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GRAPHICAL ABSTRACT

« 35 Eels, caught in the Thames near
London in 2007, were analysed for
some POPs.

« Pesticide and PCB contamination was
relatively low compared to previous
studies.

« No EU food or environmental
standards (EQS) were exceeded.

« However, dioxin-like PCBs and total
DDT exceeded a Canadian EQS.

« Tidal eels had more lipid and fewer
A. crassus infections than upstream
ones.
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Thirty-five European eels (Anguilla anguilla), caught in 2007 in the river Thames upstream and downstream of
both London and the tidal limit, were analysed for PCBs and organochlorine pesticides. Most chemicals were
detectable in every fish, although they have been banned or severely restricted for many years. In general, the
tidal eels were more contaminated than upstream ones, which was related to their higher lipid contents.

The ICES7 indicator PCB concentrations ranged overall from 4.2 to 124 pg kg™! fresh weight with averages
of 33 and 56 pg kg~ for the upstream and tidal eels; 3.5-104 pg kg~ !, average 26 and 48 ug kg~ ! of that were
ICES6 PCBs. Total DDT was on average 16 ugkg™! (1.7-38 ugkg™!) upstream and 18 ugkg™' (8.6-
35 pg kg~') downstream with about half of that provided by pp’DDE. Lindane (y-HCH) was found at up to
2.8 ng kg! (averages 0.58 and 1.1 pg kg~ upstream and downstream) and hexachlorobenzene (HCB) was
on average 1.9 and 2.5 ug kg~! in the two groups with a maximum of 6.4 pg kg~! in each. Therefore all indi-
viduals passed the European Environmental Quality Standard (EQS) of 10 pg kg~ for HCB. PCB contamina-
tion was fairly typical for recent UK eel data, whilst DDE and lindane concentrations were lower than most
previous UK eel studies, perhaps reflecting a downward trend.

Although not as highly contaminated as some eels from previous UK and European studies, the presence of
so many of these chemicals, with their known health effects may represent a stress for the fish or higher pre-
dators, such as birds.

© 2014 Elsevier Ltd. All rights reserved.

Abbreviations: EQS, environmental quality standard; EQI, eel quality index; TEF, toxic equivalency factor; TEQ, toxic equivalent concentration TEQ = TEF; x conc; +

TEF, % concy + .. .; NGR, National Grid Reference.
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1. Introduction
1.1. Concern over eel numbers

The European Eel (Anguilla anguilla) is an important species for
commercial fisheries. There is, however, much concern over shar-
ply declining numbers from about 1980 onwards (ICES, 2011).
The European eel is now on the IUCN Red List classified as a “crit-
ically endangered species” (Freyhof and Kottelat, 2010). All Euro-
pean Union countries where eels occur, have to produce eel
management plans, with the long term aim of ensuring silver
(mature) eel escapement to the sea recovers to at least 40% of what
it would be if there were no anthropogenic influences (European
Union, 2007). Successful recovery plans are however hindered by
a lack of certainty about the main cause(s) of the decline. Climate
change leading to reduced ocean productivity (Bonhommeau et al.,
2008), and to variations in ocean currents (Baltazar-Soares et al.,
2014), overfishing and loss of habitat perhaps particularly in
coastal areas relatively near to the Sargasso Sea (Kettle et al.,
2011), infections-especially with the nematode Anguillicola crassus
(Palstra et al., 2007), barriers to migration (Chadwick et al., 2007),
and pollution (Robinet and Feunteun, 2002) have all been
implicated.

1.2. The eels’ life cycle in relation to pollution

Since eels are benthic carnivores with a high fat content and
long life span, they tend to accumulate higher amounts of persis-
tent chemicals from water, food, and sediment than other species
(Belpaire and Goemans, 2007; Jirgens et al., 2013). In other fish
species the females, and to a lesser extent males, offload lipids
and with them part of their contaminant burden annually during
spawning, but because eels only spawn once at the end of their
lives they do not have that opportunity. These characteristics,
along with the fact, that during their yellow (growth) phase most
eels are highly sedentary, make them ideal for monitoring chemi-
cal pollution in the water systems where they reside. However,
these features may also quite literally store up problems for their
own future or present a problem to their predators. During the long
spawning migration, sexual maturation occurs and they do not
feed but rely instead entirely on their fat reserves. Thus chemicals
that were incorporated into the fat can either be remobilized, caus-
ing potential problems to the eels during this important stage of
sexual maturation, or are concentrated further in the remaining
fat, much of which is later incorporated into the eggs. Palstra
et al. (2006) claimed to have found a link between environmental
dioxin-like contamination of eels and early death during the larval
development of their offspring. Developmental failure in the off-
spring of contaminated females has been observed in other fish
species: for example Burdick et al. (1964) reported the complete
loss of lake trout fry at a particular stage in development due to
DDT contamination passed on to the eggs. For a detailed review
of effects of chemicals on eels see Geeraerts and Belpaire (2010).

1.3. Chemicals studied

PCBs were widely used in the 50s and 60s as cooling fluids in
transformers and many other uses. Their release into the environ-
ment peaked in the 1960s before concerns over human and envi-
ronmental health effects led to severe restrictions from the 1970s
onwards (the dates chemicals were banned are given in Table 1).
PCBs have been linked to thyroid hormone disruption (Brar et al.,
2010) and reduced reproductive success (Daouk et al., 2011) in
fish.

Organochlorine pesticides were hailed as part of the agricul-
tural revolution after the war, but concerns about their bio-accu-
mulating properties led to a ban or severe restriction for most of
these compounds since about the 1980s. In this study the insecti-
cides DDT, chlordane, lindane (y-HCH) and endosulfan and the
fungicide hexachlorobenzene (HCB) as well as some of their degra-
dation- or by-products were selected for study. Apart from endo-
sulfan, which could be used in EU agriculture until 2007
(European Commission, 2005a), they were all banned or very
severely restricted from 1981.

DDT is probably the most widely studied pesticide. Its acute
toxicity to fish at high concentrations was noted early on when fish
kills were observed in sprayed areas (e.g., Surber, 1946). In the 50s
it was observed that the offspring from DDT contaminated female
lake trout did not survive past the stage where the yolk sac is
absorbed, which was explained by maternal transfer of DDT to
the eggs (Burdick et al., 1964) and by the 70s effects on osmoreg-
ulation of different fish species, including eels, became known (e.g.,
Janicki and Kinter, 1971). Technical DDT consists of about 85%
pp’'DDT, the active insecticidal ingredient, and 15% op’'DDT with
minor contributions of pp’ and op’ DDEs and DDDs (ATSDR, 2002).

The minor component op’DDT along with its degradation prod-
ucts op’DDE and op'DDD is estrogenic and pp’'DDE, the compound
most commonly found in the environment, is an anti-androgen.
These effects were initially noticed in humans and mammals but
have also been shown for fish both in vitro and in vivo (Baatrup
and Junge, 2001; Bayley et al., 2002; Okoumassoun et al., 2002;
Uchida et al., 2010). DDT was also related to effects on thyroid
function in fish (Brar et al., 2010).

The other pesticides in this study, while less intensely studied
than DDT, are also all known or suspected endocrine disruptors
in fish. For example, chlordane was linked to thyroid problems in
wild fish (Brar et al.,, 2010), Lindane (y-HCH) caused reduction in
sex steroid hormones along with other effects on the reproductive
axis of both sexes of catfish (Singh and Canario, 2004), endosulfan
was shown in vitro to stimulate medaka estrogen receptor o
(Chakraborty et al., 2011) and HCB exposure increased estradiol
in females and reduced 11-keto-testosterone in males of crucian
carp (Zhan et al., 2000).

1.4. Study area and aims

The river Thames is the longest river entirely in England (about
255 km from the source to the tidal limit west of London). Eel fish-
eries in its lower reaches have been reported as far back as the
Domesday Book of 1086, but eel recruitment all but disappeared
due to heavy pollution around London from the industrial revolu-
tion of the 19th century until sewage treatment improved water
quality from the 1960s (DEFRA, 2010). Today, there is a relatively
small commercial eel fishery in the lower reaches of the Thames,
which reported catches of 7 t of yellow eels and 0.5 t silver eel in
2007 (the year of this study). Slightly smaller numbers were
removed more recently (3.8 t yellow and 0.3 t silver eels in 2013).

Apart from two individual eels caught in 1995 (Yamaguchi
et al,, 2003) and one composite sample from the estuary (Santillo
et al., 2005), we are not aware of any previous studies of persistent
organic pollutants in river Thames eels. The aims of this study were
therefore to examine what recent level of contamination with PCBs
and organochlorine pesticides occurred in eels from the lower
Thames and to review this with respect to previous UK and Euro-
pean studies and environmental quality standards.

Recognizing the usefulness of eels for monitoring long-term
water quality as well as the consideration, that spawner quality
is likely to be as important as quantity for successful eel reproduc-
tion, an eel quality database has recently been set up (Belpaire



Table 1

Summary of the main determinants in this study.

All values given as mean (standard deviation, range).

Determinand Unit Non-tidal Thames [fresh ~ Thames estuary [fresh Sig. Non-tidal Thames [lipid Thames estuary [lipid Sig. Banned in UK" EQS
weight] weight] diff?? weight] weight] diff?*

Fishing date 13.9.2007 1.10.2007 -

Number - 11 24 -

Length cm 51 (9.0, 35-62) 46 (7.9, 36-67) 10%

Weight g 228 (133, 60-482) 186 (142, 75-667) n.s.c

Age! y 12 (3, 7-18) 9(2, 6-14) 5%

Fulton’s condition factor® - 0.15 (0.03, 0.12-0.20) 0.18 (0.03, 0.12-0.26) 10%

Lipid content % 10.0 (9.1, 1.7-29) 16.5 (8.3, 5.1-36) 5%

Number of A. crassus’ - 2.6(2.7, 0-10) 1.0 (1.7, 0-7) 10%

PCBs (Sum 46)% ugkg™' 63 (43, 7.3-166) 113 (50, 56-232) 5% 877 (540, 303-1854) 746 (239, 408-1408) n.s. in stages from

1972"

Sum ICES7 PCBs' pgkg™' 33 (21,4.2-79) 56 (24, 28-124) 5% 472 (295, 166-1007) 375 (132, 200-753) ns.

Sum ICES6 PCBs’ ugkg' 26 (17, 3.5-63) 48 (20, 25-104) 5% 380 (235, 132-789) 325 (112, 172-630) ns.

Mono-ortho PCBs as partial WHO1998 TEQ ngkg™' 1.6 (1.1, 0.2-4.1) 1.9 (0.9, 1.0-4.8) n.s. 22 (14, 8.0-49) 13 (5.1, 6.5-29) 10% Canada:0.79™

(mammals)*!

mono-ortho PCBs as partial WHO2005 TEQ“" ngkg~! 0.32 (0.22, 0.035-0.83) 0.39 (0.19, 0.19-1.0) ns. 456 (3.0, 1.7-10) 2.6 (1.1, 1.3-6.1) 10% EU:6.5°
Total DDT? pgkg™'  15.7(9.6, 1.7-38) 18.2 (7.8, 8.6-35) n.s. 236 (167, 66-528) 124 (48, 57-229) 10% 19819 Canada:14"
op'DDT ugkg™'  0.047 (0.046, 0.001-0.14) 0.059 (0.050,0.01-0.23) n.s. 0.57 (0.49, 0.04-1.5) 0.37 (0.23,0.09-091)  n.s.

pp'DDT pgkg™' 2.2 (1.5,0.24-5.2) 1.5 (1.1, 0.57-4.9) ns. 43 (60, 6.7-217) 10 (6.3, 2.9-27) 1%

pp'DDE pgkg™'  10.0 (5.9, 1.3-22) 10.9 (5.2, 44-25) n.s. 147 (95, 41-336) 76 (35, 30-150) 1%

a-chlordane ugkg™'  0.42(0.32,0.03-1.2) 0.46 (0.47, 0.08-2.0) ns. 53 (3.2, 1.8-11) 2.7 (1.8, 0.65-7.8) 0.5% 19814

y-chlordane pgkg'  0.13(0.12, 0.003-0.43) 0.54 (0.31, 0.11-1.3) 0.5% 1.4 (0.78, 0.16-3.0) 3.6 (1.9, 1.1-7.0) 0.01%  1981¢

7-HCH (Lindane) pgkg™'  0.58 (0.54, 0.05-1.9) 1.1 (0.71, 0.27-2.8) 1% 6.0 (1.9, 3.2-8.9) 6.4 (2.3,3.5-14) n.s. 2002°

p-endosulfan ugkg™'  0.06 (0.06,<0.02-0.23) 0.22 (0.11,0.09-0.50)  0.05%  0.71(0.29, 0.33-1.1) 1.4 (0.40, 0.82-2.2) 0.01% 2007

HCB pgkg™' 1.9 (1.7, 0.05-6.4) 2.5 (1.6, 0.82-6.4) ns. 21 (12, 2.8-38) 15 (5.9, 7.7-29) ns. 19814 EU:10°
Z Significance level in Student’s t-tests (for equal or unequal variance as determined with F-test (5% level)), on log transformed data for the chemical analysis, and on untransformed data for the other parameters.

a
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Or severely restricted (de facto ban).
n.s.: not significant at 10% level.

Years continental age, determined from stained otolyths. In a few cases the age could not be accurately determined and was for statistical purposes instead estimated from the linear length/age relationship of these eels.

Weight[g]/(length[cm]) * 100.

46 PCBs (see Section 2.1).

Juveniles + adults, no larval stages were found.

Commonly found congeners 28,52,101,118,138,153, and 180.

ICES7 without the dioxin-like congener 118.

To calculate the complete TEQ, dioxins, furans, and non-ortho-substituted PCBs would also need to be measured.

Van den Berg et al. (1998).

Canadian Council of Ministers of the Environment (2001) for dioxin-like PCBs.

Van den Berg et al. (2006).

European Union (2013) for dioxins, furans and dioxin-like PCBs.
sum of pp'DDT, op'DDT, pp’DDE, op’DDE, pp'DDD, op’DDD.

EEC (1978).

Canadian Council of Ministers of the Environment (1999).
European Commission (2000), technical HCH, which is typically dominated by the «-congener was already banned 1981 EEC (1978).

European Commission (2005a).

Open uses prohibited 1972, ban in all new systems 1986, most existing equipment with > 5 L 2000 (The UK Department of the Environment, 1997; DEFRA, 2002).
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et al.,, 2011a). This study can help to address the relative lack of
recent UK data in that database.

2. Material and methods
2.1. Sampling sites and eel collection

Eels were caught at two locations in the lower part of the river
Thames in autumn 2007 (for numbers of fish and biometrical data
refer to Table 1 or the supplementary information): Both sites are
in the Greater London area about 55 river km apart (Fig. 1). The
stretch between Sunbury and Molesey (about 12-17 km upstream
of the tidal limit, NGR TQ105681 to TQ144692) lies upstream of
central London and was chosen as a non-tidal reach that is low in
the catchment and therefore likely to contain sufficient numbers
of eels. Eels from that reach were caught by electrofishing with a
boom boat. The tidal reach is in the Thames estuary near Woolwich,
downstream of Central London, about 42 river km from the tidal
limit and about 50 km from the sea (NGR TQ438796). This is an area
of commercial eel fishing and the eels from this site were caught by
commercial fishermen using fyke nets. All eels were returned to the
laboratory alive and sacrificed 2 or 5weeks later. They were
assessed for parasite infections by dissection and microscopy in a
commercial laboratory (Thames Valley Aquatic Services, 2007)
and sections of eel were frozen in fluoro-ethylene-propylene bags

© Daniel Dalet / d-maps.com “"
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Fig. 1. Approximate locations of the eel sampling sites on the river Thames (outline
© Daniel Dalet/d-maps.com).

and stored at —80 °C for 16 months until analysis. Silvering stage
was not determined, but most of the individuals are likely to have
been in the yellow eel stage, because migrating eels use preferen-
tially the deeper middle part of the river which is unsuitable for
fyke nets and also too deep for efficient electro fishing (personal
communication from Darryl Clifton-Dey, Environment Agency).

Five of the upstream eels and 15 of the tidal ones have been
analysed for otolith microchemistry (Walker et al. in preparation).
This revealed that all had initially recruited to freshwater with
those caught upstream never having returned to higher salinity.
Three of the tidal eels analysed, also showed only a freshwater sig-
nal, suggesting that they had very recently arrived in the estuary
from upstream, but only one of those also had the high (>20%)
fat content typical of migrating silver eels. Two others had a
“nomadic” signal of having moved between fresh and brackish
water more than once and the rest had returned to the estuary
after initially recruiting to freshwater.

2.2. Sample preparation and analysis

A portion from the central section of the eels (muscle, skin and
bones) was homogenized with sodium sulphate to remove water,
then '3C;, -labelled ICES6 PCBs (#28, 52, 101, 138, 153, 180, Cam-
bridge Isotope Laboratories, Andover, Massachusetts) were added
as recovery standards and the sample was extracted for about
16 h with DCM in a soxhlet apparatus. Procedural blanks of sodium
sulphate with internal standards were run with every batch. The
DCM was solvent-exchanged to hexane which was added to a glass
column with 11 g acidified silica (200 mL silica baked at 450 °C and
acidified with 25 mL concentrated sulfuric acid) and eluted with
hexane as a first clean up step, which removes the fats. The eluent
was reduced by vacuum rotary evaporation and a subsequent
cleanup was performed using gel permeation chromatography
(GPC) employing a 25 mm internal diameter column containing
6 g Bio-Beads S-X3 (Bio-Rad Laboratories Ltd., Hemel Hempstead,
Hertfordshire, UK) and eluting with a 1:1 v/v mixture of hexane
and DCM to remove molecules outside the size range of interest.
The final extract was solvent exchanged into 25 pL dodecane con-
taining internal standards (PCB30, '3C-PCB141, '*C-PCB208, Wel-
lington Laboratories Inc., Guelph, Ontario, Canada). The extracts
were analysed by gas GCMS in negative chemical ionisation (NCI)
mode (30 m, DB-5, 0.25 um ID, 0.1 um film, J&W Scientific) for
HCH and endosulfan and electron impact (EI+) mode (50 m CPSil8,
0.25 mm ID, 0.12 um film, Varian) for the other pesticides and
PCBs. Target analytes were PCBs 18,22,28,31,30,41,44,49,
52,54,56,60,64,70,74,87,90,101,95,99,104,105,110,114,118,123,13-
2,138,141,149,151,154,155,156,157,158,167,170,174,180,183,187-
,188,189,194,199,203, o,p'-DDT, p,p’-DDT, o,p’-DDE, p,p’-DDE,
o,p’-DDD, p,p’-DDD, a-endosulfan, B-endosulfan, endosulfan sul-
phate, o-chlordane, y-chlordane, o-HCH, B-HCH, y-HCH, §-HCH
and HCB (standards from Wellington Laboratoris Inc., Guelph
Ontario, Canada).

Lipid content was determined by weighing the air-dried residue
from a soxhlet extract of an adjacent body section to the one ana-
lysed for PCBs and pesticides.

3. Results and discussion
3.1. Parasites, condition factor, and lipid content

About half of the estuary eels and all but two of the 11 non-tidal
ones were infected with adult or juvenile stages of the nematode A.
crassus, no larval stages were found. The estuary eels tended to
have a higher lipid content and a higher Fulton’s condition
factor (K= weight[g]/(length[cm])® x 100) than their upstream
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counterparts, which could not simply be explained by different size
ranges (Table 1). These parasite and lipid results confirm findings
of a German study (Marohn et al., 2013), which found higher fat
content and lower A. crassus infections in eels from coastal or estu-
arine regions than in those from freshwater. Fat contents above
about 20% of body weight appear to be necessary for successful
migration and spawning (e.g., Belpaire et al., 2009). This makes
the tidal Thames eels possibly better candidates for successful
spawning, despite the fact that due to their higher lipid content
they were slightly more contaminated. All chemicals measured
were strongly related to lipid content of the individuals, while cor-
relations to length or weight were much weaker. Both fresh weight
and lipid-normalised data are given in Table 1 and the supplemen-
tary material available online, but we focus the discussion on fresh
weight concentrations because regulatory values are framed that
way.

3.2. PCBs

Most of the PCBs, including all seven indicator PCBs (ICES7),
were detectable in every one of the eel samples from 2007, despite
them having been banned from use in open systems in the UK
since the early 70s and in closed systems since 1981. Total PCB lev-
els (46 congeners) ranged from 7 to 232 pg kg™, fresh weight with
the ICES7 indicator PCBs providing about half of that (Table 1).
These values are towards the lower end of recent European mea-
surements and fairly typical for recent UK data (see Table 2).
Although the high PCB values reported in some UK sites in the
1990s (Table 2) were not repeated in this and other recent studies,
there is insufficient data to show a clear trend over time for the UK.
More extensive data exists for Belgium, where there is evidence
that PCB contamination has decreased recently at a rate which
would take about 14 years to reduce by an order of magnitude
(Maes et al., 2008).

A number of PCBs have structural features that are similar to
2,3,7,8-tetra-chloro-dibenzo-dioxin (TCDD). These “dioxin-like”
PCBs are the non-ortho and mono-ortho substituted PCBs and have
been assigned toxicity equivalency factors (TEF) by the World
Health Organization (Van den Berg et al., 1998,2006). There are
indications that contamination with dioxin-like PCBs has adverse
effects on eels: For example Sures and Knopf (2004) found that
the most potent dioxin-like PCB126 (not analysed here) completely
suppressed the immune response of eels experimentally infected
with the nematode A. crassus, making them much more susceptible
to this disease.

The European Union (European Union, 2013) recently agreed on
a biota EQS to protect wildlife and humans from dioxin-like toxic-
ity of 6.5ngkg ' for the sum of dioxins, furans and dioxin-like
PCBs expressed as WHO 2005 TEQ, which is the same as the EU
food standard for fish other than eel (European Commission,
2011). Of the dioxin-like substances only the mono-ortho PCBs
were measured here and on their own contribute a maximum of
1 ng kg~ ! (average 0.37) WHO 2005 TEQ. Canada has a more strin-
gent tissue residue guideline of 0.79 ng kg~! (WHO 1998 TEQ for
mammals and humans) for the protection of wildlife consumers
from PCBs in their prey (Canadian Council of Ministers of the
Environment, 2001). This is based on studies with mink and
includes a safety factor of 10 in case other mammalian predators
are more sensitive. All but two of the eels analysed here (both from
the non-tidal reach) exceeded this Canadian threshold even just for
the mono-ortho substituted PCBs alone. The difference between
passing the EU standards (at least for the measured part of the
dioxin-like toxicity) and failing the Canadian ones is due both to
the difference in EQS (6.5 ng kg~ vs 0.79 ng kg~ ') and to the Cana-
dian use of the older WHO 1998 assessment factors (Van den Berg
et al., 1998), which assigned higher toxicity relative to 2,3,7,8

TCDD to the mono-ortho substituted PCBs, than the updated
2005 factors (Van den Berg et al., 2006). None of the lower Thames
eels exceeded the food standards (European Commission, 2011) for
eel for non-dioxin-like PCBs (300 pig kg™, sum of 6 ICES congeners)
or dioxin-like toxicity (10 ng kg~!, WHO 2005 TEQ), but as above,
not all of the chemicals contributing to the TEQ were measured.

3.3. Organochlorine pesticides

All of the organochlorine pesticides and most of their by-prod-
ucts or degradation products were detected in the eel tissue
despite having been banned or severely restricted decades ago
(Table 1 and supporting information). The largest contribution to
the pesticide burden is from the main DDT degradation product
pp’'DDE, which contributes on average 49% (SD 9%) to the total pes-
ticides measured, with pp’DDD contributing a further 21% (SD 5%)
(Table 1). The concentrations of pp’DDE ranged from 1.3 to
22 pg kg! fresh weight (average 10.0) in the upstream eels and
from 4.4 to 25 ug kg~! (average 10.9) in the tidal ones, with total
DDT 1.7-38 (average 15.7) and 8.6-35 ugkg™! (average 18.2)
respectively. There is currently no EQS for DDT in the EU, but the
Canadian tissue residue guidelines can give an idea as to whether
contamination with that pesticide may be problematic to preda-
tors. The limit is 14 pug kg~! for total DDT, which is based on the
most sensitive endpoint (eggshell thinning in birds) with a safety
factor of 10, to account for species differences, and the precaution-
ary assumption that all members of the DDT family are as toxic as
the most commonly studied pp’DDT (Canadian Council of Ministers
of the Environment, 1999). At both sites more than half of the eels
exceeded this value, suggesting that there may be some concern
from the pesticide burden in particular to avian predators. It is
however unclear, whether this level of pesticide contamination
has an effect on the eels themselves.

The next-highest pesticide contribution was from HCB, which
was on average 1.9 ugkg~! fresh weight in the upstream eels
and 2.5 ug kg~! in the tidal ones (maximum 6.4 pg kg~' for both
groups). An EQS of 10pugkg™' fresh weight exists for HCB
(European Union, 2013), which is not exceeded in any of the stud-
ied individuals. Lindane concentrations were on average 0.58
(0.05-1.9) and 1.1 (0.27-2.8) pgkg™! in the two groups and o-
Chlordane averaged 0.42 (0.03-1.2) pugkg~! in the upstream eels
and 0.46 (0.08-2.0) pug kg~ in the tidal ones with y-chlordane add-
ing an average of 0.13 (0.003-0.43) and 0.54 (0.11-1.3) pgkg'.
The p-endosulfan concentrations were never more than
0.5 pug kg!, with averages of 0.06 (<0.02-0.23) and 0.22 (0.09-
0.50) pg kg~! for the upstream and tidal groups. Of the pesticides
measured, only the DDT family exceed the EU default limit for pes-
ticide residues in food of 10 pg kg™, but for total DDT the much
higher limit of 1000 ug kg~! applies. The food limits for the other
pesticides in this study are between 20 and 200 pgkg!
(European Commission, 2005b).

The contamination of eels with DDE in this study was lower
than much of the previously published UK and recent European
eel data summarized in Table 2. Lindane was comparable to some
studies from France and Italy but lower than in previous UK and
recent studies from Germany and the Benelux countries. The lower
values of those chemicals compared to older UK studies may reflect
the expected declining trend following a ban. However, since the
sites, sizes and methods vary between studies, such conclusions
are only tentative. HCB was not measured in older UK studies
and was in a similar range as most recent European studies that
measured this chemical. Temporal downwards trends for some of
these chemicals have been observed more clearly in other coun-
tries, for example in Belgium, where large numbers of eels were
analysed over 11 years: Lindane concentrations fell by almost
two orders of magnitude during that time, whereas the reduction



Table 2

Previous UK and recent European literature data for selected contaminants in yellow or silver eel (ug kg~ fw) compared to the present study (in bold), median and range of site averages. Sorted by country and sampling date. Some data
estimated from graphs or calculated from values given by lipid content or dry weight.

Year(s) of Locations Number of Samples per DDE y-HCH HCB ICES7 PCB References
capture sites site (lindane)
United Kingdom
1983 Sheep dip impacted sites, SW 4 6-8 245 (77-298) 58 (30-79) - - Hamilton (1985)
England®®
Unimpacted sites, SW England*® 3 7-8 54 (51-83) 48 (21-171) - -
1984 Sheep dip impacted sites, SW 5 n.a. <14 (<5-230) - - -
England®®
Unimpacted sites, SW England*® 3 n.a. <15 (<5-<36) - - -
1985 Sheep dip impacted sites, SW 3 n.a. <190 (<47- - - -
England®” 209)
Unimpacted sites, SW England® 1 n.a. 40 - - -
1986 Urban sites in Scotland 8 1 Pooled 186 (43-557) 45 (25-63) - - cited in Macgregor et al. (2010)
Rural sites in Scotland 10 1 Pooled 322 (33-994) 33 (2.8-1413) - -
Mixed u/r sites in Scotland 2 1 Pooled 91 (61, 120) 56 (11100) - -
1991 Scottish Reed beds 11 1 Pooled 60 (<10-270) - - Ca. 20 (ca. 3-ca. Mason (1993)
250)°
1994/95 Contaminated sites Sussex, S England 18 5 79 (18-635) 16 (<0.1-60) - 26 (6.8-383)¢ Foster and Block (2006)
1995/96 Rivers Thames & Windrush SE England 2 2 - 3.3(1.6,4.9) - <13¢ Yamaguchi et al. (2003)
1996 River Severn, W England/Wales 2 5 Pooled - - - 100 (92109) Harrad and Smith (1999)
2004-08 Urban sites in Scotland 12 5 49 (<1-225) <3.9 (<1-4.68) ca. 1.5 (<1-ca. 2.5) 69 (7.1-1878) Macgregor et al. (2010)
Rural sites in Scotland 14 5 84 (<1.5-358) <3.9 (<1-2.82) ca. 1.5 (<1.1-ca. 15 (5.9-54)
2.5)
Mixed u/r sites in Scotland 3 5 33 (12-51) <1 (<1-4.79) <1(<1-1.8) 22 (15-172)
2005 Thames estuary, SE England 1 1 Pooled - - - 136 Santillo et al. (2005)
2005/06 Contaminated sites Sussex, S England 21 5 43 (11-178) <1.5 (<1-<25) - 29 (7.5-89) Foster and Block (2006)
2007 Thames, near London SE England 2 11, 24 10 (10, 11) 0.84 (0.58,1.1) 2.2(1.9, 2.5) 44 (33, 56) Current study
Ireland
2005/07 Lakes and rivers 5-7 1 Pooled 3.2 (1.6-7.1) 0.21 (<0.2- <0.9 (<0.5-<2) 3.9 (1.9-18.1) McHugh et al. (2010)
0.45)
France
2004/05 Gironde 4 13-58° - - - 316 (278-345) Tapie et al. (2011)
2005-07 Adour estuary 3 3-7 0.48 (0.43- 0.34 (0.33- Total range <1-9.1° 98 (48-370) Tabouret et al. (2011)
0.57) 1.49)
2008 3 Lagoons 3 12-22 32 (3.3-273) - - 3.7 (2.4-4.6) Amilhat et al. (2014)
2008-10 All of France grouped into 6 major 6 16-160 - - 2.3 (0.7-26) 587 (186-1276) ONEMA (2012)
basins
2009-11 Loire 3 11-16" - - - 137 (80-193) Blanchet-Letrouvé et al. (2014)
Italy
2002 Tuscany 7 15 2.8 (1.3-6.1) 0.82 (0.21-45) 0.09 (0.06-0.16) 8.8 (5.7-14)° Corsi et al. (2005)
2005/06 Garigiliano estuary 1x3" 10 28 (17-38) - 2.0 (0.75-5.9) 239 (138-622) Ferrante et al. (2010)
2007/08 River, lake, lagoon 3 15-23 98 (15-162) 0.20 (0.06- 1.2 (0.27-5.6) 32 (7.9-269)* Quadroni et al. (2013)
0.20)
2008/09 Campania region 7 1-2 - - - 22 (11-195)° Pacini et al. (2012)
2009 Polluted R. Tiber + clean Lake Bolzena 2 30,6 37 (29, 45) - 5.7 (4.4,7.0) 126 (38, 214) Pujolar et al. (2012)
Belgium
2000-07 Flanders 48 1 Pooled - - - 226 (11-7753) Belpaire et al. (2011b)
2001-05 Flanders 260' 1-21 37 (3.0-232) 3.0 (<0.03- 4.3 (0.11-62) 263 (7-5252) Belpaire (2008)
2076)
The Netherlands
2004 Lakes, rivers and canals 8 1 Pooled” 75 (25-96) 6.7 (3.5-11) 16 (4.5-30) 869 (308-1281) de Boer et al. (2010)
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Heinisch et al. (2005a,b, 2006a,b,

Heinisch et al. (2004) and
2007)™

Boscher et al. (2010)
Santillo et al. (2005)

References

ICES7 PCB
78 (53-346)
480 (210-1330)°
460 (90-1450)
290 (125-540)
122 (<7-1512)

110 (5-260)

HCB

vy-HCH
(lindane)
9 (3-46)
20 (4-40)

DDE
75 (11-180)'
750 (350-
3300)

190 (65-400)

Samples per
site

3-9

3-25

3-20

3-20

1 Pooled

Number of

sites
15-25
10-11
7-8

20
3.6 * ICES7 PCB (Weatherley et al., 1997).

Locations

North Luxemburg
River Rhine

Berlin area

River Elbe

10 European countries

Year(s) of
capture
Luxembourg
2007
Germany
1998/00
1996-03
1999
Europe-wide
2005

" Includes a site that was thought to be un-impacted, but showed high levels of dieldrin and DDE.

¢ Estimated using the conversion arochlor1260
4 Calculated from the individual PCB concentrations given in that report.

Table 2 (continued)
2 Only eels >30 cm.
€ Only 6 congeners.
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was slower for HCB, «-HCH and total DDT (estimated to take
between 20 and 25 years to reduce by one order of magnitude,
Maes et al., 2008).

In Belgium, an eel quality index (EQI) has been developed
(Goemans et al., 2003; Belpaire and Goemans, 2007) in recognition
that for successful reproduction, the quality of potential spawners
is as important as their quantity. This is based on an original data-
set of eels from 303 Belgian sites and is now also used in other
countries (e.g., Amilhat et al., 2014). For each site the mean concen-
trations were calculated for a number of chemicals; for each com-
pound these means were then ranked and the 5%ile defined as
background or reference value (RV). Eels are classed depending
on how much they deviate from that value with log(conc/
RV)<0.4, classed as “I: not deviating” 0.4-0.8 “II: slightly deviat-
ing”, 0.8-1.2 “Ill: deviating" and > 1.2 “IV: strongly deviating”. An
average classification can then also be derived across different
chemicals. For example, the total DDT RV is: 16 pg kg~!, therefore
less than 16 + 104 = 40 pg kg~ ! is class I, and therefore high qual-
ity. According to the EQ], the eels in the current study were all class
[ for total DDT, pp’'DDE, and lindane, while for PCBs 91% of the
upstream and 75% of the estuary eels were class I with the rest
class II and for HCB the largest number (16) are in class I with
11 and 8 in classes I and III respectively. Although this is a purely
statistical approach and does not state whether the observed con-
centrations are toxic, it helps to compare data from different stud-
ies and shows that the observed concentrations of most of the
measured chemicals in the lower Thames eels are comparable to
those from some of the less contaminated sites in Belgium.

3.4. Significance of pollutants in eels

In general the principle of assessing the risks of chemicals and
setting appropriate standards is based on the most sensitive spe-
cies and most sensitive endpoints observed, which should then
(usually with some safety factor to account for a lack of data about
the species or endpoints not analysed) be sufficient to protect any
other species too. With regards to eels, there are however some dif-
ficulties with this approach. Until relatively recently, it was
assumed that eels are fairly tolerant to pollution since they were
observed in a very wide range of habitats including those with high
organic loads and low oxygen content. However, very little is
known about the critical life-stages of sexual maturation and
spawning when, due to prolonged fasting, pollutants stored in
the lipid can be re-mobilized and may affect either the eels them-
selves or their offspring via maternal transfer (Robinet and
Feunteun, 2002). As it has so far neither been possible to observe
most of the migration or the spawning or the early larval develop-
ment at sea nor conduct entirely successful reproduction of Euro-
pean eels in captivity (for Japanese eels a full life-cycle in
captivity was achieved for the first time as recently as 2010 (ljiri
et al., 2011)), we cannot yet know what the critical chemical
thresholds are.

For the reasons mentioned in the introduction, eels are probably
the best species for monitoring water quality, but that alone would
not justify the use of a critically endangered species, as other
organisms or methods are also suitable (see discussion in Jiirgens
et al., 2013). However, given that we still do not know for sure
why their numbers are declining and therefore we do not know
what, if anything, can be done to reverse the trend, it is necessary
to learn as much as possible about eels. This includes their pollu-
tion status, especially with chemicals that may interfere with
aspects of reproduction. For that reason the removal of a number
of eels for analysis is justifiable and will give insights with regards
to the state of the eels as well as the state of the watercourses from
which they are taken.

i Only samples from 2001 onwards chosen: 260 sampling occasions from 219 sites.

J Typically 5.
k 6 Annual pooled samples from 2001 to 2006 chosen for PCBs, but only one of those (2004) supplied for the other chemicals.

f Site averages were not calculated due to non-detects.

¢ Includes additional congeners.

" One area three times.
! Sum of op’ and pp’ DDE.

™ Only eels >10% lipid.
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While it is likely that the chemical pollution adds to the prob-
lems eels are facing, this alone does not seem to explain the phe-
nomenon of the sharply declining eel numbers, given that the
decline of eel recruitment corresponds to a period of generally
improving water quality across Europe and reducing pollutant bur-
dens in eels. However, as yet, chemicals cannot be completely
ruled out, because due to the long generation times, effects on
aspects of reproduction may only become apparent many years
after an exposure. Climate change, water pollution, overfishing
(including predation by fish eating birds), obstacles such as locks,
and diseases or parasites may all be contributing factors to the
decline (OSPAR Comission, 2010).

4. Conclusions

o The contamination of the 2007 Thames eels with PCBs and orga-
nochlorine pesticides appears to be relatively low compared to
other UK and European studies.

Eels from the estuary were slightly more contaminated than
those from the non-tidal reach, but they also had higher lipid
contents and condition factors and lower infection rates with
A. crassus, making them possibly better spawning candidates
overall.

While none of the measured chemicals exceeded European food
or environmental standards (although in the case of dioxin-like
toxicity, only a small proportion of the contributing chemicals
has been measured), over half the eels exceeded a Canadian tis-
sue residue guideline to protect wildlife consumers from effects
of total DDT and all but two individuals exceeded the equivalent
Canadian guideline for dioxin-like PCBs, even though not all the
congeners contributing to the standard were measured.
Although not as highly contaminated with persistent organic
pollutants as some of the eels from previous UK and European
studies, the presence of so many of these harmful chemicals
in the 2007 lower Thames eels may be a matter of concern for
these fish, adding to other known or suspected problems eels
face, such as fishing, infection with parasites, barriers impeding
both upstream and downstream migration and climate change.
Reducing the chemical burden alongside other measures should
help towards the recovery of European eel populations.
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