738 

16 2 USA, California, Mariposa County, 
Yosemite National Park 

CAS 1083159 J.R. Shevock 29944 N 37.51889  KF952787 KF952896 America 
W 119.60000 

17 2 USA, California, Tulare County, Sierra 
Nevada 

CAS 1039823 J.R. Shevock 20946 N 36.06111  KF952786 KF952895 America 
W 118.59306 

18 3 Greece, Prefecture of  Ilia, Ráhes MUB 12158 M.J. Cano, J. Muñoz, 
R.M. Ros & M. 

   

N 38.90861  KF952794 KF952903 Europe 
E 22.83500 

19 3 Ireland, E. County Mayo Herb. D.T. Holyoak D.T. Holyoak 03-186 N 53.61889  KF952788 KF952897 Europe 
W 9.30639 

20 3 Morocco, High Atlas, Oukaimeden MUB 13090 R.M. Ros s.n.  N 31.21667  KF952793 KF952902 Africa 
W 7.86667 

21 3 Spain, Ávila province, Sierra de Gredos MUB 44652 R.M. Ros & O. 
Werner s.n.  

N 40.42231  KF952796 KF952905 Europe 
W 5.29667 

22 3 Spain, Ávila province, Sierra de Gredos MUB 44653 R.M. Ros & O. 
Werner s.n.  

N 40.42231  KF952789 KF952898 Europe 
W 5.29667 

23 3 Spain, Ávila province, Sierra de Gredos MUB 44652 R.M. Ros & O. 
Werner s.n.  

N 40.42231  KF952795 KF952904 Europe 
W 5.29667 

24 3 Spain, Canary Islands, Tenerife MUB 44656 J. Patiño s.n. N 28,35770 KF952797 KF952906 Africa 
W  0,72512 

25 3 Spain, León province, Abelgas MUB 44660 S. Pisa s.n. N 42.89139  KF952790 KF952899 Europe 
W 5.97389 

26 3 Spain, Murcia province, Campus de 
Espinardo 

MUB 44663 R. M. Ros s.n. N 8.02056  KF952791 KF952900 Europe 
W 1.16944 

27 3 Spain, Murcia province, Sierra de las 
Herrerías 

MUB 44664 R.M. Ros & O. 
Werner s.n.  

N 37.58278   KF952792 KF952901 Europe 
W 1.42667 

28 4 France, Vosges Department, Vosges 
Mountains 

MUB 44641 R.M. Ros & O. 
Werner s.n.  

N 47.90478  KF952798 KF952907 Europe 
E 7.10286 

29 5 UK, Great Britain, N. Northumberland Herb. D. T. 
Holyoak 

D.T. Holyoak 08-670 N 52.96667  KF952799 KF952908 Europe 
E 0.55000 

30 6 Taiwan, Hwalien County, Ta-yu-ling E 00416777 C.-C. Chuang 5781 N 23.81667  KF952800 KF952909 Asia 
E 121.23333 

31 7 China, Taiwan, Nantou County, Central CAS 995161 J.R. Shevock 17888 N 24.12500  KF952801 KF952910 Asia 



Mountain Range E 121.21667 
32 8 Uganda, Western Region, Kabale Herb. D. T. 

Holyoak 
M.J. Wigginton 
U5011a 

N 1.08333  KF952802 KF952911 Africa 
E 29.80000 

33 9 Spain, Madrid province, Sierra de 
Guadarrama 

MUB 44668 S. Pisa s.n. N 40.59030  KF952803 KF952912 Europe 
W 3.98505 

34 10 Union of the Comoros, Grande Comore 
(Ngazidja) 

EGR R.E. Magill & T. Pócs 
10946 

N 11.61222  KF952804 KF952913 Africa 
E 43.33222 

35 11 Indonesia, Sumatra, Gunung Sinabung NY 1229461 L. Hoffmann 89-196 N 3.18139,  KF952805 KF952914 Asia 
E 98.44111 

36 12 Kenya, Nyandarua County, Aberdare 
Mts. 

EGR J. Spence s.n.  N 0.41083  KF952806 KF952915 Africa 
E 36.61667 

37 13 Bolivia, La Paz, Murillo NY 1229477 S. Churchill 22828 S 16.61667  KF952807 KF952916 America 
W 68.07528 

38 14 Chile, Antarctica Chilena province, Isla 
Navarino, Magallanes 

Herb. B. Goffinet B. Goffinet 6765 S 54.95000  KF952808 KF952917 America 
W 67.63333 

39 15 USA, California, Tulare County, Sierra 
Nevada 

CAS 989901 J.R. Shevock 17562 N 35.88889  KF952809 KF952918 America 
W 118.34583 

40 16 Australia, Canberra Hills et al. (2010) - S 35.30000  GU907059 Australasia 
E 149.13333 

41 17 Thailand, Khao Yai National Park NY 1229462 C. Charoenphol 4395 
with Larsen & 

 

N 14.53333  KF952810 KF952919 Asia 
E 101.36667 

42 18 Brazil, Bahia state, Municipality  of 
Abaíra, Campo de Ouro Fino 

NY 1229480 D.J.N. Hind H50910 
with R.F. Queiroz 

S 13.25000  KF952811 KF952920 America 
W 41.90000 

43 19 Dominican Republic, La Vega province, 
Alto de la Bandera Mountain 

NY 635898 W.C. Steere 23098 N 18.81667  KF952812 KF952921 America 
W 70.61667 

44 20 Russia, NW Caucasus MW V. Onipchenko 99/95 N 43.45000  KF952813 KF952922 Asia 
E 41.68333 

45 21 Boliva, Cochabamba, Carrasco NY 1229478 S. Churchill 22558 S 17.75000  KF952814 KF952923 America 
W 64.80000 

46 22 China, Yunnan province, Gonshan 
County 

E 00477214 D. G. Long 36064 N 27.68539  KF952815 KF952924 Asia 
E 98.30422 

47 23 Ecuador, Pichinga province NY 1229481 S.P. Churchill 13518 
with I. Sastre-De 

  

N 0.38333   KF952816 KF952925 America 
W 78.21667 

48 24 USA, California, Fresno County, Sierra 
Nevada 

CAS 989203  J.R. Shevock 13927 N37.16250  KF952817 KF952926 America 
W 119.09583 

49 25 Sweden, Värmland S B178200 L. Hedenäs & G. 
Odelvik s.n. 

N 59.78333  KF952818 KF952927 Europe 
E 14.36667 

50 26 Spain, Granada province, Sierra Nevada Pisa et al. (2013) - N 37.09725   KC493863 KC493889 Europe 
W 3.39753 

51 27 Spain, Granada province, Vélez de 
Benaudalla 

Pisa et al. (2013) - N 36.84465   KC493873 KC493899 Europe 
W 3.50905 

52 28 Spain, León province, Abelgas MUB 44661 S. Pisa s.n. N 42.89139   KF952819 KF952928 Europe 
W 5.97389 

53 29 Spain, Balearic Islands, Menorca MUB 44665 R.M. Ros & O. 
Werner s.n.  

N 39.89944   KF952820 KF952929 Europe 
E 4.10389 

54 30 Papua New Guinea, Chimbu province, 
Wilhelm Mountain 

NY 1229460 J.L. De Sloover 42892 S 5.75667   KF952821 KF952930 Australasia 
E 145.03556 

55 31 Denmark, Faroe Islands, Streymoy, 
Thorshavn 

S B185204 R. Fargerstén & M. 
Haapasaari s.n.  

N 62.01139  KF952834 KF952943 Europe 
W 6.75361 

56 31 France, Vaucluse Department, commune 
de Bonnieux, domaine de la Chambarelle 

MUB 1097 R.M. Ros s.n.  N 43.81389   KF952835 KF952944 Europe 
E 18.43333 

57 31 Germany, Baden-Württemberg, Black 
Forest 

MUB 44630 S. Pisa s.n. N 47.84417   KF952832 KF952941 Europe 
E 8.01917 

58 31 Germany, Baden-Württemberg, Black 
Forest 

MUB 44637 S. Pisa s.n. N 47.86444  KF952824 KF952933 Europe 
E 8.02194 

59 31 Germany, Baden-Württemberg, Black 
Forest 

MUB 44638 S. Pisa s.n. N 47.85972  KF952825 KF952934 Europe 
E 8.03639 

60 31 Germany, Baden-Württemberg, Black 
Forest 

MUB 44639 S. Pisa s.n. N 47.85972  KF952826 KF952935 Europe 
E 8.03639 

61 31 Germany, Baden-Württemberg, Black 
Forest 

MUB 44640 S. Pisa s.n. N 47.85972  KF952827 KF952936 Europe 
E 8.03639 

62 31 Germany, Baden-Württemberg, 
Eberbach 

MUB 44649 R.M. Ros & O. 
Werner s.n.  

N 49.46111  KF952830 KF952939 Europe 
E 8.98778 

63 31 Germany, Baden-Württemberg, 
Eberbach 

MUB 44650 R.M. Ros & O. 
Werner s.n.  

N 49.46111  KF952837 KF952946 Europe 
E 8.98778 

64 31 Germany, Baden-Württemberg, Sankt 
Leon-Rot 

MUB 44651 R.M. Ros & O. 
Werner s.n.  

N 49.24333  KF952831 KF952940 Europe 
E 8.65222 

65 31 Germany, Berlin MUB 44645 R.M. Ros & O. 
Werner s.n.  

N 52.44028  KF952828 KF952937 Europe 
E 13.58250 

66 31 Germany, Berlin MUB 44647 R.M. Ros & O. 
Werner s.n.  

N 52.51861  KF952829 KF952938 Europe 
E 13.39694 

67 31 Greece, Prefecture of Fokida, Delphi MUB 12010 M.J. Cano, J. Muñoz, 
R.M. Ros & M. 

   

N 38.48278  KF952836 KF952945 Europe 
E 22.50444 

68 31 Norway, Finnmark S B176550 L. Hedenäs s.n. N 70.78333  KF952822 KF952931 Europe 
E 23.33333 

69 31 Russia, Kuril Islands, Kunashir Island MHA  M.S. Ignatov 06-
1810 

N 44.35000  KF952833 KF952942 Asia 
E 146.26667 

70 31 Spain, Granada province, Sierra Nevada Pisa et al. (2013) - N 37.09725  KC493862 KC493888 Europe 
W 3.39753 

71 31 Spain, León province, Abelgas MUB 44659 S. Pisa s.n. N 42.89139  KF952823 KF952932 Europe 
W 5.97389 

72 32 Spain, León province, Abelgas MUB 44662 S. Pisa s.n. N 42.89139  KF952838 KF952947 Europe 
W 5.97389 

73 32 USA, Connecticut, Hartford County CONN D. Les s.n. N 41.85278  KF952839 KF952948 America 
W 72.51611 

74 33 Germany, Baden-Württemberg, 
Heidelberg 

MUB 44658 R.M. Ros & O. 
Werner s.n.  

N 49.41111  KF952841 KF952950 Europe 
E 8.70639 

75 33 Germany, Baden-Württemberg, 
Heidelberg 

MUB 44648 R.M. Ros & O. 
Werner s.n.  

N 49.41111  KF952840 KF952949 Europe 
E 8.70639 

76 34 Spain, Canary Islands, Tenerife MUB 44655 J.M. González-
Mancebo s.n.  

N 28,14167  KF952844 KF952953 Africa 
W 16,65361 

77 34 USA, California, Monterey County, Los CAS 1083051 J.R. Shevock 29347 N 36.09639  KF952845 KF952954 America 



Padres National Forest W 121.44167 
78 34 USA, California, Riverside Co,  San 

Bernardino National Forest 
CAS 1047424 J.R. Shevock 24084 N 33.77672  KF952843 KF952952 America 

W 116.67814 
79 34 USA, California, San Bernardino Co, San 

Bernardino National Forest 
CAS 1047515 J.R. Shevock 24099 N 34.22497   KF952842 KF952951 America 

W 117.06186 
80 35 Germany, Baden-Württemberg, Black 

Forest 
MUB 44628 S. Pisa s.n. N 47.84056  KF952847 KF952956 Europe 

E 8.01917 
81 35 Portugal, Beira Interior, Guarda MUB 44643 R.M. Ros s.n. N 40.53250   KF952848 KF952957 Europe 

W 7.26667 
82 35 Portugal, Beira Interior, Guarda MUB 44657 R.M. Ros s.n. N 40.53250  KF952846 KF952955 Europe 

W 7.26667 
83 36 China, Schuan Province, Muli Co CAS 1140938 J.R. Shevock 36226 N 28.16667  KF952849 KF952958 Asia 

E 101.22233 
84 36 Dominican Republic, Independencia 

province, Sierra de Baoruco 
NY 635904 S.A. Thompson 9237 N 18.30000  KF952851 KF952960 America 

W 71.70000 
85 36 Germany, Berlin MUB 44646 R.M. Ros & O. 

Werner s.n.  
N 52.51861  KF952852 KF952961 Europe 
E 13.39694 

86 36 Tanzania, Kilimanjaro EGR J. Elia 144 S 4.25722  KF952850 KF952959 Africa 
E 37.99028 

87 37 Russia, Yakutia MHA M.S. Ignatov 00-29 N 61.13333  KF952855 KF952964 Asia 
E 138.05000 

88 37 USA, New Mexico, Doña Ana County, Las 
Cruces 

NY 710573 R.M. King & R.G. 
Garvey B315 

N 32.31667  KF952853 KF952962 America 
W 106.75000 

89 37 USA, Utah, Dixie National Forest NY 53227 J.L. Pawek s.n. N 37.79667  KF952854 KF952963 America 
W 112.80722 

90 38 Germany, Baden-Württemberg, Black 
Forest 

MUB 44626 S. Pisa s.n. N 47.83333  KF952856 KF952965 Europe 
E 8.01667 

91 38 Germany, Baden-Württemberg, Black 
Forest 

MUB 44627 S. Pisa s.n. N 47.83333  KF952857 KF952966 Europe 
E 8.01667 

92 38 Germany, Baden-Württemberg, Black 
Forest 

MUB 44629 S. Pisa s.n. N 47.84417  KF952864 KF952973 Europe 
E 8.01917 

93 38 Germany, Baden-Württemberg, Black 
Forest 

MUB 44631 S. Pisa s.n. N 47.86444  KF952862 KF952971 Europe 
E 8.02194 

94 38 Germany, Baden-Württemberg, Black 
Forest 

MUB 44632 S. Pisa s.n. N 47.86444  KF952863 KF952972 Europe 
E 8.02194 

95 38 Germany, Baden-Württemberg, Black 
Forest 

MUB 44633 S. Pisa s.n. N 47.86444  KF952858 KF952967 Europe 
E 8.02194 

96 38 Germany, Baden-Württemberg, Black 
Forest 

MUB 44634 S. Pisa s.n. N 47.86444  KF952859 KF952968 Europe 
E 8.02194 

97 38 Germany, Baden-Württemberg, Black 
Forest 

MUB 44635 S. Pisa s.n. N 47.86444  KF952860 KF952969 Europe 
E 8.02194 

98 38 Germany, Baden-Württemberg, Black 
Forest 

MUB 44636 S. Pisa s.n. N 47.86444  KF952861 KF952970 Europe 
E 8.02194 

99 39 China, Qinghai province, Menyuan 
County  

E 00477222 D.G. Long 27295 N 37.11889  KF952865 KF952974 Asia 
E 102.31639 

100 39 China, Yunnan province, Degin County E 00477223 D.G. Long 23999 N 28.63333  KF952866 KF952975 Asia 
E 98.73278 

101 40 Germany, Berlin MUB 44644 R.M. Ros & O. 
Werner s.n.  

N 52.50833  KF952867 KF952976 Europe 
E 13.33444 

102 40 New Zealand, Huntley Hills et al. (2010) - S 37.56667  GU907062 Australasia 
E 175.15000 

103 41 Spain, Madrid province, Sierra de 
Guadarrama 

MUB 44666 S. Pisa s.n. N 40.83139  KF952868 KF952977 Europe 
W 3.95278 

104 41 Spain, Madrid province, Sierra de 
Guadarrama 

MUB 44667 S. Pisa s.n. N 40.83139  KF952869 KF952978 Europe 
W 3.95278 

105 42 USA, California, Inyo County, Mojave 
Desert 

CAS 1113251 J.R. Shevock 24458 N 35.85364  KF952870 KF952979 America 
W 117.38125 

106 42 USA, California, Kern County, Sierra 
Nevada 

CAS 957141 J.R. Shevock 14859 N 35.56250  KF952872 KF952981 America 
W 118.95417 

107 42 USA, California, Tulare County, Sierra 
Nevada 

CAS 993294 J.R. Shevock 13658 N 36.73750  KF952871 KF952980 America 
W 118.85833 

108 43 China, Quinghai Province, Yushu Tibetan 
Autonomous Prefecture 

NY 1229472 B.C. Tan 95-1733 N 33.00250  KF952873 KF952982 Asia 
E 97.27611 

109 43 China, Sichuan Province, Litang County, 
Hengduan Mountains 

CAS 1140922 J.R. Shevock 35853 N 30.17792  KF952875 KF952984 Asia 
E 100.00311 

110 43 China, Xizang province, SE Tibet Herb. D.T. Holyoak G. Miehe & U. 
Wündisch 94-164-30 

N 29.05000  KF952874 KF952983 Asia 
E 93.98333 

111 44 Australia, Mount Buffalo Hills et al. (2010) - S 36.78333  GU907057 Australasia 
E 146.05000 

112 44 New Zealand, Christchurch Hills et al. (2010) - S 43.08333  GU907056 Australasia 
E 172.11667 

113 45 Australia, Mount McKay Hills et al. (2010) - S 36.86667  GU907061 Australasia 
E 147.25000 

114 46 New Zealand, Hamilton Hills et al. (2010) - S 35.88333  GU907060 Australasia 
E 175.46667 

115 47 Spain, Granada province, Sierra Nevada Pisa et al. (2013) - N 37.06943  KC493852 Europe 
W 3.38662 

116 48 Antarctica, Cape Hallet Hills et al. (2010) - S 72.30000  GU907068 Antarctica 
E 170.30000 

117 49 Antarctica, Cape Bird Hills et al. (2010) - S 77.21667  GU907070 Antarctica 
E 166.43333 

118 49 Antarctica, Cape Royds, Ross Island Skotnicki et al. 
(2005) 

- S 77.58333  AY611433 Antarctica 
E 166.16667 

119 49 Antarctica, Garwood Valley Hills et al. (2010) - S 78.05000  GU907072 Antarctica 
E 164.16667 

120 49 Antarctica, Miers Valley Hills et al. (2010) - S 78.08333  GU907071 Antarctica 
E 164.75000 

121 49 South Shetland Islands, King George 
Island 

AAS 1750 R. Ochyra s.n. S 62.18000  KJ409559 KJ409572 Antarctica 
W 58.58000 

122 50 Beaufort Island, Ross Sea Skotnicki et al. 
(2005) 

- S 76.91667  AY611431 Antarctica 
E 166.90000 

123 51 Canada, Northwest Territories, District NY 69322 G.W. Scotter 45680 N 79.48333  KF952878 KF952987 America 



of Fanklin, Ellesmere Island W 85.26667 
124 51 USA, Alaska, Pribilof Islands, St. Paul 

Island 
NY 321062 W.B. Schofield 

108239 
N 57.15000  KF952876 KF952985 America 

W 170.25000 
125 51 USA, Alaska, Valdez-Cordova Census 

Area 
MUB 44624 F. Lara, R. Garilleti & 

B. Albertos s.n.  
N 61.12583  KF952877 KF952986 America 

W 146.35111 
126 52 Antarctica, Cape Chocolate, S. Victoria 

Land 
Skotnicki et al. 
(2005) 

- S 77.95000  AY611429 Antarctica 
E 164.50000 

127 53 South Africa, Cape province, Vredenburg MUB 5343 J.M. Egea s.n.  S 32.76667  KF952879 KF952988 Africa 
E 18.00000 

128 54 South  Africa, KwaZulu-Natal province, 
Vryheid 

EGR J. van Rooy 55 S 27.76667  KF952880 KF952989 Africa 
E 30.78333 

129 55 France,  Department Hautes Pyrénées  Herb. D. T. 
Holyoak 

D.T. Holyoak 01-553 N 42.73333  KF952881 KF952990 Europe 
W 0.05000 

130 56 France, Vosges Department, Vosges 
Mountains 

MUB 44642 R.M. Ros & O. 
Werner s.n.  

N 47.90478  KF952882 KF952991 Europe 
E 7.10286 

131 57 China, Sichuan Province, Jiulong County, 
Hengduan Mountains 

CAS 1141190 J.R. Shevock 36078 N 29.22078  KF952883 KF952992 Asia 
E 101.45050 

132 58 China, Qinghai province, Gonghe County  E 00477221 D.G. Long 26787 N 36.97722  KF952885 KF952994 Asia 
E 99.90056 

133 58 Colombia, Nariño Department , 
Municipality of Cumbal  

NY 1229483 B.R. Ramirez P. 6489 N 0.95250  KF952884 KF952993 America 
W 77.81944 

134 59 Nepal, Taplejung District E 00477231 D.G. Long 21500 N 27.43333  KF952886 KF952995 Asia 
E 87.46667 

135 60 Russia, Siberia, Taimyr MHA  V.E. Fedosov 08-162 N 71.88083  KF952887 KF952996 Asia 
E 110.78806 

136 61 Altai Republic MHA  M.S. Ignatov 0/111 N 50.50000  KF952888 KF952997 Asia 
E 89.16667 

137 62 Canada, Northwest Territories, District 
of Fanklin, Axel Heiberg Island 

NY 69321 G.W. Scotter 45482 N 80.03333  KF952889 KF952998 America 
W 88.75000 

138 63 French Southern and Antarctic Lands, 
Crozet Islands 

Hills et al. (2010) - S 46.45000  GU907058 sub-Antarctic 
islands E 52.000 

139 64 French Southern and Antarctic Lands, 
Crozet Islands, Possession Island 

AAS  B.G. Bell 1687 S 46.42000  KJ409558 KJ409571 sub-Antarctic 
islands E 51.83000 

140 65 Antarctica, Antarctic Peninsula, 
Cockburn Island 

AAS  R.I. Lewis Smith 7922 S 64.20000  KJ409560 KJ409573 Antarctica 
W  56.85000 

141 65 Antarctica, Antarctic Peninsula, Jenny 
Island 

AAS  R.I. Lewis Smith 4713 S 67.73000  KJ409561 KJ409574 Antarctica 
W 68.38000 

142 66 Antarctica, Ross Sector, Victoria Land AAS  R.I. Lewis Smith 
11794 

S 74.33000  KJ409562 KJ409575 Antarctica 
E  165.13000 

143 67 British Overseas Territories, South 
Sandwich Islands, Candlemas Island 

AAS  P. Convey 202B S 57.07000  KJ409563 KJ409576 Antarctica 
W  26.70000 

144 68 Antarctica, Antarctic Peninsula, Danco 
Coast 

AAS  R.I. Lewis Smith 4176 S 64.68000  KJ409564 KJ409577 Antarctica 
W  62.63000 

145 68 Antarctica, Antarctic Peninsula, Danco 
Coast, Cuverville Island 

AAS  R. Weinstein 8812 S 64.68000  
 

KJ409567 KJ409580 Antarctica 
W  62.63000 

146 69 British Overseas Territories, Falkland 
Islands 

AAS  R.I. Lewis Smith 5437 S 51.70000  KJ409565 KJ409578 America 
W  57.85000 

147 70 South Africa, Prince Edward Islands, 
Marion Island 

AAS 235 B.J. Huntley s.n. S 46.87000  KJ409566 KJ409579 sub-Antarctic 
islands E  37.85000 

148 71 South Africa, Prince Edward Islands  ACHE 296 

 

N.J.M. Gremmen s.n. S 46.92000  KJ409569 KJ409582 sub-Antarctic 
islands E  37.75000 

 
149 72 British Overseas Territories, South 

Sandwich Islands, Candlemas Island 

 

AAS  

 

P. Convey 207A S 57.07000  KJ409568 KJ409581 Antarctica 
W 26.70000 

 
150 73 South Shetland Islands, Deception Island AAS  D. Mason 40 S 62.9500  KJ409570 - Antarctica 

W 60.55000 
151 74 British Overseas Territories, South 

Georgia Island 
AAS  R.I. Lewis Smith 8397 S 54.10000  - KJ409583 sub-Antarctic 

islands 
 

W 36.72000 
152 75 British Overseas Territories, South 

Georgia Island 
AAS  R.I. Lewis Smith 3102 S 54.00000  - KJ409584 sub-Antarctic 

islands W 37.13000 
153 76 French Southern and Antarctic Lands, 

Kerguelen island 
AAS  B.G. Bell 3192B S 49.35000  - KJ409585 sub-Antarctic 

islands E 70.20000 
154 77 French Southern and Antarctic Lands, 

Amsterdam Island 
AAS  B.G. Bell 3217 S 37.92000  - KJ409586 sub-Antarctic 

islands E 77.67000 
155 Bryum apiculatum 

Schwägr. 

 

China, Yunnan province Wang and Zhao 
(2009) 

- - EU878213 
 
 

- 

156 Bryum funkii Mitt. China, Hunan province Wang and Zhao 
(2009) 

- - EU878209 - 

157 Bryum recurvulum 
Schwärg 

China, Hebei province Wang and Zhao 
(2009) 

- - EU878217 - 

158 Bryum 
yuennanense Broth. 

China, Yunnan province Wang and Zhao 
(2009) 

- - EU878211 - 
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Appendix 2  ITS alignment (Fasta file) of the 77 haplotypes of Bryum argenteum obtained from 154 

accessions sampled worldwide and four outgroup sequences from closely related species. To allow 

replication of results, the random seed numbers for each of 4 runs for the coalescent under a stepwise 

extended Bayesian skyline model analyses used in this study are provided below: 

1) 1389718433023 

2) 1389718537624 

3) 1389718538076 

4) 1389718522438 

 


	msBa_R1-JP pc
	Ochyra R, Smith RIL, Bednarek-Ochyra H (2008) The illustrated moss flora of Antarctica. Cambridge University Press, Cambridge.

	Fig 1 14 Feb
	Seite1

	Fig 2
	Appendix 1
	app2

