The evolution of a mid-crustal thermal aureole at Cerro Toro, Sierra de Famatina, NW Argentina

P.H. Alasino^{1-2*}, C. Casquet³, M.A. Larrovere¹⁻², R.J. Pankhurst⁴, C. Galindo³, J.A. Dahlquist⁵, E.G. Baldo⁵, C.W. Rapela⁶

¹ Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-CONICET). Entre Ríos y Mendoza s/n, Anillaco (5301), La Rioja, Argentina

² INGeReN-CENIIT-UNLaR, Av. Gob. Vernet y Apostol Felipe, 5300, La Rioja, Argentina

³ Depto. de Petrología y Geoquímica – IGEO (Universidad Complutense, CSIC), 28040 Madrid, Spain

⁴ British Geological Survey, Keyworth, Nottingham NG12 5GG, United Kingdom

⁵ CICTERRA-CONICET-UNC, Av. Vélez Sarsfield 1611, Pab. Geol., X5016CGA-Córdoba, Argentina

⁶ CIG-CONICET-UNLP, Calle 1 No. 644, 1900, La Plata, Argentina

*Corresponding author.

E-mail address: palasino@crilar-conicet.gob.ar

18 Abstract

1

2 3

4 5

6

14 15

16

17

19 A more than 12 km wide sheeted tonalite complex in western Sierra de Famatina, NW Argentina, was 20 emplaced at middle crust levels (ca 5 kbar), coeval with regional metamorphism during an early phase of 21 the Ordovician Famatinian orogeny (ca. 480 Ma). Advective heat from the tonalite complex caused a rise 22 in the host regional temperatures ($\leq 700^{\circ}$ C) by a maximum of ca. 100°C, developing an aureole (~3 km 23 wide) parallel to the igneous contact. This was accompanied by significant melting (ca 40 %) of the host 24 rocks that hybridized to a variable extent with the tonalitic magmas. Three metamorphic zones were 25 distinguished in a cross-section through the aureole: (1) an external zone consisting of metatexitic 26 gneisses, amphibolites and minor tonalites, (2) an intermediate zone formed by screens of highly melted 27 gneisses, amphibolites and metagabbros lying between tonalite and newly formed leucogranitoid and 28 hybrid rock sheets, (3) an internal zone formed almost exclusively of massive tonalite and minor hybrid 29 rocks. Incongruent melting of biotite in gneisses of the intermediate zone produced peritectic cordierite 30 and garnet. Hybrids resulting from variable mixing of anatectic granitoids and tonalite magma developed 31 in the innermost part of the aureole at 750-800°C. Increased water activity within this zone eventually 32 promoted increased melting of plagioclase + quartz in the gneisses. Leucogranitoid magmas formed in 33 part by extraction from the hybrid magmas led to heterogeneity of the Sr-isotope composition. The Cerro 34 Toro contact aureole shows that assimilation of metasedimentary rocks through partial melting can play 35 an important role during emplacement of tonalitic magmas at mid-crustal levels.

36

57 Keywords	37	Keywords
-------------	----	----------

38 Aureole; Anatexis; I-type magmatism, Hybridization; Isotopic disequilibrium; Sierra de Famatina

39 40

41 1. Introduction

Thermal aureoles induced by advection of magmas are an excellent natural laboratory for the study the wall-rock magma interaction processes (e.g., Paterson et al., 1991; Paterson and Farris, 2008 and references therein). Classical examples of thermal aureoles occur when hot magmas intrude upper crustal levels, causing contact metamorphism due to the high thermal contrast between magma and wall-rock. These effects are rather well understood today after long research following the first recognition of contact metamorphism in the late 18th century by James Hutton (e.g., Rastall, 1910; Kerrick, 1970; 48 Pattison and Harte, 1985, among many others). However, mid-crustal thermal aureoles show greater 49 complexity, due to reduced thermal contrast between magma and the host rocks (which are often affected 50 by pre- or syn-regional metamorphism). In contrast with epizonal contact metamorphism, slow cooling 51 (e.g., Nabelek et al., 2012) permits processes such as assimilation, mingling, mixing and partial melting 52 of the country rocks, (e.g., Yardley and Barber, 1991; Ugidos and Recio, 1993; Finger and Clemens, 53 1995; Greenfield et al., 1996; Jung et al., 1999; Barnes et al., 2002; Harris et al., 2003; Saito et al., 2007). 54 When assimilation occurs its chemical effects are often recognizable, but the physical processes that 55 caused them are less obvious (e.g., Clarke, 2007; Erdmann et al., 2009).

56 A new example of a contact thermal aureole at mid-crustal level is described from Cerro Toro, in the 57 western Sierra de Famatina (Sierras Pampeanas, NW Argentina, see Fig. 1a). Here, at paleodepths of ca. 58 17 km, voluminous metaluminous magmas formed a huge sheeted complex (ca 12 km wide) in 59 predominantly metasedimentary country rocks. A 3-km wide hybridization zone is well displayed along 60 the contact, containing many screens and stoped blocks of host rocks. Although conceptual models of 61 hybridization have recently been well established (e.g., Beard et al., 2005; Beard, 2008), many questions 62 still remain open concerning natural examples of large-scale interaction between partially molten 63 country-rocks and metaluminous magmas, such as the processes of formation of hybrids and melt 64 extraction during the anatexis. We describe the sheeted intrusions at Cerro Toro, their contact 65 relationships with host-rock screens and stoped blocks, and the partial melting and hybridization 66 processes that occurred in the aureole. We also emphasize the mechanisms that might occur in a regional 67 thermal aureole at mid-crustal level as part of the general construction of magma chambers in orogenic 68 belts.

69

70 2. Regional setting

The proto-Andean and subsequent Andean margin of Gondwana has been active from at least the Early Ordovician until the present, which has led to the generation of huge volumes of plutonic and volcanic rocks of different ages. Part of this history is well exposed in the Sierras Pampeanas of NW Argentina (20° - 40°S), exposed by tilting of the rigid basement blocks in the Miocene during Andean compression (e.g., Jordan and Allmendinger, 1986). Geochronological data show that four main Paleozoic episodes of granitic magmatism took place in the Sierras Pampeanas: a) Early Cambrian (Pampean orogeny), b) Early–Middle Ordovician (Famatinian orogeny), c) Middle–Late Devonian (Achalian orogeny) and d) Early Carboniferous. The Famatinian orogeny overprinted the pre-Ordovician terranes along the southwestern Gondwana margin between present Patagonia and Venezuela (Cawood, 2005) and resulted in abundant magmatism in the Sierras Pampeanas (e.g., Pankhurst et al., 1998). The Famatinian Cerro Toro sheeted-complex is found in the western Sierra de Famatina (Fig. 1a), from which the name of the orogeny was derived.

83 Pankhurst et al. (2000) recognized three distinct Famatinian granitoid-associations in the Sierras 84 Pampeanas: 1) voluminous I-type, 2) more restricted S-type, and 3) minor tonalite-trondhjemite-85 granodiorite (TTG) type, all emplaced within the interval 484-463 Ma. Detailed petrological, geochemical and isotope studies were carried out by Rapela et al. (1990), Saavedra et al. (1998), 86 87 Pankhurst et al. (1998, 2000), Dahlquist and Galindo (2004), Miller and Söllner (2005), Dahlquist et al. 88 (2008, 2013), Ducea et al. (2010), Otamendi et al. (2009, 2012), and Castro et al. (2013), among others. I-89 type intrusions range from gabbro to monzogranite but tonalite and granodiorite are largely dominant. 90 ϵ Ndt values range from -3 to -9. Only a few Famatinian igneous rocks have positive values of ϵ Ndt 91 between +0.2 to +4.8 (Pankhurst et al., 2000, Otamendi et al., 2009, 2012; Casquet et al., 2012).

92

93 **3. Sierra de Famatina**

94 The Sierra de Famatina in north-western La Rioja province shows well-exposed sections across the 95 transition from mid-crustal levels in the west (metaluminous basic to intermediate plutonic rocks hosted 96 by gneiss, migmatite, amphibolite and minor meta-basic rocks) to shallow levels in the centre and the east 97 (acidic plutonic and volcanic rocks and low- to very low-grade phyllite, metapsammite and chert). 98 Previous geochronological data from the western Sierra de Famatina yielded Early-Middle Ordovician 99 ages (Pankhurst et al., 2000; Dahlquist et al., 2008). We focus here on an area on the western slope of the 100 Sierra de Famatina, near Villa Castelli (Figs. 1a and b). This area is mountainous (up to 2000 metres 101 a.s.l.) and consists from west to east of several sierras: Cerro Asperecito, Cerro Toro, and the northern 102 end of Cerro La Puntilla (Fig. 1b). Here, we recognize the Cerro Toro igneous complex (Toselli et al., 103 1988; Saavedra et al., 1992, 1996) consisting of a succession of steeply-dipping sheets of tonalite and a 104 large inner pluton that strikes ~N-S and is about 25 km wide (Fig. 1b). The steep dip is probably a 105 primary feature as suggested, for example, by near-vertical strings of stoped blocks within the sheets (see 106 also Castro et al., 2008). Host rocks to the sheets are high-grade metamorphic rocks that display from 107 west to east an increase in grade from amphibolite to granulite facies. Metamorphic rocks are found as

screens and stoped blocks within the igneous complex and altogether constitute a medium-P/high-T regional thermal aureole, i.e., the Cerro Toro thermal aureole. Emplacement at relatively deep crustal levels and under conditions close to anatexis was previously suggested by Saavedra et al. (1992).

111

112 **4. The Cerro Toro thermal aureole**

113 Three zones can be recognized within the aureole on the basis of field relations, lithology, mineralogy 114 and modal composition. They are well displayed in W-E section: (i) external, with high-grade 115 metamorphic rocks, and sheeted bodies of metaluminous igneous rocks (in part of the zone only) and late 116 peraluminous granitoids, (ii) intermediate, heterogeneous, with high-grade, partially melted, metamorphic 117 rocks and evidence of widespread hybridization with metaluminous magmas, and (iii) internal, consisting mostly of a large tonalite pluton, that extends about 25 km to the east (see Fig. 1b, Table 1 and 118 119 Supplementary data). Although there is no continuity between the external and the intermediate zones 120 because of disruption by Andean faulting, field relationships and thermobarometry data show that they 121 were parts of the aureole at similar depths. Emplacement of metaluminous magmas and regional 122 metamorphism were largely coeval, which is a distinctive feature of the Famatinian orogeny (e.g., 123 Dahlquist et al., 2005; Ducea et al., 2010; Otamendi et al., 2012, Casquet et al., 2012). U-Pb SHRIMP 124 zircon dating of a hybrid rock from the intermediate zone (FAM7086) has yielded an age of 481 ± 4 Ma 125 with a low zircon ε Hf_t typical of a crustal component (Dahlquist et al., 2008, 2013). We consider that this 126 age corresponds to the emplacement of the Cerro Toro complex.

127

128 *4.1. Description of the zones forming the thermal aureole*

129 4.1.1. External zone

130 This zone consists mainly of high-grade metamorphic rocks, metatexites with minor intercalations of 131 gneisses, and amphibolites, and is exposed at Cerro Asperecito (Fig. 1b). Foliation is NNW-SSE and dips steeply to the north. Metatexitic gneisses display a stromatic structure with alternating biotite-rich 132 133 mesosome, quartz-feldspathic leucosome and biotite and fibrolite-rich melanosome (Fig. 2a). 134 Amphibolites are lens-shaped or tabular and resulted from transposition and metamorphism of former 135 basaltic dykes. On the north-eastern side of Cerro Asperecito (Fig. 1b) metatexitic gneisses and 136 amphibolites are intercalated with sheets of Bt±Hbl tonalite and lesser granodiorite of the Cerro Toro 137 igneous complex, largely concordant to the external foliation (sheets, < 1 km wide). Most of these bodies

show magmatic foliation. Mafic microgranular enclaves, schlieren and xenoliths are common. Mafic intrusions are scarce either as < 15 m wide dykes of gabbro-diorite or as small amphibole gabbro bodies. Peraluminous granites (e.g., Peñón Rosado pluton) containing magmatic garnet and muscovite crop out here (Fig. 1b) but they are younger (469 ± 4 Ma, Dahlquist et al., 2007) than the metaluminous intrusions (Fig. 1b).

143

144 4.1.2. Intermediate zone

145 This is located on the western flank of Cerro Toro (Fig. 1b). It is ca. 3 km wide and heterogeneous, displaying a gradual transition from migmatite, through hybrid to leucogranitoid, together with tonalite 146 147 sheets. Hybrid rocks predominate; they are formed by mixing of the tonalitic magma with partially molten metasedimentary rocks exhibiting a ~N-S sheeted structure. From W to E, they gradually lose the 148 149 relict metamorphic foliation (defined by biotite) and gradually pass into leucogranitoids. This zone also 150 contains screens and stoped blocks of migmatites, amphibolite and metagabbro up to 3 km long all 151 aligned parallel to the structures in the external zone (Figs. 1b and 3a). Many of these refractory blocks 152 (i.e., amphibolite and metagabbro) are engulfed by leucogranitoids (Fig. 3b), mostly with sharp contacts. Because both screens and blocks resulted from continuous dismemberment at different scales, we will 153 154 hereafter use block to refer to both. Leucogranitoids in this zone (Table 1 and Fig. 2b) are of two types, 155 (i) leucogranitic or (ii) leucotonalitic. They can be found enveloping migmatite blocks or as concordant or 156 discordant bodies of variable thickness that intruded hybrid and tonalite rocks. Two magmatic foliations 157 can be recognized: ~ N-S and W-E. Contacts between all these rocks can be irregular, and gradational or 158 sharp (Figs. 3c, d and e), implying that peak metamorphism, tonalite intrusion and partial melting were 159 almost contemporaneous. Mafic microgranular enclaves, xenoliths and schlieren are common to all these 160 rocks.

On a W-E cross-section through the intermediate zone three domains can be distinguished based on the predominance of specific rock-types (Fig. 1b): (1) Domain-I. *Bt-Sill*±*Crd migmatites* (Table 1). Migmatite blocks here are diatexites, often with schlieren structures (terms after Sawyer, 2008) formed by diffuse quartz-feldspar rich bands and thinner and more discontinuous biotite \pm cordierite-rich layers, defining a coarse foliation (Fig. 2c). The more homogenous diatexite migmatites are found as patches within and at the outer boundaries of the large migmatitic blocks, the cores of which sometimes exhibit a gneissic texture. (2) Domain-II. *Bt-Sill*±*Grt*±*Crd migmatites* (Table 1): this domain is defined by the 168 sudden appearance of garnet, together with a modal increase of cordierite in the blocks. Their size 169 decreases significantly (< 1.2 km in length) (Fig. 1b). Texturally, migmatites tend to be more 170 homogenous (e.g., FAM143, Fig. 2d). (3) Domain-III. Bt+Amp+Cpx+Kfs hybrid rocks (Table 1; Fig. 1b): 171 this is characterized by the predominance of hybrid rocks, leucogranitoids and tonalites. Hybrid rocks 172 commonly show a massive texture but they contain recognizable metamorphic phases (e.g., biotite-2, see 173 § 6.2). Interpretation of the hybrids as mixtures of partially molten metasedimentary rocks (anatectic melt 174 \pm residuum) and tonalitic magma is supported by the low ϵ H_f value (-14.7) of zircon from a sample of 175 this zone (FAM7086, Dahlquist et al., 2013).

176

177 *4.1.3. Internal zone*

This is the easternmost zone and encompasses the eastern flank of Cerro Toro and the northern part of 178 179 Cerro La Puntilla (Fig. 1b). Here the main rock type is tonalite with a NNW-SSE magmatic foliation 180 defined by orientated biotite and hornblende and containing many mafic microgranular enclaves and 181 some stoped blocks of amphibolite or metagabbro. At the contact with the intermediate zone, 182 leucogranitoids intruded the solidified tonalite front (Fig. 3f). In comparison with the hybrids of the 183 intermediate zone with biotite-2, the hybrid rocks here (Table 1) show a greater proportion of tonalite-184 derived component such as biotite-4 (see § 6.2) and hornblende. Contact relationships between hybrid 185 and tonalite have not been observed.

In summary, I-type tonalite intrusions were emplaced into heterogeneous rocks (mainly, metasedimentary) affected by coeval regional metamorphism. With increasing proximity to the main tonalite pluton a gradual transition is recognized from metatexitic gneisses (external zone), through diatexite to hybrid and leucogranitoid (intermediate zone). Hybrid and leucogranitic rocks are the result of the interaction between anatectic (±solid phases) and I-type magmas. A scheme intended to summarize the relationships between rocks and processes within the aureole is shown in Figure 4.

192

193 **5. Analytical methods**

Petrographic investigations were conducted on more than 120 representative samples, of which 31 were selected for major and trace element whole-rock analysis using ICP-OES, ICP-MS and/or INAA at ACTLABS, Canada following the procedures described as 4-Lithoresearch and 4E-research codes (methods in www.actlabs.com). Additionally, three representative igneous samples were analysed by 198 GeoAnalytical Lab, Washington State University, using a ThermoARL sequential X-ray fluorescence 199 spectrometer, following the procedure described by Johnson et al. (1999). All geochemical data are listed 200 in Table 2. Twelve whole-rock analyses published by Dahlquist et al. (2007, 2008) also have been used. 201 Sr and Nd isotope analysis of fourteen representative samples was carried out at the Geochronology and 202 Isotope Geochemistry Center, Complutense University (Madrid, Spain) using an automated multicollector VG® SECTOR 54 mass spectrometer. Errors are quoted throughout as two standard 203 204 deviations from measured or calculated values. Analytical uncertainties are estimated to be 0.006% for ¹⁴³Nd/¹⁴⁴Nd and 0.1% ¹⁴⁷Sm/¹⁴⁴Nd, the latter parameter determined by isotope dilution. Fifty-six analyses 205 of La Jolla Nd-standard over one year gave a mean ¹⁴³Nd/¹⁴⁴Nd ratio of 0.511846±0.00003. Additionally, 206 207 ten Sr and Nd isotope analyses were taken from Dahlquist and Galindo (2004) and Dahlquist et al. 208 (2008). Mineral compositions were determined using a JEOL Superprobe JXA-8900-M equipped with 209 five crystal spectrometers at the Luis Brú Electron Microscopy Center, Complutense University, Madrid, 210 Spain. Operating conditions were: acceleration voltage 15 kV, probe current 20 nA, beam diameter 1-2 211 µm. Absolute abundances for each element were determined by comparison with mineral standards 212 (Jarosewich et al., 1980; McGuire et al., 1992), using an on-line ZAF programme.

213

214 **6.** Petrography and mineral chemistry

215 6.1. Texture and mineral assemblages

216 *6.1.1. Migmatites*

217 Migmatites from the external zone (metatexitic gneisses) consist of $Qtz + Pl + Bt_1 \pm Sill$ (Fib) (Table 1 218 and Supplementary data) (for the biotite numbers see section § 6.2). As in the intermediate zone, 219 migmatites here show evidence of a melt-phase as suggested by igneous textures such as crystal faces of 220 plagioclase against quartz typical of crystallization from a melt (Vernon, 2004). The mineral assemblage 221 of migmatites from domain I of the intermediate zone is $Qtz + Pl + Crd + Bt_1 \pm Sill$ (Fib) $\pm Kfs$. That for migmatites in domain II is $Qtz + Pl + Crd + Grt + Bt_2 \pm Sill$ (Fib) $\pm Kfs$. Cordierite (0.56 > $X_{Mg} > 0.61$, 222 223 see Supplementary data), increases from 4 to 11 vol. % on going from domain I to II and occurs either as 224 orientated medium-grained crystals (often altered to muscovite) or large (up to 4 x 2 cm) prismatic 225 euhedral crystals that include biotite and fibrolite (Fig. 5a). The latter type of cordierite can be found cross-cutting the quartz-feldspathic layers of diatexite (Fig. 2c). Garnet (Alm₇₁₋₇₄-Grs₃₋₄-Prp₁₀₋₁₄-Sps₈₋₁₆) 226 227 only exists in domain II migmatites (up to 3.5 vol. %) and is found as subhedral crystals up to 2.5 cm in

size (Fig. 2d). Compositionally, it shows a flat zoning pattern with a slight increase in spessartine content from core to rim (see Supplementary data). Late muscovite is common in both external and intermediate

230 zones; it is a retrograde mineral that grew late relative to foliation development.

231

232 *6.1.2. Tonalites*

The typical tonalite consists of plagioclase (An_{48-53}) + quartz + biotite-4 + hornblende, and shows a magmatic hypidiomorphic-granular texture. Close to the boundary with the intermediate zone tonalite of the main pluton exhibits sericitization, and epidotization of plagioclase cores and hornblende, and chloritization of biotite. Secondary epidote can be up to 10 modal %.

237

238 6.1.3. Hybrid rocks

239 Hybrid rocks of the intermediate zone consist of plagioclase + quartz + biotite-2 as essential minerals. 240 Plagioclase exhibits anhedral to subhedral forms with skeletal (box-like-cellular - Fig. 5b) or dusty cores sometimes surrounded by albitic rims (An₃₃). The skeletal plagioclase core is An₃₉₋₄₃ in composition -241 242 intermediate between that of tonalite (An₄₉₋₅₃) and metamorphic plagioclase (An₁₅₋₃₆). Biotite shows a 243 modal variation (from 20 to 10 %, see supplementary data and Fig. 1b) on going from domain II to III. 244 Clinopyroxene appears as isolated subhedral to euhedral crystals only in domain III. Amphibole occurs 245 either as anhedral crystals including rounded relics of plagioclase, quartz and biotite-2 (Fig. 5c) or 246 replacing clinopyroxene along its boundaries with plagioclase. On the other hand, hybrid from the main 247 pluton (sample FAM212, internal zone) is formed by plagioclase + K-feldspar + quartz + biotite-4 + 248 hornblende. Plagioclase core composition is An37-45 surrounded by more albitic rims (An24-30). 249 Hornblende forms subhedral to euhedral crystals.

250

251 6.1.4. Leucogranitoids

Leucogranitoids of the intermediate zone range from leucotonalitic to leucogranitic (Table 1). Sometimes this modal mineral variation occurs in the same igneous body. Examples of plagioclase-rich rocks (leucotonalite samples FAM326, 398, 399) show variations from a mineral association consisting of anhedral to subhedral plagioclase (An₁₇₋₄₂), biotite-2 and recrystallized quartz to one of monomineralic plagioclase, sometimes showing triple points (Fig. 5d). K-feldspar is scarce (< 1 %) and appears in thin films between recrystallized quartz and plagioclase grains or occupying the volume after partially 258 dissolved plagioclase (Figs. 5e). Conversely, leucogranites (e.g., FAM397) show typical granitic texture 259 consisting of Ab-rich plagioclase (An₁₁₋₂₅, with tabular forms), microcline and biotite-3 (Fig. 5f). K-260 feldspar is interstitial or forms well defined medium- to coarse-grained crystals. Some rocks (e.g. 261 FAM333, 399) have petrographic characteristics common to both types of leucogranitoids. In thin-262 section, these rocks exhibit K-feldspar rich zone in contact with monomineralic plagioclase domain, the 263 former consisting of coarse-grained microcline with inclusion of plagioclase (An18-33; crystals devoid of 264 inclusions and with convex boundaries, Fig. 5g). Epidote and titanite can found associated with or 265 included in K-feldspar (Fig. 5h).

Chemical zoning of plagioclase is common in the leucogranitoids. Zoning patterns however are remarkably diverse: (1) An-rich cores (An₃₇₋₄₃) surrounded by more albitic rims (An₂₆₋₃₅); (2) Ab-rich interiors (An₁₈₋₂₁), surrounded by a zone richer in anorthite (An₃₀₋₃₆); (3) slightly zoned crystal (An₂₇₋₃₃) surrounded by more albitic rims (An₁₈₋₂₄) and (4) tabular plagioclase (An₁₁₋₂₅) with normal zoning (Fig. 5f). Types 1, 2 and 3 can be recognized in the same thin-section.

271

272 6.2. Biotite textural and compositional variation

273 The petrographic description above of rocks across the aureole shows that biotite is a major phase in all 274 the samples. The chemical composition and texture of biotite characterize the different lithological units 275 in the aureole. Four main groups of biotite have been recognized (Fig. 6 and Supplementary data): (1) 276 Biotite-1 occurs in metatexite migmatites (FAM349) from the external zone, and in Crd-bearing diatexite 277 blocks (FAM135 and 408) corresponding to domain-I (intermediate zone). It is fine to medium-grained, 278 subhedral to anhedral. Common inclusions are monazite, zircon, Ti-magnetite and apatite. Chemically, 279 biotite-1 (n = 20) has X_{Fe} [=Fe/(Fe+Mg)] values between 0.42 and 0.47, intermediate Ti content (from 280 0.18 to 0.26 a.p.f.u.) and low Mn (from 0.03 to 0.09 a.p.f.u.). Biotite-1 is taken to have formed during 281 regional metamorphism immediately preceding emplacement of the tonalite. (2) Biotite-2 occurs in Grt-282 Crd bearing diatexite blocks (FAM143 and 339), leucogranitoids (e.g., FAM333 and FAM346) and 283 hybrid granitoids (FAM7086,) of intermediate zone domains II and III. Biotite-2 commonly shows 284 inclusion patterns similar to biotite-1. However a marked pleochroism from light to dark brown or even 285 reddish hues, and sometimes rounded shapes are common. Biotite-2 shows higher and more variable 286 values of X_{Fe} (from 0.55 to 0.62), Ti (from 0.20 to 0.40 a.p.f.u.) and Mn (from 0.01 to 0.17 a.p.f.u.) 287 (n=37). Biotite-2 in migmatite reflects increasing metamorphic grade towards the contact with the main

288 igneous body (internal zone). Biotite-2 in leucogranitoid/hybrid rocks is probably a residual mineral from 289 anatexis. (3) Biotite-3 is present in some leucogranitoids of the intermediate zone (FAM397). In contrast biotite-3 is fine-grained, euhedral to subhedral and pleochroic with minor inclusions. It yields high X_{Fe} 290 291 values between 0.64 and 0.69, and a wide range of Ti contents (0.22 to 0.42 a.p.f.u) and more restricted 292 Mn (0.06 to 0.12 a.p.f.u.) (n=8). Biotite-3 commonly occurs as isolated crystals or small clusters 293 suggesting a magmatic origin (Sawyer, 1999). (4) Biotite-4 is hosted in amphibole-bearing tonalites 294 (ASP120) from the external zone and in hybrid rocks from the internal pluton of the aureole (FAM212). 295 Biotite-4 occurs as medium-grained, euhedral and pleochroic crystals with small inclusions of zircon, 296 monazite and apatite. It has intermediate X_{Fe} values (from 0.49 to 0.52), high Ti (from 0.30 to 0.37 297 a.p.f.u.) and low Mn (from 0.04 to 0.07 a.p.f.u.) (n=5) making it easily distinguishable from the other 298 biotites. Biotite-4 is interpreted as magmatic.

299

300 7. Metamorphism

301 7.1. Prograde mineral reactions

302 The absence of muscovite as a prograde mineral, which should be expected from the shale/wacke 303 protolith of the migmatites, implies that this mica was consumed in lower-grade metamorphic zones (not 304 visible) by reactions such as Chl + Ms = Als + Bt + V (R1) (Spear and Cheney, 1989), followed by water saturated reactions of the type Ms + Pl + Qtz + V = Als + Kfs + melt (R2) and Ms + Pl + Qtz + V = melt305 306 (R3) [melting reactions (R2) throughout (R5) are from Spear et al. (1999); for P-T conditions see below]. 307 The latter two reactions that consume muscovite and produce (hydrous) melt, probably led to the 308 metatexites of the external zone. The modal decrease of biotite and the occurrence of cordierite and 309 garnet with increasing grade (intermediate zone) suggests that biotite dehydration melting also played a 310 role through reactions R4 and R5 (see below). Evidence for melting in the intermediate zone diatexites is 311 provided by textures such as feldspars and cordierite showing crystal faces against quartz, simple 312 twinning in K-feldspar, and aligned euhedral cordierite crystals (e.g., Vernon, 2011). Cordierite encloses 313 foliation-forming biotite and fibrolite (Fig. 5a) implying that the latter minerals were partially dissolved 314 when cordierite formed. Thus, a peritectic origin for most of the cordierite is suggested by means of a 315 reaction of the type: Bt + Sill = Crd + melt ± Kfs (R4) Cordierite and garnet (domain-II of the intermediate zone) formed through the peritectic reaction: $Bt + Sil = Grt + Crd + melt \pm Kfs$ (R5). 316

317

318 7.2. Thermobarometry

319 P-T conditions in metamorphic and igneous rocks from the intermediate and external zones were estimated by means of conventional thermobarometry (Table 3). Sample FAM143 is a Grt-Crd-Bt-Sil-Kfs 320 321 bearing diatexite block from domain-II of the intermediate zone. P-T conditions for this sample were 322 calculated with THERMOCALC v.3.33 (Powell & Holland, 1988) using the P-T average mode and the 323 updated version of the ds55 thermodynamic dataset (November, 2003; Holland & Powell, 1998). Activity of end members for Grt, Crd, Pl, Bt, Kfs was computed with the AX software. Selected mineral 324 compositions of garnet, cordierite and plagioclase-cores and biotite-matrix yielded T = 751 ± 51 °C and P 325 = 4.6 ± 0.7 kbar (cor = 0.833, sigfit = 0.61). In the external zone a temperature of 700 ± 40 °C was 326 obtained from an amphibolite (sample VCA7009, Al^{tot} in hornblende = 2.18 ± 0.19 a.p.f.u., n=7) using 327 the Holland and Blundy (1994) Hbl-Pl geothermometer. Estimation of P-T conditions for the 328 329 emplacement of the Cerro Toro complex was made on hornblende-bearing tonalites. The Holland and Blundy (1994) Hbl-Pl geothermometer and the Al-in hornblende geobarometer (Johnson and Rutherford, 330 1989) yielded values of T = 746 \pm 40 °C and P = 5.3 \pm 0.5 kbar for the external zone (ASP-120, Al^{tot} in 331 332 hornblende = 2.06 a.p.f.u.). The chemical composition of hornblende (Al^{tot} = 2.10 a.p.f.u.) from tonalite of the intermediate zone (Saavedra et al. 1996) yielded similar values of 5.4 kbar (see Table 3). 333

In summary, temperature in the aureole ranged from ca. 700°C in the external zone up to ca. 800°C in the inner part of the intermediate zone. Pressure was ca. 5 kbar throughout the aureole. These results agree well with location of equilibrium reactions R2 through R5 above (§ 7.1) in P-T projection (Spear et al., 1999).

338

- 339 8. Whole-rock geochemistry
- 340 8.1. Major and minor elements
- 341 8.1.1.Metasedimentary rocks

342 Representative whole-rock analyses of migmatites (metatexites and diatexites) are given in Table 2. All

343 the samples show a restricted range of Mg# [Mg# = 100*MgO/(MgO+FeO*) molar] between 39 and 46.

- 344 Other contents are: $K_2O < 3.12$ wt %, Al_2O_3 ca. 13 wt % and CaO up to 1.6 wt %. The aluminum
- 345 saturation index (ASI) ranges from 1.3 to 1.8. Within the migmatite group, a representative metatexite
- from the external zone (FAM349; $SiO_2 = 59$ %) and diatexites of the intermediate zone (FAM135, 143,
- 347 145, 335b and 339) are similar: $SiO_2 = 60-66$ %; $K_2O = 3.1-4.9$ wt %; $FeO^* = 6.2-9.0$ wt %; $Na_2O = 6.2-9.0$ wt %;

348 1.5–2.2 wt%; TiO₂ < 1.2 wt% and CaO \leq 1 % (Fig. 7). ASI values range between 1.7 and 2.2. The 349 gneisses of the external and intermediate zone (VCA1004, FAM391 and 203) have SiO₂ contents of 71-75 wt %, and are dealt with here for comparison only. In terms of trace elements, Rb content in 350 351 migmatites is higher than in the gneisses, whereas Sr content is lower (Fig. 7). REE patterns of the 352 gneisses show La_N/Yb_N ratios between 5 to 7 and weak to moderate negative Eu anomalies (Eu_N/Eu^{*}_N 353 between 0.5 to 0.8) (Fig. 8a). Migmatites show LREE patterns similar to those of the gneisses; HREE 354 however are more variable (Fig. 8a). The migmatites containing garnet (domain-II, intermediate zone) 355 show consistently flatter patterns ($La_N/Yb_N = 5.6-7.3$) suggesting than HREE were retained in the garnet. 356 Metatexites from the external zone and domain-I diatexites with cordierite and no garnet have steeper 357 patterns ($La_N/Yb_N = 9.3-17.2$).

358

359 8.1.2. Tonalitic unit

The tonalitic unit (samples VCA7038, 7039, 7040, ASP115, 120, FAM213 and 175) does not show 360 361 major variation in major elements (Fig. 7) with restricted contents of SiO_2 (between 60 and 63 wt %), 362 Mg# (40-44), CaO (3.8-5.5 wt %) and alkalis (4.2-6.1 wt %). Most tonalites plot in the medium-K field 363 on a K₂O vs SiO₂ diagram (Fig. 7). ASI values range from 0.97 to 1.15, i.e., metaluminous to slightly 364 peraluminous. In contrast with major elements, Rb (10-243 ppm), Ba (41-410 ppm) and Sr (54-218 365 ppm) show significant scatter. The tonalitic unit shows a relative wide range of REE patterns as shown by 366 the variable La_N/Yb_N ratio from 1.9 to 15.7 (Fig. 8b). Bt-tonalite patterns (VCA7038, 7040) do not show a 367 Eu anomaly ($Eu_N/Eu_N^* = 0.80-0.97$), while the Hbl-tonalite patterns do ($Eu_N/Eu_N^* = 0.40-0.82$).

368

369 8.1.3. Hybrid rocks

370 The hybrid rocks (FAM212, 332 and 7086, Fig. 1b) show some complexities. They have restricted SiO_2 371 contents between 62 and 69 wt%, yield values of Mg# between 36 and 40, and are slightly peraluminous (ASI = 1.01-1.17). Like other rock types they show a decrease of FeO* with increasing SiO₂ content 372 373 (Fig. 7c) but no clear trends are displayed on other Harker plots. Some components roughly follow the 374 tonalitic unit trend (e.g., CaO or ASI vs. SiO₂, Fig. 7), whereas concentrations of other elements are 375 anomalous (e.g., Na₂O or Ba) or can even be compared to those of the migmatites (i.e., K₂O and Rb vs. 376 SiO_2). In the K₂O vs. SiO_2 classification diagram, the hybrid rocks fall close to the boundary between 377 medium- and high-K fields. Chondrite-normalized REE patterns exhibit highly variable La_N/Yb_N ratios from 1.9 to 12.2 and Eu_N/Eu_N^* from 0.36 to 1.16 (Fig. 8c). Total REE content varies widely from 48 to 419 ppm.

380

381 8.1.4. Leucogranitoids

382 Regardless of location, leucogranitoids of the intermediate zone show a restricted range of SiO₂ 383 between 71 and 77 wt % and a clear trend of decreasing FeO* with increasing SiO₂ (Fig. 7). However the 384 K_2O content allows distinction of two groups that correlate with the petrographic distinction: (i) the 385 leucogranites (FAM333, 346, 388, 394 and 397), with K₂O between 4.11 and 5.36 wt % that show a wide range of Mg# values (from 9 to 39), and (ii) the leucotonalites (FAM326, 329, 398 and 399) with K₂O 386 387 between 1.02 and 1.76 wt % and Mg# values between 28 and 47. Leucotonalites show contents of Na₂O (2.9-5.08 wt %) and CaO (1.14-3.88 wt %) higher than in leucogranites $(Na_2O = 2.67-3.36 \text{ wt }\%)$ and 388 CaO = 0.84-2.64 wt %), reflecting quite dissimilar modal proportions of feldspar (see Table 1 and 389 390 Supplementary data). Moreover, the latter have higher contents of Rb (90-222 ppm) and very variable 391 contents of Ba (30-694 ppm) and Sr (15-195 ppm) compared with leucotonalites: Rb (40-69 ppm), Ba 392 (97–267 ppm) and Sr (112–171 ppm). The average ASI value of leucogranitoids is 1.04 ± 0.02 . In REE patterns the leucogranites reveal a wide range of La_N/Yb_N ratios from 0.8 to 9.3 and Eu_N/Eu*_N from 0.36 393 394 to 3.76 (Fig. 8d), whereas the leucotonalites show relatively high LREE but low to intermediate HREE 395 values ($La_N/Yb_N = 8.5-27$) and mostly positive Eu anomalies ($Eu_N/Eu^*_N = 1.75-3.95$) (Fig. 8e).

396

397 8.2 Isotope (Sr and Nd) geochemistry

398 A reference age of 481 Ma for calculation of isotope compositions at the time of 399 metamorphism/magmatism was taken from the weighted U-Pb SHRIMP zircon age of sample FAM7086, 400 a hybrid rock from the intermediate zone (see Fig. 1b) formerly classified as an I-type tonalite by Dahlquist et al. (2008). Migmatites have ⁸⁷Sr/⁸⁶Sr_(t) values between 0.7128 to 0.7190 and ɛNdt values 401 from -6.4 to -8.3 (Table 4) Compared with the published data of three Cerro Toro tonalites (0.7058 \leq 402 87 Sr/ 86 Sr_(t) ≤ 0.7096 and $-4.9 \leq \epsilon$ Ndt ≤ -5.8 , Dahlquist and Galindo, 2004) the new Hbl-tonalite sample 403 404 from the tonalite pluton of the internal zone (collected about 20 km to the east of the contact) yields a 405 similar 87 Sr/ 86 Sr_(t) value (0.7076) but a higher ε Ndt (\approx -3.9). Hybrid rocks (FAM332 and FAM7086) yield ⁸⁷Sr/⁸⁶Sr_(t) values of 0.7121 and 0.7085, and ENdt values of -5.9 and -6.3 respectively that plot between 406 407 those of tonalites and migmatites, apparently on an hypothetical two-component mixing line between

408 sample FAM175 (an uncontaminated tonalite; Supplementary data) and the average isotopic composition 409 of the metasedimentary rocks (Fig. 9). A simple calculation with a mixing-equation (Faure, 1986; eq. 9.1, 410 page 141 and Supplementary data) suggests that hybrid rocks could be a mixture of 63% 411 metasedimentary rocks (and/or derived melts) and 37% tonalite magma. Leucogranitoids of the intermediate domain are isotopically heterogeneous; they have ⁸⁷Sr/ ⁸⁶Sr_(t) ratios between 0.7061 and 412 413 0.7113, except for sample FAM394 (0.7419), and yield two groups of ENdt values (Fig. 9): most samples 414 (group I; FAM 388, 394, 397, 398, 399; Table 4) yield values between -3.9 to -4.6. Group II (FAM 333 415 and 346; Table 4) with more negative values, -6.2 and -8.6.

416

417 9. DISCUSSION

418 9.1. Metamorphic evolution of the Cerro Toro aureole

419 The occurrence of peritectic cordierite and garnet in diatexites of the intermediate zone further suggests 420 that biotite dehydration melting took place. Evidence for anatexis is provided by textures such as 421 feldspars and cordierite showing crystal faces against quartz, simple twinning in K-feldspar, and 422 alignment of euhedral cordierite crystals (e.g., Vernon, 2011). Moreover, some cordierite crystals grew across the foliation, implying that peak-T conditions in the intermediate zone were attained relatively late. 423 424 Thus, recorded transformations started with the cordierite and garnet-absent assemblage of the external 425 zone at a temperature of ca. 700 °C, followed inwards by domain-I assemblages with cordierite, and these 426 in turn by higher-grade domain-II migmatites with quartz + plagioclase + biotite-2 + cordierite + garnet + 427 K-feldspar + sillimanite at T values of ca. 750 °C (Fig. 10). The geological and petrological evidence 428 above suggests that at Cerro Toro, heat from the tonalite sheeted bodies affected host metamorphic rocks 429 that before intrusion were at temperatures $\leq 700^{\circ}$ C. Advective heating from the tonalite was responsible 430 for development of a metamorphic aureole with narrow mineral zones parallel to the igneous contact.

431

432 9.2. The role of the water in the partial melting of the Cerro Toro aureole

The abundance of anatectic rocks in the intermediate zone (see Fig. 1b) cannot be attributed entirely to biotite-dehydration melting in the temperature range 700-800 °C (e.g., Clemens and Vielzeuf, 1987; Patiño Douce and Johnston, 1991). This is inferred from the presence of amphibole in the hybrids containing rounded inclusions of plagioclase, quartz and metamorphic biotite-2 (Fig. 5c). This evidence suggests that water-saturated conditions were attained within the aureole to permit reactions such as Pl + 438 $Qtz + Bt + H_2O = Hbl + L$ (ca. 710 °C at 5 kbar, R6 in Figure 10). In fact, partial melting experiments on 439 quartz + plagioclase + biotite rocks show that $3-5 \text{ wt/}\% \text{ H}_2\text{O}$ is required to stabilize amphibole (Naney, 1983; Conrad et al., 1988; Gardien et al., 2000). Moreover, water-fluxed melting consumes more 440 441 plagioclase than micas since increasing H₂O-activity depresses the Pl + Qtz solidus (e.g., Conrad et al., 442 1988; Patiño Douce and Harris 1998). Thus, depletion of CaO and Sr in migmatites of the intermediate 443 zone (see § 8.1.1) could be due to the removal of plagioclase via fluid-enhanced partial melting. On the 444 other hand, amphibole-free hybrid/leucogranitoid rocks in this zone that contain biotite-2 with rounded 445 outlines along with K-feldspar and titanite (see Table 1 and Fig. 5h) indicate hydration melting reactions such as: $Pl + Qtz + Bt + H_2O = K$ -rich melt + titanite (e.g., Sawyer, 2010) or $Pl + Qtz + Bt + Kfs + H_2O = K$ 446 447 L (ca. 720 °C at 5 kbar, R7 in Figure 10). We infer that the intermediate zone migmatites underwent 448 initial metamorphism through mica-dehydration reactions that evolved into wet conditions (water fluxing) 449 near the main tonalite pluton, producing an enhanced zone of extensive melting (Fig. 10). The cause of 450 the inferred water-excess is unknown. However it is at least possible that fluids released deeper in the 451 aureole by means of devolatilization reactions R1 to R4 (Figure 10) moved up-the-thermal-gradient and 452 concentrated in the intermediate zone (e.g. Yardley and Long, 1981; Nabelek et al., 2012).

453

454 9.3. Estimate of the melt volume in diatexites

455 According to residue-protolith mass-balance calculations (Sawyer, 1991), if concentrations in the 456 source (C_0), leucosome (C_L) and residue (C_r) are known, an estimate of the degree of partial melting to 457 produce a leucosome can be estimated from the formula $C_o = FC_L + (1 - F)C_r$. However, given the 458 difficulty of recognizing true leucosomes within the aureole, because of the mixing processes described 459 above, an alternative approach is to rely on the source-rock and those elements that are concentrated in 460 the residue (such as FeO*, MgO, Nb, Sc, Zn, Zr, Co and Cr), when the equation is reduced to $F = (C_r - C_r)^2$ 461 C_o/C_r . The composition of the biotite-rich Grt-Crd diatexite (sample FAM143) was assumed to represent 462 the residue, whereas an average composition of the gneiss samples (FAM391 and VCA1004) was taken 463 as the protolith, based on the recognition of cores with gneissic texture in some migmatitic blocks (see 464 above). The results are shown in Table 5 where it can be seen that the estimated degree of partial melting in the intermediate zone of the aureole is around 40 %. This value seems high, but experimental work 465 with added water (~ 4 wt %, required to stabilise amphibole) and temperature about 750 °C yields values 466 467 similar to this (e.g., Finger and Clemens, 1995; Patiño Douce and Harris, 1998).

468

469 9.4. Hybridization and the formation of leucogranitoids

470 One important issue in the Cerro Toro aureole is the evidence of hybridization in the intermediate zone, 471 resulting from interaction between partially molten migmatite and tonalite magma. Hybrids consist of 472 recognizable metamorphic minerals (e.g., biotite-2) and others, such as skeletal plagioclase, that could be 473 formed (or requilibrated) after mixing (e.g., Castro, 2001; Erdmann et al., 2007). This plagioclase has a 474 composition intermediate between those of the tonalite and migmatite and experienced temperatures (~ 750 °C), well above the wet solidus (ca. 690 °C at 6 kbar, Watkins et al., 2007). Moreover, a transition is 475 476 recognized from these hybrids to leucogranitoids involving progressive loss of metamorphic foliation at 477 the outcrop scale. In fact, the biotite-2 content (ca 10 %) in domain-III hybrids is much lower than in 478 domain-II hybrids (ca. 20%) suggesting that the former involved a higher degree of melting, by means of 479 reactions R6 and R7 above. In turn Bt-poor hybrids gradually pass into massive leucogranitoids; the latter 480 representing a melt-crystal mixture without relics of a metamorphic fabric. Partially resorbed plagioclase 481 cores in leucogranitoids with dissimilar compositions (An₃₇₋₄₃ and An₁₈₋₂₁; Fig. 11) but with An₂₆₋ 482 ₃₆ overgrowths imply that the leucogranitoid magma evolved after the hybrid magma, and that 483 An \sim_{30} crystallized on inherited plagioclase nuclei (antecrysts).

484 Leucogranitoid magma differentiated in turn, probably because of magma-mobility enhanced by 485 tectonic deformation within the aureole. Leucotonalites (e.g., FAM 326, 398, 399) containing anhedral to 486 subhedral plagioclase (with a wide range of compositions: An_{17-42}) \pm biotite-2, together with high contents 487 of Ca, Na and Sr and REE-patterns with Eu-positive anomalies, can be interpreted as a crystalline 488 residuum after the former leucogranitoid magma. Leucogranites (e.g., FAM 397) consisting of euhedral 489 plagioclase (An₁₁₋₂₅), microcline and biotite-3, with a genuine granitic texture, formed in turn from the 490 residuum-free K-rich magma. They in fact have high contents of K, Rb and REE-patterns and most show 491 Eu-negative anomalies compatible with this interpretation. Some granitic rocks (e.g., FAM 333, 399) 492 with intermediate petrographic characteristics, i.e., equal crystal and melt-rich parts, and with 493 intermediate contents of Ca, Na, K, Rb and Sr, and REE-patterns with a Eu-positive anomaly (see above), 494 probably formed with retention of K-rich melt within the crystalline residuum. Thus, separation of melt 495 from crystals after hybridization may explain the variety of textural and geochemical features shown by 496 leucogranitoids in the intermediate zone of the aureole.

497

498 9.4.1. Geochemical constraints: Major and trace element composition

499 The K_2O vs FeO^t+MgO plot (Fig. 12a) helps to distinguish residual ferromagnesian phases from anatectic melt (e.g., Milord et al., 2001), and clearly shows that the migmatites and gneisses can be 500 501 described by a combination of quartz + plagioclase and biotite vectors. The contribution of the quartz + 502 plagioclase vector is more marked in gneisses, whereas the biotite vector predominates in migmatites, 503 consistent with the presence of restitic minerals in the latter. Despite the presence of peritectic phases 504 (cordierite or garnet) in the migmatite blocks of the intermediate zone, the latter do not show a trend 505 towards cordierite in Fig. 12a. As for the leucogranitoids, the leucogranites plot along the fractionated 506 melt vector following a clear trend of K_2O -enrichment while the leucotonalites fall near the Qtz + Pl 507 vector (Fig. 12a). These compositional trends may be due to fractional crystallization (e.g., Sawyer 1987; 508 Milord et al., 2001) yielding a (quartz + plagioclase)-dominated cumulate and a K-feldspar rich 509 fractionated melt. However, the petrographic data above suggest that the leucotonalites do not correspond 510 to pure magmatic cumulate but to a mixture of residue (dominant) and cumulates. On the $K_2O vs$ 511 CaO+Na₂O diagram (Fig. 12b, incompatible versus compatible elements) leucogranites and 512 leucotonalites define separate fields consistent with melt-rich and residuum-rich rocks derived from 513 anatexis (e.g., Sawyer, 2010). However, both fields are shifted towards higher CaO+Na₂O values 514 compared to the field of the supposed migmatite protolith, i.e., the gneiss. Both are closer to the fields of 515 the hybrids and the tonalites. As in the case of these elements contained in plagioclase, the hybrids show 516 enrichment in Sr but not in Rb when compared with the diatexite rocks (Fig. 7). The diatexites show 517 enrichment in K_2O and lower CaO + Na₂O contents compared to the gneisses, as expected from the 518 increased amount of residual biotite and some K-feldspar after extraction of the anatectic melt.

519

520 9.4.2. Leucogranitoids and comparisons with experimental melt compositions

Experimental melt compositions obtained from fertile metasedimentary rock types (e.g., greywacke or pelite) are peraluminous and felsic (Montel and Vielzeuf, 1997; Patiño Douce, 1999). These mostly plot in the field of leucogranite in the A-B diagram (figure 12c), often showing a vertical trend similar to those from High Himalayas (e.g., Debon and Le Fort, 1983). When compared with these experimental melt compositions, our leucogranitoids plot partly in the same field (leucogranite) but outside the experimental melt compositions and without a visible vertical trend. They have very low values of A (= Al-Na-K-2Ca \leq 15, i.e. a deficit in alumina), indicating a dominant quartzo-feldspathic component. This allows us to hypothesize that our leucogranitoids do not represent pure anatectic crustal melts but involve other
components, such as restite minerals and/or mixing with metaluminous-derived liquids (Montel and
Vielzeuf, 1997; Patiño Douce, 1999).

531

532 9.4.3 Sr - Nd isotope evidence

533 Major minerals of end-member magmas, i.e, tonalite and anatectic magma, involved in hybridization 534 probably retain their isotopic composition in the hybrid magma (Beard, 2008). In the case of the Cerro 535 Toro aureole, plagioclase controlled the distribution of Sr between the solid and liquid fractions. As 536 explained above, the leucogranitoids contain textural evidence of inherited pre-existing plagioclase 537 crystals (antecrysts), often partially dissolved, suggesting that they formed earlier by crystal-melt separation from hybrid magmas (e.g., Beard, 2008). This explains why the ⁸⁷Sr/⁸⁶Sr values are lower than 538 539 those of migmatites (see § 8.2). Figure 13 shows a conceptual model for the formation of leucogranitoids. 540 The plot of ⁸⁷Sr/⁸⁶Sr against Sr (Fig. 14) shows that the leucogranitoids are isotopically intermediate 541 between the migmatites and tonalites. Samples with visible partially dissolved antecrysts (Figs. 5e, g and i) have lower ⁸⁷Sr/⁸⁶Sr values than antecryst-poor samples (e.g., FAM397 - Fig. 5f). 542

543 Additionally, solubility of monazite in felsic melts only occurs between 800 and 1400 °C (Montel, 544 1993). In consequence monazite in the Cerro Toro aureole (T between 700 and 800°C) was mostly 545 retained in the residual assemblage of migmatites, thus leading to Nd-isotope disequilibrium melting 546 (Watson and Harrison, 1984). In fact, ENd values of hybrids and leucogranitoids (group I) less negative 547 than migmatites imply that monazite was not a significant contributor to the Nd budget of these magmas. 548 However group II leucogranitoids with ENd values between -6.2 and -8.6 largely retained the Nd isotope composition of the migmatite, i.e., dominated by monazite, whilst having the ⁸⁷Sr/⁸⁶Sr composition of 549 tonalites and the petrographic and chemical composition of a leucogranite. These leucogranitoids 550 551 probably equilibrated with the residual mineralogy (retained or near the source) or incorporated some 552 metamorphic monazite during further injection along the contact with migmatites in the tectonic-553 enhanced dynamic setting of the aureole. In fact, both samples of this group were collected from 554 leucogranitoids surrounding migmatite blocks. This implies that the magmas either segregated fast and/or 555 that accessories included mostly in biotite-2 were shielded during water-fluxed melting (e.g., Rubie and 556 Brearley, 1990; Carrington and Watt, 1995; Nabelek and Glascock, 1995; Jung et al., 1999; Zeng et al., 557 2005).

558

559 **10. Conclusions**

560 The evidence presented here suggests that the Cerro Toro aureole is a remarkable example of pluton– 561 wall-rock interaction coeval with regional metamorphism and deformation at mid-crustal levels. The 562 main processes involved in the aureole were:

(1) Sheeted tonalite intrusions were emplaced at the start of the Famatinian orogeny (ca. 480 Ma) into
 already hot (ca 700 °C) metamorphic rocks that were separated into screens or disrupted blocks by the
 tonalite magma. The host rocks were metatexites.

566 (2) Increasing temperature within the aureole up to ca. 800°C at the contact with the main tonalite 567 intrusion triggered mica-dehydration melting reactions in the migmatites, that produced peritectic 568 cordierite followed by cordierite-garnet.

(3) An increase in water activity probably took place due to hypothetical up-gradient flow of water from deeper in the aureole. The change from "dry" to "wet" conditions triggered the complementary melting of plagioclase + quartz, increasing the amount of anatectic melt in the migmatites up to 40%, and promoting the loss of continuity of the solid mineral framework.

(3) Hybrid magmas developed by mingling/mixing of tonalite with anatectic magmas in the zone closer
to the main tonalite pluton (internal zone). Hybrid rocks show petrographic and geochemical
characteristics intermediate between these end-members.

576 (4) Variable separation of melt and crystals after hybridization gave rise to leucogranitoid magmas
 577 (leucotonalites and leucogranites) that were isotopically heterogeneous, with ⁸⁷Sr/⁸⁶Sr ratios lower and
 578 εNd values less negative, respectively, than the migmatites. However, minor leucogranitoids equilibrated

579 with the residual mineralogy or incorporated restitic monazite, resulting in more negative ε Nd values.

580 Our results suggest that assimilation of country rocks (affected by pre- or syn-regional metamorphism) 581 through partial melting during the emplacement of thick tonalitic magma bodies in the middle crust was 582 an important mechanism in the case of the Cerro Toro aureole. Emplacement in the middle crust favoured 583 longer magma-residence time that resulted in effective contamination by assimilation as compared to 584 epizonal intrusions. This supports the idea that the chemistry of Cordilleran magmas does not only reflect 585 their ultimate source characteristics in the subcontinental mantle: they can also undergo prolonged open 586 system magmatic evolution in the middle crust. Under these circumstances, whole-rock isotopic ratios 587 and model ages derived from them must be interpreted with caution.

588

589 Acknowledgements 590 Funds were provided by Spanish MICINN grant CGL2009-07984/BTE and an Argentinean PICT 1009 591 grant. We are grateful to S.R. Paterson (USC) for critical review of an earlier draft of this manuscript. 592 P.H. Alasino thanks Carlos Bustamante and Sergio de La Vega for technical support. We thank C.G. 593 Barnes (TTU), J.E. Otamendi (UNRC) and S. Erdmann (UO) for their very constructive reviews that 594 significantly improved the manuscript. We also would like to thank N. Eby (editor) for your comments 595 and suggestions to our manuscript. 596 597 References Barnes, C.G., Yoshinobu, A.S., Prestvik, T., Nordgulen, Ø., Karlsson, H.R., Sundvoll, B., 2002. Mafic 598 599 Magma Intraplating: Anatexis and Hybridization in Arc Crust, Bindal Batholith, Norway. Journal of 600 Petrology 43, 2171-2190. 601 Beard, J.S., Ragland, P.C., Crawford, M.L., 2005. Reactive bulk assimilation: A model for crust-mantle 602 mixing in silicic magmas. Geology 33, 681-684. 603 Beard, J.S., 2008. Crystal-Melt separation and the development of isotopic heterogeneities in hybrid 604 magmas. Journal of Petrology 49, 1027-1041. 605 Büsch, W., Schneider, G., Mehnert, K.R., 1974. Initial melting at grain boundaries part II: melting of 606 rocks of granodioritic, quartzdioritic and tonalitic composition. Neues Jahrbuch für Mineralogie 607 Abhandlungen 1974, 345-370. 608 Carrington, D.P., Watt, G.R., 1995. A geochemical and experimental study of the role of K-feldspar 609 during water-undersaturated melting of metapelites. Chemical Geology 122, 59-76. 610 Casquet, C., Rapela, C.W., Pankhurst, R.J., Baldo, E.G., Galindo, C., Fanning, C.M., Dahlquist, J.A., 611 2012. Fast sediment underplating and essentially coeval juvenile magmatism in the Ordovician margin 612 of Gondwana, Western Sierras Pampeanas, Argentina. Gondwana Research 22, 664-673. 613 Castro, A., 2001. Plagioclase morphologies in assimilation experiments. Implications for disequilibrium 614 melting in the generation of granodiorite rocks. Mineralogy and Petrology 71, 31-49. 615 Castro, A., Martino R., Vujovich, G., Otamendi, J., Pinotti, L., d'Eramo, F., Tibaldi, A., Viñao, A. 2008. 616 Top-down structures of mafic enclaves within Valle Fértil magmatic complex (Early Ordovician, San Juan, Argentina). Geologica Acta 6, 217-229. 617

- 618 Castro, A., Díaz-Alvarado, J., Fernández, C., 2013. Fractionation and incipient self-granulitization during
- 619 deep-crust emplacement of Lower Ordovician Valle Fértil batholith at the Gondwana active margin of
- 620 South America. Gondwana Research, http://dx.doi.org/10.1016/j.gr.2012.08.011
- 621 Cawood, P.A., 2005. Terra Australis Orogen: Rodinia breakup and development of the Pacific and
- 622 Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Science Reviews 69,
- 623249–279.
- Clarke, D.B., 2007. Assimilation of xenocrysts in granitic magmas: principles, processes, proxies, and
 problems. Canadian Mineralogist, 45, 5-30.
- 626 Clemens, J.D., Vielzeuf, D., 1987. Constraints on melting and magma production in the crust. Earth and
 627 Planetary Science Letters 86, 287-306.
- 628 Conrad, W.K., Nicholls, I.A., Wall, V.J., 1988. Metaluminous and peraluminous crustal compositions at
- 629 10 kb: evidence for the origin of silicic magmas in the Taupo Volcanic Zone, New Zealand, and other
- 630 occurrences. Journal of Petrology 29, 765–803.
- 631 Cristofolini, E.A., Otamendi, J.E., Ducea, M.N., Pearson, D.M., Tibaldi, A.M., Baliani, I., 2012. Detrital
- 632 zircon U–Pb ages of metasedimentary rocks from Sierra de Valle Fértil: entrapment of Middle and Late
- 633 Cambrian marine successions in the deep roots of the Early Ordovician Famatinian arc. Journal of
- 634 South American Earth Sciences 37, 77–94.
- 635 Dahlquist, J.A., Galindo, C., 2004. Geoquímica isotópica de los granitoides de la sierra de Chepes: un
- modelo geotectónico y termal, implicancias para el orógeno famatiniano. Revista de la Asociación
 Geológica Argentina, 59, 57-69.
- 638 Dahlquist, J.A., Alasino, P.H., 2005. Hallazgo de Granitoides fuertemente peraluminosos en la Sierra de
- 639 Famatina: implicancias petrogenéticas para el Orógeno Famatiniano. Revista de la Asociación
 640 Geológica Argentina 60: 301-310.
- 641 Dahlquist, J.A., Rapela, C.W., Baldo, E.G., 2005. Cordierite-bearing S-type granitoids in the Sierra de
- 642 Chepes (Sierras Pampeanas): petrogenetic implications. Journal of South American Earth Science 20,
 643 231-251.
- 644 Dahlquist, J.A., Galindo, C., Pankhurst, R.J., Rapela, C.W., Alasino, P.H., Saavedra, J., Fanning, C.M.,
- 645 2007. Magmatic evolution of the Peñón Rosado granite: petrogenesis of garnet- bearing granitoids.
- 646 Lithos, 95, 177-207.

- 647 Dahlquist, J.A., Pankhurst, R.J., Rapela, C.W., Galindo, C., Alasino, P., Fanning, C.M., Saavedra, J.,
- 648 Baldo, E., 2008. New SHRIMP U-Pb data from the Famatina complex: constraining Early-Mid
- 649 Ordovician Famatinian magmatism in the Sierras Pampeanas, Argentina. Geologica Acta 6, 319-333.
- 650 Dahlquist, J.A., Pankhurst, R.J., Gaschnig, R.M., Rapela, C.W., Casquet, C., Alasino, P.H., Galindo, C.,
- 651 Baldo, E.G., 2013. Hf and Nd isotopes in Early Ordovician to Early Carboniferous granites as monitors
- of crustal growth in the Proto-Andean margin of Gondwana. Gondwana Research,
- 653 http:c//dx.doi.org/10.1016/j.gr.2012.08.013.
- Debon, F., Le Fort, P., 1983. A chemical-mineralogical classification of common plutonic rocks and
 associations. Transactions of the Royal Society of Edinburgh, Earth Sciences 73, 135–149.
- De Paolo, D.J., Linn, A.M., Schubert, G., 1991. The continental crustal age distribution: methods of
 determining mantle separation ages from Sm-Nd isotopic data and application to the Southwestern
- United States. Journal of Geophysical Research 96, 2071-2088.
- Ducea, M.N., Otamendi, J.E., Bergantz, G., Stair, K.M., Valencia, V.A., Gehrels, G.E., 2010. Timing
- 660 constraints on building an intermediate plutonic arc crustal section: U–Pb zircon geochronology of the
- 661 Sierra de Valle Fértil-La Huerta, Famatinian arc, Argentina. Tectonics 29, TC 4002.
 662 http://dx.doi.org/10.1029/2009TC002615.
- 663 Erdmann, S., London, D., Morgan VI, G.B., Clarke, D.B., 2007. The contamination of granitic magma by
- 664 metasedimentary country-rock material: an experimental study. The Canadian Mineralogist 45, 43-61.
- 665 Erdmann, S., Jamieson, R.A., Michael A. MacDonald, M.A., 2009. Evaluating the Origin of Garnet,
- 666 Cordierite, and Biotite in Granitic Rocks: a Case Study from the South Mountain Batholith, Nova
- 667 Scotia. Journal of Petrology 50, 1477-1503.
- 668 Faure, G., 1986. Principles of isotope geology, Second Edition. John Wiley & Sons.
- 669 Finger, F., Clemens, J.D., 1995. Migmatization and "secondary" granitic magmas: effects of
- 670 emplacement and crystallization of "primary" granitoids in Southern Bohemia, Austria. Contributions
- to Mineralogy and Petrology 120, 311-326.
- Gardien, V., Thompson, A.B., Ulmer, P., 2000. Melting of biotite+plagioclase+quartz gneisses: the role
 of H₂O in the stability of amphibole. Journal of Petrology 41, 651–666.
- 674 Greenfield, J. E., Clarke, G.L., Bland, M., Clark, D. J., 1996. In-situ migmatite and hybrid diatexite at Mt
- 675 Stafford, central Australia. Journal of Metamorphic Geology 14, 413-426.

- 676 Harris, N., McMillan, A., Holness, M., Uken, R., Watkeys, M.K., Rogers, N. & Fallick A., 2003. Melt
- 677 generation and fluid flow in the thermal aureole of the Bushveld Complex, Journal of Petrology 44,678 1031-1054.
- 679 Holland, T.J.B., Blundy, J.D., 1994. Non-ideal interactions in calcic amphiboles and their bearing on
- amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology 116, 433-447.
- 681 Holland, T.J.B. and Powell, R., 1998. An internally-consistent thermodynamic dataset for phases of
- 682 petrological interest. Journal of Metamorphic Geology 16, 309-344.
- Holtz, F., Johannes, W., 1991. Genesis of peraluminous granites I. Experimental investigation of melt
 compositions at 3 and 5 kbar and various H₂O activities. Journal of Petrology 32, 935-957.
- 585 Jarosewich, E., Nelen, J.A., Norberg, J.A., 1980. Reference samples for electron microprobe analysis.
- 686 Geostandards Newsletter 4, 43–47.
- 687 Johnson, M.C., Rutherford, M.J., 1989. Experimental calibration of the aluminiun-in-hornblende
- 688 geobarometer with application to Long Valley Caldera (California) volcanic rocks. Geology 17, 837-
- 689 <mark>41</mark>.
- 690 Johnson, D.M., Hooper, P.R., Conrey, R.M., 1999. XRF analysis of rocks and minerals for major and
- trace elements on a single low dilution Li-tetraborate fused bead. Advances in X-ray Analysis 41, 843–
 867.
- Jordan, T.E. and Allrnendinger, R.W., 1986. The Sierras Pampeanas of Argentina: a modern analogue of
- Rocky Mountain foreland deformation. American Journal of Sciences, 286, 737-764.
- Jung, S., Hoernes, S., Masberg, P, Hoffer, E., 1999. The petrogenesis of some migmatites and granites
- 696 (Central Damara Orogen, Namibia): Evidence for disequilibrium melting, wall-rock contamination and
- 697 crystal fractionation. Journal of Petrology, 40, 1241-1269.
- 698 Kerrick, D. M., 1970, Contact metamorphism in some areas of the Sierra Nevada,. California: Geological
- 699 Society of America Bulletin 81, 2913–2938.
- 700 Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist 68, 277–279.
- 701 Le Maitre, R. W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M. J., Sabine, P. A., Schmid,
- 702 R., Sorensen, S., Streckeisen, A., Woolley, A.R. & Zanettin, B., 1989. A Classification of Igneous
- 703 Rocks and Glossary of Terms. Oxford: Blackwell Scientific.
- 704 McGuire, A.V., Francis, C.A., Diar, M.D., 1992. Mineral standards for electron microprobe analysis of
- 705 oxygen. American Mineralogist 77, 1087–1091.

- 706 Miller, H., Söllner, F., 2005. The Famatina Complex (NW Argentina): back-docking of an island arc
- terrane accretion? Early Palaeozoic geodynamics at the western Gondwana margin, in: Vaughan,
- A.P.M., Leat, P.T., Pankhurst, R.J. (Eds.), Terrane Processes at the Margins of Gondwana. Journal of
- the Geological Society of London, Special Publications, 246, 241-256.
- 710 Milord, I., Sawyer, E.W., Brown, M., 2001. Formation of diatexite migmatites and granite magma during
- anatexis of metasedimentary rocks: An example from St. Malo, France. Journal of Petrology 42, 487-
- 712 505.
- Montel, J.-M., 1993. A model for monazite/melt equilibrium and the application to the generation of
 granitic magmas. Chemical Geology 110, 127-146.
- Montel, J.M., Vielzeuf, D., 1997. Partial Melting of metagreywackes, Part II. Compositions of minerals
 and melts. Contribution to Mineralogy and Petrology 128, 176-196.
- 717 Nabelek, P.I., Glascock, M.D., 1995. REE-depleted leucogranites, Black Hills, South Dakota: a
- consequence of disequilibrium melting of monazite-bearing schists. Journal of Petrology 36, 1055–71.
- 719 Nabelek, P.I., Hofmeister, A., Whittington, A.G., 2012. The influence of temperature-dependent thermal
- diffusivity on the conductive cooling rates of plutons and temperature-time paths in contact aureoles.
- Earth and Planetary Science Letters 317, 157–164.
- 722 Nakamura, N., 1974. Determination of REE, Ba, Mg, Na and K in carbonaceous and ordinary chondrites.
- Geochimica et Cosmochimica Acta 38, 757-773.
- Naney, M.T., 1983. Phase equilibria of rock-forming ferromagnesian silicates in granites systems.
 American Journal of Science, 283, 993-1033.
- 726 Otamendi, J.E., Ducea, M.N., Tibaldi, A.M., Bergantz, G., de la Rosa, J.D., Vujovich, G.I., 2009.
- Generation of tonalitic and dioritic magmas by coupled partial melting of gabbroic and
 metasedimentary rocks within the deep crust of the Famatinian magmatic arc, Argentina. Journal of
 Petrology 50, 841–873.
- 730 Otamendi, J.E., Ducea, M.N., Bergantz, W., 2012. Geological, petrological and geochemical evidence for
- progressive construction of an arc crustal section, Sierra de Valle Fértil, Famatinian Arc, Argentina.
 Journal of Petrology 53, 761-800.
- 733 Pankhurst, R.J., Rapela, C.W., Saavedra, J., Baldo, E., Dahlquist, J., Pascua, I. & Fanning, C.M., 1998.
- The Famatinian magmatic arc in the southern Sierras Pampeanas, in Pankhurst, R.J., Rapela , C.W.

- (Eds), The Proto-Andean Margin of Gondwana. Geological Society of London, Special Publications
 142, 343-367.
- Pankhurst, R.J., Rapela, C.W., Fanning, C.M., 2000. Age and origin of coeval TTG, I–S-type granites in
 the Famatinian belt of NW Argentina. Transactions of the Royal Society of Edinburgh, Earth Sciences
- 739 91, 151-168.
- Paterson, S.R., Vernon, R.H., Fowler, T.K., 1991. Aureole tectonics. Mineralogical Society of America
 Reviews in Mineralogy 23, 673-722.
- Paterson, S., Farris, D., 2008. Downward host rock transport and the formation of rim monoclines during
 the emplacement of Cordilleran batholiths. Transactions of the Royal Society of Edinburgh: Earth
 Sciences, 97, 397-413.
- Patiño Douce, A.E., 1999. What do experiments tell is about the relative contributions of the crust and
- mantle to the origin of granitic magmas?, in: Castro, A., Fernandez, C. and Vigneresse, J., (Eds.),
- 747 Understanding Granites: Integrating New and Classical Techniques. Geological Society, London,
 748 Special Publications 168, 55-75.
- 749 Patiño Douce, A.E., Johnston, A.D., 1991. Phase equilibria and melt productivity in the pelitic system:
- implications for the origin of peraluminous granitoids and aluminous granulites. Contribution to
- 751 Mineralogy and Petrology 107, 202-218.
- Patiño Douce, A.E., Harris, N., 1998. Experimental constraints on Himalayan Anatexis. Journal of
 Petrology, 39, 689-710.
- Pattison, D.R.M., 1992. Stability of andalusite and sillimanite and the Al₂SiO₅ triple point: constraints
 from the Ballachulisch aureole. Scottish Journal of Geology 100, 423-446.
- Pattison, D.R.M., Harte, B., 1985. A petrogenetic grid for pelites in the Ballachulish and other Scottish
 thermal aureoles. Journal of the Geological Society of London 142, 7-28.
- 758 Peterson, J.W. and Newton, R.C., 1989. Reversed experiments on biotite-quartz-feldspar melting in the
- system KMASH: implications for crustal anatexis. Journal of Geology 97: 465-486.
- Powell, R., Holland, T.J.B., 1988. An internally consistent data set with uncertainties and correlations: 3.
- 761 Applications to geobarometry, worked examples and a computer program. Journal of
- 762 Metamorphic Geology 6, 173-204.

- Rapela, C.W., Toselli, A., Heaman, L., Saavedra, J., 1990. Granite plutonism of the Sierras Pampeanas:
- an inner cordilleran Paleozoic arc in the Southern Andes, in: Kay, S.M., Rapela, C.W. (Eds.),
- 765 Plutonism from Antarctica to Alaska: Geological Society of America, Special Paper, 241, pp. 77–90.
- 766 Rastall, R.h., 1910. The Skiddaw granite and its metamorphism. Quarterly Journal of the
- 767 Geological Society of London, 66. 116-141.
- 768 Rubie, D.C., Brearley, A.J., 1990. A model for rates of disequilibrium melting during metamorphism, in:
- Ashworth, J.R., Brown, M. (Eds.), High Temperature Metamorphism and Crustal Anatexis. Unwin
 Hvman, London 57-86.
- Saavedra, J., Pellitero, E., Rossi, J., Toselli, A., 1992. Magmatic evolution of the Cerro Toro granite, a
 complex Ordovician pluton of Northwestern Argentina. Journal of South American Earth Science, 5,
 21-32.
- Saavedra, J., Toselli, A., Rossi, J., Pellitero, E., 1996. Granitoides y rocas básicas del Cerro Toro, in:
 Aceñolaza, F.G., Miller, H., Toselli, A.J. (Eds.), Geología del Sistema de Famatina. Münchner
 Geologische Hefte, Reihe A, 19(6), 229-240.
- 577 Saavedra, J., Toselli, A., Rossi, J., Pellitero, E., Durand, F., 1998. The Early Palaeozoic magmatic record
- of the Famatina System: a review, in: Pankhurst, R.J., Rapela, C.W. (Eds.), The Proto-Andean Margin
- of Gondwana. Journal of the Geological Society of London, Special Publication, 142, 283-295.
- 780 Saito, S., Arima, M., Nakajima, T., 2007. Hybridization of a shallow 'I-type' granitoid pluton and its host
- migmatite by magma-chamber wall collapse: the Tokuwa Pluton, Central Japan. Journal of Petrology,
 48, 79-111.
- Sawyer, E.W., 1987. The role of partial melting and fractional crystallization in determining discordant
 migmatite leucosome compositions. Journal of Petrology 28, 445-473.
- Sawyer, E.W., 1991. Disequilibrium Melting and the Rate of Melt–Residuum Separation During
 Migmatization of Mafic Rocks from the Grenville Front, Quebec. Journal of Petrology 32, 701-738.
- 787 Sawyer, E.W., 1999. Criteria for the recognition of partial melting. Physics and Chemistry of the Earth
- 788 24, 269-279.
- Sawyer, E.W., 2008. Atlas of Migmatites, Canadian Mineralogist Special Publication 9, Mineralogical
 Association of Canada, Quebec, Canada, 373 pp.
- 791 Sawyer, E.W., 2010. Migmatites formed by water-fluxed partial melting of a leucogranodiorite protolith:
- 792 Microstructures in the residual rocks and source of the fluid. Lithos 116, 273–286

- Spear, F.S. and Cheney, J.T., 1989. A petrogenetic grid for pelitic schists in the system SiO₂ Al₂O₃ -793
- 794 FeO - MgO - K₂O - H₂O. Contributions to Mineralogy and Petrology, 101, 149-164.
- Spear, F.S., Matthew, J.K., Cheney, J.T., 1999. P-T paths from anatectic pelites. Contributions to 795 796 Mineralogy and Petrology 134, 17-32.
- 797 Steiger, R.H., Jäger, E., 1977. Subcommision of geochronology: convention on the use of decay constants
- 798 in geo- and chosmochronology. Earth Planet. Sci. Lett. 1, 369-371.
- 799 Toselli, A.J., Rossi de Toselli, J.N., Saavedra, J., Pellitero, E., Medina, M.E., 1988. Aspectos Petrológicos
- 800 y Geoquímicos de los Granitoides del entorno de Villa Castelli, Sierras Pampeanas Occidentales -
- 801 Sistema de Famatina. 5° Congreso Geológico Chileno, Actas 3: I1 7-I28.
- 802 Ugidos, J.M., Recio, C., 1993. Origin of cordierite-bearing granites by assimilation in the Central Iberian
- 803 Massif (CIM), Spain. Chemical Geology 103, 27-43.
- 804 Vernon, R.H., 2004. A Practical Guide to Rock Microstructure. Cambridge, UK, Cambridge University 805 Press, 594 pp.
- 806 Vernon, R.H., 2011. Microstructures of melt-bearing regional metamorphic rocks, in van Reenen, D.D.,
- 807 Kramers, J.D., McCourt, S., Perchuk, L.L. (Eds.), Origin and Evolution of Precambrian High-Grade
- 808 Gneiss Terranes, with Special Emphasis on the Limpopo Complex of Southern Africa: Geological
- 809 Society of America Memoir 207, 1–11.
- 810 Vidal, P., Cocherie, A., Le Fort P., 1982. Geochemical investigations of the origin of the Manaslu
- 811 leucogranite (Hymalaya Nepal). Geochimica et Cosmochimica Acta 46, 2279-2292.
- 812 Vielzeuf, D., Holloway, J.R., 1988. Experimental determination of the fuid-absent melting relations in the
- 813 pelitic system. Consequence for crustal differentiation. Contributions to Mineralogy and Petrology 98, 814 257-276.
- 815 Villaseca, C., Barbero, L., Herreros, V., 1998. A re-examination of the typology of peraluminous granite
- 816 types in intracontinental orogenic belts. Transactions of the Royal Society of Edinburgh, Earth Sciences 817 89, 113-119.
- Watkins, J.M., Clemens, J.D., Treloar, P.J., 2007. Archaean TTGs as sources of younger granitic 818 819 magmas: melting of sodic metatonalites at 0.6-1.2 GPa. Contributions to Mineralogy and Petrology
- 820 154, 91–110.

- Watson, E.B., Harrison, T.M., 1984. Accessory minerals and the geochemical evolution of crustal
 magmatic systems: a summary and prospectus of experimental approaches. Physics of the Earth and
- Planetary Interiors 35, 19–30
- Yardley B.W.D., Long, C.B., 1981. Contact metamorphism and fluid movement around the Easky
 adamellite, Ox Mountains, Ireland. Mineralogical Magazine 44, 125-131.
- 826 Yardley B.W.D., Barber, J.P., 1991. Melting reactions in the Connemara Schists: The role of water
- 827 infiltration in the formation of amphibolite facies migmatites. American Mineralogist, 76, 848-856.
- 828 Zeng, L., Saleeby, J. B., Asimow, P., 2005. Nd isotope disequilibrium during crustal anatexis: a record
- from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California. Geology 33,
- 830 53-56.
- 831
- 832
- 833
- 834

Figure 1. Alasino et al.

Figure 2. Alasino et al.

Figure 3. Alasino et al.

Figure 4. Alasino et al.

Figure 5. Alasino et al.

Figure 6. Alasino et al.

Figure 7. Alasino et al.

Figure 9. Alasino et al. -3 $\epsilon_{\scriptscriptstyle Nd}$ 388 ³⁹⁸group I 397 -5 0 346 -7 group II Ordovician metasediments of W Famatina 333 -9 0.70 0.71 0.72 ⁸⁷Sr/⁸⁶Sr_i

Figure 10. Alasino et al.

Figure 11. Alasino et al.

A=Al-Na-K-2Ca 00 (a). (b) biotite Ħ 5 cordierite (h-p-g) 2 5 atite 10 EeOt+WgO 5 4 K₂O 50 3 o hybrid K-feldspar hybrid (m-p-g gneiss 4 0 muscovite 🏲 HH 283 2 d) n Qtz & Pl (f-p-g) 27.382 cotonalite e-rich part) 💥 * (resid fractionated melt 2 3 4 5 4 6 8 50 100 K₂O B=Fe+Mg+Ti CaO+Na₂O

Figure 12. Alasino et al.

Figure 1. Simplified geological maps of NW Argentina: (a), Sierras Pampeanas; (b), Western Sierra de Famatina. Key for Fig. 1(a): F, Sierra de Famatina; V, Sierra de Velasco; SF, Sierra de Valle Fértil. In figure 1(b) from W to E the external, intermediate and internal zones. Limit between external and intermediate zones is not visible, as a reference to this take the Vinchina river. The intermediate and internal zone is limited by red dashed line, this corresponds to main intrusive contact. In the intermediate zone, the domains I (D-I), II (D-II) and III (D-III) are based on the predominance of specific rock-types: D-I, Bt-Sill±Crd migmatite blocks; D-II, Bt-Sill±Grt±Crd migmatite blocks; and D-III, Bt±Amp±Cpx±Kfs hybrid rocks. PRP Peñón Rosado pluton. Sample FAM175 is outside the mapped area (see Supplementary data).

Figure 2. Field photographs (a) migmatite rocks from external zone; (b) common texture of leucogranitoids of the intermediate zone; (c) euhedral cordierite (note that it overprints the migmatitic foliation) in migmatites of the intermediate zone; (d) garnet crystals in a homogenous diatexite of the domain II, intermediate zone.

Figure 3. Intermediate zone: (a) migmatitic blocks of domains I (Crd-bearing) and II (Crd-Grt-bearing) surrounded by leucogranitoid sheeted bodies; (b) dismembering of an amphibolite layer leading to many stoped blocks within leucogranitic magma, partly concordant with the regional structure of the aureole; (c) mingling between the tonalitic unit and leucogranitoids; (d) gradual transition of hybrids to leucogranitoids without signs of retrogression; (e) gradual transition of tonalite and hybrid sheets, the latter containing mafic enclaves; (f) leucogranitoid intruding tonalite at the main intrusive contact (i.e., the boundary between intermediate and internal zones).

Figure 4. Diagram illustrating the sequence of processes that we infer for the generation of the rocks in the Cerro Toro aureole.

Figure 5. (a) Euhedral cordierite encloses foliation-forming biotite and fibrolite in a diatexite block of the domain-II, intermediate zone. (b) Hybrid rocks in the intermediate zone showing skeletal plagioclase core surrounded by more albitic rim. (c) Amphibole with rounded inclusions of quartz and plagioclase in a hybrid of the intermediate zone. (d) Monomineralic plagioclase domain in a Bt-leucotonalite of the intermediate zone (specimen FAM398). (e) K-feldspar as interstitial crystals or filling cavities forming micro-veins in partially dissolved plagioclase (Bt-leucotonalite of the intermediate zone, sample FAM399). (f) Leucogranite (FAM397) showing genuine granite texture with euhedral Ab-rich plagioclase. (g) Twinned K-feldspar with unzoned plagioclase showing convex boundaries (sample FAM333). To the left, a partially dissolved pre-existing plagioclase crystal. (h) Titanite associated with K-feldspar in leucogranite (FAM397). (i) Corroded and partially dissolved pre-existing plagioclase contained in anatectic granitoids (sample FAM388). Photo width is 4 mm, except in (c) it is 8 mm. For more information, see text and Table 1.

Figure 6. The four main groups of biotite recognized in the Cerro Toro aureole based on textural (a) and chemical (b) criteria. Type 1, metamorphic biotite; Type 2, partially decomposed or re-equilibrated type 1 biotite; Type 3, magmatic biotite hosted in leucogranitic magmas; Type 4, magmatic biotite belonging to the tonalitic unit. In (a) black corresponds to opaque minerals. In (b) the numbers in boxes correspond to those of analysed samples. For more information, see Table 1 and supplementary data.

Figure 7. Whole-rock major and trace element abundances of the Cerro Toro aureole (western Famatina). Mg-number [100*MgO/(MgO+FeO*) molar]. ASI [Al₂O₃/(Na₂O+K₂O+CaO) molar]. K₂O vs SiO₂ diagram with classification boundaries after Le Maitre et al. (1989). For more information, see Table 1.

Figure 8. Chondrite-normalised (after Nakamura, 1974) REE plots of metamorphic and igneous rocks of the Cerro Toro aureole. For more information, see Table 1.

Figure 9. ϵ Nd vs. ⁸⁷Sr/⁸⁶Sr initial plot of metamorphic and igneous rocks from the Cerro Toro aureole. Symbols as in figure 7. Four samples (three tonalites = VCA 7038, 7039, 7040 and one hybrid = FAM7086) are from Dahlquist and Galindo (2004). The grey dashed line is a hypothetical simple two-component mixing trajectory.

Figure 10. P-T projection showing thermobarometric results from migmatite (FAM143), amphibolite (VCA7009) and tonalite (ASP120). Metamorphic evolution of the metasedimentary rocks is well

explained by reactions 1 through 7 (see text). Reactions 1 and 4 were not included. Reactions 2, 3 and 5 in the NaKMASH system are from Spear et al. (1999). Reactions 6 and 7 are from Büsch (1974) and Peterson and Newton (1989), respectively. The Al_2SiO_5 triple point is from Pattison (1992). The grey arrow indicates nearly isobaric heating path from the external to the innermost intermediate zone of the Cerro Toro aureole.

Figure 11. Back-scattered electron (BSE) images showing the location of electron microprobe spots for plagioclase crystals contained in a leucogranite sample and their corresponding anorthite (An) profiles (A, B and C). An-content of plagioclases from tonalite, hybrid (intermediate zone) and migmatite are also shown. For more information, see Table 1 and Supplementary data.

Figure 12. (a) K_2O versus FeO^t+MgO and (b) CaO+Na₂O versus K_2O diagrams showing metasedimentary rocks, hybrids, tonalites and leucogranitoids of the Cerro Toro aureole. In (a) the vectors for K-feldspar, muscovite, quartz + plagioclase and biotite also are shown. (c) A–B diagram after Debon and Le Fort (1983) and Villaseca et al. (1998), showing compositions of experimentally derived melts under water-absent and water-present partial melting at mid-crustal conditions [1, Vielzeuf and Holloway (1988); 2, Holtz and Johannes (1991); 3, Finger and Clemens (1995); 4, Montel and Vielzeuf (1997); 5, Patiño Douce and Johnston (1991); 5, Castro (2004)]. Natural series: HH High Himalaya (Vidal et al., 1982). Fields are: f-p-g (felsic peraluminous granitoids); h-p-g (highly peraluminous granitoids); m-p-g (moderately peraluminous granitoids); and l-p-g (low peraluminous granitoids). Symbols are as in figure 7.

Figure 13. Model for the formation of isotopic heterogeneities by crystal-melt separation from hybridization zone (after Beard, 2008). (a) Voluminous metaluminous magmas (87 Sr/ 86 Sr = 0.7076) intruded as sheets into partially molten metasedimentary country-rocks (87 Sr/ 86 Sr = 0.7165) under amphibolite facies conditions. (b) Extensive hybridization (87 Sr/ 86 Sr = 0.7103) in the intermediate zone took place. Black and yellow rectangles represent antecrysts from metasedimentary rocks and tonalites (respectively). Antecrysts retain their isotopic features. New plagioclase (orange rectangle) partly composed of country-rock material and partly composed of I-type magmatic material is formed. (c) Variable crystal-melt separation from hybridization zone forming neocrysts (sky-blue rectangles) and crystal overgrowths (sky-blue rims). 87 Sr/ 86 Sr ratios will depend on the proportions of antecrysts and neocrystals. In the figure, numbers in parentheses without denomination of sample represent average of initial 87 Sr/ 86 Sr ratios from Table 4.

Figure 14. 87 Sr/ 86 Sr initial versus Sr content of metamorphic and igneous rocks from the Cerro Toro aureole. Four samples (three tonalites = VCA 7038, 7039, 7040 and one hybrid = FAM7086) were taken from Dahlquist and Galindo (2004). Symbols are as in figure 7.

Table 1. Summary of petrographic characteris	stics		
General type rock	An% in	Biotite type ⁺	Accessory mineral
Essential minerals	plagioclase		
Regional gneisses			
quartz > plag > biotite	n.d	n.d	Opq, Fib and Ms*
Regional metatexites			
quartz > biotite > plag	14-15	type-1	Opq, Fib, Ap, Ms*
Diatexite blocks of the intermediate zone			
$Domain \ I = quartz > plag > biotite > cordierite$	e 15-36	type-1	Opq, Fib, Ap, Kfs, Ms*
Domain II = quartz > plag > biotite >	15-32	type-2	Opq, Fib, Ap, Kfs, Ms*
cordierite > garnet			
Regional tonalites			
plag > quartz > biotite > hornblende	48-53	type-4	Ep, Qpq, Kfs
Hybrid rocks of the intermediate zone			
plag > quartz > biotite	core 39-43; rim33	type-2	Ep, Opq, Mon, Zrn, Ms*,
			±Amp, ±Cpx, ±Kfs, relic Opx
Hybrid rocks of the internal zone			
plag > quartz > biotite	core 39-45; rim 24-30	type-4	Bt, Hbl, Ep, Opq, Ap, ±Kfs
Leucogranite rocks of the intermediate zon	e		
quartz > K-feldspar > plag	11-25	types-2 and -3	Bt, Ep, Ttn, Ap, Ms*
Leucotonalite rocks of the intermediate zor	ie		
$plag > quartz > \pm K$ -feldspar	17-42	type-2	Bt, Ep, Ttn, Ap, Opq, Ms*
Mineral abbreviations from Kretz (1983). plag = plagic criteria (see text).	oclase. $Ms^* =$ secondary m	uscovite. ⁺ Types of	biotite based on textural and chemical

	External zone								_	Inte	ermediate	e zone	
Unit	Gg	Gg	Mg	То	То	То	То	То	Gg	Mg	Mg	Mg	Mg
Sample	FAM	VCA	FAM	FAM	FAM	VCA	VCA	VCA	FAM	FAM	FAM	FAM	FAM
	391	1004	349	115	120	7038	7039	7040	203	135	143	145	339
SiO ₂	71.77	74.96	59.25	62.94	61.13	62.71	62.67	60.52	71.33	64.65	60.72	63.31	65.8
TiO ₂	0.76	0.77	1.17	0.65	0.68	0.61	0.71	0.93	0.76	0.56	0.79	0.89	0.78
Al_2O_3	11.92	10.93	19.40	15.57	15.69	16.22	15.88	16.1	13.62	15.82	17.53	16.01	17.89
FeO*	4.20	4.43	9.01	6.1	6.53	5.84	6.2	7.09	4.68	6.26	7.35	6.15	6.47
MnO	0.08	0.09	0.15	0.14	0.14	0.13	0.13	0.14	0.09	0.16	0.23	0.15	0.12
MgO	1.66	1.65	3.21	2.69	2.69	2.59	2.49	2.88	1.93	2.46	3.15	2.68	2.65
CaO	1.57	0.85	0.80	4.97	5.5	4.84	5.5	4.43	1.56	1.02	1.09	0.89	0.83
Na ₂ O	2.67	1.46	1.99	2.18	2.68	2.65	2.82	2.15	2.26	1.78	1.60	1.98	2.15
K ₂ O	2.34	2.48	4.90	1.99	2	2.35	1.9	2.73	3.18	3.70	3.76	4.18	3.12
P_2O_5	0.20	0.18	0.13	0.16	0.17	0.26	0.19	0.25	0.07	0.10	0.09	0.15	0.19
Total	97.17	97.80	100	97.39	97.21	98.2	98.49	97.22	99.48	96.51	96.31	96.39	100
ррт													
Cs	3.5	5.39	9.58	4.94	8.68	0.7	5.3	2.4	2.6	4.51	6.67	4.35	8.39
Rb	100	96	198	96.5	243	10	108	70	88	137	169	143	149
Sr	147	182	104	196	54.5	140	159	194	126	138	114	110	105
Ba	276	342	623	310	226	41	266	410	553	1180	565	493	403
La	38.9	26.29	56.6	32.6	26.5	4.13	28.8	26	49.8	59.0	59.8	56.2	49.2
Ce	77	51.8	118	62.9	56.3	11.5	64.8	59.5	106	123	121	117	104
Pr	nd	5.61	13.4	6.4	5.99	1.3	5.63	5.7	11.9	13.1	12.8	12.3	11.9
Nd	39	22.3	49.6	24.3	22.3	6.15	20.2	22.3	45.4	50.8	48.9	47.4	44.7
Sm	7.29	5.11	10.0	5.19	5.52	1.62	3.67	4.88	9.97	9.88	9.44	9.65	9.32
Eu	1.37	1.27	1.88	1.21	0.67	0.53	0.82	1.14	1.55	1.71	1.74	1.82	1.86
Gd	nd	4.88	8.42	4.68	4.85	1.78	2.29	3.95	9.84	7.72	7.93	8.11	8.3
Tb	1.1	0.86	1.34	0.84	0.9	0.3	0.39	0.64	1.78	1.14	1.47	1.35	1.42
Dy	nd	4.83	8.09	4.79	5	1.94	2.62	4.26	11.1	5.86	8.68	7.38	9.13
Ho	nd	0.98	1.62	1.02	0.9	0.4	0.51	0.84	2.39	1.07	1.81	1.41	1.98
Er	nd	2.97	4.43	2.99	2.54	1.18	1.44	2.41	7.29	3.13	5.71	4.45	5.78
Tm	nd	0.42	0.56	0.44	0.36	0.18	0.20	0.36	1.08	0.43	0.88	0.65	0.92
Yb	3.26	2.58	4.08	2.59	2.07	1.06	1.22	2.27	7.02	2.57	5.46	4.06	5.89
Lu	0.49	0.40	0.63	0.39	0.3	0.16	0.18	0.34	1.06	0.41	0.86	0.64	0.94
U	2.9	0.80	2.58	0.54	2.23	0.21	0.68	0.58	2.17	3.11	2.36	3.27	7.99
Th	11.7	5.36	20.4	6.87	12.3	0.89	9.37	5.53	23.4	20.5	19.2	17.9	17.7
Y	30	24.6	40.8	22.0	24.3	10.8	14.3	24.4	67.1	25.3	43.2	34.8	50.1
Nb	nd	10.5	20.3	9.65	16.9	2.9	8.9	9.2	11.1	10.6	15.7	18.1	15.5
Zr	392	154	238	147	87.1	25	130	163	294	202	211	247	155
Hf	9.8	4.5	6.62	4.48	3.17	0.8	3.2	3.9	8.2	6.5	6.45	7.77	4.57
Та	< 0.3	0.55	1.24	0.52	1.56	0.08	0.55	0.46	0.81	0.88	1.03	1.28	1.25
#Mg	41.3	39.9	38.8	44	42.3	44.1	41.7	42	42.4	41.2	43.3	43.7	42.2
ASI	1.28	1.76	2.00	1.08	0.97	1.08	0.98	1.15	1.39	1.85	2.07	1.77	2.24

Table 2. Major and trace element concentrations of igneous and metamorphic rocks from the Cerro Toro aureole, W

 Sierra de Famatina.

Major element oxides and trace elements were analysed by ACTLABS Canada and GeoAnalytical Lab (WSU), see text. nd: not determined. Gg, gneiss; Mg, migmatite; To, tonalite; Lgt, leucogranite; Lto, leucotonalite; Hy, hybrid; #Mg, magnesium number = 100*MgO/(MgO+FeO*) molar. ASI, aluminum saturation index = $Al_2O_3/(Na_2O+K_2O+CaO)$ molar.

 Table 2. Continuation

	Intermediate zone											Intern	al zone
Unit	Mg	Lgt	Lgt	Lgt	Lgt	Lgt	Lto	Lto	Lto	Lto	Hy	Hy	То
Sample	FAM	FAM	FAM	FAM	FAM	FAM	FAM	FAM	FAM	FAM	FAM	FAM	FAM
	335	346	388	394	397	333	326	329	398	399	332	212	213
SiO_2	66.33	76.31	72.94	77.13	76.97	74.44	71.09	75.13	74.12	77.73	66.55	68.74	62.55
TiO ₂	0.83	0.12	0.21	0.05	0.12	0.2	0.27	0.35	0.367	0.17	0.57	0.38	0.629
Al_2O_3	16.05	13.19	14.14	12.24	12.45	14.15	15.85	13.14	13.68	12.78	16.69	15.25	16.99
FeO*	6.32	0.97	1.87	0.87	1.32	1.42	2.82	2.83	2.68	1.08	4.63	3.56	5.85
MnO	0.17	0.05	0.04	0.02	0.03	0.05	0.08	0.05	0.03	0.02	0.09	0.08	0.13
MgO	3.03	0.22	0.52	0.05	0.14	0.51	0.63	0.85	0.9	0.55	1.52	1.11	2.25
CaO	0.93	1.63	2.64	0.84	1.54	2.2	3.88	3.41	2.29	1.14	4.19	3.91	5.38
Na ₂ O	1.53	3.36	2.66	3.07	3.11	3.13	4.31	2.9	4.49	5.08	3.26	3.02	2.35
K ₂ O	4.73	4.11	4.56	4.98	4.07	3.88	1.02	1.33	1.22	1.76	2.34	2.98	2.07
P_2O_5	0.07	0.04	0.06	0.01	0.02	0.03	0.04	0.02	0.05	0.02	0.17	0.10	0.16
Total	99.99	100	99.64	99.26	99.77	100	99.99	100	99.83	100.3	100	99.13	98.36
ррт													
Cs	2.86	2.33	1.4	0.7	1.4	7.58	1.87	4.61	1.3	0.8	6.87	4.5	6.3
Rb	120	157	90	170	90	119	41.1	69.4	40	50	122	111	112
Sr	119	60.5	127	15	87	121	171	145	193	112	140	164	217
Ba	867	340	555	30	695	445	121	97.1	267	166	241	605	406
La	51.5	32.5	24.1	12.6	17.9	2.37	17.9	7.11	43	29.5	7.85	45.6	7.99
Ce	110	69.4	46	24	32	4.29	28.5	11.8	78	51	15.1	89.9	20
Pr	12.4	8.26	nd	nd	nd	0.52	2.86	1.23	nd	nd	1.95	9.48	2.92
Nd	45.8	31.5	20	9	12	1.99	9.36	4.13	36	20	8.53	33.2	14.3
Sm	8.85	7.24	2.44	2.13	1.71	0.63	1.66	0.77	5.12	2.31	2.69	5.95	3.98
Eu	1.67	0.83	0.82	0.31	0.95	0.99	0.86	0.91	1.16	0.7	1.13	1.1	1.11
Gd	6.69	6.91	nd	nd	nd	1.04	1.38	0.65	nd	nd	3.35	4.91	4.32
Tb	0.96	1.18	< 0.1	< 0.1	< 0.1	0.27	0.21	0.1	0.7	0.1	0.54	0.76	0.76
Dy	5.03	7.55	nd	nd	nd	2.18	1.22	0.6	nd	nd	2.98	4.29	4.51
Ho	0.9	1.59	nd	nd	nd	0.53	0.25	0.12	nd	nd	0.57	0.85	0.91
Er	2.27	4.66	nd	nd	nd	1.67	0.72	0.38	nd	nd	1.49	2.5	2.74
Tm	0.32	0.74	nd	nd	nd	0.28	0.11	0.07	nd	nd	0.21	0.39	0.43
Yb	2	4.91	1.96	1.47	1.29	1.91	0.74	0.56	1.86	0.73	1.38	2.5	2.78
Lu	0.33	0.79	0.29	0.25	0.19	0.33	0.13	0.11	0.29	0.1	0.22	0.37	0.43
U	1.91	1.82	0.8	3.2	1	1.17	0.97	1.75	1.4	0.5	0.89	2.01	2.15
Th	29.9	18.2	3.9	21	5.1	1.97	2.07	1	10.1	2.7	1.62	17.6	1.47
Y	22.6	41.8	18	10	11	15.4	6.71	3.55	19	6	14.3	23.7	25
Nb	11.6	10.1	nd	nd	nd	4.38	8.08	8.77	nd	nd	15.4	8.8	7.7
Zr	222	84.2	97	71	118	115	123	96.3	202	108	208	125	167
Hf	6.45	3.25	3.5	3.8	3.2	3.91	3.7	3.29	5.4	4	5.38	3.7	4.5
Та	0.93	0.6	< 0.3	< 0.3	0.6	0.83	0.31	0.83	< 0.3	0.9	1.6	0.83	0.72
#Mg	46.1	28.8	1.01	1.02	1.01	39	28.5	34.9	37.4	47.6	36.9	35.7	40.7
ASI	1.75	1.03	1.40	0.70	1.4	1.07	1.05	1.06	1.07	1.04	1.11	1.01	1.10

 Table 3. Summary of thermobarometric results.

1. Sample VCA7009, an amphibolite of the Cerro Asperecito, external zone								
Holland and Blundy (1994)	(Ed-Tr) at 5kb $T = 694 \pm 40 \ ^{\circ}\text{C}$						
-		(Ed	d-Tr) at 5	kb T	$= 700 \pm 40$	0 °C		
2. Sample FAM143, a	Crd-Grt n	nigmatite	block of	the domai	n-II, inter	mediate :	zone ⁺	
Activities and their		phl	ann	ру	gr	alm	spss	an
uncertainties	а	0.0194	0.0570	0.00200	4.90e-5	0.320	0.00220	0.430
	sd(a)/a	0.44450	0.34057	0.68750	0.83534	0.15000	0.68112	0.09747
		ab	crd	fcrd	mncrd	san	ab	
	а	0.670	0.330	0.190	0.00068	0 0.860	0.40	0
	sd(a)/a	0.05000	0.13467	0.19093	14.70588	0.0500	00 0.108	300
	activity 1	= Sill, H	$_2$ O, Qtz					
Independent set of	1) gr + 2	sill + q =	3an					
reactions	2) 2py +	4sill + 5c	q = 3 crd					
	3) 2spss	+ 4sill + 3	5q = 3mn	crd				
	4) 5ann -	+ 6fcrd $=$	9alm + 5s	$san + 5H_2$	O + 3sill			
	5) 5gr +	3fcrd + 6	sill = 2alr	n + 15an				
	6) phl +	6an = py	+2gr + sa	$an + H_2O$	+ 3sill			
Results	T = 751 °	C, sd = 5	1,					
	P = 4.6 k	bars, sd =	= 0.7, cor	= 0.833,	sigfit = 0.	61		
3. Sample ASP120, a	tonalite of	the Cerro	o Toro co	mplex, ex	ternal zon	е		
Holland and Blundy (1994)		Hbl-Pl	T :	$= 746 \pm 40$	0°C		
Johnson and Rutherford (1989) Al-in-Hbl $P = 5.3 \pm 0.5$ kban								0.5 kbars
4. A tonalite of the Ce	rro Toro d	complex*,	intermed	liate zone				
Johnson and Rutherfor	rd (1989)		Al-in-Ht	ol		Ĺ	$P = 5.4 \pm$	0.5 kbars
THERMOCALC software (Powell & Holland, 1988) and the updated version of the ds55 thermodynamic data set								
3) $2spss + 4sill + 5q = 3mncrd$ 4) $5ann + 6fcrd = 9alm + 5san + 5H_2O + 3sill$ 5) $5gr + 3fcrd + 6sill = 2alm + 15an$ 6) $phl + 6an = py + 2gr + san + H_2O + 3sill$ $T = 751 \ ^{\circ}C, \ sd = 51,$ $P = 4.6 \ kbars, \ sd = 0.7, \ cor = 0.833, \ sigfit = 0.61$ 3. Sample ASP120, a tonalite of the Cerro Toro complex, external zone Holland and Blundy (1994) Hbl-Pl $T = 746 \pm 40 \ ^{\circ}C$ Johnson and Rutherford (1989) Al-in-Hbl $P = 5.3 \pm 0.5 \ kbars$ 4. A tonalite of the Cerro Toro complex*, intermediate zone Johnson and Rutherford (1989) Al-in-Hbl $P = 5.4 \pm 0.5 \ kbars$								

(November, 2003; Holland & Powell, 1998). Activity calculated with AX software at 5 kbars and 750° C. *Sample from Saavedra et al. (1996). For mineral chemistry see supplementary electronic data.

Table 4. Rb-Sr and Sm-Nd data for some metamorphic and igneous rocks of the Cerro Toro aureole, Western Sierra de Famatina.

	SiO_2	Age (Ma)	Rb	Sr	86 Rb/ 87 Sr	$({}^{87}{ m Sr}/{}^{86}{ m Sr})_{today}$	$({}^{87}\text{Sr}/{}^{86}\text{Sr})_t$	εSr(t)	Rock type
Metasedime	entary re	ock							
FAM349	59.25	481	211	106	5.7955	0.752604	0.712885	127	Mg
FAM391	71.77	481	100	147	1.9727	0.731227	0.717707	196	Gg
FAM143	60.72	481	158	119	3.8619	0.74267	0.716202	174	Mg
FAM339	65.80	481	137	115	3.4491	0.742651	0.719012	214	Mg
Regional To	onalite, i	internal zon	е						
FAM175	66.50	481	58	235	0.7178	0.712539	0.707619	52	То
Hybrid of th	he intern	nediate zone	2						
FAM332	66.55	481	112	123	2.6405	0.730251	0.712154	117	То
Leucogrania	toids of t	he intermed	liate zo	ne					
FAM333	74.44	481	109	111	2.8546	0.728216	0.708651	67	Lgto
FAM346	76.31	481	150	56	7.7734	0.759402	0.706127	31	Lgto
FAM388	72.94	481	90	127	2.0532	0.722063	0.707991	58	Lgto
FAM394	77.13	481	170	15	33.6395	0.972454	0.741903	540	Lgto
FAM397	76.97	481	90	87	3.0001	0.731954	0.711392	106	Lgto
FAM398	74.12	481	40	193	0.6000	0.713272	0.709160	74	Lto
FAM399	77.73	481	50	112	1.2930	0.718453	0.709591	80	Lto
	SiO_2	Age (Ma)	Sm	Nd	147 Sm/ 144 Nd	$(^{143}\text{Sm}/^{144}\text{Nd})_{\text{today}}$	$({}^{147}\text{Sm}/{}^{144}\text{Nd})_{t}$	εNd(t)	T _{DM} *(Ga)
Metasedime	entary ro	ock				-			
FAM349	59.25	481	10.01	49.66	0.1218	0.511978	0.511594	-8.3	1.83
FAM391	71.77	481	7.29	39	0.1130	0.512047	0.511691	-6.4	1.70
FAM339	65.80	481	9.32	44.68	0.1261	0.512064	0.511667	-6.9	1.73
Tonalite of	the Inter	nal zone							
FAM175	66.50	463	10.6	37.6	0.1704	0.512355	0.511818	-3.9	1.51
Hybrid of th	he Intern	nediate zone	2						
FAM332	66.55	481	2.69	8.53	0.1906	0.512298	0.511698	-6.3	1.69
Leucograni	toids of	the Interme	diate za	one					
FAM333	74.44	481	0.63	1.99	0.1914	0.512183	0.511580	-8.6	1.85
FAM346	76.31	481	7.24	31.46	0.1391	0.512137	0.511698	-6.2	1.69
FAM388	72.94	481	2.44	20	0.0737	0.512053	0.511821	-3.9	1.51
FAM394	77.13	481	2.13	9	0.1431	0.512236	0.511785	-4.6	1.56
FAM397	76.97	481	1.71	12	0.0861	0.512064	0.511792	-4.4	1.55
FAM398	74.12	481	5.12	36	0.0860	0.512088	0.511818	-3.9	1.51
FAM399	77.73	481	2.31	20	0.0698	0.512026	0.511806	-4.1	1.53

The decay constants used in the calculations are the values λ^{87} Rb=1.42×10⁻¹¹ and λ^{147} Sm=6.54×10⁻¹² year⁻¹ recommended by the IUGS Subcommision for Geochronology (Steiger and Jäger, 1977). Epsilon-Sr (ϵ Sr) values were calculated relative to a uniform reservoir present day: (86 Rb/ 87 Sr)^{today} _{UR}=0.0827; (87 Sr/ 86 Sr)^{today} _{UR}=0.7045. Epsilon-Nd (ϵ Nd) values were calculated relative to a chondrite present day: (143 Nd/ 144 Nd)^{today} _{CHUR}=0.512638; (143 Sm/ 144 Nd)^{today} _{CHUR}=0.1967. t=time used for the calculation of the isotopic initial ratios. TDM*=calculated according to De Paolo et al. (1991). For more information, see Supplementary data. Gg, gneiss; Mg, migmatite; Gt, granite; To, tonalite; Lgto, leucogranite; Lto, leucotonalite.

Table 5. Estimates of degrees of partial melting (F) in the Cerro Toro aureole.									
	Source	Residue	F						
FeO*	4.32	7.35	0.41						
MgO	1.65	3.15	0.48						
Nb	10.6	16.7	0.33						
Sc	16.3	23	0.29						
Zn	73	155	0.53						
Zr	154	211	0.27						
Co	11.8	19.6	0.40						
Cr	57.4	91	0.37						
			Average 0.38						

 $F = (C_r - C_o)/C_r$ where C_o is the concentration of an element in the source and C_r is the concentration the same element but in the residue. Source corresponds to gneisses samples (FAM391 and VCA1004) and the residue to FAM143. Concentrations in wt % for major elements and ppm for trace elements. Data used in the calculation are available in the Table 2.