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Abstract14

Ensuring a sustainable yield is essential for continued survival of a natural resource, however15

over-exploitation can easily occur. Therefore, understanding how increasing the harvesting rate16

affects the yield is vital. Harvesting of infected hosts in a host–pathogen system, for example17

the fungal pathogen Cordyceps sinensis which is harvested for medicinal use, has not been18

explored mathematically in the literature. We present a generalized host–pathogen model in19

which the infected host is harvested. Two strategies are explored; proportional harvesting at a20

constant rate and in an open-closed setting (a repeating cycle of a period of harvest followed by21

a period where the resource is left to recover). We present yield-effort curves for both strategies22

and find that open-closed harvesting affects the traditional yield-effort curve, with the system23

able to support a greater range of harvesting rates. Furthermore, host–pathogen systems may24

exhibit more complex population dynamics than single equation/species models, depending on25

the eigenvalues of the linearised system. In the open-closed setting we find that if there are26

complex eigenvalues in the absence of harvesting although small changes in the length of open27

season have little impact on the maximum sustainable yield, it can dramatically change the28

harvesting rate needed to achieve this. For proportional harvesting in a constant setting our29

model shows that if there are real eigenvalues in the absence of harvesting, then resilience–30

harvest relationship agrees with accepted theory, where as yield initially increases so too does31

the return time (a measure of the long-term resilience). However, when there are complex32

eigenvalues we see, counter to intuition, that the return time initially decreases whilst still33

providing increased yield. We also study the transient (short-term) reactivity, which shows that34

in both cases harvesting can initially decrease the reactivity. These results show that harvesting35

can in some instances enhance the ability of host–pathogen systems to respond to perturbations36

in both the short- and long-term.37

Key words: Harvesting strategies; Host–pathogen; Yield; Recovery time; Resilience; Cordyceps38

sinensis39

1 Introduction40

Harvesting of a biological resource is modelled for many purposes including management of fish-41

eries (Conover and Munch 2002; Yakubu et al. 2011) or forest, (Gustafson 1996) and conservation42

of populations (Beissinger and Bucher 1992). The vast majority of models applied to systems of43

interest model the species using a single equation to which a term is added, which represents a44

harvesting strategy. A classic example of this is Beddington and May (1977), which demonstrated45
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the existence of an economic threshold at which the yield is maximised for some intermediate har-46

vesting rate (termed maximum sustainable yield (MSY)). Beddington and May (1977) also showed47

that overexploitation results in a smaller population than that at the MSY and high harvesting48

effort produces a low average yield with higher variance, and hence higher system recovery times.49

The implications for harvesting management are clear, and sustainable harvesting strategies must50

be employed to ensure cost-effectiveness as well as to prevent extinction of the harvested species.51

However, most species experience interspecific interactions, and sustainable strategies will be52

influenced by the type and strength of the interactions. For example, harvesting of prey species can53

significantly affect predator abundance and may even cause system collapse if the harvesting rate54

is sufficiently high (Legović et al. 2010; Kar and Ghorai 2011). Whilst harvesting interactions and55

their effects were analysed other measures such as return time and reactivity, which are important56

indicators of ecosystem health (Beddington and May 1977; Neubert and Caswell 1997), were not57

studied. Harvesting within other types of interspecific interactions have been considered, such58

as competition, (Gec̆ek and Legović 2012), mutualism (Legović and Gec̆ek 2012) and predator–59

prey–parasite systems (Bairagi et al. 2009). In contrast, there are no examples in the literature of60

harvesting in host–pathogen systems, and we aim to address this gap here. Furthermore, simple61

single species models, such as the Beddington and May (1977) model, exhibit very stable dynamics,62

where return to the equilibrium after perturbations is monotonic. However, for higher order models63

(e.g. interacting predator–prey or host–pathogen models) the dynamics may be more complex,64

which is the focus of this article.65

Whilst harvesting in host–pathogen systems may not occur in reality as frequently as in other66

types of species interactions, there are a number of economically important examples, such as67

baculovirus collection for biocontrol (Grzywacz et al. 2008; Mushobozi et al. 2005). A particularly68

important example is harvesting of Cordyceps sinensis, which is the motivation for this study.69

This entomopathogenic fungus infects caterpillars of the ghost moth genus Thitaordes (Hepialiade)70

(Cannon et al. 2009; Maczey et al. 2010) by penetrating the host exoskeleton (Cannon et al. 2009)71

or by host ingestion of the fungal spores (Boesi 2003). After killing the caterpillar, the fungus72

produces a fruiting body (stromata) which appears above ground to release spores which infect73

other susceptible hosts (Cannon et al. 2009; Winkler 2008). The fruiting bodies are harvested for74

medicinal purposes in their native range in the Tibetan Plateau (Negi et al. 2006; Winkler 2008),75

and this is important to local economies (Weckerle et al. 2010). It is thought that increases in76
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harvesting have decreased yield by as much as 30−−50% in some areas (Negi et al. 2006).77

To combat over-exploitation, a number of different harvesting strategies have been investigated78

in harvesting models. Beddington and May (1977) compared two harvesting strategies: propor-79

tional harvesting and constant harvesting. In the former, a constant proportion of the population80

is harvested at each time, making yield dependent on the harvesting effort and the availability of81

the resource. In contrast, the constant strategy simply removes a constant number of individuals82

from the population, which is independent of the population size. Interestingly, these two strategies83

predict identical MSYs in single species model. However, whilst the proportional harvesting strat-84

egy has only one steady state (other than the trivial steady state) under the constant harvesting85

strategy there are two steady states; one stable and one unstable. After small perturbations the86

system will return to the stable steady state. However, larger perturbations have different effects; a87

large perturbation above the stable steady state will cause the system to take a long time to recover,88

whilst those below the steady state will cause population extinction (Beddington and May 1977).89

For these reasons, proportional harvesting strategies are advised rather than constant harvesting90

(Bairagi et al. 2009; Beddington and May 1977; Cooke and Witten 1986; Yakubu et al. 2011).91

Despite the relative benefits of a proportional harvesting strategy, over-harvesting may still lead92

to population extinction and therefore adaptations to this strategy have been developed. One such93

is open-closed harvesting, by which harvesting occurs during the open period and stops during the94

closed period, allowing the resource to recover partially or completely. In fisheries management,95

these closures, varying in time length from weeks to years (Cinner and Aswani 2007), can have an96

impact on both the size and biomass of fish (Bartlett et al. 2009; McClanahan et al. 2006). The97

timing of the open period of harvesting can have a great effect on the MSY (Kokko and Lindström98

1998), and if harvesting does not start at the beginning of the prescribed open period the overall99

yield can be decreased (Xu et al. 2005). It has also been shown that if a population has strong100

Allee effects then harvesting mid-season can make the population more prone to over-exploitation101

(Cid et al. 2014).102

Modelling different harvesting strategies allows us to answer questions regarding yield of the103

resource, recovery time, resilience and reactivity. In interacting multi-species systems, an under-104

standing of how harvesting affects all species is vital to their continued survival. In predator–prey105

systems, harvesting either trophic level has implications for the MSY, and so it is necessary to106

consider the interaction between the two (Beddington and May 1980; Kar and Ghosh 2013). How-107
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ever, it is unclear how guidance about harvesting from existing modelling studies translates to108

host–pathogen species interactions.109

To this end, we explore the impact of harvesting on a compartmentalized host–pathogen model110

in which we harvest the infected stages. We apply proportional harvesting over a constant rate111

and in an open-closed setting to determine the MSY and determine how the different strategies112

affect the yield that can be attained. We also consider three system measures that are affected by113

harvesting: recovery time, resilience and reactivity. Using these measures, we find that the results114

do not always coincide with single species harvesting theory and that harvesting in host–pathogen115

systems may have beneficial effects, depending on the system interaction strengths and the level116

of harvesting. Using an open-closed harvesting strategy we find that small changes in the length117

of open period can have a dramatic impact on the harvesting effort that produces the maximum118

yield. Finally, we discover that in an open-closed setting it is better to harvest for a long open119

period at a lower effort than to harvest for a shorter time at a higher effort if we wish to maximize120

the yield.121

2 Materials and methods122

We base host–pathogen dynamics on ‘Model G’ by Anderson and May (1981). This classic compart-123

mentalised differential equation model has three compartments; susceptible hosts, X(t), infected124

hosts, Y (t) and free-living infective stages of the pathogen, W (t), at time t. The free-living stages125

of the pathogen are explicit in the model, as infection occurs through this means. In addition to this126

model, we make additional realistic assumptions to include a rate at which susceptible and infected127

hosts take up the pathogen (Boots 1999), and density-dependence acting upon the susceptible hosts128

(Bowers et al. 1993; Caraco and Wang 2008; Dwyer 1994).129

We assume that all hosts grow according to the logistic equation in the absence of the fungal130

pathogen, where r is the intrinsic growth rate of the hosts and k is the carrying capacity of the131

susceptible hosts. It is important to note that r = a− b where a is the birth rate of hosts and b the132

natural morality rate. The rate of transmission is modelled by the law of mass action. Infected hosts133

have an induced mortality rate α, and each dead host produces an average λ spores. Free-living134

pathogen spores decay in the environment at a constant rate µ.135

In many multi–species and predator–prey model systems harvesting occurs at the bottom136

trophic level, however there are examples of models where harvesting occurs at more than one137
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trophic level (Beddington and May 1980; Legović and Gec̆ek 2012; Kar and Ghosh 2013). Here we138

investigate the scenario where harvesting occurs at an upper trophic level. Specifically, using C.139

sinensis as our motivation, we assume harvesting occurs in the infected compartment, since it is140

the fruiting bodies of the fungal pathogen (along with their dead infected host) that are collected141

for medicinal use. We therefore wish to maximise the yield without eradicating the pathogen, so142

that (a) local communities are able to benefit economically from selling the fruiting bodies and (b)143

the fungus can continue to infect the caterpillar so that the fruiting body can be used for medicinal144

purposes. We denote H(Y ) as the rate at which infected hosts are harvested.145

The above assumptions lead to the following model and corresponding initial conditions146

dX

dt
= rX

(
1− X

k

)
− βXW, (1a)

dY

dt
= βXW − (b + α)Y −H(Y ), (1b)

dW

dt
= λαY − µW, (1c)

147

X(0) = x0, Y (0) = y0, W (0) = w0. (2)

All parameters and their definitions are given in Table 1.148

2.1 Harvesting strategies149

The model, Eq. (1), will be analysed with the harvesting term H(Y ) taking two functional forms,150

representing two contrasting harvesting strategies. The first is a proportional harvesting strategy151

(Brauer and Sánchez 1975) which is given by152

H(Y ) = hY. (3)

Here, a proportion h of the infected hosts will be harvested at a constant rate, as is commonly153

assumed (Anderson and May 1980; Beddington and May 1977; Beissinger and Bucher 1992; Legović154

and Gec̆ek 2010; Yakubu et al. 2011).155

The second functional form is an open-closed strategy (Capasso et al. 1983; Xu et al. 2005).156

Harvesting occurs during the open period whilst in the closed period harvesting is stopped. We157

assume that harvesting commences at the start of the open period and continues until the end. The158
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harvesting strategy during the open period is proportional harvesting to allow comparison with the159

previous functional form. This strategy is modelled by160

H(Y ) =





hY if nT < t ≤ (n + p)T,

0 if (n + p)T < t ≤ (n + 1)T,

(4)

where n = 0, 1, 2, . . . are positive integers, T is the total length of the open-closed period and p is161

the proportion of time harvesting occurs, 0 ≤ p ≤ 1, i.e. pT is the length of the open period and162

(1− p)T is the length of the closed period.163

2.2 Yield164

We measure the success of harvesting through yield. Generally the yield is given by Ȳ = hY ∗
165

where h is the harvesting rate and Y ∗ the steady state of infected individuals. However, this does166

not make sense when the harvested population is fluctuating in time, for example if the attracting167

equilibrium is unstable, which is possible for certain parameter combinations (Anderson and May168

1981; Boots 1999; Bowers et al. 1993). Hence, where the population exhibits fluctuating dynamics169

we define yield as170

Ȳ = hYave = h lim
t→∞

1
t− t0

∫ t

t0

Y (τ)dτ, (5)

where t0 is the initial starting time sufficiently large so that any transient behaviour has ceased.171

That is, the yield is simply the average density of the infected hosts multiplied by the harvesting172

rate. Note that if the system goes to equilibrium then Yave = Y ∗, and so the standard definition173

of yield is recovered. Also note that this yield definition may be applied to systems that exhibit174

chaotic dynamics.175

For an open-closed strategy, the periodicity of the harvesting strategy ensures that stable sus-176

tainable harvest equilibria are not feasible, and so the population dynamics must vary temporally.177

Therefore, a suitable temporally varying yield measure must be defined to which open periods178

contribute and are subsequently averaged across. Hence, we define the yield in the open-closed179

strategy as180

Ȳ = h lim
n→∞

1
nT

n−1∑

i=0

∫ t0+(i+p)T

t0+iT
Y (τ)dτ, (6)

where n is the number of open-closed periods, t0 compensates for transient behaviour (as in Eq. (5))181
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and T and p define the open periods (as in Eq. (4)).182

2.3 System measures183

To consider the “health”of the harvested host-pathogen system, we consider three system measures:184

return time, resilience and reactivity. It is important to note that these measures are only valid for185

a parameter space where an equilibrium is stable, and thus we restrict the parameters accordingly186

when considering these measures. Furthermore, since an open-closed harvesting strategy causes187

non-equilibrium dynamics, we also restrict these measures to the constant proportional harvesting188

strategy.189

2.3.1 Return time and resilience190

The return (or recovery) time measures how long a population takes to return to its steady state191

after a perturbation (Beddington and May 1977; Pimm and Lawton 1977, 1978). Hence, this192

measure reflects the long-term recovery of the system. Following the definition of Neubert and193

Caswell (1997), we define the return time, Ret(h), as194

Ret(h) =
−1

Re(λ1(A))
, (7)

where λ1(A) is the dominant eigenvalue of the linearised model (1) at the equilibrium (the Jacobian).195

Note that since the Jacobian depends on the harvesting rate, h, then the return times also depends196

on the harvesting rate.197

Resilience, Res(h), measure is simply the reciprocal of the return time,198

Res(h) = −Re(λ1(A)). (8)

Both these measures account for the variance of long-term system stability, and are dependent on199

the harvesting rate.200

2.3.2 Reactivity201

Perturbations in ecological systems can grow significantly before they decay, and this is measured202

by reactivity, Reac(h), which measures the short-term behaviour. Following Neubert and Caswell203
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(1997)204

Reac(h) = λ1(H(A)), (9)

where λ1(H(A)) is the dominant eigenvalue of the Hermitian part of A (i.e. H(A) = (A + AT )/2).205

3 Results206

There are several model parameters which can be varied, but we concentrate on the host carrying207

capacity (k). For a host-pathogen system in a natural environment, such as C. sinensis, it is208

difficult to manage the infection process of a pathogen directly. However, it is more likely that one209

can change the carrying capacity of the host population by managing the environment, for example210

by rotating grazing of livestock (Cannon et al. 2009).211

3.1 Constant proportional harvesting212

3.1.1 Analytical results213

The host-pathogen model with proportional harvesting generates three steady states; a trivial214

steady state (X∗, Y ∗,W ∗) = (0, 0, 0), a pathogen-free steady state (X∗, Y ∗,W ∗) = (k, 0, 0) and an215

endemic steady state216

(X∗, Y ∗,W ∗) =
(

µ

λαβ
(b + α + h),

µW ∗

λα
,
r

β

(
1− X∗

k

))
. (10)

Linear stability analysis is given in Appendix. The trivial steady state is always unstable, whilst217

for the pathogen-free steady state to be stable218

h >
λαβk

µ
− b− α =: hmax. (11)

Hence, if the harvesting rate is sufficiently high (h > hmax), then this over-harvesting will cause219

the pathogen to become extinct. For the endemic steady state to be biologically realistic220

k > X∗ =⇒ h < hmax, (12)

meaning that the pathogen-free steady state is unstable. Therefore the carrying capacity has to221

be greater than the steady state of the susceptible host population. If the pathogen is present in222
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the population this will always be true; the susceptible host population cannot exceed the carrying223

capacity. It is not possible to determine closed-form stability conditions for the endemic equilibrium.224

Therefore we need to resort to numerical solutions (see below).225

Harvesting at the endemic equilibrium increases the number of susceptible hosts at a rate226

proportional to the number that would otherwise generate free-living pathogen spores if there was227

no harvesting. Harvesting decreases the number of infected hosts, hence fewer spores are produced228

and so the number of free-living pathogen spores also decreases. Therefore there is less pathogenicity229

and the number of susceptible hosts increases.230

3.1.2 Yield231

For stable steady states, the maximum sustainable yield (MSY) and its associated harvesting rate232

(hMSY - the maximal harvesting rate) can be calculated analytically. The yield is given by233

hY ∗ = h
µW ∗

λα
= h

µr

λαβ

(
1− µ

λαβk
(b + α + h)

)
=

µ

λαβ

(
−h2

k
+ h(r − b− α)

)
. (13)

Solving the derivative of the yield Eq. (13) at zero gives the turning point of the curve, which234

is the harvesting effort that gives the maximum yield,235

hMSY =
1
2

(
λαβk

µ
− b− α

)
= hmax/2. (14)

Hence,236

MSY = hMSYY ∗ =
1
2

(
λαβk

µ
− b− α

)(
µr

λαβ

(
1− X∗

k

))
(15a)

=
1
4

(λαβk − bµ− αµ)2 r

β2λ2α2k
. (15b)

The analytical expression (15) gives a direct relationship between the MSY and the parameters.237

Increasing the intrinsic growth rate of the host (r) increases the MSY; a greater growth rate means238

there is more of the pathogen to harvest and hence the MSY increases. For an endemic steady239

state to exist, and therefore yield to be produced, the carrying capacity (k) has to be greater than240

a minimum value, given by241

kmin =
µ(b + α)

λαβ
. (16)
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For k ≤ kmin the system is at the pathogen-free equilibrium and hence the MSY is not defined.242

When the MSY is defined (k > kmin) there is a linear increase in yield as the carrying capacity243

increases. A similar situation arises for the virulence of the pathogen (β). If the virulence of the244

pathogen is less than or equal to245

βmin =
µ(b + α)

λαk
. (17)

then the endemic steady state is unstable, and the system is at the pathogen-free steady state. As246

the virulence of the pathogen increases from βmin there is an increase in the MSY, which tends247

towards an asymptote found at248

β =
rk

4
. (18)

Therefore increasing virulence of the pathogen eventually has little effect on the MSY. This is249

because no matter how virulent the pathogen, the yield is constrained by the number of hosts250

available. Consequently, as the virulence of the pathogen increases, the MSY tends towards an251

asymptote which is dependent on the carrying capacity and the intrinsic growth rate of the host.252

Finally, as the pathogen induced mortality rate (α) increases, the MSY decreases. Although in-253

creasing the pathogen induced mortality rate increases the rate of sporulation, it also decreases the254

proportion of infected hosts in the population, giving a decreased MSY.255

The yield can be seen graphically in Fig. 1 as we vary the harvesting rate between zero and hmax.256

Here we consider the yield for two cases; when in the absence of harvesting the system has real257

eigenvalues (real case) and when it has complex eigenvalues with negative real-part (complex case).258

For both cases, as the harvesting effort increases so does the yield; harvesting at a greater rate259

produces more of the resource and hence the yield increases. After the maximum yield is attained260

harvesting at a greater effort decreases yield; the resource is over-exploited. By over-harvesting261

the number of infected hosts decline, leading to a decreased yield. Harvesting beyond this point262

causes extinction of the pathogen due to over-exploitation and the host population goes to carrying263

capacity. We see that the qualitative behaviour of the curve does not change for either case and the264

maximal harvesting rate is given by hMSY = hmax/2. However, as the carrying capacity increases265

and the eigenvalues switch from real to complex, the yield increases according.266

Fig. 2(a) shows the different stability regions that occur in the absence of harvesting as the267

carrying capacity and virulence of the pathogen are changed. As both parameters are increased268

the stability changes from being disease free, to monotonically stable, through damped oscillations269
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until there is instability. If we then include constant proportional harvesting with h = hMSY in270

the model we can see in Fig. 2(b) that, other than at the disease-free equilibrium, the system is271

stable for all the parameter ranges. This can be shown analytically; harvesting at hMSY reduces272

the second stability condition to273

hMSY <
λαβk

µ
− b− α = hmax, (19)

which is always true. Similarly, substituting hMSY into the third stability condition (given in274

Appendix) results in an expression which is always positive. Therefore, if k > kmin and β > βmin,275

when harvesting at the maximal harvesting rate the system is always stable, whether there are real276

or complex eigenvalues in the absence of harvesting.277

3.1.3 Recovery time and resilience278

Fig. 3(a) shows the recovery time of the system for the real and complex cases. Unlike the yield-279

effort curves, changing the carrying capacity results in a significant change to the qualitative be-280

haviour of recovery time. For the real case, the recovery graph has the same qualitative behaviour281

as has been found for single species systems (Beddington and May 1977). For low harvesting rates282

there is a gradual increase in the recovery time, which continues for moderate harvesting rates, but283

there is a rapid increase in the recovery time for harvesting rates above hMSY. The complex case284

gives very different results, by which the unharvested system exhibits damped oscillations to the285

equilibrium, and this has a pronounced effect on the recovery time. As harvesting is increased the286

recovery time decreases initially, which suggests that low levels of harvesting may be beneficial.287

As harvesting increases further a minimum return time is achieved, at which point the eigenvalues288

become real and the recovery times increase, suggesting that the system will be less able to recover289

from perturbations as harvesting increases. It should be noted that the minimum return time does290

not coincide with the MSY.291

For the reciprocal of the recovery time, resilience (Fig. 3(b)), we see that in the real case292

increasing the harvesting rate decreases resilience. In contrast, increasing harvesting in the complex293

case increases resilience to a maximum, after which harvesting causes the eigenvalues to become294

real and the resilience decreases. It can clearly be seen that the MSY occurs after the bifurcation.295

In Fig. 3(c) we analyse reactivity, a measure of the short term response to perturbations. In296
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both the real and complex cases initial increases in harvesting at first decrease reactivity until a297

minimum after which reactivity increases rapidly. This would suggest that low levels of harvesting298

would make the system less prone to short-term amplified transients.299

We demonstrate the generalities of these findings in Fig. 4. Increasing the host carrying ca-300

pacity increases the yield and destabilises the interaction. Conversely, increasing harvesting first301

increases yield to the MSY, but this is followed by a decrease in yield and the eventual extinction302

of the pathogen. Furthermore, increasing harvesting generally acts to stabilise the host–pathogen303

interaction. Importantly, it should be noted that the MSY only occurs in the monotonically stable304

region of parameter space. This would suggest that, in general, low level harvesting will increase305

resilience before the MSY is reached when the host–pathogen system exhibits unstable or damped306

oscillatory behaviour in the absence of harvesting.307

3.2 Open-closed proportional harvesting308

We now consider the open-closed strategy as a mitigation against over-harvesting. To recap, this309

strategy implements a periodic proportional harvest during the open season and no harvest during310

the closed season, which may allow the pathogen to recover. Since the resultant behaviour fluctuates311

due to the harvesting strategy we are unable to use the system health measures as we did for312

constant proportional harvesting. Hence, we use numerical simulations to investigate optimal313

harvesting strategies.314

Fig. 5(a) shows the yield-effort curves for the proportional open-closed harvesting strategy for315

the real case (k = 1). Here, the three curves represent different proportions of open period; p = 0.2,316

p = 0.5 and p = 0.8. When p = 0.2 we see an initial increase in the yield until the MSY is reached.317

After this there is a gradual decrease in the yield attained, but because of the short open season318

the decrease is very slow. The short open season allows continued yielding for a greater range of319

harvesting efforts above the MSY than under constant proportional harvesting (compare Fig. 1).320

Increasing the proportion of open period (p = 0.5 and p = 0.8) causes an increase in the MSY, which321

is also attained at lower harvesting rates. However, this comes at a cost since over-harvesting leads322

to over-exploitation causing a decreased yield and making the system more prone to population323

extinction.324

Similarly in the complex case (k = 4 Fig. 5(b)) increasing the open season proportion increases325

the MSY and allows for harvesting efforts which would have caused extinction under constant326
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proportional harvesting. However, in contrast to the k = 1 case, the harvesting rates at which327

the MSY is attained does not vary greatly with the proportion of the open season (i.e. hMSY ≈328

constant ∀p).329

The MSY is lower than in the constant proportional harvesting case although we used the same330

parameter values. This is because the closed period does not allow for harvesting, and therefore331

the yield is less than when harvesting continuously. This is true in both the real and complex cases.332

Fig. 6(a) shows the MSY for the proportional open-closed harvesting strategy when the carrying333

capacity (k) and the proportion of time spent harvesting (p) are varied. As the length of the334

open season increases so too does the MSY, as a greater proportion of time is spent harvesting.335

Increasing the carrying capacity also increases the MSY; an increased carrying capacity provides336

a greater resource. Fig.6(b) shows the corresponding maximal harvesting rates (hMSY). For small337

carrying capacities the maximum harvesting rate is less than for larger carrying capacities. For338

small carrying capacities the maximal harvesting rate decreases (according to power laws) with339

increasing length of open season (see Fig. A1(a) in Appendix when k = 2.5). For long open seasons,340

the maximal harvesting rates are relatively low since harvesting is spread over a long period, with341

a relatively short period for population recovery. In contrast, for short open seasons the maximal342

harvesting rates increase since intensive harvesting can occur as the recovery period is relatively343

long. Fig. 6(b) shows different behaviours for larger carrying capacities, with more variation in344

the maximal harvesting effort as the length of open period is increased. As the carrying capacity345

increases the dynamics during the closed period change (as seen in Fig. 2(a)). This means that346

as the length of open season varies the population density of the infected hosts at the end of the347

closed season varies (see Fig. A2 and Fig. A1(b) in Appendix). A small change in the length of the348

open season mean there is either an additional peak or trough in infected host density in the closed349

season. This either accelerates or decelerates the MSY which in turn increases or decreases the350

optimal harvesting rate respectively, yielding the oscillatory behaviour in the optimal harvesting351

rate for large carrying capacities in Fig. 6(b). It is interesting to note that whilst the maximal352

harvesting rates change dramatically for small changes in the length of the open period, there is353

little change in the corresponding MSY values (see Fig. A1(c) and (d) for an example when k = 7354

for greater clarity). In Fig. 6(a) for larger carrying capacities the MSY increases linearly, however355

the maximal harvesting rates shown in Fig. 6(b) oscillate as the proportion of the open season356

increases. The oscillations become dampened as the proportion of open season increases and there357
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is less difference in the maximal harvesting rates. Therefore, if in the absence of harvesting there358

are oscillatory dynamics, this has a large impact on the resultant dynamics in the open-closed359

harvesting strategy, and can hence make it difficult to assess what may be the best harvesting rate.360

4 Discussion361

We have developed existing theory to model the harvest of an insect-pathogen in a host–pathogen362

system using two contrasting harvesting strategies. We examined the MSY, and determined how363

it is affected by variations in parameters relating to carrying capacity, growth rates and virulence364

of the pathogen. We found that under constant proportional harvesting the return time, and365

hence resilience, is highly dependent on the eigenvalues of the system in the absence of harvesting.366

Therefore, harvesting can be beneficial in terms of system resilience if environmental fluctuations367

occur, both in the short- and long-term. Finally, we have shown that the implementation of a368

closed season without harvesting supports a greater range of harvesting rates, but a reduced yield369

is found compared to constant proportional harvesting.370

We have shown that constant proportional harvesting can allow for an amount of over-exploitation371

before extinction of the pathogen, which mirrors findings from single species models (Yakubu et al.372

2011) and for a predator–prey model if only the predator is harvested (Legović et al. 2010; Kar and373

Ghosh 2013). However, in a simple predator–prey model if only the prey is harvested the predator374

can be driven to extinction before the MSY of the prey has been reached (Legović et al. 2010),375

thus reducing the system to a single species model. In a more complex predator–prey model with376

intraspecific competition in the predator growth dynamics, the same can happen however there377

can be co-existence of both species (Kar and Ghosh 2013). Overharvesting above the MSY leads378

to the extinction of the predator and again results in the single species model. We also found the379

host–pathogen system can allow for an amount of over-exploitation under an open-closed harvesting380

strategy. However, for this strategy we demonstrated a new yield-effort curve which is no longer381

symmetric around hMSY, as in the constant proportional case. Harvesting over the maximum still382

decreases yield, as in the constant proportional case and single species models (Beddington and383

May 1977; Yakubu et al. 2011), but decreases at a slower rate than in these cases as the closed384

season allows for a period of recovery.385

Under constant proportional harvesting we have found that variations in the carrying capacity386

and other parameters can affect the underlying dynamics of the system. This in turn heavily387
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affects the health measures of the host–pathogen system. In the real case we have shown that the388

return time increases with harvesting effort, which is consistent with the literature for the single389

species model (Beddington and May 1977). In contrast, increasing the carrying capacity gives the390

complex case, for which we have shown there is an initial decrease in the return time. The resilience391

analysis complements this result, agreeing with Kristensen et al. (2003), whereby the maximum392

resilience occurs where the eigenvalues change from complex to real. Their analysis was of a three-393

compartment aquatic food web model involving Lotka–Volterra dynamics. We have not found any394

literature on harvested predator–prey type models where the resilience has been calculated. It395

is interesting to note that in the complex case overharvesting can still result in a faster return396

time than no harvesting. However, over-harvesting results in decreased yield and hence is still not397

profitable.398

The results described here have implications for choosing an appropriate harvesting strategy.399

Although an open-closed harvesting strategy is less likely to cause extinction of the host, the yield400

is less than under a constant proportional strategy. Therefore, fully understanding the interactions401

between the host, pathogen, harvesting effort and yield is vital in ensuring the resource is used to402

it’s full potential. A cost-benefit analysis may need to be performed to determine if it is imperative403

the host has time to recover, or, if it can be harvested continually to maximise return. Wildlife and404

fisheries management often shows ecological advantages of open-closed harvesting (Bartlett et al.405

2009; Cinner and Aswani 2007), and therefore the yield needs to be examined in the context of the406

host–pathogen system being studied.407

Our results have shown that understanding how yield, and especially MSY, change under dif-408

ferent environmental circumstances is vital, as changing practices may enable a greater harvest or409

avoid overharvesting. For example, increasing the carrying capacity 4-fold produces around eight410

times the yield under constant proportional harvesting and 5-10 times the yield under the open-411

closed harvesting strategy. Thus, farming of yaks and other livestock may increase the occurrence412

of C. sinensis, as they keep the vegetation shorter, which enhances (a) dispersal of spores and (b)413

finding the fungus for harvest (Cannon et al. 2009; Winkler 2005). Altering where and when the414

yaks and other livestock graze may therefore influence the carrying capacity, in turn altering the415

MSY. In an open-closed setting practices such as these to increase the carrying capacity have a416

positive effect on the MSY, however we have shown that managing the strategy to optimise the417

harvesting effort is difficult. In this setting a small carrying capacity will reduce the MSY slightly,418
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however it will be more difficult to determine the optimum harvesting rate to achieve such a yield.419

The variations in maximal harvesting rates makes exploitation of the resource easier for harvesters;420

slight changes in practices regarding the amount of time spent harvesting could have great impli-421

cations for the host–pathogen system if the harvesting rate is not also changed appropriately.422

Our results indicate that the health of the harvested host–pathogen system is strongly dependent423

on the strength of the host–pathogen interaction, and the types of dynamics exhibited (monotonic424

or oscillatory stability). Furthermore, low levels of harvesting may aid the resilience of the system425

to perturbations in both the short- and long-term. Moreover, if in the absence of harvesting426

there are real or complex eigenvalues, harvesting well beyond the MSY would (i) decrease yield427

and (ii) make the system extremely prone to large scale and long-lived transient behaviours that428

may be detrimental to people dependent on the harvest. Therefore, the accuracy of life-history429

parameters are vital, as small changes could change the predicted system eigenvalues and hence430

alter the measures of short- and long-term health of the system, as well as the predicted MSY.431

Using bioeconomic models, Hoshino et al. (2014) found that modelling different levels of stage/age-432

structure complexity, combined with variability of life-history parameters, could have large effects433

on bioeconomic target reference points, such as MSYs. Our results are in agreement with these434

findings, but in addition, we have also shown that ecosystem health (resilience and reactivity) could435

also be affected.436

For harvested host-pathogen systems such as C. sinensis, it is vital to determine appropriate437

strategies for harvesting. Alternatives to the measures explored in this paper include no-take areas.438

Little et al. (2010) established that for fisheries no-take areas can combat population extinction.439

They benefit the surrounding, harvested areas and hence this idea may also be applicable to host–440

pathogen systems. Site specific quotas (Beissinger and Bucher 1992) are another alternative which441

may also assist with sustainable management.442

Our study has explored two strategies for harvesting hosts in a host–pathogen system. Using443

an open-closed strategy means the pathogen is less likely to be driven to extinction as higher levels444

of harvesting can be supported. However, harvesting at a constant rate can produce a greater445

yield providing the resource is not overexploited. The environmental conditions are undeniably446

important, as they affect the underlying dynamics and mean that harvesting can affect the system447

in different ways. There are six key areas of biological knowledge needed to harvest animals; popu-448

lation size and range, habitat requirements, resilience to human disturbance and habitat changes,449
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mortality and productivity rates, key factors which regulate populations, and effects of variations450

on the environment (Beissinger and Bucher 1992). These can be applied to a host–pathogen har-451

vesting model. For example, the C. sinensis system is poorly understood (Cannon et al. 2009), and452

study of the host–pathogen interactions in the field is required to inform a more specific model.453

However, we have developed a model of harvesting in a host–pathogen system, and shown that454

frequently some level of harvesting is more beneficial for system stability than no harvesting.455
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Appendix459

Linear stability analysis: host–pathogen model with proportional harvesting460

461

The Jacobian matrix for the host–pathogen model with proportional harvesting is given by

J(X∗Y ∗,W ∗) =




r
(
1− 2X∗

k

)− βW 0 −βX∗

βX∗ −(b + α + h) βX∗

0 λα −µ




.

At the trivial steady state the characteristic equation is given by

σ3 + σ2(b + α + h + µ− r) + σ(µ(b + α + h)− r(b + α + h + µ))− rµ(b + α + h) = 0.

A Routh–Hurwitz condition is always violated with this characteristic equation and hence the462

trivial steady state is unstable.463

The characteristic equation for the pathogen-free steady state is given by

σ3 +σ2(r+ b+α+h+µ)+σ(r(b+α+h+µ)+µ(b+α+h)−βkλα)+(rµ(b+α+h)−rβkλα) = 0.

In this case the one Routh–Hurwitz condition is always valid. However for the other conditions
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to hold then
µ(b + α + h)

βk
> λα.

The characteristic equation for the endemic steady state can be given by

σ3 + σ2

(
rX∗

k
+ b + α + h + µ

)
+ σ

(
rX∗

k
(b + α + h + µ)

)
+ r

(
1− X∗

k

)
(b + α + h)µ = 0.

Again one condition is always satisfied, and for the other conditions to be satisfied it is necessary

that

λα >
µ(b + α + h)

βk
,

and

(r + b + α + µ + h)
(

rX∗

k
(b + α + h + µ)

)
− r

(
1− X∗

k

)
(b + α + h)µ > 0.

464

465

Stability analysis: harvesting at hMSY466

467

The third condition for stability at the endemic equilibrium is

(r + b + α + µ + hMSY)
(

rX∗

k
(b + α + h + µ)

)
− r

(
1− X∗

k

)
(b + α + hMSY)µ > 0.

Let468

r1 = (r + b + α + µ + hMSY)
(

rX∗

k
(b + α + h + µ)

)
,

=
1
8

(2rµ + bµ + αµ + 2µ2 + λαβk)r(bµ + αµ + λαβk)(bµ + αµ + λαβk + 2µ2)
µ2λαβk

and469

r2 = r

(
1− X∗

k

)
(b + α + hMSY)µ,

= −1
4

r(−λαβk + βµ + αµ)(bµ + αµ + λαβk)
λαβk
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Then condition three is r1 − r2, given by470

1
8

1
µ2λαβk

(
r(bµ + αµ + λαβk)

(
2rµ2b + 2rµ2α + 2rµλαβk + 4rµ3 + b2µ2 + 2bµ2α

+2bµλαβk + 6bµ3 + α2µ2 + 2α2µλβk + 6αµ3 + 2µ2λαβk + 4µ4 + λ2α2β2k2
))

,

which is always positive. Therefore at the harvesting effort which produces the MSY the third471

Routh–Hurwitz condition holds and, as the first two do, the system is always stable.472

473

Open-closed proportional harvesting474

475

Fig. A1(a) shows the maximal harvesting rate (hMSY) as the proportion of open period increases476

when the carrying capacity is k = 2.5. The maximal harvesting rate when k = 2.5 decreases477

according to the power law f(x) = axb + b, which was fitted using MATLAB, where a = 0.003543,478

b = −2.175 and c = 0.2377 with corresponding 95% confidence intervals of (0.00286, 0.004226),479

(−2.296,−2.054) and (0.2363, 0.2395). In this case the R–square value is 0.996 for the best fit. For480

small carrying capacities the maximal harvesting rate follows a similar trend as the proportion of481

the open season increases.482

Fig. A1(b) shows the density of infected hosts as the harvesting begins at the start of the open483

season, averaged over 50 open-closed seasons. Whilst for small carrying capacities the density484

of infected hosts does not vary greatly as the proportion of the open season increases, for larger485

carrying capacities there is more variation, and oscillatory behaviour in the density of infected486

hosts. This subsequently affects the maximal harvesting rate for larger carrying capacities as the487

length of open season increases.488

Fig. A1(c) shows the MSY as the proportion of open period increases when the carrying capacity489

is k = 7. The MSY increases as the proportion of open season increases. For small changes in490

length of open season there is a small increase in the MSY.491

Fig. A1(d) shows the maximal harvesting rate (hMSY) as the proportion of open period increases492

when the carrying capacity is k = 7. The maximal harvesting rate shows dampened oscillations as493

the proportion of open period increases.494

Fig. A2(a) shows the time series when there are real eigenvalues in the absence of harvesting495

(k = 2) as the length of the open season is varied. In the absence of harvesting there is a stable496
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equilibrium, meaning that at the end of the closed period the infected hosts density is approximately497

the same independent of the length of open season.498

Fig. A2(b) shows the time series when there are complex eigenvalues in the absence of harvesting499

with negative real part (k = 5) as the length of the open season is varied. In the absence of500

harvesting there is oscillatory behaviour. This means that the length of the open season has an501

impact on the infected hosts density at the end of the closed season before harvesting commences.502

Fig. A2(c) shows the time series when there are complex eigenvalues in the absence of harvesting503

with negative real part (k = 7) as the length of the open season is varied. In the absence of har-504

vesting there is again oscillatory behaviour. Due to the increased carrying capacity the amplitude505

of the oscillations is greater than when k = 2, again meaning that the length of the open season has506

an impact on the infected hosts density at the end of the closed period, thus affected the maximal507

harvesting rate which achieves the MSY.508
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Table 1: Parameter definitions for the mathematical model (1).

Parameter/variable Definition Value

X Density of susceptible hosts
Y Density of infected hosts
W Density of free-living pathogen spores
r Intrinsic growth rate of the host (birth rate - natural death

rate).
5

k Carrying capacity of the susceptible population
β Force of infection of the pathogen/virulence of the pathogen 2
b Natural mortality rate of the host 0.1
α Pathogen induced mortality rate of the host 0.003
h(Y ) Harvesting term; dependent on Y, the density of infected

hosts
λα Rate of sporulation from the infected hosts. 15α
µ Rate of decay of the pathogen 0.4
T Total length of open-closed period 100
p Proportion of time harvesting occurs 0 - 1
n Total number of open-closed seasons 50
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Fig. 1: The scaled yield-effort curve for constant proportional harvesting. The yield is plotted for
varied scaled harvesting rates. The dashed line shows the curve when, in the absence of harvesting,
all eigenvalues are real (k = 1), whilst the solid line shows the curve when, in the absence of har-
vesting, eigenvalues are complex (k = 4) with negative real part. The circles denote the respective
MSY points. For k = 1 hMSY = 0.0610 and hmax = 0.1220 and for k = 4 hMSY = 0.3985 and
hmax = 0.7970 (all to 4 decimal places). All other parameters are given in Table 1.
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Fig. 2: The stability regions for selected parameters. In (a) we plot the stability regions, as given
by the results in Appendix, in the absence of harvesting. In (b) we again plot the stability regions,
this time when harvesting is included in the model at the rate of hMSY. All other parameters are
given in Table 1.
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Fig. 3: (a) Scaled return times as a function of yield for proportional harvesting. Two cases are
presented: carrying capacity k = 1 where the eigenvalues are real in the absence of harvesting
(dashed lines); carrying capacity k = 4 where the eigenvalues are complex with negative real-part
in the absence of harvesting (solid lines: grey, complex eigenvalues and black, real eigenvalues). (b)
Resilience of the system for different harvesting rates for the two cases. The lines are as in (a). (c)
Reactivity plotted against the scaled harvesting rates for the two cases. The lines are as in (a), but
we do not distinguish between complex and real eigenvalues here. All other parameters are given
in Table 1.
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Fig. 4: The yield-effort curves and stability regions for the constant proportional harvesting strat-
egy. In (a) we plot the yield, as calculated by (5), for varying carrying capacities, k, and harvesting
rates, h. In (b) we plot the corresponding stability regions, as given by the results in Appendix. The
black line is the MSY curve as calculated by the maximum values from (a). All other parameters
are given in Table 1.
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Fig. 5: The yield-effort curves for the open-closed harvesting including a proportional harvesting
strategy. In these graphs the thick line corresponds to the open period lasting 20% of the open-
closed period, the dashed line the open period lasts for 50% of the total time and the dot-dashed
line represents when the open period lasts for 80% of the total time. (a) In the absence of harvesting
there are negative real eigenvalues (k = 1). (b) In the absence of harvesting there are complex
eigenvalues with negative real-part (k = 4).
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Fig. 6: The MSY and hMSY for the open-closed harvesting strategy. In (a) we plot the maximum
sustainable yield, found by taking the maximum over a range of harvesting values for varying
carrying capacities, k, and proportion of open season, p. In (b) we plot the harvesting effort which
corresponds to the MSY, hMSY. All other parameters are given in Table 1.
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Fig. A1: (a) Maximal harvesting rate as a function of proportion of open season for a carrying
capacity size k = 2.5. A power law curve has been fitted which is of the form f(x) = axb + c. (b)
The density of infected hosts, averaged over 50 years, at the start of the open season as the carrying
capacity and length of open period are varied. (c) MSY as a function of proportion of open season
for a carrying capacity size k = 7. (d) Maximal harvesting rate as a function of proportion of open
season for a carrying capacity of size k = 7. All other parameters are given in Table 1.
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Fig. A2: Time series for the open-closed harvesting including a proportional harvesting strategy. In
these graphs the thick line corresponds to the open period lasting 20% of the open-closed period,
the dashed line the open period lasts for 50% of the total time and the dotted dot-dashed line
represents when the open period lasts for 75% of the total time. (a) In the absence of harvesting
there are negative real eigenvalues (k = 2). (b) In the absence of harvesting there are complex
eigenvalues with negative real-part (k = 5). (c) In the absence of harvesting there are complex
eigenvalues with negative real-part (k = 7). All other parameters are given in Table 1.
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