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ABSTRACT 

 

Aim  We test the hypothesis that endotherm body temperature varies with diet. 

 

Location  Global terrestrial ecosystems 

 

Methods  We compile data from the literature on diet and body temperature in mammals and 

birds.  We analyse these and demonstrate global macrophysiological patterns. 

 

Results  In mammals, carnivores overall have a lower mean body temperature (Tb) than 

either herbivores or omnivores.  However within carnivores, those taking vertebrate prey 

have a higher mean Tb than predators of invertebrates.  Among herbivores, species eating 

grass, leaves or seeds have the highest mean Tb, those taking fruit an intermediate mean Tb 

and those taking flowers or nectar the lowest mean Tb.  These patterns are robust to the 

influence of body mass and phylogenetic non-independence.  In birds the relationship 

between Tb and diet is complicated by a significant inverse relationship between body mass 

and Tb and strong dietary niche conservation within lineages.  After allowing for body mass, 

herbivores show an identical qualitative pattern to mammals, whereas carnivores show the 

opposite trend to mammals: those taking invertebrate prey have a higher mean Tb than those 

taking vertebrates. 

 

Main conclusions  There is a relationship between diet and Tb in mammals that is 

statistically and phylogenetically robust.  Published studies show that in reptiles and fish 

herbivory is largely confined to species that can maintain a relatively high Tb either through 

living in warm environments or through behavioural thermoregulation.  We therefore propose 

a general relationship for all vertebrates: herbivory requires a warmer body than carnivory.  

Basal metabolic rate (BMR) will then be higher in herbivores because of the universal 

relationship between BMR and Tb, together with the higher maintenance costs of their longer 

guts.  We suggest that the evolution of endothermy was a key factor in the widespread 

incidence of herbivory in mammals.  
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INTRODUCTION 

 

It has been known for a long time that the basal metabolic rate (BMR) of mammals is 

correlated with their diet (McNab 1992, 2008), and similar patterns have also been detected 

in field metabolic rate (Speakman 2000). 

 

Recently Clarke et al. (2010) re-examined the relationship between BMR and body mass, 

incorporating body temperature, Tb, in the statistical model.  This confirmed previous 

suggestions of a curvilinear relationship between body mass and BMR (Heusener 1985; 

Lovegrove 2003; Glazier 2005) and also the marked dependence of BMR on body 

temperature (White & Seymour 2003, 2004, 2005).  Interestingly, the well established 

relationship between BMR and diet (McNab 1992, 2008) vanished when body temperature 

was included in the model (Clarke et al. 2010).  The cause was a strong covariance between 

body temperature and diet, and this suggested the possibility that the underlying relationship 

was between diet and body temperature, with BMR responding through its dependence on Tb. 

 

Here we explore the relationship between diet and body temperature in mammals in more 

detail.  Specifically we test the hypothesis that herbivory requires a higher body temperature 

than carnivory.  We extend the analysis to include birds, compare the results with published 

studies of reptiles, amphibians and fish, and propose a general macrophysiological 

relationship for all vertebrates. 

 

 

METHODS 

 

The data sets comprised body mass, body temperature and diet.  The data for body 

temperature (Tb) came from previous studies of the scaling of body temperature (Clarke & 

Rothery 2008) and BMR (Clarke et al.2010). 

 

Data for diet and the mean environmental temperature within the range for each mammalian 

species in our data set were downloaded from the PanTheria database (Jones et al. 2009).  

The dietary information for birds was taken from del Hoyo et al. (1992-2011).  In many cases 

a given species feeds on more than one class of item; where this was the case then the diet 

class assigned was based on the most frequent item(s), as determined from quantitative 

dietary analyses. 

 

The differing chemical composition of plant leaves, fruits and animal tissue led Chivers & 

Hladik (1980) to propose an alternative dietary classification for primates: faunivory 

(carnivory), frugivory and foliovory.  This classification was based on the adaptations of the 

gut necessary to digest and absorb the different diets (see also Karasov et al. 2011).  We 

extended this classification to all endotherms, adding an extra category (granivory) for those 

species eating seeds.  We also split the carnivore category to distinguish species taking 

invertebrates from those preying principally on vertebrates. 

 

Because of the potential errors introduced by the assignment of taxa with a broad dietary 

niche to a single food category, an alternative classification based on broader trophic levels 

was also used.  For mammals the classification of trophic levels in the PanTheria database 

was used without modification.  For birds, species were classified as omnivores when their 

diet contained more than 30% of both animal and vegetable matter.  Where dietary analysis 

was non-quantitative (presence/absence data only) then the assignment was based on 
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subjective judgement.  To check the robustness of ecological conclusions following from 

statistical analysis based on this initial classification (Trophic Level 1), a stricter trophic level 

classification was used, whereby some taxa classified as carnivores or herbivores, because a 

majority of their food was animal or plant material, were reclassified as omnivores (Trophic 

Level 2).  As an example of the differences between these two classifications, thrushes and 

finches were classified as carnivores or herbivores respectively in the first, but as omnivores 

in the second. 

 

There were data for 426 species of mammal and 414 species of bird (with less detailed 

dietary information available for a further 71 bird taxa).  The species-level taxonomy and 

assignment of taxa to families and orders used here followed Wilson & Reeder (2005) for 

mammals and Gill & Donsker (2011) for birds. 

 

To test for relationships at the family level we classified a family as carnivorous or 

herbivorous only if every species in that family for which we have Tb data was a carnivore or 

herbivore.  Families that contained omnivores, or included both carnivorous and herbivorous 

species, we classified as ‘mixed’.  The frequency distribution of Tb values within each family 

was typically skewed, and so we used median Tb values to characterise each family; the 

patterns and statistical conclusions were identical if mean values were used. 

 

Data were analysed with one-way ANOVA and a General Linear Model (GLM) with diet as 

fixed factor.  All statistical analyses were performed using Minitab.  To allow for 

phylogenetic non-independence, we used Phylogenetic Generalised Least Squares Regression 

(PGLS), assuming trait evolution under Brownian motion (κ = 1).  For mammals we used the 

species-level supertree updated by Fritz et al. (2009) and for birds we used a set of 100 

phylogenies randomly selected from the distribution provided by Jetz et al. (2012) based on 

the Hackett tree.  We used Pagel’s λ (Pagel 1999) to account for phylogenetic covariance 

between Tb, diet class and body size.  PGLS analyses were performed in R 2.13.2 using the 

package CAPER. 

 

Details of the Tb and body mass data, dietary classification and all statistical analyses are 

given in Appendix S1. 

 

 

RESULTS 

 

Correlation of diet with body temperature 

 

The mean body temperature of mammals varied significantly between trophic levels: 

carnivores had the lowest mean Tb, with herbivores and omnivores showing higher, and 

similar, mean Tb values (Table 1).  Although the mean values differ by only ~1 K, the 

differences between trophic levels were highly significant statistically (F2,425 = 14.9, p < 

0.001 for Trophic Level 1, F2,425 = 17.2, p < 0.001 for Trophic Level 2). 

 

In birds there was a marginally significant variation in mean Tb across trophic levels (F2,482 = 

3.41, p = 0.034), driven principally by a high value for omnivores (Table 1).  When the 

analysis was repeated with the stricter trophic level classification (Trophic Level 2), the 

pattern of variation in mean Tb across trophic levels was similar but statistically much 

stronger (F2,482 = 19.8, p < 0.001). 
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The mean body temperature of mammals varied significantly with Pantheria diet class (F7,425 

= 12.0, p < 0.001).  This conclusion was strengthened when the analysis was confined to 

those six diet classes with data for more than 20 species (F5,401 = 15.2, p < 0.001).  Of the 

eight diet classes examined, carnivores consuming invertebrate prey had the lowest mean Tb, 

and herbivores eating seeds or grass had the highest mean Tb; intriguingly, carnivores taking 

vertebrate prey also had a high mean Tb.  The body temperature of birds also varies with 

Pantheria diet category (F7,411= 9.08, p < 0.001), with the highest mean Tb in herbivores 

eating grass or seeds, and (in contrast to mammals) carnivores taking invertebrates. 

 

We repeated the analysis using the modified dietary classification of Chivers & Hladik 

(1980).  In mammals there was a highly significant difference in mean Tb between the 

modified Chivers diet classes (F5,318 = 15.8, p < 0.001), with foliovores and granivores having 

the highest mean Tb and frugivores and carnivores taking invertebrates the lowest (Table 2).   

In birds there was also a significant variation in mean Tb across the modified Chivers diet 

categories (F5,391 = 14.5, p < 0.001), with granivores having the highest mean Tb and species 

taking flowers or nectar the lowest (Table 2). 

 

 

Allowing for the effects of body mass 

 

In both birds and mammals Tb varies with body mass, Mb, with larger mammals tending to be 

warmer and larger birds cooler (McNab 1966; White & Seymour 2003; Clarke & Rothery 

2008).  We therefore repeated the analysis using a General Linear Model (GLM) to control 

for Mb, with trophic level or diet category as a fixed factor. 

 

For mammals there was no indication that the scaling relationship of Tb with Mb differed 

between carnivores, herbivores and omnivores (Trophic Level 2: F2, 371 = 0.87, p = 0.42).  

After fitting a common slope there were significant differences in elevation (F2,371= 19.5, p < 

0.001): herbivores were warmest, carnivores coolest and omnivores intermediate.  For the 

modified Chivers diet classification, the hypothesis of common slope again could not be 

rejected (F5,274 = 2.18, p = 0.056), and after fitting a common slope there were significant 

differences in elevation between diet classes (F5,274 = 13.8, p < 0.001).  The pattern matched 

the initial analysis, with the lowest mean Tb in carnivores taking invertebrates and herbivores 

taking flowers or nectar, and the highest mean Tb in herbivores eating foliage or seeds and 

carnivores taking vertebrate prey (See Appendix S1).  Correction for the effects of body mass 

thus does not change either the pattern or the significance of the variation in mean Tb with 

diet class in mammals. 

 

In birds the GLM indicated that there was significant heterogeneity in the scaling of Tb on 

body mass for different trophic levels (F2,452 = 14.0, p < 0.001), and also across the modified 

Chivers diet categories (F5,361 = 4.33, p < 0.001).  The GLM analysis suggested that the 

pattern of variation of Tb across trophic levels and modified Chivers diet categories was 

strikingly similar to that of mammals, but the heterogeneity of slopes makes further 

interpretation difficult. 
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Allowing for phylogenetic non-independence 

 

Because species within families or orders are likely to be similar in physiology and ecology 

as a result of a shared evolutionary ancestry, the relationship between Tb and diet was 

examined with data pooled at family and order level (see Methods). 

 

A plot of median Tb as a function of median Mb for mammal families (Figure 1a) showed that 

in families with median body mass > 50g, there was a clear tendency for herbivores to exhibit 

a higher median Tb than carnivores.  For these larger taxa there was only one herbivore 

family with median Tb< 35
o
C (Xenarthra, where Tb is highly labile; n = 2) and only one 

carnivore family with a median Tb> 35
o
C (Felidae, n = 8).  For mammals as a whole 

carnivorous families have a significantly lower Tb than herbivores, or families with mixed 

diets (ANOVA, F3,100 = 8.22, p < 0.001).  There is also significant variation in Tb across 

mammalian orders (F24,425= 15.5, p< 0.001).  For those mammalian orders for which we have 

diet data on ten or more species, the two orders with the highest mean Tb (Lagomorpha, 

Artiodactyla) are both purely herbivorous (for details see Appendix S1). 

 

In bird families there was no significant difference in mean family Tb between the three diet 

groups (F2,81= 1.87, p = 0.161).  There was no visual discernible tendency for herbivorous 

families to have a higher median Tb (Figure 1b) but most bird orders are dominated by 

consumers of invertebrates and very few have any herbivorous taxa. 

 

In mammals the phylogenetic signal (λ) in the data was strong, but analysis with PGLS 

indicated a significant relationship between trophic level and Tb, with herbivores warmer than 

carnivores, after allowing for the effects of both body mass and phylogenetic non-

independence (Table 3).  For the analysis based on modified Chivers diet categories, the 

pattern of mean Tb across diet categories was similar to that of the GLM analysis though the 

estimated mean Tb values were lower than those estimated from the GLM (Table 4).  For 

birds the phylogenetic signal was again strong, but here the distribution of Tb across trophic 

levels and diet categories was non-significant after allowing for the effects of body mass and 

phylogenetic non-independence (Table 3). 

 

Relationship between environmental temperature, diet and body temperature 

 

At the species level, carnivores with relatively low Tb are only found in warmer habitats, and 

only herbivores are found in the very coldest habitats (Figure 3a).  The relationship between 

diet type and mean ambient temperature within the range is significant (one-way ANOVA 

with modified Chivers diet category as factor, F5,288 = 7.15, p < 0.001), with foliovores and 

granivores being associated with the lowest mean environmental temperature, and frugivores 

the highest (see Appendix S1).  The pattern is fairly similar at family level (Figure 3b), and 

the ten families extending into the coldest habitats are either herbivorous or omnivorous.  

Whilst there are striking examples of carnivores such as Polar Bears, Ursus maritimus, and 

Wolves, Canis lupus, extending into the high Arctic, our analyses concern mean values for 

dietary categories or families. 

 

 

DISCUSSION 

 

We have demonstrated a significant tendency for herbivory in mammals to be associated with 

a high Tb, and in particular for mean Tb to be highest in foliovores.  This pattern is robust to 
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correction for the effects of body mass and phylogenetic non-independence.  There was, 

however, considerable overlap in the range of Tb values for each diet category.  This means 

that a particular species, or a comparison based on a small number of selected taxa, may not 

fit the broad general pattern we have established.  In birds the highest Tb was found in 

herbivorous diet categories (foliovores, granivores and frugivores), but the pattern was not 

significant after allowing for phylogenetic non-independence. 

 

 

Is there a common pattern across endotherms? 

 

If we are seeking a general relationship between diet and Tb in endotherms, we should expect 

the pattern to be similar in mammals and birds.  Direct comparison is however complicated 

by the difference in Tb between the two groups: birds exhibit a higher Tb than mammals, and 

the range of individual Tb values is narrower than in mammals (birds: range 35.0 −41.7 
o
C, 

interquartile range 1.8 K; mammals: range 30.2 −40.7 
o
C, interquartile range 2.2 K). 

 

Fitting ordinary least-squares (OLS) regressions to allow for the effects of body mass 

indicates a striking commonality in the relation between mean residual Tb and diet for 

herbivorous mammals and birds (Figure 2).  In both classes, mean Tb is highest in foliovores 

and granivores, and lowest in species taking flowers or nectar.  This pattern is intriguing, as 

the mean Tb for the different diet categories increases in parallel with the fraction of cellulose 

in the diet (low in fruit, intermediate in seeds, high in foliage).  Although the distribution of 

residuals across diet classes is highly suggestive of a common pattern across endotherm 

herbivores, the relationship in birds could not be resolved with a GLM because of the 

heterogeneity of slopes across diet classes.  The residual for carnivores overall is lower than 

that of foliovores and granivores. 

 

In mammals the residuals show excellent agreement with the mean Tb values estimated by 

both GLM and PGLS analyses (see Appendix S1 for details).  A comparison was not possible 

for birds because the diet/Tb relationship PGLS was not significant in a PGLS analysis. 

 

 

Is there a general relationship between temperature and herbivory? 

 

If there is a fundamental physiological link between high Tb and a herbivorous diet, as 

suggested by our analyses, then we would expect this to be observed in other vertebrate 

groups.  In reptiles an association between high Tb and herbivory has long been known 

(Cooper & Vitt 2002), in both large (Pough 1973) and in small (Espinoza et al. 2004) taxa.  

Most lizards are carnivorous but comparative studies have shown clearly that whilst 

carnivorous species can exhibit a wide range of Tb values, herbivorous lizards generally 

maintain a narrower range of higher body temperatures (Espinoza et al. 2004). 

 

With the possible exception of some small fruit-eating tropical frogs (for example Xenohyla 

truncata: da Silva & de Britto-Pereira 2006), all adult amphibians take invertebrate prey, 

principally insects (Hillman et al. 2009).  Interestingly, herbivory is widespread among larval 

amphibians (Altig & Kelly 1974), whose aquatic habitat means that Tb is likely to be highly 

variable and difficult to control.  Herbivory is also uncommon among fishes, and is most 

frequent in warmer waters.  In temperate marine habitats between 5 and 15% of species are 

herbivorous, whereas in coral reef assemblages up to 50% of the species may be herbivorous 

(Horn 1989). 
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In both reptiles and fish, digestion of plant material appears to be reliant on fermentation by 

gut microbes (Mountfort et al. 2002; Rimmer & Weibe 2006).  Gaines & Lubchenco (1982) 

suggested that the low frequency of herbivory in fishes living at higher latitudes might be 

caused by temperature constraints on the activity of the gut microflora, and Floeter et al. 

(2005) concluded that herbivory in marine fishes was only possible above a threshold of 

~15
o
C.  Whilst there is clearly room for more work (Clements et al. 2009), there remains a 

general consensus that low body temperatures make herbivory energetically unfavourable, in 

that they constrain the rate at which energy can be extracted from the diet. 

 

The link between herbivory and a high Tb in reptiles and fish suggests a fundamental 

ecophysiological relationship evident over broad spatial scales: herbivory becomes common 

only above a threshold Tb of ~15
o
C.  All mammals and birds have a Tb that exceeds this 

threshold (except when torpid or hibernating), but the data we report here indicates that even 

within endotherms there may be subtle energetic advantages for some classes of herbivores 

from quite small increases in Tb.  In mammals the difference in mean Tb between carnivores 

taking invertebrate prey and herbivores consuming grass or leaves is ~ 2.6 K (Table 2).  In 

birds the signal is complicated by the strong association between Tb and body mass, but 

correction for body mass suggests a similar pattern of difference among dietary groups 

(Figure 2).  These differences are small, but they suggest that the energetic advantages to be 

gained from having a warmer body when utilising some herbivorous diets outweighs the 

metabolic costs of maintaining a slightly warmer body. 

 

Whilst the association between some herbivorous diets and a warmer body is clear, the 

precise physiological mechanism is not.  It has long been argued that herbivores require a 

warmer body to support fermentation by gut microbes, but all digestive processes will 

proceed faster in warmer bodies (Wang et al. 2002) and many ectotherms select a warmer 

microenvironment when digesting food (Lang 1979; Petersen et al. 2011).  The intriguing 

question is why the trade-off between enhanced rates of energy acquisition and the associated 

increased metabolic costs should be at different temperatures for different diets. 

 

 

Do other factors influence the relationship between diet and body temperature? 

 

Whilst mammals and birds show a significant difference in the mean Tb of herbivores and 

carnivores, there is considerable overlap in the range of Tb values for each trophic level.  

Some of this variability is correlated strongly with phylogeny.  For example the high mean Tb 

for mammalian herbivores is driven principally by artiodactyls and lagomorphs, and cats 

exhibit a high mean Tb compared with other carnivorous mammals (Clarke & Rothery 2008).  

This suggests that other factors, additional to diet, are involved in determining Tb.  One of 

these may be activity level; Lovegrove (2000, 2004) found that in larger mammals (> 500 g), 

a high residual BMR was correlated with cursoriality.  Since BMR and Tb are correlated in 

mammals (Clarke et al.2010), this would suggest that more cursorial mammals will also have 

a higher Tb, all other things being equal.  Lovegrove (2012) showed that all mammalian 

lineages with a mean Tb> 37.9
o
C were highly cursorial.  These cursorial lineages included 

Lagomorpha, Artiodactyla and Carnivora, the three orders with the highest mean Tb in our 

analysis (see Appendix S1).  This suggests strongly that whilst Tb is clearly associated with 

diet in mammals, the picture is complicated by covariation with activity level. 

 

  



Clarke & O’Connor (Carnivores are cool)  Page 8 

The influence of phylogeny 

 

It has long been recognised that within a data set comprising many different species, the 

degree of phylogenetic relatedness between the species may be reflected in the degree of 

similarity in the ecological traits of interest.  The influence of phylogeny on ecology means 

that it is important to frame hypotheses carefully, and then use an appropriate statistical 

analysis (Harvey &Pagel 1991; Freckleton 2009; White et al. 2012). 

 

The hypothesis we have tested is explicitly physiological: a herbivorous diet requires a 

warmer body than carnivory.  In testing this hypothesis with conventional analyses (ANOVA, 

GLM), we are assuming implicitly that phylogeny has a minimal influence on Tb, and that the 

primary driver for the pattern of Tb across species is physiological.  This is unlikely to be the 

case, and so we have also tested a subtly different hypothesis, which is that the distribution of 

Tb across species is influenced by both diet and phylogenetic descent.  The relationship 

between diet and body temperature was significant in mammals in a PGLS analysis, but not 

in birds (Table 3). 

 

In both mammals and birds there is strong niche conservation of diet within lineages (orders: 

see Appendix S1): all artiodactyls and lagomorphs are herbivores, all cats are carnivores, and 

so on.  This strong covariation between diet and phylogeny must be considered in the 

interpretation of possible causes of the relationship we observe (or not) between diet and 

body temperature.  Do artiodactyls have a high Tb because they are artiodactyls, or because 

they are herbivores?  For mammals, Tb explained variation in diet in addition to variation 

explained by phylogenetic descent, lending support to a potential physiological explanation.  

In birds, the result was less clear, because the effect of Tb was no longer significant after 

phylogenetic variation was modelled.  

 

An alternate approach to this question is to look for evolutionary reversals, that is an isolated 

carnivore in a lineage of herbivores, or vice versa.  Unfortunately such examples are 

infrequent in our data set.  In mammals only for Rodentia and Chiroptera were there enough 

taxa with a sufficient range of diets to undertake a test.  In Rodentia, the mean Tb of 

foliovores (37.1 ± 1.1
o
C, n = 50), frugivores (37.4 ± 1.3

o
C, n = 5) and granivores (36.4 ± 

1.8
o
C, n = 33) exceeded that of the few predominantly carnivorous taxa taking invertebrate 

prey (35.8 ± 1.5
o
C, n = 3), but the ANOVA is not quite significant (F3,87 = 2.54, p = 0.06).  

Among bats (Chiroptera) the ANOVA was significant (F3,53 = 4.54, p = 0.031), driven 

principally by a high mean Tb for frugivores (36.4 ± 1.0
o
C, n = 22) in comparison with 

invertebrate carnivores (34.6 ± 2.8
o
C, n = 25). 

 

In birds only two non-passerine orders show sufficient dietary variation to allow a test, and 

within neither Anseriformes nor Apodiformes is there significant variation in Tb across diet 

categories (all p > 0.05).  The bird data set is dominated by Passeriformes (238 of 485 

species).  When the analysis is confined to passerines, a GLM indicates that whilst herbivores 

eating foliage had the highest mean Tb for any diet class, variation across trophic levels and 

diet categories remains non-significant after controlling for body mass (all p > 0.05). 

 

The strong phylogenetic signal evident in all the PGLS analyses (Table 3) suggests that in 

both mammals and birds the distribution of Tb across species has a significant historical 

element.  Lovegrove (2012) has suggested that an increase in mammalian Tb was associated 

with global cooling and the change in vegetation following the Palaeocene/Eocene thermal 

maximum, and specifically the evolution of cursoriality.  This hypothesis is independent of 
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diet, and may explain why strongly cursorial carnivores exploiting vertebrate prey have a Tb 

approaching that of herbivores such as artiodactyls and lagomorphs, whereas other carnivores 

have a lower Tb.  Whilst diet does appear to play an important role in influencing Tb (Figure 

2), there are clearly other factors involved. 

 

 

Is diet related to body temperature or to BMR? 

 

The pattern of Tb and herbivory across vertebrates in general suggests strongly that utilisation 

of plant material is associated with a warm body.  There is, however, an interesting 

dichotomy in that ecologists working with reptiles and fish have interpreted diet in terms of 

Tb (Pough 1973; Gaines & Lubchenco 1982; Zimmerman & Tracy 1989; Cooper & Vitt 

2002; Espinoza et al. 2004), whereas those interested in mammals have generally emphasised 

the relationship between diet and metabolic rate (McNab 1992, 2008).  The resolution of this 

dichotomy comes through the interdependence of metabolic rate and temperature.  In 

endotherms the main source of heat for maintaining a high Tb comes from metabolism; at the 

same time the level of Tb influences basal metabolic rate (BMR), because it is energetically 

more expensive to maintain a warm body than a cool one (Clarke et al.2010). 

 

For endotherms although the mean increase in Tb in herbivores compared with carnivores is 

small, this higher Tb comes at an energetic cost: a higher Tb necessarily leads to a higher 

BMR (Clarke et al. 2010).  The energy required to fuel a higher BMR must be met by a 

higher energy intake, and the difference is not trivial.  For example, based on the mean Tb 

values observed in this study and the temperature sensitivity of BMR in endotherms (Clarke 

et al. 2010), a 150g foliovore has a predicted BMR higher by ~29% compared with an 

invertebrate carnivore of similar size. 

 

The extent to which herbivores are warmer must thus reflect a trade-off between the 

enhanced energy intake from food at a higher Tb and the higher metabolic costs following 

from that Tb.  Additional to the effect of Tb on BMR will be a contribution from the energetic 

costs of differences in gut length, activity level (for example cursoriality), brain size and so 

on (see for example Williams et al. 2001).  Together these lead to a significantly higher BMR 

in mammalian herbivores than mammalian carnivores, on average.  This increased BMR is 

not of itself an energetic advantage; it represents the cost of maintaining a body adapted to 

eating a diet containing cellulose.  The benefit comes from the greater energy available from 

plant food at the higher Tb. 

 

 

Concluding remarks 

 

We can therefore propose a general picture for all vertebrates, which is that herbivores 

consuming plant tissues high in cellulose tend to maintain a higher Tb than carnivores.  This 

higher Tb may be generated either through endothermy (mammals, birds), by behavioural 

thermoregulation (small reptiles) or by living in a warm environment (tropical reptiles and 

fish).  Whilst a high Tb is a widespread feature of herbivores, it is not universal.  For example 

sloths (Xenarthra) and some temperate fishes are herbivorous despite a lower Tb. 

 

Overall, the association between herbivory and a high Tb in vertebrates is highly persuasive, 

and can be regarded as a useful macrophysiological generalisation (Gaston et al. 2009).  This 

association might suggest that amongst ectotherms, herbivory would exhibit a relationship 
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with climate, with herbivory commoner in warmer habitats.  This does appear to be the case: 

the diversity of modern herbivorous insects and the pressure they exert on their plant hosts 

generally increases towards the tropics (Wilf & Labandeira 1999; but see also Salazar & 

Marquis 2012).  Furthermore increases in the extent of insect herbivory can be detected 

during early Cenozoic warming (Wilf et al. 2001) and during the Palaeocene/Eocene thermal 

maximum (Currano et al. 2008, 2010).  Terrestrial reptiles were important herbivores during 

the Mesozoic, and many of these achieved a high and stable Tb through their large size 

(O’Connor & Dodson 1999; Eagle et al. 2011; Head et al. 2013). 

 

Despite the associated metabolic costs, herbivory is widespread in mammals, and the 

incidence of herbivory at class level exceeds that in reptiles, amphibians and fish by a wide 

margin.  Whilst a broadening of the diet cannot of itself have been the initial driving force 

behind the evolution of endothermy (Clarke & Pörtner 2010), it may well be one of its most 

important ecological consequences.  The evolution of a permanently warm body allowed an 

increasing diversity of mammals to utilise a widespread and abundant food resource that was 

previously the preserve of insects and the large herbivorous dinosaurs, until the latter’s 

demise at the K/Pg extinction event. 
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Table 1.  Mean body temperature, Tb (
o
C), for mammals and birds in different trophic levels.  

The two trophic level classifications differ in the strictness of definition of carnivore and 

herbivore in taxa which switch diet seasonally.  Data are uncorrected for body mass. 

 

Trophic level 
Mammal Tb Bird Tb 

Mean SD n Mean SD n 

Trophic level classification 1 

 Carnivore 35.7 2.39 156 41.3 1.32 345 

 Herbivore 36.8 1.59 197 41.3 1.54 96 

 Omnivore 36.8 1.23 73 41.9 1.25 44 

Trophic level classification 2 

 Carnivore 35.5 2.54 109 41.2 1.32 295 

 Herbivore 36.8 1.53 156 41.0 1.84 55 

 Omnivore 36.6 1.61 161 42.0 1.00 135 

 

 

 

 

Table 2.  Mean body temperature, Tb (
o
C), for mammals and birds in different diet 

categories, using a modified version of the diet classification of Chivers & Hladik (1980).  

Data are shown in italics where there were data for fewer than 10 species in that diet class.  

Data are uncorrected for body mass. 

 

Diet class 
Mammal Tb Bird Tb 

Mean SD n Mean SD n 

Carnivores 

 Vertebrate prey 37.1 2.70 22 40.4 1.02 62 

 Invertebrate prey 35.0 2.01 94 41.4 1.31 247 

Herbivores 

 Fruit 36.4 1.11 43 41.3 1.85 3 

 Foliage (grass or leaves) 37.3 1.38 81 41.3 0.65 15 

 Seeds 36.4 1.84 31 42.0 1.00 48 

 Flowers or nectar 34.7 0.54 5 39.8 2.12 22 
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Table 3.  Phylogenetic generalised least-squares (PGLS) regression analysis of relationship 

between diet and Tb in mammals, with significance of variation across trophic levels or 

modified Chivers & Hladik (1980) diet categories.  TroL2: trophic level 2 diet classes, λ: 

phylogenetic signal (maximum likelihood estimate), F: variance ratio, df: degrees of freedom, 

p: probability.  For birds the data for λ and F are given as mean with 95% confidence 

intervals in parentheses for 100 phylogenies randomly selected from the distribution provided 

by Jetz et al. 2012. 

 

 

Diet classification λ F df p 

Mammals 

 TroL2 0.85 4.78 4, 366 < 0.001 

 Modified Chivers 0.770 3.60 7, 266 0.001 

Birds 

 TroL2 0.87 (0.83, 0.91) 1.00 (0.54, 1.47) 4, 454 (al lp > 0.21) 

 Modified Chivers 0.83 (0.78, 0.88) 0.87 (0.68, 1.01) 7, 366 (all p > 0.42) 

 

 

 

Table 4.  Body temperature estimated for a representative mammal (body mass 150g) and a 

representative bird (body mass 50g) utilising different diets.  Tb values estimated both from a 

GLM (allowing for body mass) and PGLS (allowing for both body mass and phylogeny).  For 

birds the estimates were based on mean data from 100 phylogenies analysed.  Representative 

body mass values were rounded values for the median body mass of all mammals or all birds 

in our data set.  Note that in birds the PGLS analysis was non-significant and hence a single 

Tb is estimated for all diet categories. 

 

 

 
Diet category (modified Chivers) 

Tb (
o
C) 

GLM PGLS 

Mammal (150g body mass) 

 Foliovore 37.2 35.4 

 Granivore 36.4 35.1 

 Frugivore 36.4 34.9 

 Flowers/nectar 34.8 34.0 

 Carnivore (vertebrate prey) 36.5 34.5 

 Carnivore (invertebrate prey 35.0 33.8 

Bird (50g body mass) 

 Foliovore 42.3 (41.3) 

 Granivore 42.1 (41.3) 

 Frugivore 42.2 (41.3) 

 Flowers/nectar 39.6 (41.3) 

 Carnivore (vertebrate prey) 41.2 (41.3) 

 Carnivore (invertebrate prey) 41.5 (41.3) 
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Figures 

 

 
 
Figure 1.  Relationship between median body temperature, Tb (

o
C), and median body mass (g, natural 

log transformed) of endotherm families.  Families classified into carnivores (black symbols), 

herbivores (white symbols) and mixed or omnivorous families (grey symbols), with size indicating 

the number of species within each family for which we have both dietary and Tb data: <10 taxa (small 

symbols), 10-19 taxa (medium symbols) and 20+ taxa (large symbols).  A (left panel):  Mammals.  B 

(right panel):  Birds. 

 

 
 

Figure 2.  Mean residual body temperature in mammals (grey symbols) and birds (white symbols) for 

different diet types.  Residuals are for OLS regression of Tb on body mass (g, natural log 

transformed).  Data are mean ± SE.  Data plotted only for diet categories with data for 5 or more 

species (range 5 to 237). 
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Figure 3.  Body temperature and ambient temperature in mammals. A (left panel):  Data for 

individual species, classified by trophic level (herbivores: white symbols, Omnivores: grey symbols, 

carnivores: black symbols).  B (right panel): Data pooled by family.  Environmental temperature is the 

mean temperature over the geographical range of a given species (left panel), or median value for 

those species of a family represented in the data (right panel).  Families classified into carnivores 

(black symbols), herbivores (white symbols) and mixed or omnivorous families (grey symbols), with 

size indicating the number of species within each family for which have both dietary and Tb data: <10 

taxa (small symbols), 10-19 taxa (medium symbols) and 20+ taxa (large symbols). 


