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Which catchment characteristics control the temporal
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Abstract:

Hydrological classification systems seek to provide information about the dominant processes in the catchment to enable information
to be transferred between catchments. Currently, there is no widely agreed-upon system for classifying river catchments. This paper
develops a novel approach to classifying catchments based on the temporal dependence structure of daily mean river flow time series,
applied to 116 near-natural ‘benchmark’ catchments in the UK. The classification system is validated using 49 independent
catchments. Temporal dependence in riverflowdata is driven by the flowpathways, connectivity and storagewithin the catchment and
can thus be used to assess the influence catchment characteristics have on moderating the precipitation-to-flow relationship. Semi-
variograms were computed for the 116 benchmark catchments to provide a robust and efficient way of characterising temporal
dependence. Cluster analysis was performed on the semi-variograms, resulting in four distinct clusters. The influence of a wide range of
catchment characteristics on the semi-variogram shape was investigated, including: elevation, land cover, physiographic characteristics,
soil type and geology. Geology, depth to gleyed layer in soils, slope of the catchment and the percentage of arable land were significantly
different between the clusters. These characteristics drive the temporal dependence structure by influencing the rate at whichwater moves
through the catchment and/or the storage in the catchment. Quadratic discriminant analysis was used to show that a model with five
catchment characteristics is able to predict the temporal dependence structure for un-gauged catchments. This method could form the
basis for future regionalisation strategies, as away of transferring information on the precipitation-to-flow relationship between gauged
and un-gauged catchments. © 2014 The Authors. Hydrological Processes by published by John Wiley & Sons, Ltd.
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INTRODUCTION

Hydrology has yet to achieve a widely agreed-upon
system which classifies catchments based on the
movement and storage of water within the catchment
(Wagener et al., 2007; Ley et al., 2011). Even though
internal complexity will remain within each class as
every catchment is unique (Beven, 2000), a broad
classification process should be possible. This is based
on the general assumption that some level of organisa-
tion and therefore predictability in catchment ‘function’
(i.e. the translation of catchment input into river flow)
exists (Dooge, 1986; Bloschl et al., 2013). A broad
classification process should cluster together similar
catchments, thus limiting the variability within classes
and maximising the variability between them. The
between-catchment similarities may be a result of natural
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self-organisation or the co-evolution of climate, soils,
vegetation and topography (Sivapalan, 2006).
Classification is a means to identify the dominant

processes and mechanisms operating in a given
catchment type, as well as the most important controls
on water fluxes and pathways (McDonnell and
Woods, 2004). Identifying the dominant processes
which transform precipitation into runoff will
enhance understanding about the similarity or dissim-
ilarity between catchments (Gottschalk, 1985). Being
able to classify catchments has a range of benefits
(Grigg, 1965, 1967):

1. To give names to things (enable grouping as seen in
other disciplines).

2. To permit transfer of information (from gauged to un-
gauged catchments as well as enabling comparison
between studies in different catchments).

3. To permit development of generalisations (improve
knowledge about the drivers behind the precipitation-
to-flow relationship).
ons, Ltd.
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As the impacts of a non-stationary climate are
becoming of greater concern (Wagener et al., 2010),
Sawicz et al. (2011) added a fourth:

4. To provide a first-order environmental change impact
assessment (identify the impacts from land management
and climate change).

Hydrological science has developed descriptive classi-
fications categorising catchments in terms of, e.g. land
cover (forested, urban, arable, etc); climate (humid, arid,
semi-arid, etc); flow pathways (fast, slow); storage
(groundwater dominated, surface water catchments); etc
(Wagener et al., 2007). These groupings do not provide a
comprehensive classification system as they do not enable
understanding about the partitioning of water nor the
importance of different water stores (McDonnell and
Woods, 2004). A further drawback with the aforemen-
tioned groupings is that no information is provided about
the impact of the interaction between different descrip-
tors. Previous classification studies have either focused on
physical catchment characteristics (e.g. Acreman and
Sinclair (1986) and Burn and Boorman (1993)) or on
indicators derived from specific aspects of the flow record
(e.g. floods—Robson and Reed (1999); low flows and
flow duration curves—Holmes et al. (2005); seasonally
averaged flows—Laizé and Hannah (2010); long term
average annual regimes and long term annual flow
average—Bower et al. (2004)). Bower et al. (2004)
differentiated between first and second-order controls
(precipitation and catchment characteristics, respectively)
on flow. Ali et al. (2012) and Ley et al. (2011) showed
a lack of correlation between flow-derived indicators
and catchment characteristics. The difference is likely
to be caused by the catchment characteristics not
adequately capturing the climatic effects (first-order
control of flow).
Temporal dependence represents the similarity between

the river flow on a given day and river flow on the
preceding days. As temporal dependence is likely to be
driven by catchment characteristics (Szolgayova et al.,
2013), classification based on the temporal dependence
has some key advantages: (1) raw flow data can be used,
rather than having to calculate indicators from discharge
data (e.g. annual or seasonal averages, minimum or
maximum flows). (2) The method can handle missing
data. (3) The classification is based on catchment function
(i.e. the degree to which catchment characteristics filter
rainfall into runoff) and not a specific part of the flow
regime. This confers significant benefits for advancing
our understanding of the drivers behind the precipitation-
to-flow relationship in a much more generalised way
(benefit 3) rather than for a specific process (e.g. flooding
or low flows).
© 2014 The Authors. Hydrological Processes by published by John Wiley
Szolgayova et al. (2013) suggested that catchment
properties can influence the temporal dependence of river
flow. Such properties are likely to include those
governing the predominant catchment second-order
controls (i.e. catchment characteristics which modify the
precipitation-to-flow relationship (Bower et al., 2004).
These will influence: partitioning between vertical and
lateral pathways (e.g. interception, overland flow, infiltra-
tion and percolation); connectivity of the drainage
network and hydraulic gradients (Buttle, 2006) and
storage (e.g. soil moisture storage, lakes and storage in
the saturated zone (Black, 1997)).
This paper develops a new catchment classification

system based on the temporal dependence of river flow;
an integration of water input, storage and flow pathways
within a catchment. A hydrological classification method
becomes more powerful if catchments can be classified
without the use of river flow data; enabling un-gauged
catchments to be classified and hence allowing data
transfer between gauged and un-gauged catchments.
Therefore, the second part of this paper will demonstrate
how un-gauged catchments could be clustered into the
same classification using their catchment characteristics
thereby facilitating data transfer (benefit 2).
The methodology used in this paper is designed to

capture differences in the precipitation to channel-flow
relationship (benefit 3). This novel approach of assessing
the temporal dependence in a catchment based on semi-
variograms, created using daily river flow data, will be
applied to a range of catchments throughout the UK.
The term semi-variogram refers to the semi-variance
calculated from the data without fitting model (also
known as the experimental or empirical variogram)
(Chandler and Scott, 2011).
DATA

Catchment selection

A sample of catchments was needed to represent the
population of UK catchments in terms of spatial location
and catchment characteristics. The choice of catchments
selected was constrained: (1) to remove the influence of
weather, the time series is averaged over a long time
period. Therefore, only catchments with a record length
of 30 years or more with less than 5% missing data were
considered. (2) As controls from climate and land use
change through time (Wagener et al., 2007), a common
time period (1970 to 2010) was used to enable
comparisons between catchments. (3) Artificial influences
on river flows (such as reservoirs or sewage discharges)
could affect the dependence structure of the data series, so
near-natural UK benchmark catchments, with only
modest net impacts from artificial influences were chosen
& Sons, Ltd. Hydrol. Process. 29, 1353–1369 (2015)
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(Bradford and Marsh, 2003). (4) Nested catchments with
similar flow regimes were removed.
Any study using observed hydrometric data faces an

inevitable degree of uncertainty due to limitations with
the measurement techniques (McMillan et al., 2012). The
amount of uncertainty will depend on the gauging station
to a great degree. In this study, the impacts of data error
were minimised insofar as possible through judicious
selection of catchments. One of the criteria Bradford and
Marsh (2003) used to develop the benchmark network
was hydrometric performance, with the gauging stations in
the network generally producing good quality data.
Furthermore, the data used in this study has undergone
validation by the National River Flow Archive (NRFA) as
outlined in Dixon et al. (2013); Muchan and Dixon (2014)
demonstrated that NRFA data is generally of high quality
thanks to these quality control procedures.
The 116 catchments used in this paper provide good

spatial coverage of the UK (Figure 1) and a wide variety of
catchment types with varying characteristics (Table I).
However, catchments in the South East are smaller, as
artificial influences are more pervasive in this densely
populated region. In addition, a further 49 catchments were
selected for validation purposes (Figure 1). These were
selected using the approach outlined above, except the
requirement to be a benchmark catchment was removed;
instead, they were screened for artificial influences using the
metadata records from the NRFA. The hydrometric data
were collected by the measuring authorities (Environment
Agency in England, Natural Resources Wales in Wales,
Scottish Environment Protection Agency in Scotland, and
the Rivers Agency in Northern Ireland) and stored on the
NRFA (http://www.ceh.ac.uk/data/nrfa/). Daily rainfall data
for each catchment were also calculated from 1 km by 1 km
gridded rainfall data using the method outlined in Keller
et al. (2006).

Catchment characteristics

In order to investigate the drivers behind the different
shapes of semi-variogram, 29 catchment characteristics
were analysed, grouped into categories: elevation(e), land
cover(Lc), physiographic and hydrological descriptors
from the FEH(FEH) (Flood Estimation Handbook, the
UK’s principal methodology for flood estimation at un-
gauged sites; (Robson and Reed, 1999)), geology(g),
storage(St) and soil classification(s) (Table I).
Five elevation characteristics were considered to assess

how topography varies between the clusters, all derived
from the Integrated Hydrological Digital Terrain Model
(Morris and Flavin, 1990), as published in the UK
Hydrometric Register (Marsh and Hannaford, 2008).
Land cover was derived from the Land Cover Map 2000
(Fuller et al., 2002), grouped into four categories from the
26 LCM2000 subclasses, to ensure the representation in
© 2014 The Authors. Hydrological Processes by published by John Wiley
the 116 catchments and preservation of the four major
land covers. Nine characteristics from the FEH were
included, incorporating the important characteristics of the
catchment and excluding discharge features (e.g. return
periods). Four different Hydrology of Soils Types (HOST)
(Boorman et al., 1995) soil types based on the depth to
gleyed layer (reduced from 29 HOST classes) and seven
different hydrologically important rock types calculated
from the 1:625 000 scale digital hydrogeological map of
the UK were identified. As with land cover these
categories were defined to capture the main hydrological
differences whilst being represented throughout the 116
catchments. In addition to the HOST soil classes,
BFIHOST and BFI are included as indicators of
catchment storage. Base flow index is not a catchment
characteristic per se as it is calculated from the flow data.
However, it is frequently used as an indication of storage
and is included here to compliment the BFIHOST values,
which are BFI values predicted from HOST classes.
METHOD

An overview of the methods used in this paper is provided
here, beforemore detail is provided in the following sections.
Firstly, the daily flow data are transformed to make them
suitable for (semi-)variogram analysis. Second, a semi-
variogram is created for each catchment. Third, the semi-
variogram for all sites is categorised into groups using cluster
analysis. Finally, the influence catchment characteristics
have on the temporal dependence of each of these clusters is
analysed in two ways: through box plots, to investigate the
distribution of catchment characteristics for each cluster; and
by using Quadratic Discriminant Analysis (QDA) to
independently predict membership of the clusters using
catchment characteristics rather than the semi-variogram.

River flow data transformation

To calculate a semi-variogram, the data should first be
transformed into a normally distributed, deseasonalised time
series (Skøien et al., 2003). Therefore, a number of
transformation steps were implemented, each one using the
data from the previous, startingwith raw daily discharge data:

1. As some hydrological time series had periods of no
data and all sites had a good analogue station, the time
series were in-filled to improve the fit of the periodic
function used for deseasonalisation (step 3). Infilling was
carried out using the equipercentile linking method
(Hughes and Smakhtin, 1996) where the flows from one
gauging station are linked to another through percentile
ranks. Harvey et al. (2012) showed that the equipercentile
method outperforms other methods such as scaling
factors for infilling mean daily river flow data.
& Sons, Ltd. Hydrol. Process. 29, 1353–1369 (2015)
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Figure 1. Location of the 116 benchmark (black) and 49 validation catchments (grey) used in this study
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2. Logarithms were taken, to create a near normal
distribution. Zero values were replaced by 0.001m3s�1.

3. Seasonality was removed (to avoid exaggerating the
temporal dependence) using Fourier representation; a
periodic function was fitted to the data using a sum of
sine and cosine waves, at frequencies which are integer
multiples of the annual cycle. For each catchment, the
number of covariates was set to six to enable a good fit
to the data (more covariates increases the flexibility of
the function, enabling a better fit to the data). While it
© 2014 The Authors. Hydrological Processes by published by John Wiley
is acknowledged that using six covariates might over fit
the model, this is deemed appropriate to model the
seasonal effects (and not to extrapolate). Akaike’s
Information Criterion, a relative goodness of fit
measure, was used to select the best parameters for
the periodic function. The effect of seasonality was
removed by deducting the magnitude and dividing by
standard deviation caused by seasonality (both calcu-
lated from the periodic function) for each day in a year.
Although infilling the data enhanced the ability to fit a
& Sons, Ltd. Hydrol. Process. 29, 1353–1369 (2015)



Table I. Summary of the catchment characteristics investigated

Catchment characteristic Abbreviation Units Description Min Max Mean Median

Altitude(e) N/A m Altitude of the gauging station to the
nearest datuma (derived using IHDTMb )

3 356 60 35

Elevation 10(e) Elv-10 m Height above datuma below which 10%
of the catchment lies (derived using
IHDTMb ).

9 408 114 92

Elevation 50(e) Elv-50 m As above but for 50% 20 604 198 164
Elevation 90(e) Elv-90 m As above but for 90% 52 889 316 279
Elevation max(e) Elv-M m As above but for the maximum value 68 1309 484 470
Woodland(Lc) Wood % Amount of the catchment covered by

woodland Calculated from CEH land
cover maps 2000. This is an aggregation
of: broad-leaved/mixed woodland and
coniferous woodland

0 49 12 10

Arable land(Lc) Arable % As above but using an aggregation of:
arable cereals, arable horticulture and
arable non-rotational

0 86 23 12

Grassland(Lc) Grass % As above but using an aggregation of:
improved grassland, neutral grassland,
set-aside grassland, bracken, calcareous
grassland, acid grassland and fen, marsh
and swamp

6 96 47 45

Urban(Lc) N/A % As above but using an aggregation of:
suburban, urban and inland bare ground

0 40 2 1

Area(FEH) N/A Km2 Area of the catchment calculated using
the CEH’s Digital Terrain Model (IHDTMb )

3.1 1500.0 227.6 108.5

Drainage path slope(FEH) DPS m km�1 Mean drainage path slope calculated from
the mean of all inter-nodal slopes (derived
using IHDTMb )

12 309 100 91

PROPWET(FEH) P-WET % Proportion of the time soils are wet
(defined as a soil moisture deficit of less
than 6mm)

23 83 48 46

Flood plain extent(FEH) FPext Ratio Proportion of the floodplain which would be
covered by the 1 in a 100-year flood event

0.010 0.226 0.064 0.052

Longest drainage path(FEH) LDP Km Longest drainage path from a catchment
node to the defined outlet

4.01 116.09 33.49 27.76

Drainage path length(FEH) DPL Km Mean drainage path length from the
distances between all nodes and the
catchment outlet

2.04 60.39 17.78 14.96

FARL(FEH) N/A Ratio Flood attenuation attributed to reservoirs
and lakes

0.67 1.00 0.98 0.99

BFIHOST(St) BFI-H ratio Area-weighted base flow index derived
using the Hydrology Of Soil Types
(HOST) classification

0.24 0.95 0.50 0.48

BFI(St) N/A ratio Calculated from mean daily flow data
using the method outlined in Gustard
et al. (1992)

0.16 0.96 0.50 0.48

HOST no gleying(s) S-no % Percentage of the catchment made up of
classes: 1 to 8, 16 and 17

0 98 34 29

HOST gleyed between 40
and 100 cm(s)

S-deep % Percentage of the catchment made up of
classes: 13 and 18 to 23

0 99 19 13

HOST gleyed within 40 cm
(s)

S-shal % Percentage of the catchment made up of
classes: 9, 10, 14, 24 and 25

0 93 22 15

HOST peat(s) peat % Percentage of the catchment made up of
classes: 11, 12, 15 and 26 to 29

0 90 24 11

Fracture high(g) F-High % Percentage of the catchment underlain by
highly productive fractured rocks

0 100 13 0

Fracture medium(g) F-Med % Percentage of the catchment underlain by
moderately productive fractured rocks

0 100 23 0

(Continues)
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Table I. (Continued)

Catchment characteristic Abbreviation Units Description Min Max Mean Median

Fracture low(g) F-Low % Percentage of the catchment underlain by
low productivity fractured rocks

0 100 45 31

Intergranular high(g) I-High % Percentage of the catchment underlain by
highly productive intergranular rocks

0 42 2 0

Intergranular medium(g) I-Med % Percentage of the catchment underlain by
moderately productive intergranular rocks

0 71 5 0

Intergranular low(g) I-Low % Percentage of the catchment underlain by
low productivity intergranular rocks

0 11 0 0

No groundwater (g) No-G % Percentage of the catchment underlain by
rocks classed as having essentially no
groundwater

0 100 11 0

a Datum refers to Ordnance Datum or, in Northern Ireland, Malin Head Datum.
b IHDTM refers to the Integrated Hydrological Digital Terrain Model (Morris and Flavin, 1990).
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periodic function to the data and improved the removal
of seasonality, the in-filled data were considered less
accurate than measured data, so were removed after the
seasonality had been taken out.

4. The flow data for each catchment were standardised by
deducting themean and dividing by the standard deviation
of the time series; standardising enables comparison of
catchments with different magnitudes of flow.

Semi-variograms

The temporal dependence structure can be represented
by a one dimensional temporally averaged (semi-)
variogram (see Chandler and Scott (2011) or Webster
and Oliver (2007) for detailed background about the
(semi-)variogram). A (semi-)variogram has several com-
ponents (displayed in Figure 2): throughout this paper the
‘sill’ is defined as the (semi-)variance where the gradient
of the (semi-)variogram is zero. A zero gradient indicates
Figure 2. Range and sill for a theoretical (semi-)variogram

© 2014 The Authors. Hydrological Processes by published by John Wiley
the limit of temporal dependence and is an indicator for
the total amount of variance in the time series. The
‘range’ is the time it takes to reach the zero gradient. If the
lag time between water landing in the catchment and
reaching the gauging station is small and the catchment
has little storage, then the resulting semi-variogram would
be expected to have a short range.
For second-order stationary processes, the (semi-)

variogram and autocorrelation graph are symmetrical.
However, (semi-)variograms are defined for a wider class
of processes and therefore enable temporal dependence to
be analysed even if there is missing data or a trend. The
nugget, which is the y intercept on the modelled semi-
variogram, represents a combination of measurement
error and sub daily variability. The partial-sill is the range
minus the nugget and shows the temporally dependent
component. A semi-variogram was calculated for each
catchment using the average squared difference between
all pairs of values which are separated by the correspond-
ing time lag (Equation 1):

v̂ hð Þ ¼ 1
2 N� hð Þ∑

N�h
i¼1 Y tiþhð Þ � Y tið Þð Þ2

h i
(1)

where h is the lag time, Y(ti) is the value of the
transformed data at time ti and (N�h) is the number of
pairs with time lag h. A maximum lag distance over
which to calculate the semi-variogram was defined to
enable the clustering to capture differences in the
temporal dependence structure.
In order to quantify the differences between the mean

values in each cluster, variogram models were fitted to the
average semi-variogram for each cluster (see below for
details of clustering). These were fitted using the variofit
function from the geoR package in the R statistical
software. Ten different model shapes (Matern, exponen-
tial, gaussian, spherical, circular, cubic, wave, powered
& Sons, Ltd. Hydrol. Process. 29, 1353–1369 (2015)
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exponential, Cauchy and gneiting) were fitted to the semi-
variogram using the Cressie method (Cressie, 1985). The
Matern shape produced the best fit for each cluster average.

Clustering

Catchments were clustered using a Euclidean squared
distance matrix, calculated using the whole of the semi-
variogram to maximise the information going into the
clustering algorithm (Wagener et al., 2007). There are
many clustering methods available, with none universally
outperforming the others (Hannah et al., 2005). Hierar-
chical clustering was undertaken using seven methods
(Ward, single, complete, average, McQuitty, median and
centroid), resulting in dendrograms, agglomeration
schedules and maps. These were used to assess the
spread of catchments across the clusters (i.e. how many
catchments there are within each cluster) and physical
explanation of clusters. Ward’s method gave the best
results for clustering based on the semi-variogram shape,
with relatively well-defined evenly sized clusters. Ward’s
method has been found to be robust for clustering
catchments in terms of hydrological response in a wide
range of other studies (e.g. Laizé and Hannah (2010);
Köplin et al. (2012) and Bower et al. (2004)).
Hierarchical clustering based on Ward’s minimum
variance method was applied to the distance matrix.
The algorithm starts with n clusters (i.e. the number of
catchments), at each step the joining of every cluster pair
is considered, and the two clusters which result in the
minimum increase in the sum of squared differences are
combined. The final number of clusters is subjective,
based on assessing the structure of the dendrogram and
changes in gradient of the agglomeration.

Quadratic discriminant analysis

Discriminant analysis was used to determine which
catchment characteristics can be used to attribute a
catchment to a cluster. The analysis identifies whether
the mean of the catchment characteristic differs between
clusters. Once the variables (characteristics) have been
selected, discriminant analysis creates an equation with
the aim of minimising the possibility of misclassifying
catchments. The equation will be in the form:

D ¼ v1X1 þ v2X2 þ v3X3 þ …þ vnXn þ C (2)

where D is the discriminant function; v is the coefficient
for the variable; X is the transformed value for the
variable; C is a constant and n is the number of variables.
The v’s are selected to maximise the difference between
clusters. There is one less discriminant equation than the
number of clusters. Each equation explains as much of the
between-cluster variability as possible with the first
equation explaining the most. Quadratic discriminant
© 2014 The Authors. Hydrological Processes by published by John Wiley
analysis was used (as opposed to linear discriminant
analysis) because it allows a different covariance matrix
for each cluster, increasing the model’s flexibility. This is
deemed acceptable due to the number of catchments
being investigated.
To meet the assumptions associated with discriminant

analysis, the catchment characteristics were transformed
to be normally distributed. The Shapiro–Wilks value was
used to select the best transformation.
To avoid making prior assumptions about the charac-

teristics which best discriminated between the different
clusters, a backwards stepwise variable selection was
used. A matrix containing total variance and covariance
and a matrix containing pooled within-group variance and
covariance were compared using a multivariate F test.
This indicates the extent to which a variable makes a
unique contribution to the prediction of cluster member-
ship. The F value was used to select the variables to be
removed at each step. Further to this, to avoid redundant
variables, characteristics which were highly correlated
(>0.8 or ≤0.8 Spearman’s rank) were removed.
Finally, the 49 independent catchments were used in a

separate ‘validation’ analysis to evaluate the discriminant
expressions fitted to the 116 original catchments. In order
to determine whether the validation catchments were
successfully clustered from their catchment characteris-
tics, the validation catchments were fitted into the clusters
derived from the 116 benchmark catchments. The
validation catchments were placed into the cluster for
which the semi-variogram was closest to the mean semi-
variogram of the cluster.
RESULTS

Clustering

Four clusters were selected because analysis of the
agglomeration showed that the benefit of increasing the
number of clusters to more than four was small. Analysis of
the semi-variograms showed that 87% (101 catchments) had
a range of ~90 days or less, and the maximum lag was set to
90 days to maximise the difference of the catchments with
semi-variogram ranges of less than 90 days. It is acknowl-
edged that differences between the remaining 13% (15
catchments) which have a range much greater than 90 days
are unlikely to be identified during the clustering process.

Distinction between clusters

The clustering analysis (Figures 3 and 4) gave 32
catchments in cluster 1, 34 catchments in cluster 2, 35
catchments in cluster 3 and 15 catchments in cluster 4. There
is a spatial difference between clusters 1 and 2 which are
predominantly in the north and west and clusters 3 and 4
which are predominantly in the Midlands and south east.
& Sons, Ltd. Hydrol. Process. 29, 1353–1369 (2015)



Figure 3. Location of the catchments in the four clusters
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The difference in the temporal dependence structure
between the clusters is illustrated in Figure 4 and Table II,
with increases in range, and decreases in the sill and
nugget from clusters 1 to 4. An increasing range indicates
less short-term (less than 90 days) variability in the daily
mean river flow, while a decreasing sill is caused by less
temporally autocorrelated variability throughout the
30 year record. Figure 4 also shows that the clusters are
reasonably well defined; there is an overlap between all
four clusters for the short time lags due to similarity in the
© 2014 The Authors. Hydrological Processes by published by John Wiley
temporal dependence of the first few days. At longer lags
(after ~30 days), there is only an overlap between clusters
1 and 2 due to the different shapes of the semi-variograms
and no overlap at the 95% confidence interval.
In order to investigate how much rainfall influenced the

temporal dependence of river flow, the same method of
temporal dependence analysis was applied to catchment
averaged daily precipitation from 1980 to 2008 for all
catchments. Results showed no significant difference (at
the 95% confidence interval) in the temporal dependence
& Sons, Ltd. Hydrol. Process. 29, 1353–1369 (2015)



Figure 4. Semi-variograms from daily river flow for the four identified
clusters with the 95% confidence intervals (dark shaded area) and the

upper and lower bounds of each cluster (light shaded area)

Table II. Characteristics of the variogram models fitted to the
mean of each cluster

Cluster number Nugget Partial sill Range (days)

1 0.0186 0.67 29
2 0.0099 0.54 40
3 0.0088 0.48 45
4 0.0075 0.32 172

Figure 5. Semi-variograms from daily precipitation data for the four
identified clusters with the mean of each cluster (line) and the 95%

confidence intervals (shaded area)

1361TEMPORAL DEPENDENCE IN RIVER FLOW
of rainfall between catchments in different clusters
(Figure 5). Compared with discharge, the temporal
dependence is much shorter in rainfall, only lasting
around 10 days.

Catchment characteristics differentiating between the
clusters

Initially, box plots were used to investigate the possible
catchment characteristics driving the differences between
the four identified clusters. All the characteristics in
Table I are shown except for the percentage of urban land
cover, FARL and elevation 90 which were removed
because the majority of the catchments had little or no
urban area or FARL, and elevation 90 was almost
identical to elevation max. The characteristics that differ
most between all four clusters are shown in Figure 6.
Figure 7 identifies characteristics which distinguish
between two or more clusters, whilst Figure 8 shows
© 2014 The Authors. Hydrological Processes by published by John Wiley
characteristics for which the median does not change
between clusters. BFIHOST represents the distribution of
BFI between clusters (Figure 6) agreeing with Marechal
and Holman (2005) who showed that BFIHOST is a
robust way to calculate BFI, low flow statistics and the
percentage of runoff. As BFI is not a catchment
characteristic (being calculated from flow data) it is
removed from subsequent analysis.
Figure 9 shows the correlation between all the

characteristics which differentiate between clusters
(Figures 6 and 7). The physical catchment characteristics
in Table I are not independent from each other, as shown
in Figure 9 by scatter plots and (Spearman’s rank)
correlation. The correlation between different catchment
characteristics highlights the influence elevation (elevation
max and elevation 90) has on the value of PROPWET,
DPSBAR, percentage of peat soils and percentage of arable
land, all of which have correlations greater than |0.7|.
Characteristics describing the pathway and storage are also
highly (>0.7) correlated (e.g. BFI HOST and the percentage
of highly productive fractured rock).

Quadratic discriminant analysis

Due to the statistical distribution of: peat soils,
PROPWET and all the rock descriptors (Figure 9), a
transformation to a normal distribution was not possible,
and these were excluded from the discriminant analysis.
In addition, elevation characteristics were highly corre-
& Sons, Ltd. Hydrol. Process. 29, 1353–1369 (2015)



Figure 6. Box plots of characteristics which differ between all four clusters. Thick black line is the median value. Box shows the inter-quartile range.
Black whiskers represent 1.5 times the inter-quartile range. Blue and red lines show the upper and lower 90% confidence intervals, respectively, and the

circles show outliers
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lated (>0.8 or ≤0.8 Spearman’s rank; Spearman, 1904)
with one another and drainage path slope. Highly
correlated variables invalidate the assumption of inde-
pendence. Therefore, elevation 10, elevation 50, elevation
90 and elevation max (elevation characteristics with the
lowest F values) were also removed from the discriminant
analysis. Further to this, BFIHOST and no gleying soils
were also highly correlated; the percentage of no gleying
soils correctly clustered slightly more catchments;
therefore, BFIHOST was also omitted. The transforma-
tions applied to the characteristics included in the QDA
are shown in Table III.
For each variable combination, a set of three equations (in

the format of Equation 2) which maximise the difference
between clusters were created. The first two equations were
found to explain 85 to 88% and 7 to 10% of the between
cluster variability respectively, with the information added
significant at the 99.9% confidence interval. The third
equation explained the remaining (2 to 5%), with a
significance of between 94 and 99%. The values resulting
from these equations were used to cluster the catchments
based on the probability of the catchment being in each of
the four clusters (Table IV).
The more catchment characteristics there are in the

model, the higher the percentage of correctly classified
benchmark catchments (89.7% with 12 characteristics and
54.3% with 1 characteristic). In addition, Table IV
© 2014 The Authors. Hydrological Processes by published by John Wiley
identifies that the percentage of arable land discriminates
best between the clusters. A relatively accurate model can
be made using only a few variables (arable land, depth to
gleying in soils and slope).
VALIDATION

The 49 validation catchments were clustered based on
the distance of their semi-variogram to the centre of the
already generated clusters (Figure 4); this resulted in 14
from cluster 1, 12 from cluster 2, 14 from cluster 3 and
9 from cluster 4. To test the quadratic discriminant
models, these were then clustered using their catchment
characteristics and the same equations generated for the
116 catchments; the percentage clustered correctly is
shown in Table IV.
The validation of the discriminant analysis on the 49

independent catchments (Table IV) shows that models
with fewer explanatory variables are more robust.
Although a model using 12 catchment characteristics
correctly classified 104 out of 116 benchmark catchments,
the percentage of correctly clustered validation catch-
ments (Table IV) highlighted that models with a lot of
parameters were over-fitted to the data. Based on the
percentage of catchments correctly classified in both the
benchmark and validation catchments, Model 5 (Table V)
& Sons, Ltd. Hydrol. Process. 29, 1353–1369 (2015)



Figure 7. Box plots of characteristics which differ between two or three
clusters, as in Figure 6
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is deemed to have the best performance as both the
benchmark and validation catchments are clustered well
(>70% are correctly clustered).
The values are calculated for each catchment by

multiplying the adjusted values for the catchment
characteristics (i.e. the values obtained after transforming
the data as outlined in Table III which correspond to the
X’s in Equation 2) by the coefficient (i.e. the v’s in
Equation 2), e.g. for model 5 (Equation 1):

D ¼ ð arable X1ð Þ * 1:12 V1ð Þð Þ
þ no gley X2ð Þ * 0:25 V2ð Þð Þ
þ gleyed 40-100 X3ð Þ * -0:44 V3ð Þð Þ
þ ðgleyed < 40 X4ð Þ*-0:37 V4ð Þ
þ DPS X5ð Þ * -0:60 V5ð Þð Þ

Although Model 5 does not classify all the catchments
correctly, all but one of the misclassified catchments is
predicted to be in an adjacent cluster (Table VI). If a
catchment is predicted to be in a higher numbered cluster
than the actual cluster, the catchment characteristics
indicate larger storage and/or slower response than is
indicated by the discharge. Catchments predicted to be
less than their actual class demonstrate the opposite.
Results (Table IV) highlight that arable land is the

catchment characteristic which best discriminates
between the temporal dependence-based clusters for the
116 benchmark catchments. However, unlike the rest of
the characteristics, land cover is dynamic and will change
through time, thereby potentially leading to a change in
the cluster allocation. In order to investigate this issue, the
discriminant analysis was redone without land cover
characteristics (Table VII), which showed a deterioration
of less than 2% for the model with 5 variables.
DISCUSSION

This paper identified four distinct clusters of catchment
based on the temporal dependence structure of 116
catchments throughout the UK. The mapping of these
clusters (Figure 3) highlighted a spatial pattern between
clusters 1 and 2 against clusters 3 and 4. This spatial
pattern is indicative of a broad NW–SE gradient in
several inter-related variables in the UK (e.g. precipita-
tion, temperature, elevation, soil type, land use and to a
certain extent rock type) as found in previous clustering
(Bower et al., 2004). The temporal dependence of rainfall
(Figure 5) showed no difference between the clusters,
indicating that precipitation is not influencing the river
flow′s temporal dependence structure. The homogeneity
of the rainfall dependence structure is caused by the high
temporal variability (Chang et al., 1984) and lack of
© 2014 The Authors. Hydrological Processes by published by John Wiley
precipitation attenuation features (i.e. characteristics
which influence lag time).
The characteristics which differentiated best between the

clusters (benefit 3) were those that drive (or are highly
correlated with characteristics which drive) the precipita-
tion-to-flow relationship, by influencing either the pathway
from precipitation to discharge and/or the amount of storage
in a catchment (Ali et al., 2012). Values describing the
highest parts of the catchment (i.e. elevation 50 and above)
have bigger variations between the clusters than lowland
elevation values (Figure 7). Topography controls the
strength of the forces acting on surface and groundwater
flows as well as influencing the evolution of soils and
vegetation (Bloschl et al., 2013) which in turn alter the
macropores in the soil, hence the travel time of the water
through the catchment. This is seen with the higher
elevations being correlated with drainage path slope,
PROPWET and the percentage of peat soils (Figure 9)
which all influence infiltration and hence lag time.
PROPWET and peat soils provide information about how
& Sons, Ltd. Hydrol. Process. 29, 1353–1369 (2015)



Figure 8. Box plots of characteristics which do not differ between clusters, as in Figure 6
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waterlogged the soil is and hence drive the partitioning of
water between surface and subsurface flow paths as well as
the depth to which water can percolate before horizontal
flow occurs. High elevation and low infiltrationwill result in
water travelling via a fast pathway where less attenuation of
the precipitationwill occur; hence, the variability in the river
flow will be greater (higher maximum semi-variance) and
the range shorter (e.g. cluster 1 in Figure 4 and Table II).
This is consistent with Ley et al. (2011) who highlighted a
relationship between flow characteristics and the steepness
and infiltration capacity of the catchment. Laizé and Hannah
(2010) also identified that upland catchments were more
impermeable and thus had a stronger relationship with the
regional climate drivers than lowland permeable catch-
ments.
BFIHOST and the percentage of no gleying soils are

highly correlated (≥0.79, Figure 9) and are an indication of
infiltration and storage. No gleying soils do not become
waterlogged, and hencewater can percolate through the soil,
and BFIHOST is an indication of storage and is correlated
(>0.7) with highly productive fractured rock. Sawicz et al.
(2011) also showed that the precipitation-to-discharge
relationship is influenced by soil characteristics. High
infiltration and storage (exhibited in cluster 4) result in
semi-variograms with a long range due to the attenuation
resulting from the slow transformation from precipitation
to discharge.
© 2014 The Authors. Hydrological Processes by published by John Wiley
Figure 6 shows that BFIHOST differentiates cluster 4
from the other clusters. However, there is considerable
overlap between clusters 1 to 3. It appears that BFIHOSTdoes
not adequately capture the differences between catchments
with fast precipitation-to-flow relationships (Dunn and Lilly,
2001) as other characteristics (e.g. topography) have a
large influence.
Cluster 4 has a median BFIHOST of around 0.84. With

a median proportion of soils without gleying of 75%,
cluster 4 is dominated by HOST class 1 (median
proportion of 46% and an inter-quartile range (IQR) of
between 34% and 67%) and HOST class 18 (median of
7% and IQR of 1%–18%). HOST class 1 are free draining
soils which overlay chalk aquifers (Figure 6), whilst
HOST class 18 is characterised by soils with a high soil
water storage capacity but which are developed in low
permeability superficial deposits.
In contrast, Cluster 1 has a median BFIHOST of 0.42

and is characterised by a high proportion of peat soils
(median percentage of 50%) and only 16% of soils
without gleying. The soils are dominated by HOST
classes 15 (median of 14% with an IQR of 6%–30%) and
29 (median of 18%, IQR of 10%–25%) with large
proportions of 17 (median of 6%, and IQR of 1%–18%),
24 (median of 7%, IQR of 1%–16%) and 26 (median of
6%, IQR of 1%–12%). HOST classes 15, 26 and 29 are
peat soils. HOST classes 17 and 24 have a range of
& Sons, Ltd. Hydrol. Process. 29, 1353–1369 (2015)



Figure 9. Correlations between the different catchment characteristics shown as scatter plots with locally weighted smoothed red line and histograms showing
the distribution of the catchment characteristics. Correlation values are calculated using Spearman’s rank ranging from negative one to positive one
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permeability but overlay superficial or solid geological
deposits with no significant groundwater.
Clusters 2 and 3, with their intermediate BFIHOST,

differentiate on the seasonal duration of soil waterlogging,
with Cluster 2 having lower proportions of soils in HOST
classes with no gleying or gleying 40–100 cm; and higher
proportions of peat soils (HOST classes 15, 26, 29) and soils
with gleying at<40 cm. The seasonally waterlogged soils of
HOSTclass 24 are themost common class in bothClusters 2
and 3 with median proportions of 22% and 8% and IQRs of
6–34% and 2–28%, respectively.
The final characteristic in Figure 6 is the percentage of

arable land. Although Ragab and Cooper (1993) show
that arable land has a significantly lower hydraulic
© 2014 The Authors. Hydrological Processes by published by John Wiley
conductivity value than grassland, the difference is
unlikely to be seen at catchment scale. It is likely that
the differences in the percentage of arable land between
the clusters are caused by the negative correlation
(<�0.7) with high elevations, PROPWET and to a lesser
extent peat soils which have a large affect on infiltration
(Masicek et al., 2012). This agrees with Yadav et al.
(2007) who identified that land cover (woodland and
grassland) characterises some of the river flow response,
although the influence was secondary to climate and other
catchment characteristics. Grassland does not differentiate
between the clusters as well as arable land, likely to be
because of the lower correlation with characteristics
which drive changes in temporal dependence.
& Sons, Ltd. Hydrol. Process. 29, 1353–1369 (2015)



Table III. Transformations applied to each catchment
characteristic in order to create a normal distribution

Characteristic Transformation

Elev 10
ffiffiffi
x5

p
Woodland

ffiffiffi
x3

p
Arable land

ffiffiffi
x3

p
Grassland

ffiffiffi
x3

p
Area ln(x)
DPS

ffiffiffi
x3

p
FPext ln(x)
LDP ln(x)
DPL

ffiffiffi
x5

p
No gleying soils

ffiffiffi
x2

p
Gleying 40–100 cm

ffiffiffi
x3

p
Gleying <40 cm

ffiffiffi
x3

p
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The distribution of high and low productivity fractured
rocks between the clusters (Figure 7) shows that the
majority of catchments in cluster 4 have a larger
percentage of highly productive fractured rock (predom-
Table IV. Different discriminant models and the percentage of cat
characteristics. Shaded cells show the catchm

Table V. Variables and associated coefficients used in Model 5 to

Arable land No gleying

Model 5 (Equation 1) 1.12 0.25
Model 5 (Equation 2) 0.09 �0.19
Model 5 (Equation 3) �0.91 0.51

© 2014 The Authors. Hydrological Processes by published by John Wiley
inantly Chalk); river flow in catchments in cluster 4 thus
has a greater contribution from groundwater than the
other three clusters, which will have the effect of
moderating higher frequency variability in precipitation
and is consistent with the relatively large range and small
semi-variance exhibited in catchments in cluster 4
(Figure 4 and Table II). The converse is seen in the box
plot for catchments underlain by low productivity
fractured rock where cluster 1 has a larger median value.
For catchments in this cluster, there will be negligible
groundwater to river flow, and river flows will be
characterised by much shorter temporal dependence
(Figure 4 and Table II). These observations are consistent
with the findings of Bloomfield and Marchant (2013) who
showed that differences in temporal dependence in
groundwater are correlated with hydraulic diffusivity
(the product of transmissivity and storage). The similarity
between the box plots for BFIHOST (Figure 9) and that
for the highly productive fractured aquifer type is also
consistent with the above conceptualisation of controls on
chments which were correctly classified by using the catchment
ent characteristics included in the model

classify the catchments based on their catchment characteristics

Gleyed 40–100 cm Gleyed <40 DPS

�0.44 �0.37 �0.60
0.83 0.51 0.05
0.46 1.02 �0.29

& Sons, Ltd. Hydrol. Process. 29, 1353–1369 (2015)



Table VI. Confusion matrix showing benchmark and validation (in brackets) catchments in each cluster after clustering using the
catchment characteristics in model 5

Actual class

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Predicted class Cluster 1 27 (11) 10 (2) 0 (0) 0 (0)
Cluster 2 6 (3) 23 (6) 4 (3) 0 (0)
Cluster 3 1 (0) 8 (6) 19 (10) 0 (0)
Cluster 4 0 (0) 0 (0) 1 (1) 15 (9)
% correctly clustered 79 (79) 55 (50) 76 (71) 100 (100)

Table VII. Discriminant models and the percentage of catchments which were correctly
classified; shaded cells show the catchment characteristics which were included in the

model
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surface water flows and the results of Bloomfield et al.
(2009) who demonstrated the correlation between aquifer
type and BFI for 44 sub-catchments in the Thames, UK.
The intergranular aquifer types do not show the same

variations between clusters as the fractured rocks (Figure 8).
This could be caused by: (1) the catchments are mainly
situated on fractured rock, hence do not adequately represent
the impact of intergranular aquifer types. (2) The seven
classes of rock used are too simplistic and do not capture the
difference in sub-surface processes occurring in different
catchments. (3) The velocity of the water through the
consolidated intergranular aquifers is relatively low (Gehlin
and Hellström, 2003) and not captured in the timescales
being investigated for gauged flow in this paper. Area,
longest drainage path and drainage path length showed no
significant difference between the clusters due to the flow
data being standardised.Woodland also does not distinguish
between the clusters and is not correlated with any of the
driving characteristics (Figure 6). Therefore, these charac-
© 2014 The Authors. Hydrological Processes by published by John Wiley
teristics are not expected to influence the shape of a semi-
variogram (Figure 4).
The IQRs of all the catchment characteristics in

Figure 6 overlap, suggesting that no single catchment
characteristic fully describes the temporal dependence
structure, which underlines the importance of a multivar-
iate approach. As such, quadratic discriminant analysis
was used to investigate how accurately the catchment
characteristics could be used to cluster the catchments
into the clusters derived from the semi-variograms.
Assessing new (validation) catchments, based on the
catchment characteristics provided an indication of how
accurately these models could be applied to un-gauged
catchments (benefit 2). Model 5 was deemed to be the
best model and successfully clustered most (>70%) of
the benchmark and validation catchments. All but one of
the misclassified catchments were predicted to be in an
adjacent cluster (Table VI); this could be caused by an
overlap between the clusters (Figure 4).
& Sons, Ltd. Hydrol. Process. 29, 1353–1369 (2015)
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As previously discussed arable land is not likely to be
the driver behind the different dependence structures
exhibited by the catchments. Arable land is highly
correlated with high elevation (�0.73) and peat soils
(�0.66) which drive PROPWET (�0.8 correlation with
arable land) and is correlated with F-high (0.6) which
indicates a large amount of storage in rocks. Therefore,
arable land (in the UK) is characterising low, well-drained
land (particularly separating clusters 1 and 2 from 3 and
4). The percentage of no gleying soil is the second best
characteristic at differentiating between the clusters and is
highly correlated (0.88) with BFIHOST indicating that it
is representing the storage in the catchment, particularly
separating cluster 4 from the rest. Other key catchment
characteristics included soil type and slope which
describe the residuals left after the percentage of arable
land and the percentage of no gleying soils have been
used to discriminate between the clusters and mainly help
to discriminate between clusters 1 and 3.
Models which excluded land use characteristics were

developed (as the percentage of arable land is not
temporally stable). Except for models 4 and 5, there
was a large decrease between the percentage of correctly
clustered catchments for both the validation and bench-
mark data sets (Tables IV and VII). In the models, arable
land was replaced with drainage path slope (the variable
used in the discriminant analysis which is most correlated
with arable land). However, drainage path slope is less
correlated with BFIHOST than arable land, indicating that
storage is not as well characterised.
CONCLUSION

This study has developed a novel technique to classify
catchments into clusters based on the temporal dependence
structure of daily flow data using semi-variograms. The
clusters were investigated in the context of identifying the
catchment characteristics which moderate the precipitation-
to-flow relationship implicit in the semi-variogram structure.
Semi-variograms have the advantage over other techniques
for indexing dependence of being able to handle missing
data and being calculated from raw data, rather than having
to calculate indicators from the discharge data (e.g. annual or
seasonal averages, minimum/maximum flows). Therefore,
this technique could be applied to any set of catchments for
which daily flow data are available, including sites with
incomplete data coverage. The results show that clustering
the catchments based on the semi-variogram is an effective
way to obtain separate groups of catchments based on their
catchment function and not a specific aspect of the flow
regime; this method could provide a useful basis for future
catchment typologies.
Four clusters best represented the range of temporal

dependence structures found in the UK. Catchments with
© 2014 The Authors. Hydrological Processes by published by John Wiley
characteristics indicative of fast flow paths and low
storage (i.e. upland catchments) resulted in semi-
variograms with a large gradient, levelling off after a
few weeks. In contrast, catchments with characteristics
which enable water to infiltrate deep into the soil/rock
have a small gradient and do not level off within 90 days
(benefit 3, improving knowledge about drivers). The key
catchment characteristics able to discriminate between
catchments with different controls on the precipitation-to-
flow relationship (pathways and storage) were found to
be: percentage of arable land, depth to gleyed layer in
soils, slope, PROPWET, BFI, percentage of highly
productive fractured rock and elevation. It is likely that
arable land is not a driver behind the different clusters per se,
but a surrogate for a combination of other characteristics
(elevation, PROPWET and peat soils) which drive
infiltration and hence the precipitation-to-flow relationship.
This paper also demonstrated that using a combination of

catchment characteristics enables un-gauged catchments to be
classified into clusters; consequently, the shape of the (semi-)
variogram can be estimated. The preferred model (Model 5)
with five variables (arable land, depth to gleyed layer (×3)
and drainage path slope) correctly clustered 70.7–72.4%
and 69.4–71.4% of the benchmark and validation catch-
ments, respectively, depending on whether land cover
parameters were excluded. This study found the amount of
arable land in a catchment to be a useful characteristic for
distinguishing between the clusters. However, as arable land
is not temporally stable, values from different time periods
could provide different results.
This method is valuable for transferring information

about the precipitation-to-flow relationship from gauged
to un-gauged catchments (benefit 2). This could be
expanded upon in future work to enable predictions of
regime characteristics at un-gauged sites to be made. In
addition, ongoing work by the authors will use this
temporal dependence approach to assess the impact
catchment characteristics have on moderating the non-
stationary of hydrological regimes (benefit 4); catchment
properties will likely have a major influence on the response
of river flow regimes to climate variability (e.g. Laizé and
Hannah (2010)) and future anthropogenic climate change
(Prudhomme et al., 2013).
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