1	The cosmopolitan moss Bryum argenteum in Antarctica:
2	recent colonisation or in situ survival?
3	S. Pisa ^{1, 8} *, E. M. Biersma ^{2, 3} *, P. Convey ^{2, 4} , J. Patiño ^{5, 6, 7} , A. Vanderpoorten ^{5, 7} , O. Werner ¹ and
4	R. M. Ros ¹
5	¹ Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, Campus
6	de Espinardo 30100 Murcia, Spain
7	² British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road,
8	Cambridge CB3 0ET, United Kingdom
9	³ Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA,
10	United Kingdom
11	⁴ Gateway Antarctica, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
12	⁵ Institute of Botany, University of Liège, 4000, Liège, Belgium
13	⁶ Department of Plant Biology, La Laguna University, Tenerife, Spain
14	⁷ Azorean Biodiversity Group (CITA-A) and Platform for Enhancing Ecological Research &
15	Sustainability (PEERS), Universidade dos Açores, Dep. Ciências Agrárias, Terceira, Portugal
16	⁸ Author for correspondence (e-mail: sergiopisa@um.es; phone: +34 868 884989; fax: +34 868
17	883963)

18 * contributed equally to this paper

19	Abstract	Since the onset of glaciation following the Oligocene (30–28 Ma), the prevalence of
20	increasingly cold	conditions has shaped the evolution of the Antarctic biota. Two hypotheses, post-
21	glacial recruitme	nt from extra-regional locations and <i>in situ</i> persistence, have been proposed to explain
22	the biogeography	v of the contemporary species-poor terrestrial Antarctic biota. Bryophytes, which form
23	a major group of	the Antarctic flora, exhibit a strong, inherent ability to survive cold conditions but
24	also have high lo	ng-distance dispersal capacities, which are compatible with both hypotheses. Here, we
25	test these hypoth	eses by means of population genetic and phylogeographic analyses of the
26	cosmopolitan mo	oss Bryum argenteum. We find evidence for at least three independent colonisation
27	events of the spe	cies in Antarctica. Ancestral area reconstruction coupled with molecular dating
28	suggest colonisat	tion times of the different Antarctic clades ranging from four million years for the
29	oldest lineage to	half a million years for the youngest lineage. This suggests multiple colonisation
30	events of Antarc	tica by this species during several glacial cycles within the Pleistocene, Pliocene and
31	possibly late Mic	ocene. This is the first study to demonstrate in situ persistence of bryophytes in
32	Antarctica throug	ghout previous glaciations.
33		
34	Keywords	glacial refugia, dispersal, bryophytes, Antarctica, molecular dating, phylogeography

25	-	
<u> ጎ</u> ጎ	Introd	luction
55	IIIU Vu	ucuon

36

37 The prevalence of increasingly cold conditions has shaped the evolution of the Antarctic biota since its 38 separation from the other Southern Hemisphere continents during the final stages of the breakup of the 39 supercontinent Gondwana (Convey and Stevens 2007; Convey et al. 2009; Fraser et al. 2012). Climate 40 cooling was accompanied by a decrease in diversity of the angiosperm-dominated vegetation that 41 inhabited the Antarctic Peninsula and parts of the continent during the Eocene. A mosaic of southern 42 beech and conifer-dominated woodlands and tundra, comparable to that in parts of southern South 43 America (Patagonia) today, characterised the region throughout the Oligocene (approximately 34–23 44 Ma). By the middle Miocene (approximately 16–11.6 Ma), localized pockets of tundra persisted until 45 at least 12.8 Ma (Anderson et al. 2011). The transition to cold-based, alpine glacial regimes 46 characterized by perennially dry and frozen conditions from 13.85 Ma has not subsequently been 47 reversed (Lewis et al. 2008). Since the late Miocene, the Antarctic ice sheets have repeatedly thickened 48 and advanced beyond their current limits onto the continental shelf. Ice sheets are believed to have 49 overrun most currently ice-free areas during glaciations in the Pliocene (5-2.6 Ma) and the Pleistocene 50 (2.6 Ma-10 ka), including the Last Glacial Maximum (LGM; around 22-17 ka) (Convey et al. 2009, 51 and references therein; Mackintosh et al. 2013). The terrestrial biota remaining in Antarctica today is 52 depauperate in terms of species diversity, and is often cryptic, the major groups of organisms 53 represented including micro-invertebrates, cryptogams and microbial groups (Convey 2013). 54 Two main hypotheses have been proposed to explain how the contemporary terrestrial Antarctic 55 biota endured the glacial events of the Pleistocene (Convey and Stevens 2007; Convey et al. 2008). The 56 first, and long-held but generally untested, view is that the large majority of the Antarctic terrestrial 57 biota was eradicated from both the Antarctic continent and the associated offshore islands and 58 archipelagos of the Scotia Arc (including sub-Antarctic South Georgia). The considerably expanded 59 and thickened ice sheets would have caused a complete loss of terrestrial exposures and habitats during 60 the LGM, as is consistent with current glaciological model reconstructions. As a consequence most or 61 all current Antarctic terrestrial biota would have had to (re-)colonise the continent after the LGM, 62 either from disjunct populations or from refugia..However, while the long-distance dispersal (LDD) 63 capacity of bryophytes would potentially have facilitated (re)colonisation on such a timescale, the 64 ability to disperse over long distances is apparently more limited for many other groups of Antarctic

65 organisms. An additional weakness of the hypothesis is that many elements of the contemporary 66 Antarctic biota show high levels of endemism (Øvstedal and Lewis Smith 2001; Pugh and Convey 67 2008), which could not have arisen after the LGM. The persistence of such an endemic biota would 68 require refugia beyond the current confines of Antarctica (for instance in the more distant sub-Antarctic 69 islands or the other Southern Hemisphere continents), which would have been situated beyond the 70 current distributions of many species. Therefore, this hypothesis would imply multiple colonisation 71 events out of Antarctica when refugia were required, and subsequent extinction from them once 72 Antarctica was recolonised. The alternative hypothesis is that species have survived in situ, in multiple 73 refugia that must have been present in different regions across Antarctica. This hypothesis has received 74 increasingly strong support in recent years from both molecular and classic biogeographical studies, as 75 well as from geological and geomorphological evidence demonstrating the diachrony of ice-sheet 76 expansions around Antarctica, and refining both the thickness and timing of previous episodes of 77 maximum ice sheet extent (Convey et al. 2008, 2009; Pugh and Convey 2008; Vyverman et al. 2010; 78 Fraser et al. 2012).

79 Bryophytes (mosses and liverworts) are the dominant land plant flora in Antarctica, reaching their 80 greatest diversity and extent in the Antarctic Peninsula and Scotia Arc (Ochyra et al. 2008; Convey 81 2013). As a group, they are generally regarded as possessing strong LDD capacities, supported by both 82 direct (Lönnel et al. 2012; Sundberg 2013; van Zanten 1978, 1981) and indirect (see Szövényi et al. 83 2012 for review) evidence. These characteristics would, in principle, equip them well for recolonisation 84 of Antarctica following any episode of regional extinction. Elsewhere, recent evidence points to the 85 major role of oceanic islands as glacial refugia for the subsequent (re-)colonisation of continents 86 (Laenen et al. 2011, Hutsemékers et al. 2011). However, the geographic scale of Antarctic isolation 87 from other landmasses, along with protection from direct north-south transfer by atmospheric and 88 ocean currents, give the continent considerable geographic isolation (Barnes et al. 2006). Alternatively, 89 a feature common among most bryophytes is their ability to grow at low (sub-optimal) temperatures. 90 More than half of the 40 temperate species investigated by Furness and Grime (1982) showed a growth 91 reduction of less than 50% at 5°C compared to growth at their optimal temperature, and this feature has 92 also been described in Arctic and Antarctic bryophytes (Longton 1988). Indeed, many species, 93 including some from the tropics, seem to be physiologically pre-adapted to cold and can survive 94 temperatures ranging from -10 to -27°C (Glime 2007). Recently, La Farge et al. (2013) have provided

95 evidence for totipotent capacity (the ability of a cell to dedifferentiate into a meristematic state, and 96 subsequently regrow) in Arctic bryophyte tissue buried by ice for 400 years, and Roads et al. (2014) 97 have reported regrowth from gametophytes in moss banks preserved in permafrost for over 1.5 Ka. 98 Furthermore, population genetic data for the temperate moss Homalothecium sericeum (Hedw.) 99 Schimp. support persistence of the species in micro-refugia within the extensively glaciated northern 100 Europe during the LGM (Désamoré et al. 2012). These examples suggest that bryophytes may be 101 viable candidates to have survived Antarctic glacial cycles in situ. 102 Using the cosmopolitan moss Bryum argenteum Hedw. as a model, Hills et al. (2010) interpreted 103 the lower genetic diversity observed in Antarctic vs non-Antarctic samples as a consequence of a lower 104 rate of DNA substitution and isolation in refugia within Victoria Land since the Pleistocene. However, 105 in the absence of 1) evidence for heterogeneity of DNA substitution rate among lineages, 2) an explicit 106 time frame, 3) representative sampling across the entire range of the species, and 4) explicit analyses of 107 population genetic structure, the hypothesis of survival in extra-Antarctic areas with subsequent (re-) 108 colonisation cannot be excluded. 109 Here, we present a reconstruction of the phylogeography of *B. argenteum* at the global scale, and 110 use molecular dating techniques to determine whether its presence in Antarctica is the result of recent 111 (re-)colonisation from Pleistocene refugia outside Antarctica (H1), or whether it survived the 112 Ouaternary and Tertiary glaciations in situ (H2). If H1 holds true, we would expect Antarctic 113 populations to be of recent, post-glacial origin, and therefore to show relatively little genetic 114 differentiation from populations from other regions. Under that hypothesis, colonisation events might 115 occur more frequently than under a scenario of long-term *in situ* persistence. Therefore, we would also 116 expect under H1 a high gene flow from populations outside Antarctica, which could lead to a decrease 117 in the signature of any founder effect. Conversely, if H2 holds true, we would predict that extant 118 Antarctic populations derive from ancestors distributed on this continent before the LGM. We would 119 further expect, provided that gene flow with the sub-Antarctic islands and other Southern Hemisphere 120 areas has been limited, Antarctic populations to be genetically isolated from other regions and exhibit a 121 clear phylogeographic signal (sensu Pons and Petit 1996).

122

123 Materials and Methods

125 Specimen sampling and molecular protocols

127 Bryum argenteum is a cosmopolitan, weedy moss species that thrives in disturbed environments. Its 128 natural occurrence in Antarctica is indicated by its presence in the earliest botanical records for the 129 continent and its widespread distribution within the regions where it occurs (Ochyra et al. 2008; 130 Cannone et al. 2013). A total of 154 accessions of B. argenteum were sampled from Africa, America, 131 Asia, Antarctica, the sub-Antarctic islands, Australasia and Europe. From these accessions, 28 samples 132 were taken from previously published papers (Hills et al. 2010; Pisa et al. 2013; Skotnicki et al. 2005) 133 available in GenBank. The remaining samples were sequenced for this study, and included 47 134 specimens collected by the authors and colleagues (all retained at the herbarium of the Universidad de 135 Murcia) and 70 specimens held at the institutional herbaria of the British Antarctic Survey, California 136 Academy of Sciences, Eszterházy Károly College, Institute of Terrestrial Ecology, Main Botanical 137 Garden of the Russian Academy of Sciences, Moscow State University, New York Botanical Garden, 138 Royal Botanic Garden Edinburgh, Swedish Museum of Natural History, University of Connecticut, and 139 the private herbaria of D.T. Holyoak and B. Goffinet. Four of the closely related species to B. 140 argenteum (Wang and Zhao 2009) were selected as outgroup species (Appendix 1). The geographic 141 location of the accessions is detailed in Fig. 1. 142 Total genomic DNA was extracted following the protocol described in Werner et al. (2002), or 143 using the DNeasy Plant Mini Kit (Qiagen GmbH, Hilden, Germany). PCR amplification and 144 sequencing of the nuclear internal transcribed spacer (ITS) region were performed using the protocol 145 described in Pisa et al. (2013). Most of the amplifications were carried out using universal primers 146 AB101 and AB102 (Douzery et al. 1999), with some nucleotide modifications to adapt these primers to 147 B. argenteum. In some cases, sequences were generated using universal primers ITS-A and ITS-B as 148 described in Blattner (1999), employing a similar PCR step as in Pisa et al. (2013), with exceptions 149 being the use of the Taq PCR Core Kit (Qiagen GmbH, Hilden, Germany) and an annealing 150 temperature of 50°C. Forward and reverse sequence fragments for both ITS1 and ITS2 were edited and 151 assembled using Bioedit 7.05 (Hall 1999) and every polymorphism was checked from the 152 chromatograms. The sequences were aligned by eye, adding gaps where necessary to conserve 153 homology between sequences (Appendix 2). Gaps were counted with SeqState (Müller 2005) using

154 complex indel-coding. The number of polymorphic sites was calculated with DnaSP (Librado and 155 Rozas 2009). 156 ITS remains the most widely used source of information on genetic variation at the species level in 157 plants and fungi (reviewed by Nagy et al. 2012), although its use in phylogenetics has been questioned 158 due to the potential presence of paralogs and pseudogenes (see Nieto Feliner and Rosselló 2007 for 159 review). In mosses in particular, evidence for ITS paralogy was recently reported (Košnar et al. 2012). 160 We consider that the use of ITS in *B. argenteum* was justified in the current study as no conflicting 161 base calls during direct sequencing were observed, suggesting that the presence of intragenomic 162 paralogous copies is unlikely. 163 164 Population genetic analyses 165 166 The sequences were grouped into haplotypes using DnaSP. For each of the seven geographic regions 167 defined above, we calculated haploid diversity (h), unbiased haploid diversity by population (uh) and 168 frequency of endemic haplotypes (x) using GENALEX 6.5 (Peakall and Smouse 2006) and Tajima's D 169 using Arlequin 3.5 (Excoffier et al. 2005). Genetic differentiation among geographic regions and 170 presence of phylogeographic signal in the data were assessed by means of comparative analyses 171 employing fixation index (F_{ST}) and N_{ST} . N_{ST} is a measure of genetic differentiation among populations; 172 it is analogous to F_{ST} but takes the genetic distances among genotypes (here, the pairwise distance 173 among them) into account (Pons and Petit 1996). When $N_{ST} > F_{ST}$, it means that mutation rates are 174 higher than dispersal rates between geographical regions, generating a phylogeographic pattern. The 175 significance of F_{ST} and N_{ST} were tested by constructing the distribution of the null hypothesis by means 176 of 9,999 random permutations of individuals among geographic regions, as implemented by Spagedi 177 1.3 (Hardy and Vekemans 2002). The existence of a phylogeographic signal was tested by assessing 178 the significance of the observed difference between $N_{\rm ST}$ and $F_{\rm ST}$ values by means of 9,999 random 179 permutations of the allele distance matrix. Global F and N statistics among the seven geographic

180 regions were computed, as well as pairwise statistics among regions. The correction of Benjamini and

181 Yekutieli (2001) for multiple tests was applied to determine the significance of the pairwise statistics.

182

183 Phylogeny, molecular dating, and ancestral area reconstructions

184

185 The phylogeny and divergence time among ITS genotypes within *B. argenteum* were investigated 186 using BEAST v1.7.5 (Drummond et al. 2012). In the absence of fossil evidence, a prior on the absolute 187 rate of molecular evolution was used, following the procedure described in Huttunen et al. (2008) and 188 Aigoin et al. (2009). In the absence of a substitution rate for ITS in bryophytes, we used a normal 189 distribution with a mean and standard deviation of 4.125e⁻³ and 1.807e⁻³ substitutions per site per 190 million years, respectively, which corresponds to the average absolute substitution rates of ITS across a 191 wide range of annual herbaceous species (Kay et al. 2006). However, we consider that this rate is 192 likely to overestimate substitution rates in mosses, which are longer-lived and rely for a large part on 193 asexual reproduction. This is particularly the case in *B. argenteum*, which is thought to be sterile in 194 Antarctica (Ochyra et al. 2008). On average, the substitution rate of 18S rDNA, the neighbouring 195 region of ITS, in mosses is suggested to be less than half that of vascular plants (Stenøien 2008). It is 196 likely that the substitution rate used here may therefore be an overestimate of the true rate for this 197 species, and therefore that divergence times derived from this substitution rate may be significantly 198 underestimated. 199 The Hasegawa, Kishino and Yano (HKY) model with gamma distribution and invariant sites had 200 the best Bayesian information criterion (BIC) score for the ITS dataset using jModeltest 2.1.4 (Darriba 201 et al. 2012). A relaxed clock with lognormal distribution was employed for the analysis. Before 202 running the final dating analysis, the performance of five tree models (i.e. coalescent with constant size 203 population, coalescent under an extended Bayesian skyline including the two linear and stepwise 204 models, speciation under a birth-death process and speciation under Yule process) were compared by 205 using a model selection procedure based on Bayes factors calculated in TRACER v1.5 (Rambaut and 206 Drummond 2009). Overall, the model using the coalescent under a stepwise extended Bayesian skyline 207 model (Heled and Drummond 2008) performed best (data not shown). Four independent Markov chain 208 Monte Carlo (MCMC) analyses were each run for 100,000,000 generations for every model. Parameter 209 values were sampled every 10,000 generations and convergence and acceptable mixing of the samples 210 were checked using the program TRACER v1.5. After discarding the burn-in steps (2,000 trees), the 211 runs were combined to obtain an estimate of the posterior probability distributions of the dates of 212 divergence.

To estimate ancestral areas, we used the maximum likelihood dispersal-extinction-cladogenesis (DEC) method (Ree et al. 2005; Ree and Smith 2008a) as implemented in the software Lagrange build 20091004 (Ree and Smith 2008b) on the BEAST chronogram. Each genotype was assigned to one or more of the seven geographic regions defined above. We conducted the analysis in Lagrange based on an unconstrained model permitting an equal probability of dispersal between all areas at any time.

- 218
- 219 Results
- 220

The complete alignment had a total length of 928 bp after the exclusion of the 5.8S rRNA gene. No

further region was excluded from the alignment. There were 328 sites with gaps, corresponding to 106

indels and 111 polymorphic sites. The alignment excluding outgroup sequences had a total length of

224 844 bp. There were 173 sites with gaps, corresponding to 78 indels and 81 polymorphic sites, allowing

for the identification of 77 haplotypes (Appendix 1). Haploid diversity unbiased by population size was

lowest in Antarctica (uh=0.62) as compared to other regions (0.79 - 0.94) (Table 1). The frequency of

227 endemic haplotypes exhibited the reverse trend, reaching its highest value (x=0.90) in Antarctica. None

228 of Tajima's D statistics differed significantly from 0.

There was a significant difference in genotype frequency among geographic regions (Global

230 $F_{ST}=0.146, P<0.0001$). The global N_{ST} (0.267, P<0.0001) was significantly higher than F_{ST} (P<0.0001)

providing evidence that, on average, the genotypes from the same region were more closely related

than the genotypes from different regions. This geographic structure was largely due to the significant

233 genetic isolation of Antarctica. The phylogeographic signal between Antarctica and any of the other six

regions was consistently significant, whereas a significant phylogeographic signal could not be

detected among any other pairs of regions (Table 2).

Accessions from Antarctica belonged to three clades (Fig. 2). Clade I was mainly composed of

Antarctic genotypes, with the exception of one European genotype and one common genotype shared

238 between Antarctica, Europe, Asia and America. Clade II was composed of Antarctic, Sub-Antarctic,

American and Austalasian genotypes. Clade III was composed of Antarctic and American genotypes.

240 The Lagrange analysis indicated that the most recent common ancestor of clade I, which may have

been distributed across Asia, Europe, and America, colonised Antarctica 4.36 Ma (Highest Posterior

242 Density, HPD, 1.79-14.72). In clades II and III, the earliest colonisation of Antarctica dates back to

1.43 Ma (HPD 0.42-4.97) and 0.55 Ma (HPD 0.13-1.97), respectively, from an ancestor most closely
related to American populations. Potential dispersal events from Antarctica to other regions are not
excluded as genotypes in clade II located in Australasia and the sub-Antarctic islands come from
ancestors distributed across Antarctica and America.

247

248 Discussion

249

250 Evidence for at least three distinct origins of B. argenteum in Antarctica was found, with colonisation 251 times ranging between approximately 4.4 Ma (clade I), 1.4 Ma (clade II), and 0.6 Ma (clade III). 252 However, as mentioned above, the substitution rate of Kay et al. (2006) is based on studies of annual 253 herbaceous species, and is likely to be much higher than in mosses. A study on relative substitution 254 rates amongst major plant groups showed that, on average, the substitution rate of 18s rDNA, the 255 neighbouring region of ITS, is more than twice as high in vascular plants compared to mosses 256 (Stenøien 2008). This suggests that the presence of B. argenteum in Antarctica may be considerably 257 more ancient than estimated here. The current study therefore provides the first support for the long-258 term persistence in situ of a bryophyte species in Antarctica, with time-scales in the order of millions of 259 years. No evidence supporting strict post-Pleistocene (i.e. recent) colonisation (H1) was found in any 260 of the lineages. Our results, however, do not exclude potential dispersal events from Antarctica to other 261 regions and future studies with a larger sample size and obtained from more locations may identify 262 evidence for recent colonisation events. 263 In agreement with our finding of long-term persistence of B. argenteum in Antarctica, a significant

264 phylogeographical signal was found in all pairwise comparisons between Antarctica and each of the six 265 other global regions, while no such signal was identified amongst the latter. This indicates that extant 266 patterns of genetic diversity of Antarctic B. argenteum populations are better explained in terms of in 267 situ diversification than recruitment of migrants from other areas, resulting in the highest proportion of 268 endemic haplotypes as compared to other regions of the world. Such an interpretation is consistent with 269 recent developments in biogeographical knowledge of much of the contemporary terrestrial biota in 270 Antarctica. Evidence for long-term history *in situ* has been reported in all major groups except the 271 bryophytes, with timescales ranging from mid-Pleistocene (e.g. diatoms, rotifers, cladocerans) to 272 Pliocene, Miocene and Gondwana-breakup (e.g. springtails, chironomid midges, mites, copepods,

273 microorganisms) (see Convey et al. 2008, 2009, and references therein; Vyverman et al. 2010). 274 McGaughran et al. (2010), in a comparative phylogeographic study of different springrail (Collembola) 275 species in Victoria Land and along the Scotia Arc and Antarctic Peninsula, identified analogous 276 evidence of intraregional differentiation and hence colonisation patterns on timescales dating back to at 277 least the earliest Pleistocene. 278 How and where bryophytes and other terrestrial biota could have survived through glaciation events 279 within Antarctica is not yet well understood. The lowest ITS haplotypic diversity within B. argenteum 280 worldwide was observed in Antarctica, as in the cosmopolitan moss Ceratodon purpureus Hedw. 281 (Brid.) (Clarke et al. 2008, 2009). Although the hypothesis of lower mutation rates in Antarctic B. 282 argenteum populations cannot be ruled out (Hills et al. 2010), such a low regional genetic diversity can 283 also be interpreted in terms of the sterile condition of *B. argenteum* in Antarctica (Ochyra et al. 2008), 284 either due to the regional absence of one of the sexes in this dioicous species, and/or inhibition of sex 285 expression due to prevailing cold and dry conditions (Longton 1988). Yet, analyses of patterns of 286 genetic diversity in Antarctic populations of *B. argenteum* failed to evidence a significant bottleneck. 287 This observation does not support the hypothesis of a substantial past decrease in population size and 288 points to the persistence of sufficiently large and numerous populations of the species through time. In 289 Antarctica, areas of heated ground associated with geothermal activity, where B. argenteum is known 290 to occur (Convey et al. 2000), may be particularly relevant in considering the locations of some 291 potential refuge sites (Convey and Smith 2006, Fraser et al. 2014). Although individually ephemeral, 292 the presence of geothermal habitats may have extended over considerable time periods, as volcanism 293 has been widespread throughout the Tertiary in parts of the northern Antarctic Peninsula and elsewhere 294 in Antarctica (Baker et al. 1975, Convey et al. 2000; Convey and Smith 2006; Fraser et al. 2014). 295 Therefore, geothermal habitats might have played a key role in the longer-term regional persistence of 296 species with rapid colonisation capacities such as bryophytes, allowing survival through periods of 297 apparently greater environmental extremes than are currently experienced (Convey and Smith 2006). 298 299 Conclusion 300 301 This study demonstrates for the first time *in situ* persistence of bryophytes in Antarctica throughout

302 previous glacial cycles and contradicts the hypothesis of post-glacial recruitment from extra-regional

303	locationsAlthough B. argenteum, like other moss species, exhibits the lowest levels of genetic
304	diversity worldwide in Antarctica, ITS variation is substantial within and among Antarctic populations,
305	making it a highly suitable model for investigating fine-scale patterns of genetic structure and diversity
306	at continental scale in order to reconstruct its biogeographic history. In particular, detailed
307	phylogeographic information at the Antarctic scale would allow for testing Fraser's et al. (2014)
308	hypothesis that refugia indeed correspond to areas of high geothermal activity and contribute, together
309	with information from other terrestrial organisms (Terauds et al. 2012), to enhancing the identification
310	of bioregions that are not fully represented in the current Antarctic Specially Protected Area network.
311	
312	Acknowledgments
313	
314	The authors thank the curators of the herbaria AAS, ACHE, CAS, CONN, E, EGR, MHA, MW, NY,
315	S, and also the private herbaria of D.T. Holyoak and B. Goffinet for the loan of material and to B.
316	Albertos, R. Garilleti, B. Goffinet, J. M. González-Mancebo, F. Lara and M. Stech for collecting
317	material used in this work. We also thank Oliva Martin-Sanchez for producing Fig. 1. This study has
318	been supported financially by the Spanish Ministry of Science and Innovation (Projects CGL2008-
319	00275/BOS and CGL2011-22936/BOS) and by the European Regional Development Funds. E. M.
320	Biersma is supported by a Natural Environment Research Council PhD studentship (ref
321	NE/K50094X/1), and P. Convey by Natural Environment Research Council core funding to the British
322	Antarctic Society programme 'Environmental Change and Evolution'. This paper also contributes to
323	the Scientific Commity on Antarctic Research 'State of the Antarctic Ecosystem' programme. J. Patiño
324	and A. Vanderpoorten gratefully acknowledge financial support from the Belgian Funds for Scientific
325	Research and the University of Liege. We thank three reviewers for helpful comments.
326	
327	References
328	
329	Aigoin DA, Devos N, Huttunen S, Ignatov MS, González-Mancebo JM, Vanderpoorten A (2009) And
330	if Engler was not completely wrong? Evidence for multiple evolutionary origins in the moss
331	flora of Macaronesia. Evolution 63:3248–3257

- Anderson JB, Warnyb S, Askinc RA, Wellnerd JS, Bohatye SM, Kirshnera AE, Livseyf DN, Simmsf
- AR, Smitha TR, Ehrmanng W, Lawverh LA, Barbeaui D, Wisej SW, Kulhenekj DK, Weavera
- FM, Majewskik W (2011) Progressive Cenozoic cooling and the demise of Antarctica's last
 refugium. Proc Natl Acad Sci USA 108:11356-11360.
- Baker PE, McReath I, Harvey MR, Roobol MJ, Davies TG (1975) The geology of the South Shetland
 Islands: V. Volcanic evolution of Deception Island. Br Antarct Surv, Sci Rep 78:1-8.
- Barnes DKA, Hodgson DA, Convey P, Allen C, Clarke A (2006) Incursion and excursion of Antarctic
 biota: past, present and future. Global Ecol Biogeogr 15:121-142.
- Benjamini Y, Yekutieli D (2001) The control of false discovery rate under dependency. Ann Stat
 29:1165–1188.
- Blattner FR (1999) Direct amplification of the entire ITS region from poorly preserved plant material
 using recombinant PCR. BioTech 27:1180-1185.
- 344 Cannone N, Convey P, Guglielmin M (2013) Diversity trends of bryophytes in continental Antarctica.
 345 Polar Biol 36:259-271.
- Clarke LJ, Ayre DJ, Robinson SA (2008) Somatic mutation and the Antarctic ozone hole. J Ecol
 96:378-385.
- Clarke LJ, Ayre DJ, Robinson SA (2009) Genetic structure of East Antarctic populations of the moss
 Ceratodon purpureus. Antarct Sci 21:51-58.
- Convey P (2013) Antarctic Ecosystems. In: Levin SA (ed) Encyclopedia of Biodiversity Vol. 1, 2nd
 edn. Elsevier, San Diego, pp. 179-188.
- Convey P, Smith RIL (2006) Geothermal bryophyte habitats in the South Sandwich Islands, maritime
 Antarctic. J Veg Sci 17:529-538.
- Convey P, Stevens MI (2007) Antarctic Biodiversity. Science 317:1877-1878.
- Convey P, Smith RIL, Hodgson DA, Peat HJ (2000) The flora of the South Sandwich Islands, with
 particular reference to the influence of geothermal heating. J Biogeog 27:1279-1295.
- Convey P, Gibson J, Hillenbrand C-D, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008)
- 358 Antarctic terrestrial life challenging the history of the frozen continent? Biol Rev 83:103-
- 359 117.

Convey P, Stevens MI, Hodgson DA, Smellie JL, Hillenbrand C-D, Barnes DKA, Clarke A, Pugh PJA,
 Linse K, Cary SC (2009) Exploring biological constraints on the glacial history of Antarctica.

14

- 362 Quaternary Sci Rev 28:3035-3048.
- 363 Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and
 364 parallel computing. Nat Methods 9:772.
- Désamoré A, Laenen B, Stech M, Papp B, Hedenäs L, Mateo RG, Vanderpoorten A. (2012) How do
 temperate bryophytes face the challenge of a changing environment? Lessons from the past
 and predictions for the future. Global Change Biol 18:2915–2924.
- 368 Douzery EJP, Pridgeon AM, Kores P, Linder HP, Kurzweil H & Chase MW (1999) Molecular
 369 phylogenetics of Diseae (Orchidaceae): a contribution from nuclear ribosomal ITS sequences.
 370 Am J Bot 86:887-899.
- 371 Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the
 372 BEAST 1.7. Mol Biol Evol 29:1969-1973.
- Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): An integrated software package for
 population genetics data analysis. Evol Bioinform Online 1: 47-50.
- Fraser CI, Nikula R, Ruzzante DE, Waters JM (2012) Poleward bound: biological impacts of Southern
 Hemisphere glaciation. Trends Ecol <u>Evol 27:462-471</u>.
- 377 Fraser CI, Terauds A, Smellie J, Convey P, Chown SL (2014) Geothermal activity helps life survive
- ice ages. Proc Natl Acad Sci USA 111:5634-5639.
- Furness SB, Grime JP (1982) Growth rate and temperature responses in bryophytes II. A comparative
 study of species of contrasted ecology. J Ecol 70:525-536.
- 381 Glime JM (2007) *Bryophyte Ecology*. Volume 1. Physiological Ecology. Ebook sponsored by
- 382 Michigan Technological University and the International Association of Bryologists.
- 383 http://www.bryoecol.mtu.edu/ . Accessed 6 February 2014.
- Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for
- Windows 95/98/NT. Nucleic Acids Symp Ser 41:95-98.
- Hardy OJ, Vekemans X (2002) SPAGeDI: a versatile computer program to analyse spatial genetic
- 387 structure at the individual or population levels. Mol Ecol Notes 2:618-620.
- 388 Heled J, Drummond A (2008) Bayesian inference of population size history from multiple loci. BMC

389 Evol Biol 8:289.

390 Hills SFK, Stevens MI, Gemmill CEC (2010) Molecular support for Pleistocene persistence of the 391 continental Antarctic moss Bryum argenteum. Antarct Sci 22:721-726. 392 Hutsemékers V, Szövényi P, Shaw AJ, González-Mancebo JM, Muñoz J. Vanderpoorten A (2011) 393 Oceanic islands are not sinks of biodiversity in spore-producing plants. Proc Natl Acad Sci 394 USA 108:18989-18994. 395 Huttunen S, Hedenäs L, Ignatov MS, Devos N, Vanderpoorten A (2008) Origin and evolution of the 396 northern hemisphere disjunction in the moss genus Homalothecium (Brachytheciaceae). Am J 397 Bot 95:720-730. 398 Kay KM, Whittall JB, Hodges SA (2006) A survey of nuclear ribosomal internal transcribed spacer 399 substitution rates across angiosperms: an approximate molecular clock with life history 400 effects. BMC Evol Biol 6:36. 401 Košnar J, Herbstová M, Kolář F, Koutecký P, Kučera J (2012) A case study of intragenomic ITS 402 variation in bryophytes: Assessment of gene flow and role of polyploidy in the origin of 403 European taxa of the Tortula muralis (Musci: Pottiaceae) complex. Taxon 61:709-720. 404 Laenen B, Désamoré A, Devos N, Shaw AJ, González-Mancebo JM, Carine MA, Vanderpoorten A 405 (2011) Macaronesia: A source of hidden genetic diversity for post-glacial recolonisation of 406 western Europe in the leafy liverwort Radula lindenbergiana. J Biogeogr 38:631-639. 407 La Farge C, Krista H, Williams KH, England JH (2013) Regeneration of Little Ice Age bryophytes 408 emerging from a polar glacier with implications of totipotency in extreme environments. Proc 409 Natl Acad Sci USA doi:10.1073/pnas.1304199110. 410 Lewis AR, Marchant DR, Ashworth AC, Hedenäs L, Hemming SR, Johnson JV, Lengh MJ, Machlus 411 ML, Newton AE, Raine JJ, Willenbring JK, Williams M, Wolfe AP (2008) Mid-Miocene 412 cooling and the extinction of tundra in continental Antarctica. Proc Natl Acad Sci USA 105: 413 10676-10678. 414 Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism 415 data. Bioinformatics 25:1451-1452. 416 Longton R-E (1988) The Biology of Polar Bryophytes and Lichens. Cambridge University Press, 417 Cambridge. 418 Lönnel N, Hylander K, Jonsson BG, Sundberg S (2012) The fate of the missing spores - Patterns of 419 realized dispersal beyond the closest vicinity of a sporulating moss. Plos One 7:e41987.

420 Mackintosh AN, Verleyen E., O'Brien PE, White DA, Jones RS, McKay R, Dunbar R., Gore DB, Fink 421 D, Post A.L, Miura H, Leventer A, Goodwin I, Hodgson DA, Lilly K, Crosta X, Golledge NR, 422 Wagner B, Berg S, van Ommen T, Zwartz D, Roberts SJ, Vyverman W, Masse G (2013) 423 Retreat history of the East Antarctic Ice Sheet since the Last Glacial Maximum. Quat Sc Rev. 424 doi: 10.1016/j.quascirev.2013.07.024 425 McGaughran A, Toricelli G, Carapelli A, Frati F, Stevens MI, Convey P, Hogg ID (2010) Contrasting 426 phylogeographic patterns for springtails reflect different evolutionary histories between the 427 Antarctic Peninsula and continental Antarctica. J Biogeog 37:103-119. 428 Müller K (2005) SeqState. Primer design and sequence statistics for phylogenetic DNA datasets. Appl 429 Bioinform 4:65-69. 430 Nagy LG, Kocsubé S, Csanádi Z, Kovács GM, Petkovits T, Vágvölgyi C, Papp T (2012) Re-mind the 431 gap! Insertion - deletion data reveal neglected phylogenetic potential of the nuclear ribosomal 432 internal transcribed spacer (ITS) of Fungi. PloS One 11:e49794. 433 Nieto Feliner G, Rosselló JA (2007) Better the devil you know? Guidelines for insightful utilization of 434 nrDNA ITS in species-level evolutionary studies in plants. Mol Phylogenet Evol 44:911-919. 435 Ochyra R, Smith RIL, Bednarek-Ochyra H (2008) The illustrated moss flora of Antarctica. Cambridge 436 University Press, Cambridge. 437 Øvstedal DO, Smith RIL (2001) Lichens of Antarctica and South Georgia. A guide to their 438 identification and ecology. Cambridge University Press, Cambridge. 439 Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for 440 teaching and research. Mol Ecol Notes 6:288-295. 441 Pisa S, Werner O, Vanderpoorten A, Magdy M, Ros RM (2013) Elevational patterns of genetic 442 variation in the cosmopolitan moss Bryum argenteum (Bryaceae). Am J Bot 100:2000-2008. 443 Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered 444 alleles. Genetics 144:1237-1245. 445 Pugh PJA, Convey P (2008) Surviving out in the cold: Antarctic endemic invertebrates and their 446 refugia. J Biogeogr 35:2176-2186. 447 Rambaut A, Drummond AJ (2009) Tracer. Version 1.5. Molecular evolution, phylogenetics and 448 epidemiology Web. http://tree.bio.ed.ac.uk/software/tracer/. Accessed 10 December 2013.

449 Ree RH, Smith SA (2008a) Maximum likelihood inference of geographic range evolution by dispersal, 450 local extinction, and cladogenesis. Syst Biol 57:4-14.

17

- 451 Ree RH, Smith SA (2008b) Lagrange: likelihood analysis of geographic range evolution. Version 2.0. 452 http://code.google.com/p/lagrange/. Accessed 11 December 2013.
- 453 Ree RH, Moore BR, Webb CO, Donoghue MJ (2005) A likelihood framework for inferring the
- 454 evolution of geographic range on phylogenetic trees. Evolution 59:2299-2311.
- 455 Roads E, Longton RE, Convey P (2014). Millenial timescale regeneration in a moss from Antarctica. 456 Curr Biol 24:R222
- 457 Skotnicki ML, Mackenzie AM, Clements MA, Selkirk PM (2005) DNA sequencing and genetic
- 458 diversity of the 18S-26S nuclear ribosomal internal transcribed spacers (ITS) in nine 459 Antarctic moss species. Antarct Sci 17:377-384.
- 460 Stenøien HK (2008) Slow molecular evolution in 18S rDNA, rbcL and nad5 genes of mosses compared 461 with higher plants. J Evolution Biol 21:566–571.
- 462 Sundberg S (2013) Spore rain in relation to regional sources and beyond. Ecography 36:364-373.
- 463 Szövényi P, Sundberg S, Shaw AJ (2012) Long-distance dispersal and genetic structure of natural
- 464 populations: an assessment of the inverse isolation hypothesis in peat mosses. Mol Ecol 465 21:5461-5472.
- 466 Terauds A, Chown SL, Morgan F, Peat HJ, Watts DJ, Keys H, Convey P, Bergstrom DM (2012) 467 Conservation biogeography of the Antarctic. Divers Distrib 18: 726–741.
- 468 van Zanten BO (1978) Experimental studies on trans-oceanic long-range dispersal of moss spores in 469 the Southern Hemisphere. J Hattori Bot Lab 44:455-482.
- 470 van Zanten BO, Pócs T (1981) Distribution and dispersal of bryophytes. Adv Bryol 1:479-562.
- 471 Vyverman W, Verleyen E, Wilmotte A, Hodgson DA, Willems A, Peeters K, Van de Vijver B, de
- 472 Wever A, Leliaert F, Sabbe K (2010) Evidence for widespread endemism among Antarctic 473 micro-organisms. Polar Sc 4:103-113.
- 474 Wang C-Y, Zhao J-C (2009) Phylogeny of Ptychostomum (Bryaceae, Musci) inferred from sequences 475 of nuclear ribosomal DNA internal transcribed spacer (ITS) and chloroplast rps4. J Syst Evol

476 47:311-320.

- 477 Werner O, Ros RM, Guerra J (2002) Direct amplification and NaOH extraction: two rapid and simple
- 478 methods for preparing bryophyte DNA for polymerase chain reaction (PCR). J Bryol 24:127-
- 479 131.
- 480

481 Figure captions

482 **Fig. 1** Geographic locations of *Bryum argenteum* and outgroup accessions used.

483 Fig. 2 Spatial and temporal dimensions of *Bryum argenteum* evolution. Chronogram of the fifty per 484 cent majority-rule consensus of the trees sampled from the posterior probability distribution generated 485 by the BEAST analysis of ITS sequences of the B. argenteum genotypes sampled worldwide. The 486 maximum likelihood reconstruction of geographical range evolution under the unconstrained 487 dispersal-extinction-cladogenesis (DEC) model (ln L=214.9) implemented in Lagrange is given in 488 boxes at each node of interest. The geographical areas defined for this study and each haplotype are 489 provided. The two series of reconstructions at each internal node indicate the ML ancestral range 490 estimate for the upper and lower branch connecting that node, respectively. Boxes at terminal nodes 491 indicate the geographic areas occupied by the accessions belonging to each haplotype. The vertical 492 bars (I, II, and III) indicate the clades with Antarctic genotypes. Thicker branches indicate the support

493 for the Antarctic clades (PP > 0.9). * indicates the support for clades with PP > 0.9.

494 **Table 1** Sample size (N), number of genotypes (Na), haploid diversity (h), haploid diversity unbiased by

495 population (uh), frequency of endemic haplotypes (x) and Tajima's D (D) in seven geographic regions of the

Continental area	Ν	Na	h	uh	X	D
Asia	20	17	0.89	0.94	0.71	-0.89 (0.19)
America	27	19	0.87	0.91	0.63	- 1.27 (0.09)
Europe	56	22	0.77	0.79	0.68	-0.86 (0.21)
Australasia	7	6	0.80	0.93	0.83	0.35 (0.65)
Antarctica	25	10	0.59	0.62	0.90	-0.93 (0.28)
Africa	11	9	0.80	0.88	0.56	0.20 (0.61)
sub-Antarctic islands	8	6	0.75	0.93	0.83	0.08 (0.36)

496 worldwide distributed moss *Bryum argenteum* based on the nuclear ITS *locus*

- 497 **Table 2** Pairwise F_{ST} values (below diagonal) and N_{ST} values (above diagonal) among seven geographic
- 498 regions of the worldwide distributed moss Bryum argenteum based on the nuclear ITS locus. The P-values (in
- 499 brackets) are associated to the null hypotheses that $F_{ST}=0$ and that $F_{ST}=N_{ST}$ respectively

Continental

area	Asia	America	Europe	Australasia	Antarctica	Africa	sub-Antarctic
Asia	-	0.012 ^{n.s.}	0.157 ^{n.s.}	0.124 (0.0358)	0.383 (0.0003)*	0.060 ^{n.s.}	0.100 ^{n.s.}
America	0.033 (0.0159)*	-	0.135 ^{n.s.}	0.049 ^{n.s.}	0.479 (0.0001)*	0.027 ^{n.s.}	0.062 ^{n.s.}
Europe	0.105 (0.0004)*	0.120 (0.0001)*	-	0.180 ^{n.s.}	0.568 (0.0001)*	0.077 ^{n.s.}	0.181 ^{n.s.}
Australasia	0.034 ^{n.s.} .	0.025 ^{n.s.}	0.122 (0.0085)*	-	0.565 (0.0002)*	0.114 ^{n.s.}	0.016 ^{n.s.}
Antarctica	0.186 (0.0001)*	0.210 (0.0001)*	0.272 (0.0001)*	0.251 (0.0001)*	-	0.549 (0.0002)*	0.498 (0.0047)*
Africa	0.056 (0.0082)*	0.044 (0.0334)*	0.107 (0.0031)*	0.066 (0.0466)	0.256 (0.0001)*	-	0.073 ^{n.s.}
Sub-Antarctic	0.096 (0.0007)*	0.088 (0.0046)*	0.156 (0.0015)*	0.077 (0.0468)	0.298 (0.0001)*	0.127 (0.0025)*	-

500 ^{n.s.} indicates that the test is not significant (P>0.05)

501 * indicates that the test remains significant after the correction of Benjamini and Yekutieli (2001) for multiple

502 tests at the p<0.05 significance level

20.0 Ma 15.0 Ma 5.0 Ma 0.0 Ma 10.0 Ma

Article title: The cosmopolitan moss Bryum argenteum in Antarctica: recent colonisation or in situ survival?

Journal name: Polar Biology

Author names: S. Pisa^{*} E. M. Biersma, P. Convey, J. Patiño, A. Vanderpoorten, O. Werner and R. M. Ros affiliation and e-mail address of the corresponding author :University of Murcia, sergiopisa@um.es

Appendix 1 Accessions used in this study. For each sample the following information is given: Identification number, *Bryum argenteum* haplotype based on nrITS sequences, or species used as outgroup; geographic origin; herbarium where it is retained or publication source if published previously; collection data for the samples sequenced for this study; geographic coordinates for the ingroup samples; GenBank accession numbers for ITS1 and ITS2 separately, or for the whole ITS region in the case the number is given in the middle of ITS1 and ITS2 columns; and the geographic region from the seven regions considered.

Id	Haplotype id or	Geographic origin	Herbarium or	Collection	Coordinates	GenBank Accession N.		Geographic
no.	outgroup species		literature		in decimal	ITS		region
1	1	Automatica, Descriptional	reference if		degrees	ITS1	ITS2	A
1	1	Antarctica, Beautort Island	Hills et al. (2010)	=	S 76.91667 E 166.90000	GU90	17063	Antarctica
2	1	Antarctica, Beaufort Island	Hills et al. (2010)	-	S 76.91667 E 166.90000	GU90	07064	Antarctica
3	1	Antarctica, Canada Glacier, Taylor Valley, S. Victoria Land	Skotnicki <i>et al.</i> (2005)	-	S 77.58333 E 163.25000	AY61	1432	Antarctica
4	1	Antarctica, Cape Hallet	Hills et al. (2010)	-	S 72.30000 E 170.30000	GU90	07066	Antarctica
5	1	Antarctica, Cape Hallet	Hills et al. (2010)	-	S 72.30000 E 170.30000	GU90	07067	Antarctica
6	1	Antarctica, Edmonson Point, N. Victoria Land	Skotnicki <i>et al.</i> (2005)	-	S 74.33333 E 164.50000	AY61	1430	Antarctica
7	1	Antarctica, Granite Harbour	Hills et al. (2010)	-	S 77.00000 E 162.50000	GU90	07065	Antarctica
8	1	Antarctica, Granite Harbour, S. Victoria Land	Skotnicki <i>et al.</i> (2005)	-	S 77.00000 E 162.50000	AY61	1434	Antarctica
9	1	Antarctica, Marble Point	Hills et al. (2010)	-	S 76.43333 E 163.83333	GU90	07069	Antarctica
10	1	Canada, Northwest Territories, District of Fanklin, Ellesmere Island	NY 69323	G.W. Scotter 45657	N 79.71667 W 85.83333	KF952783	KF952892	America
11	1	Norway, Svalbard archipelago, Spitsbergen	MUB 44625	M. Stech & J.D. Kruijer 08-088	N 78,91667 E 11,93333	KF952782	KF952891	Europe
12	1	Sri Lanka (Ceylon), Central province, Nuwara Eliya District	E 00416780	C.C. Townsend 73/1779	N 6.95694 E 80.10889	KF952781	KF952890	Asia
13	2	Spain, Canary Islands, La Gomera	MUB 44654	J.M. González- Mancebo et al. s.n.	N 28.10737 W 17.23866	KF952785	KF952894	Africa
14	2	Spain, Canary Islands, La Palma	MUB 44653	J.M. González- Mancebo & J. Leal	N 28.67562 W 47.11100	KF952784	KF952893	Africa
15	2	Spain, Granada province, Albuñol	Pisa <i>et al.</i> (2013)	-	N 36.80025 W 3.21738	KC493867	KC493893	Europe
16	2	USA, California, Mariposa County, Yosemite National Park	CAS 1083159	J.R. Shevock 29944	N 37.51889 W 119.60000	KF952787	KF952896	America
17	2	USA, California, Tulare County, Sierra Nevada	CAS 1039823	J.R. Shevock 20946	N 36.06111 W 118.59306	KF952786	KF952895	America
18	3	Greece, Prefecture of Ilia, Ráhes	MUB 12158	M.J. Cano, J. Muñoz, R.M. Ros & M.	N 38.90861 E 22.83500	KF952794	KF952903	Europe
19	3	Ireland, E. County Mayo	Herb. D.T. Holyoak	D.T. Holyoak 03-186	N 53.61889 W 9.30639	KF952788	KF952897	Europe
20	3	Morocco, High Atlas, Oukaimeden	MUB 13090	R.M. Ros s.n.	N 31.21667 W 7.86667	KF952793	KF952902	Africa
21	3	Spain, Ávila province, Sierra de Gredos	MUB 44652	R.M. Ros & O. Werner s.n.	N 40.42231 W 5.29667	KF952796	KF952905	Europe
22	3	Spain, Ávila province, Sierra de Gredos	MUB 44653	R.M. Ros & O. Werner s.n.	N 40.42231 W 5.29667	KF952789	KF952898	Europe
23	3	Spain, Ávila province, Sierra de Gredos	MUB 44652	R.M. Ros & O. Werner s.n.	N 40.42231 W 5.29667	KF952795	KF952904	Europe
24	3	Spain, Canary Islands, Tenerife	MUB 44656	J. Patiño s.n.	N 28,35770 W 0,72512	KF952797	KF952906	Africa
25	3	Spain, León province, Abelgas	MUB 44660	S. Pisa s.n.	N 42.89139 W 5.97389	KF952790	KF952899	Europe
26	3	Spain, Murcia province, Campus de Espinardo	MUB 44663	R. M. Ros s.n.	N 8.02056 W 1.16944	KF952791	KF952900	Europe
27	3	Spain, Murcia province, Sierra de las Herrerías	MUB 44664	R.M. Ros & O. Werner s.n.	N 37.58278 W 1.42667	KF952792	KF952901	Europe
28	4	France, Vosges Department, Vosges Mountains	MUB 44641	R.M. Ros & O. Werner s.n.	N 47.90478 E 7.10286	KF952798	KF952907	Europe
29	5	UK, Great Britain, N. Northumberland	Herb. D. T. Holyoak	D.T. Holyoak 08-670	N 52.96667 E 0.55000	KF952799	KF952908	Europe
30	6	Taiwan, Hwalien County, Ta-yu-ling	E 00416777	CC. Chuang 5781	N 23.81667 E 121.23333	KF952800	KF952909	Asia
31	7	China, Taiwan, Nantou County, Central	CAS 995161	J.R. Shevock 17888	N 24.12500	KF952801	KF952910	Asia

		Mountain Bange			F 121 21667			
32	8	Uganda, Western Region, Kabale	Herb. D. T.	M.J. Wigginton	N 1.08333	KF952802	KF952911	Africa
33	9	Spain Madrid province Sierra de	Holyoak MUB 44668	U5011a S Pisa s n	E 29.80000 N 40 59030	KE952803	KE952912	Furone
	5	Guadarrama	1100 44000	5. 1 150 5.11.	W 3.98505	11 332003	11 332312	Europe
34	10	Union of the Comoros, Grande Comore (Ngazidja)	EGR	R.E. Magill & T. Pócs 10946	N 11.61222 E 43.33222	KF952804	KF952913	Africa
35	11	Indonesia, Sumatra, Gunung Sinabung	NY 1229461	L. Hoffmann 89-196	N 3.18139, E 98.44111	KF952805	KF952914	Asia
36	12	Kenya, Nyandarua County, Aberdare	EGR	J. Spence s.n.	N 0.41083	KF952806	KF952915	Africa
37	13	Bolivia, La Paz, Murillo	NY 1229477	S. Churchill 22828	S 16.61667	KF952807	KF952916	America
38	14	Chile, Antarctica Chilena province, Isla	Herb. B. Goffinet	B. Goffinet 6765	\$ 54.95000	KF952808	KF952917	America
39	15	Navarino, Magallanes USA, California, Tulare County, Sierra	CAS 989901	J.R. Shevock 17562	W 67.63333 N 35.88889	KF952809	KF952918	America
40	16	Nevada Australia, Canberra	Hills et al. (2010)	-	W 118.34583 S 35.30000	GU90)7059	Australasia
41	17	Thailand, Khao Yai National Park	NY 1229462	C. Charoenphol 4395	E 149.13333 N 14.53333	KF952810	KF952919	Asia
42	18	Brazil, Bahia state, Municipality of	NY 1229480	with Larsen & D.J.N. Hind H50910	E 101.36667 S 13.25000	KF952811	KF952920	America
42	10	Abaíra, Campo de Ouro Fino	NV 625808	with R.F. Queiroz	W 41.90000	VE0E 2912	KE0E2021	Amorica
43	15	Alto de la Bandera Mountain	101 033838	W.C. Steere 25038	W 70.61667	KI 952812	KI 992921	America
44	20	Russia, NW Caucasus	MW	V. Onipchenko 99/95	N 43.45000 E 41.68333	KF952813	KF952922	Asia
45	21	Boliva, Cochabamba, Carrasco	NY 1229478	S. Churchill 22558	S 17.75000 W 64.80000	KF952814	KF952923	America
46	22	China, Yunnan province, Gonshan County	E 00477214	D. G. Long 36064	N 27.68539 E 98.30422	KF952815	KF952924	Asia
47	23	Ecuador, Pichinga province	NY 1229481	S.P. Churchill 13518	N 0.38333	KF952816	KF952925	America
48	24	USA, California, Fresno County, Sierra	CAS 989203	J.R. Shevock 13927	N37.16250	KF952817	KF952926	America
49	25	Sweden, Värmland	S B178200	L. Hedenäs & G.	N 59.78333	KF952818	KF952927	Europe
50	26	Spain, Granada province, Sierra Nevada	Pisa <i>et al.</i> (2013)	Odelvik s.n. -	E 14.36667 N 37.09725	KC493863	KC493889	Europe
51	27	Spain, Granada province, Vélez de	Pisa <i>et al.</i> (2013)	-	W 3.39753 N 36.84465	KC493873	KC493899	Europe
52	28	Benaudalla Spain, León province, Abelgas	MUB 44661	S. Pisa s.n.	W 3.50905 N 42.89139	KF952819	KF952928	Europe
E.2	20	Spain, Palearie Islands, Monorsa			W 5.97389	KE0E2820	KE052020	Europo
55	23		NV 4220460	Werner s.n.	E 4.10389	KF952620	KF952929	Europe
54	30	Vapua New Guinea, Chimbu province, Wilhelm Mountain	NY 1229460	J.L. De Sloover 42892	S 5.75667 E 145.03556	KF952821	KF952930	Australasia
55	31	Denmark, Faroe Islands, Streymoy, Thorshavn	S B185204	R. Fargerstén & M. Haapasaari s.n.	N 62.01139 W 6.75361	KF952834	KF952943	Europe
56	31	France, Vaucluse Department, commune	MUB 1097	R.M. Ros s.n.	N 43.81389 F 18 43333	KF952835	KF952944	Europe
57	31	Germany, Baden-Württemberg, Black	MUB 44630	S. Pisa s.n.	N 47.84417	KF952832	KF952941	Europe
58	31	Germany, Baden-Württemberg, Black	MUB 44637	S. Pisa s.n.	N 47.86444	KF952824	KF952933	Europe
59	31	Forest Germany, Baden-Württemberg, Black	MUB 44638	S. Pisa s.n.	E 8.02194 N 47.85972	KF952825	KF952934	Europe
60	31	Forest Germany, Baden-Württemberg, Black	MUB 44639	S. Pisa s.n.	E 8.03639 N 47.85972	KF952826	KF952935	Europe
61	31	Forest Germany, Baden-Württemberg, Black	MUB 44640	S. Pisa s.n.	E 8.03639 N 47.85972	KF952827	KF952936	Europe
62	31	Forest	MUB 44649	R M Ros & O	E 8.03639	KE952830	KE052030	Furope
02	51	Eberbach		Werner s.n.	E 8.98778	KI 552650	KI 552555	Europe
63	31	Germany, Baden-Wurttemberg, Eberbach	MUB 44650	R.M. Ros & O. Werner s.n.	N 49.46111 E 8.98778	KF952837	KF952946	Europe
64	31	Germany, Baden-Württemberg, Sankt Leon-Rot	MUB 44651	R.M. Ros & O. Werner s.n.	N 49.24333 E 8.65222	KF952831	KF952940	Europe
65	31	Germany, Berlin	MUB 44645	R.M. Ros & O. Werner s.n.	N 52.44028 E 13.58250	KF952828	KF952937	Europe
66	31	Germany, Berlin	MUB 44647	R.M. Ros & O. Werner s n	N 52.51861 F 13 39694	KF952829	KF952938	Europe
67	31	Greece, Prefecture of Fokida, Delphi	MUB 12010	M.J. Cano, J. Muñoz,	N 38.48278	KF952836	KF952945	Europe
68	31	Norway, Finnmark	S B176550	L. Hedenäs s.n.	N 70.78333	KF952822	KF952931	Europe
69	31	Russia, Kuril Islands, Kunashir Island	MHA	M.S. Ignatov 06-	E 23.33333 N 44.35000	KF952833	KF952942	Asia
70	31	Spain, Granada province, Sierra Nevada	Pisa <i>et al.</i> (2013)		E 146.26667 N 37.09725	KC493862	KC493888	Europe
71	31	Spain, León province, Abelgas	MUB 44659	S. Pisa s.n.	W 3.39753 N 42.89139	KF952823	KF952932	Europe
72	32	Spain, León province, Abelgas	MUB 44662	S. Pisa s.n.	W 5.97389 N 42.89139	KF952838	KF952947	Europe
73	32	USA, Connecticut, Hartford County	CONN	D. Les s.n.	W 5.97389 N 41.85278	KF952839	KF952948	America
74	33	Germany, Baden-Württemberg,	MUB 44658	R.M. Ros & O.	W 72.51611 N 49.41111	KF952841	KF952950	Europe
75	33	Heidelberg Germany, Baden-Württemberg	MUB 44648	Werner s.n. R.M. Ros & O	E 8.70639 N 49 41111	KF952840	KF952949	Europe
75	24	Heidelberg		Werner s.n.	E 8.70639			A finite
/b	34	spain, canary islands, Tenerife	IVIUB 44655	J.IVI. GONZAIEZ- Mancebo s.n.	W 16,65361	кг952844	кг952953	Atrica
77	34	USA, California, Monterey County, Los	CAS 1083051	J.R. Shevock 29347	N 36.09639	KF952845	KF952954	America

		Padres National Forest			W 121 44167			
78	34	USA, California, Riverside Co, San	CAS 1047424	J.R. Shevock 24084	N 33.77672	KF952843	KF952952	America
79	34	USA, California, San Bernardino Co, San	CAS 1047515	J.R. Shevock 24099	W 116.67814 N 34.22497	KF952842	KF952951	America
80	35	Bernardino National Forest Germany, Baden-Württemberg, Black	MUB 44628	S. Pisa s.n.	W 117.06186 N 47.84056	KF952847	KF952956	Europe
81	35	Forest Portugal, Beira Interior, Guarda	MUB 44643	R.M. Ros s.n.	E 8.01917 N 40.53250	KF952848	KF952957	Europe
82	35	Portugal Beira Interior Guarda	MUB 44657	R M Rossn	W 7.26667 N 40 53250	KF952846	KF952955	Furone
83	36	China Schuan Province Muli Co	CAS 11/0938	LB Shevock 36226	W 7.26667	KE9528/9	KE952958	Acia
03	30	Deministra Demuklis Indemendensis	NV C25004	5.1. Therease 0227	E 101.22233	KI 952049	KI 932938	Asia
84	36	province, Sierra de Baoruco	NY 635904	S.A. Thompson 9237	W 71.70000	KF952851	KF952960	America
85	36	Germany, Berlin	MUB 44646	R.M. Ros & O. Werner s.n.	N 52.51861 E 13.39694	KF952852	KF952961	Europe
86	36	Tanzania, Kilimanjaro	EGR	J. Elia 144	S 4.25722 E 37.99028	KF952850	KF952959	Africa
87	37	Russia, Yakutia	MHA	M.S. Ignatov 00-29	N 61.13333 E 138.05000	KF952855	KF952964	Asia
88	37	USA, New Mexico, Doña Ana County, Las	NY 710573	R.M. King & R.G. Garvey B315	N 32.31667	KF952853	KF952962	America
89	37	USA, Utah, Dixie National Forest	NY 53227	J.L. Pawek s.n.	N 37.79667	KF952854	KF952963	America
90	38	Germany, Baden-Württemberg, Black	MUB 44626	S. Pisa s.n.	N 47.83333	KF952856	KF952965	Europe
91	38	Forest Germany, Baden-Württemberg, Black	MUB 44627	S. Pisa s.n.	E 8.01667 N 47.83333	KF952857	KF952966	Europe
92	38	Forest Germany, Baden-Württemberg, Black	MUB 44629	S. Pisa s.n.	E 8.01667 N 47.84417	KF952864	KF952973	Europe
93	38	Forest Germany, Baden-Württemberg, Black	MUB 44631	S. Pisa s.n.	E 8.01917 N 47.86444	KF952862	KF952971	Europe
94	38	Forest Germany Baden-Württemberg Black	MUB 44632	S Pisa s n	E 8.02194 N 47 86444	KF952863	KF952972	Furone
95	38	Forest Germany, Baden-Württemberg, Black	MUB 44633	S Pisa s n	E 8.02194	KE952858	KE952967	Europe
06	28	Forest		C. Diag e m	E 8.02194	KF0F28F0	KF0F2068	Europe
90	38	Forest	WUB 44034	5. PISU 5.11.	E 8.02194	KF952859	KF952908	Europe
97	38	Germany, Baden-Württemberg, Black Forest	MUB 44635	S. Pisa s.n.	N 47.86444 E 8.02194	KF952860	KF952969	Europe
98	38	Germany, Baden-Württemberg, Black Forest	MUB 44636	S. Pisa s.n.	N 47.86444 E 8.02194	KF952861	KF952970	Europe
99	39	China, Qinghai province, Menyuan County	E 00477222	D.G. Long 27295	N 37.11889 E 102.31639	KF952865	KF952974	Asia
100	39	China, Yunnan province, Degin County	E 00477223	D.G. Long 23999	N 28.63333 F 98 73278	KF952866	KF952975	Asia
101	40	Germany, Berlin	MUB 44644	R.M. Ros & O.	N 52.50833	KF952867	KF952976	Europe
102	40	New Zealand, Huntley	Hills et al. (2010)	-	S 37.56667	GU90	07062	Australasia
103	41	Spain, Madrid province, Sierra de	MUB 44666	S. Pisa s.n.	N 40.83139	KF952868	KF952977	Europe
104	41	Guadarrama Spain, Madrid province, Sierra de	MUB 44667	S. Pisa s.n.	W 3.95278 N 40.83139	KF952869	KF952978	Europe
105	42	Guadarrama USA, California, Inyo County, Mojave	CAS 1113251	J.R. Shevock 24458	W 3.95278 N 35.85364	KF952870	KF952979	America
106	42	Desert USA, California, Kern County, Sierra	CAS 957141	J.R. Shevock 14859	W 117.38125 N 35.56250	KF952872	KF952981	America
107	42	Nevada	CAS 993294	I.B. Shevock 13658	W 118.95417	KE952871	KE952980	America
107	42	Nevada	NV 1220472	B.C. Tap 05 1722	W 118.85833	KF0F2872	KF0F2082	Anicica
108	43	Autonomous Prefecture	NY 1229472	B.C. 1011 95-1733	E 97.27611	KF952873	KF952982	ASId
109	43	China, Sichuan Province, Litang County, Hengduan Mountains	CAS 1140922	J.K. SNEVOCK 35853	N 30.1/792 E 100.00311	кн952875	кн952984	Asia
110	43	China, Xizang province, SE Tibet	Herb. D.T. Holyoak	G. Miehe & U. Wündisch 94-164-30	N 29.05000 E 93.98333	KF952874	KF952983	Asia
111	44	Australia, Mount Buffalo	Hills et al. (2010)	-	S 36.78333 E 146.05000	GU90	07057	Australasia
112	44	New Zealand, Christchurch	Hills et al. (2010)	-	S 43.08333 E 172.11667	GU90	07056	Australasia
113	45	Australia, Mount McKay	Hills et al. (2010)	-	S 36.86667 E 147 25000	GU90	07061	Australasia
114	46	New Zealand, Hamilton	Hills et al. (2010)	-	\$ 35.88333 F 175 AGG7	GU90	07060	Australasia
115	47	Spain, Granada province, Sierra Nevada	Pisa et al. (2013)	-	N 37.06943	KC49	3852	Europe
116	48	Antarctica, Cape Hallet	Hills et al. (2010)	-	vv 3.38662 S 72.30000	GU90	07068	Antarctica
117	49	Antarctica, Cape Bird	Hills et al. (2010)	-	E 1/0.30000 S 77.21667	GU90	07070	Antarctica
118	49	Antarctica, Cape Royds, Ross Island	Skotnicki <i>et al.</i>	-	E 166.43333 S 77.58333	AY61	1433	Antarctica
119	49	Antarctica, Garwood Vallev	(2005) Hills <i>et al.</i> (2010)	-	E 166.16667 S 78.05000	GU90)7072	Antarctica
120	49	Antarctica. Miers Valley	Hills et al. (2010)	-	E 164.16667	GIIQ	07071	Antarctica
121	10	South Shetland Islands, King Goorge	ΔΔ5 1750	R Ochyra s n	E 164.75000	KINUOEEO	K1/100572	Antarctica
122	50	Island	Skotniski at -1	oenyru s.n.	W 58.58000	505000 500-601	1421	Antoreti
122	50	Beautort Island, Koss Sea	(2005)	-	E 166.90000	AY61	.1431	Antarctica
123	51	Canada, Northwest Territories, District	NY 69322	G.W. Scotter 45680	N /9.48333	KF952878	KF952987	America

		of Fanklin, Ellesmere Island			W 85.26667			
124	51	USA, Alaska, Pribilof Islands, St. Paul Island	NY 321062	W.B. Schofield 108239	N 57.15000 W 170.25000	KF952876	KF952985	America
125	51	USA, Alaska, Valdez-Cordova Census Area	MUB 44624	F. Lara, R. Garilleti & B. Albertos s.n.	N 61.12583 W 146.35111	KF952877	KF952986	America
126	52	Antarctica, Cape Chocolate, S. Victoria Land	Skotnicki <i>et al.</i> (2005)	-	S 77.95000 E 164.50000	AY61	1429	Antarctica
127	53	South Africa, Cape province, Vredenburg	MUB 5343	J.M. Egea s.n.	S 32.76667 E 18.00000	KF952879	KF952988	Africa
128	54	South Africa, KwaZulu-Natal province, Vryheid	EGR	J. van Rooy 55	S 27.76667 E 30.78333	KF952880	KF952989	Africa
129	55	France, Department Hautes Pyrénées	Herb. D. T. Holyoak	D.T. Holyoak 01-553	N 42.73333 W 0.05000	KF952881	KF952990	Europe
130	56	France, Vosges Department, Vosges Mountains	MUB 44642	R.M. Ros & O. Werner s.n.	N 47.90478 E 7.10286	KF952882	KF952991	Europe
131	57	China, Sichuan Province, Jiulong County, Hengduan Mountains	CAS 1141190	J.R. Shevock 36078	N 29.22078 E 101.45050	KF952883	KF952992	Asia
132	58	China, Qinghai province, Gonghe County	E 00477221	D.G. Long 26787	N 36.97722 E 99.90056	KF952885	KF952994	Asia
133	58	Colombia, Nariño Department , Municipality of Cumbal	NY 1229483	B.R. Ramirez P. 6489	N 0.95250 W 77.81944	KF952884	KF952993	America
134	59	Nepal, Taplejung District	E 00477231	D.G. Long 21500	N 27.43333 E 87.46667	KF952886	KF952995	Asia
135	60	Russia, Siberia, Taimyr	MHA	V.E. Fedosov 08-162	N 71.88083 E 110.78806	KF952887	KF952996	Asia
136	61	Altai Republic	MHA	M.S. Ignatov 0/111	N 50.50000 E 89.16667	KF952888	KF952997	Asia
137	62	Canada, Northwest Territories, District of Fanklin, Axel Heiberg Island	NY 69321	G.W. Scotter 45482	N 80.03333 W 88.75000	KF952889	KF952998	America
138	63	French Southern and Antarctic Lands, Crozet Islands	Hills et al. (2010)	-	S 46.45000 E 52.000	GU90	07058	sub-Antarctic islands
139	64	French Southern and Antarctic Lands, Crozet Islands, Possession Island	AAS	B.G. Bell 1687	S 46.42000 E 51.83000	KJ409558	KJ409571	sub-Antarctic islands
140	65	Antarctica, Antarctic Peninsula, Cockburn Island	AAS	R.I. Lewis Smith 7922	S 64.20000 W 56.85000	KJ409560	KJ409573	Antarctica
141	65	Antarctica, Antarctic Peninsula, Jenny Island	AAS	R.I. Lewis Smith 4713	S 67.73000 W 68.38000	KJ409561	KJ409574	Antarctica
142	66	Antarctica, Ross Sector, Victoria Land	AAS	R.I. Lewis Smith 11794	S 74.33000 E 165.13000	KJ409562	KJ409575	Antarctica
143	67	British Overseas Territories, South Sandwich Islands, Candlemas Island	AAS	P. Convey 202B	S 57.07000 W 26 70000	KJ409563	KJ409576	Antarctica
144	68	Antarctica, Antarctic Peninsula, Danco Coast	AAS	R.I. Lewis Smith 4176	S 64.68000 W 62.63000	KJ409564	KJ409577	Antarctica
145	68	Antarctica, Antarctic Peninsula, Danco Coast. Cuverville Island	AAS	R. Weinstein 8812	S 64.68000 W 62.63000	KJ409567	KJ409580	Antarctica
146	69	British Overseas Territories, Falkland Islands	AAS	R.I. Lewis Smith 5437	S 51.70000 W 57.85000	KJ409565	KJ409578	America
147	70	South Africa, Prince Edward Islands, Marion Island	AAS 235	B.J. Huntley s.n.	S 46.87000 E 37 85000	KJ409566	KJ409579	sub-Antarctic islands
148	71	South Africa, Prince Edward Islands	ACHE 296	N.J.M. Gremmen s.n.	S 46.92000	KJ409569	KJ409582	sub-Antarctic
149	72	British Overseas Territories, South	AAS	P. Convey 207A	\$ 57.07000 W 26 70000	KJ409568	KJ409581	Antarctica
150	73	South Shetland Islands, Deception Island	AAS	D. Mason 40	S 62.9500 W 60 55000	KJ409570	-	Antarctica
151	74	British Overseas Territories, South Georgia Island	AAS	R.I. Lewis Smith 8397	\$ 54.10000 W 36 72000	-	KJ409583	sub-Antarctic islands
152	75	British Overseas Territories, South	AAS	R.I. Lewis Smith 3102	\$ 54.00000 W 37 13000	-	KJ409584	sub-Antarctic
153	76	French Southern and Antarctic Lands, Kerguelen island	AAS	B.G. Bell 3192B	S 49.35000 E 70.20000	-	KJ409585	sub-Antarctic islands
154	77	French Southern and Antarctic Lands, Amsterdam Island	AAS	B.G. Bell 3217	S 37.92000 E 77.67000	-	KJ409586	sub-Antarctic islands
155	Bryum apiculatum Schwägr.	China, Yunnan province	Wang and Zhao (2009)	-	-	EU87	78213	-
156	Bryum funkii Mitt.	China, Hunan province	Wang and Zhao (2009)	-	-	EU87	78209	-
157	Bryum recurvulum Schwärg	China, Hebei province	Wang and Zhao (2009)	-	-	EU87	78217	-
158	Bryum yuennanense Broth.	China, Yunnan province	Wang and Zhao (2009)	-	-	EU87	78211	-

Article title: The cosmopolitan moss *Bryum argenteum* in Antarctica: recent colonisation or *in situ* survival?

Journal name: Polar Biology

Author names: S. Pisa' E. M. Biersma, P. Convey, J. Patiño, A. Vanderpoorten, O. Werner and R. M. Ros

affiliation and e-mail address of the corresponding author :University of Murcia, sergiopisa@um.es

Appendix 2 ITS alignment (Fasta file) of the 77 haplotypes of *Bryum argenteum* obtained from 154 accessions sampled worldwide and four outgroup sequences from closely related species. To allow replication of results, the random seed numbers for each of 4 runs for the coalescent under a stepwise extended Bayesian skyline model analyses used in this study are provided below:

- 1) 1389718433023
- 2) 1389718537624
- 3) 1389718538076
- 4) 1389718522438