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2. Lithologies in glacial and fluvial deposits 

4. Stochastic model input data  

5. Investigating uncertainty in a stochastic model  

6. How many stratigraphic surfaces do you need? 

7. Best way to display the results of a stochastic 

simulation 
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Predicting lithology in sediments formed by 

glacial and fluvial processes is notoriously 

difficult. The lithostratigraphic units shown 

on maps and 3D models of glacial and 

post glacial deposits in Glasgow are 

substantially defined by the method of the 

formation and age of the unit rather than 

its lithological composition.  

Our motivation is to test whether a facies-based stochastic 

modelling approach can produce a geologically valid 

representation of subsurface lithological variation in a complex 

depositional environment affected by glaciation – typical of the 

Quaternary geology under many cities in North America and 

Northern Europe.  

The dataset includes the logs of 4391 geotechnical 

boreholes and trial pits. These data were collected over 

a few decades for a variety of purposes by different 

contractors. 185 different lithological codes have been 

used to describe the Quaternary deposits seen in these 

boreholes – too many to include in a modelling exercise.  

These were reduced to 6  through a combination of 

analysis of the lithological description and consistency  

and particle distribution analysis.  

Lithostratigraphy does not always equal lithology 

1. Introduction 

Figure 2.2  Given the variability of Glacial Fluvial deposits it can be hard 

to manually correlated boreholes (facies diagram adapted from Powell 1981)  

Facies model of ice marginal deposits 

Random boreholes into model below 

Stratigraphic surfaces can 

be used to subdivide the 

stochastic grid and stop the 

lithologies from one part of 

the model communicating 

with those   from other parts 

of the model.  

 

We tested 4 different 

scenarios. Of the tests we 

undertook modelling the 

unconformity surfaces (the 

sequence stratigraphic 

approach) proved to the be 

the most predictive with the 

least amount manual 

modelling. 

 

However, it is possible that 

due to the highly clustered 

nature of urban datasets 

~60% predictability may be 

the upper limit of these 

models. 

No lithological division  
Percentage of correct results from the removed 
boreholes: 56-57% 

 

50% deletion test results 

Full lithostratigraphic division (10 surfaces) 
Percentage of correct results from the removed 
boreholes: 61% 

 

Glacial and post glacial division (1 surface) 
Percentage of correct results from the removed 
boreholes: 59% 

 

Sequence stratigraphic division (5 surfaces) 
Percentage of correct results from the removed 
boreholes: 61% 

 

The model shows remarkable 

stability in its ability to predict 

the deleted data until over 

90% of the control data was 

removed.  

 

This may be due to the size of 

the cells in the grid and the 

highly clustered nature of the 

input boreholes. 

Displaying stochastic model show the most probable 

lithology at any one cell in the grid does not differentiate 

those areas of the  model where there is relatively low 

probability of any one lithology being present. We 

advocate that to represent this uncertainty it is better to 

show the probability of individual lithologies. 

 

It is also important in any display of a 3D model to show 

the observational data (boreholes)  used to create the 

model in the final delivery.  

Lessons learned in communicating uncertainty from stochastic modelling glacial and post glacial 

deposits in Glasgow U.K. 

Figure 2.1  

Glacial 

fluvial 

deposits 

in the 

Glasgow 

area 

Glasgow is the largest city in Scotland and has a long history of 

heavy industry, much of which has now been closed down. As 

such the city is undergoing urban regeneration and has 

problems with remediation of  contaminated land. However, the 

city of Glasgow us built on up to  80 m of complex glacial 

sediments 

 

Figure 1.1  Area of this study a 10x10 km area in 

the centre of Glasgow, Scotland 

In Glasgow the BGS, in 

partnership with Glasgow 

City Council and other 

local authorities, have 

used extensive borehole 

datasets to develop and 

successfully apply a suite 

of 3D Quaternary 

lithostratigraphic models 

(Merritt et al., 2007; 

Campbell et al., 2010). A 

key strength of 

lithostratigraphic modelling 

is that it brings together 

the expertise of geologists 

and known geological 

relationships, enabling a 

geologically realistic 

representation, even 

where subsurface data are 

lacking . However, owing 

to the complex and 

heterogeneous nature of 

glacial deposits, 

lithostratigraphic modelling 

may not always represent 

the full subsurface 

variability that is of direct 

relevance to end-users, 

such as ground engineers 

or groundwater modellers.  
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Figure 4.2 variorams 

used to control 

stochastic model  

Figure 4.3 Boreholes 

in the grid  

Figure 5.1 

Comparison of a 

borehole not used in 

the model and the 

prediction from the 

stochastic simulations 

Figure 3.1  The lithological variability in 

glacial and fluvial deposits in Glasgow. It 

is hare to identify lithostratigraphic units 

on lithology alone 

Figure 3.2 Lithostraigraphic 3D model. If a single lithology 

is assumed for each litostratigraphic unit based on the 

major component in the published lithostratigraphic 

description there is only a 54% match when compared 

against the borehole data used in this study.    
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To further test the uncertainty of the stochastic model we 

deleted progressively more data from the model. 

3. Lithostratigraphy does not equal lithology 

There are different ways of stochastically 

modelling lithology. We test two different 

algorithms using the same input data; 

Indicator Kriging and Sequential Indicator 

Simulation.    

 

The predictive ability of both the IK and 

SIS models was investigated by testing 

them against BGS boreholes that 

contributed to defining the published 

lithostratigraphy of the area (Figure 4.1). 

 

The stochastic models were tested by 

excluding 50% of the input boreholes 

from the conditioning data, re-running the 

simulation and then comparing the result 

to the 50% boreholes that were removed. 

Using the 50% deletion test there was 

0.23% difference between the two 

algorithms.  

 

 

 

Sequential Indicator Simulation Model 

Indicator Kriging Model 

Figure 5.2 Plan and cross section views of the most 

probable lithology from the Indicator Kriging and 

Sequential Indicator Simulation models.    

Figure 7.1 Cross sections showing the probabilities 

of  each of the separate lithologies from 500  

realisations of the Sequential Indicator Simulation.   

Figure 7.2 Probability maps of individual lithology 

coloured up in such a way that makes them more 

understandable to a non-technical audience. 

    

Figure 4.1 distribution 

of boreholes used in 

this study. The 

histogram shows the 

depth distribution of 

the boreholes 
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