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Abstract: Abstract 
 
The Deep Western Boundary Current (DWBC) along the western margin of the subpolar North Atlantic 
is an important component of the deep limb of the Meridional Overturning near its northern origins. A 
network of moored arrays from Denmark Strait to the tail of the Grand Banks has been installed for 
almost two decades to observe the boundary currents and transports of North Atlantic Deep Water as 
part of an internationally coordinated Observatory for the Atlantic Meridional Overturning Circulation.  
The dominant variability in all of the moored velocity time series is in the week-to-month period range. 
While the temporal characteristics of this variability changes only gradually between Denmark Strait 
and Flemish Cap, a broad band of longer term variability is present farther along the path of the DWBC 
at the Grand Banks and in the interior basins (Labrador and Irminger Seas).   The vigorous intra-
seasonal variability may well mask possible interannual to decadal variability that is typically an order 
of magnitude smaller than the high-frequency fluctuations. Here, the intra-seasonal variability at key 
positions along the DWBC path using  both, observations and high resolution model data is quantified.  
The results are  used to evaluate the model circulation, and in turn the model is used  to relate the 
discrete measurements to the overall pattern of the subpolar circulation. Topographic waves  are 
found to be trapped by the steep topography all around the western basins, the Labrador and Irminger 
Seas. In the Labrador Sea, the high intra-seasonal variability of the boundary current regime is 
separated by a region of extremely low variability in narrow recirculation cells from the basin interior. 
There, the variability is also on intra-seasonal timescales, but at much longer periods around 50 days.  
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Dear Editor of Progress in Oceanography,  

 

We herewith re-submit the revised manuscript to be considered as a 

contribution to the collection of papers under SI: North Atlantic Polar. 

This manuscript is entitled: Intra-seasonal variability of the Deep 

Western Boundary Current in the western subpolar North Atlantic. 

Authors:  

Fischer, J., J. Karstensen, R. Zantopp, M. Visbeck, A. Biastoch, E. Be-

hrens, C. Böning, D. Quadfasel
 
, K. Jochumsen, H. Valdimarsson, S. 

Jónsson, S. Bacon,
 
 N. P. Holliday, S. Dye, M. Rhein, C. Mertens 

 
We uploaded the following Files: 
1) Manuscript  
2) Figure Source Files  
3) Tables Source Files 
2) A detailed response to each of the reviews (3 reviewers) 
3) Highlights  
 

 

Sincerely yours, Jürgen Fischer 

*Cover Letter



Our response to reviewer #2 

 

We would like to thank reviewer #2 for his/her very careful evaluation of our manuscript, the 

constructive criticism and the recommendations for corrections and suggestions. 

Below, recommendations by the reviewer are in blue and our response in black. 

 

 

Review of "Intra-seasonal variability of the Deep Western Boundary Current in the western 

subpolar North Atlantic", Manuscript Number: PROOCE-D-13-00096 

 

1 General comments: 

Using long current meter records in the western margin of the subpolar gyre, the authors 

investigate the intra-seasonal variability in the Deep Western Boundary Current.  

From the Denmark Strait to the Grand Banks they show - that the dominant variability is in 

the week-to-month period range - that 10 day periods dominate the variance, which they 

attribute to topographic Rossby waves - that at Flemish Cap and farther south, there is also 

variability at longer periods - that in the basin centers (Labrador and Irminger) the variance 

dominate at 50 day period and there is almost no variance at 10 days. Using a long time series 

in the DWBC at 53°N they also find seasonality in the intra-seasonal variability, with an 

offset of 6 months between the surface and the bottom. 

Then to validate a new high resolution model, in order to use it to relate local observations to 

the larger scale environment, they compare the model intra-seasonal variability at the same 

locations as the observations. In order to argue about the existence of topographic waves they 

extract the AR7W section from the model, along which they calculate the EKE, the ellipticity 

of the variance ellipsoid and performed spectral analysis at the surface and 1000m depth.  

Finally, they discuss of the accuracy of the estimates of long term fluxes controlled by the 

intra-seasonal energy peak. 

My feeling is that it was a good idea to investigate and try to relate this intra-seasonal 

variability all around the subpolar gyre, by using local observations and a model. But I find 

this paper too descriptive and badly presented (quite messy). Besides a better presentation (we 

hope we improved that and it appears not as messy as before), the reader needs more elements 

to believe the conclusions. 

 

My main criticisms are: 

Most results of this paper come from spectral analysis.  

Right, we now included variance ellipses and their variation to support the results. 

But we don't know which method is used to compute the spectra, what is their significance;  

We computed the spectra by using the Matlab statistics toolbox – PSD was calculated, using 

the Welch method with partitioning and tapering (Hamming window) data subsets of 128 d 

duration and subsequent overlapping  segments of 50% or 64 d. Then the spectra were 

ensemble averaged and presented in their variance conserving representation. This is now 

described in more detail in the text. 

 

spectra are hard to compare, too small, with different x-axis and often with no vertical lines to 

illustrate the same main frequencies.   

This has been done now, and they are much better to interpret. 

 

The authors conclude "Variability characteristics captured by high resolution model 

simulation", but I am far to be convinced by the spectral comparison of intra-seasonal 

variance (figure 13). From this point, it was difficult to adhere to the work done with the 

model.   

*Detailed Response to Reviewers



We agree that the level of variance in model and observation reveal significant differences, at 

least in some places. The model shows high frequency variance with frequencies in the same 

range (10 to 30 days.  This is now more carefully discussed. Spectra are now better visible 

and guiding lines are included as requested. 

 

The authors conclude "Topographic waves near 10d periods trapped over steep topography", 

but I find the demonstration too descriptive, although they have a lot of long time series from 

observations and model to analyze.   

We include an analysis based on the variance orientation at 53°N (new figure 16 and 17). At 

53°N is the only array that has stations on the slope and at the transition between slope and 

abyssal plain. When approaching the abyssal plain the 10-20d variance vanishes and longer 

periods begin to dominate the variance pattern.  Variance ellipses in the near bottom layers 

(lowest 500m of the water column) are oriented along the topography for stations on the 

slope. At the transition, near bottom variance ellipses become more circular.  Another 

interesting feature is the rotation of the variance ellipses from near bottom to the surface. 

About 1000-1500m above the bottom (i.e., half the water depth in the center of the DWBC), 

the variance is distributed almost circular, and higher up the axes rotate farther and the main 

variance axis is almost perpendicular to the near bottom layers. This is summarized in the text 

and supported by Figure 17. For comparison we also added the same product from the model 

(also 60d high pass filtered data).  The model ellipses appear more elongated and topography 

controlled, even higher up in the water column. However, in the deep basin the ellipticity is 

smaller, but the variance is larger.  

 

For comparison we included variance ellipses (Figure 17) of the intra-seasonal fluctuations in 

the model (also high pass filtered at 60d cut-off). Despite the lower amplitude of the variance, 

the ellipses are much stronger tied to the topography with significantly larger ellipticity 

compared to the observations.  The near bottom variance is larger toward the basin interior 

and ellipticity becomes smaller.  

This is now included in section 4.3.  

 

Please note: former Figure 16 is now figure 18. 

 

2 Comments throughout the text: 

Page 4, §2.1: "The current vectors were rotated … the principal axis of the variance (to be 

discussed later)" it could be interesting here, or page 15, to show the variance ellipses of the 

deepest current meters on a bathymetric map. 

This is a very good suggestion and we included variance ellipses right in Figure 1 and in 

Figure 17, 18 for model and observations at the 53°N array (see the discussion above). 

 

Page 4, §2.2: "overlapping segments (128 days long, 64-day overlap) ": which method do you 

use? Could you tell more about this point? Farther in the text you say that "individual spectra 

where ensemble-averaged": what spectra? What is the difference with the overlapping 

segments? What about confidence intervals or error bars? 

This has been extended now,  also according to Rev. 3  

 

Page 5, §2.3.1: "Spectral analysis (Figure 4b) ": for all the spectra choose vertical lines to 

illustrate the same main periods (5d,10d,30d,100d for example); keep the same x-axis limits 

(1d-150d for example). The spectra will be easier to compare. You are only interested in intra-

seasonal variability, so why don't you average the three spectra on this figure 4b? 

We followed the suggestion and included orientation lines and identical x-axes for all spectra 

where possible. 



 

 

 

Page 5, §2.3.1: "This peak is found at very short periods and the energy increase at periods of 

5-10 d may be associated with the very small Rossby radii of this area. " What do you mean? 

Develop or delete. 

We removed that sentence and instead added a citation (Smith 1976) that identifies baroclinic 

instability of the overflow plume as a reason for the high frequency variability with the most 

unstable wave at periods of just 2-3 days. 

 

Page 6, §2.3.2:"The spectral decay to longer periods is strong and makes this location 

favorable for determining longer term variability as the intra-seasonal variance could be 

separated (filtered) effectively from the long term (interannual to decadal) time scales. ": so 

what? 

As this is part of a misplaced discussion we removed that at this place and now have an 

extended discussion If the variance decay as a function of time scale is faster than the 

reduction of the degrees of freedom, then a spectral gap allows to remove most of the noise 

and the low frequency current /transport fluctuations can be determined more accurately.   

 

Page 6, §2.3.3, Figure 6a uses the results of IFREMER moorings, described in Daniault et al., 

JPO 2011 (doi: 10,1175/2010JPO4428.1). In this paper, it is interesting to note that a spectral 

analysis shows that a peak energy is observed at about 10-day period at all depths on the 

slope.  

R2 objected to the sentence on p7 where we say the spectra at mid-depths are dominated by 2-

4 day variability.  This information is taken from an unpublished draft manuscript led by 

Saunders.  The 2-4 day variability was found in a mooring close to the seafloor at 1629m, 

which is right on the upper limit of the plume of dense water of the DWBC, and comes from 

an IFREMER EGC data set, rather than the NOC DWBC data set.  This is why it does not 

show in the Fig 6 spectra. We removed that sentence and instead added the Daniault  (2011) 

paper.   

 

Page 7, §2.3.4: "All moorings were at least partly within the deep boundary current and reveal 

a similar frequency distribution of deep variability (Figure 7b)".: K9 does not show a peak at 

about 50 days (right panel of figure 7b). 

This has been reformulated for improved clarity. 

 

 

"variance levels of the DWBC increase with depth" : I don't see that? But the spectra are very 

small, and it is hard to see something. Please, give numbers. 

Will be supported by both, better figures and numbers, e.g. by the new Figures 16 and 17. 

 

 

Page 9, §2.3.5: "This has immediate consequences for the investigation of longer term 

variability, as the number of degrees of freedom...": to emphasize this point and to add 

substance at the third point of the summary (§5), I suggest to summarize in a table the mean, 

the variance, the integral time scale, the number of degrees of freedom, and the statistic error 

on the mean, for all the current meters lying in the DWBC. 

Right, this is a very valuable recommendation and we include such a table and discuss it near 

the end of the paper. This should also smooth some of the “messy” structure of the 

manuscript. 

 



 

Page 9, §2.3.6:"uncertainties (the number of degrees of freedom, NDF, are smaller) are larger 

than farther up north": it will be easier to discuss with the table mentioned previously. 

Will be visible in the new table and is discussed in summary and discussion. 

 

Page 12, §4.1, figure 12:"The model spectra from 50m above the bottom": why don't put near 

bottom spectra of K8, K9 and K10 on the right panel in order to compare observations and 

model? 

"this may partly be caused by the much longer observations compared to the 2-years of model 

data": you could check that by taking only two years of observations?  

Right, we changed the figure accordingly, and find it more illustrating for the differences in 

the frequency distribution. 

 

Figure 13: "When we follow the path of the DWBC and compare model and observational 

spectra of the near bottom flow": I find hard to see any resemblance between the spectra.  

"If we look into the records of Angmagssalik ,... then the first thing to note is the complex 

structure of the topography...": the topography is steeper at other locations along the DWBC 

path; could you show the model topography compared to the observations topography? I don't 

see any seasonal cycle with the 128-day cut-off period. 

This has been reworked as recommended (of course, 128d spectra could not reveal seasonal 

cycles  - those were visible in the model time series (now clarified)).  

 

"To illustrate the consequence for estimating long...": paragraph misplaced. This is an 

example of what I mean by "messy".  

This has been removed here and is now part of the summary and discussion section. 

"Summarizing, the model reveals variance maxima at frequencies similar to the observed 

ones": it is hard to see anything on this figure which however is the heart of the paper. I can't 

agree with this affirmation. I kept reading, but it was tempting to stop here. 

 

With the new analysis of the structure of the variance ellipses we agree with the reviewers 

comment, in that the model differs in some respects considerably from the observations.  The 

message has been altered accordingly and we reorganized the „messy‟ part. 

 

Page 13, §4.2:"Spectral energy in the central Labrador Sea … but the frequency distribution is 

very different": do you mean variability intensity instead of spectral energy? 

Yes, we compare overall variance (see new table). 

 

What about the model spectra in the center of the basins? Isn't it better than at the boundaries? 

That is a good question, and we added the model spectrum at K1 location and in the Irminger 

Sea and discussed these accordingly) 

 

Page 14, §4.3, Figure 15: could you adjust vertically the x axis (distance) of the three panels? 

Or is there a mistake in the labels? The steep topography around 400km, where the DWBC is 

flowing, corresponds to the low energy region?  

This has been corrected now. 

 

 

Page 15, §4.3:all this paragraph about topographic Rossby waves is very descriptive; you 

have a lot of long time series (from observations and model) at key points of the DWBC path. 

It could be interesting, as in Fratantoni et al., (2003) to compute and compare the lagged 



correlation between neighboring near-bottom instruments (observations) and/or neighboring 

near-bottom points of the model.  

In the course of the summary and discussion and the new discussion on orientation of the 

variance ellipses this para has been reorganized with a somewhat extended discussion on 

TRW‟s. A formal Lag correlation along the bottom has been made but the results were not 

encouraging. Additionally the principal axes of the variance ellipses are not consistent 

between model and observations  - see Figures 16 and 17. 

 

 

 

Page 16, §4.4, Figure 17:"At depth, the maximum intra-seasonal variance is in summer": I see 

the maximum around September, October (9, 10)?  Right, we changed that to „fall‟. 

 

Page 17, §5:"Verification of the high frequency variability represented in a high resolution 

model through moored observations ": I am still not convinced.   

We agree that verification may be the wrong wording, it is more a comparison -- changed that 

accordingly 

 

 

Page 17, §5:"how accurate are our estimates of deep water transports": if you summarize in a 

table the mean, the variance, the integral time scale, the number of degrees of freedom, and 

the statistic error on the mean, for all the current meters lying in the DWBC, this discussion 

would be improved. 

This table (Table 2) is requested at various places and we added such a table for statistics of 

each of the arrays (one typical value for array center)   and discuss this   accordingly. We also 

included the topographic slopes and the ratio of the total vs. the intra-seasonal (60day high 

pass filtered) data. 

The result shows that the estimated errors of e.g. annual mean flow will be larger when the 

frequency of the boundary current variability is lower.   

 

 

3 Minor comments:   (Thank you, we followed all recommendations  in this category) 

page 2: EU = European Union 

page 5, 4th paragraph: "of the of the near-bottom" 

page 6, §2.3.2, last line: "effectively form the long term": from  

page 10 §3 ( and bibliography): Blanke and Delecluise,1993: Delecluse 

page 14: "the WOCE AR7W- section section" 

page 14: "week recirculation cells": weak 

page 21: Xu, X., H.E. Hurlburt … 2013, pages 502-516. (wrong year and page numbers) 

page 22, Figure 3: "Ensemble averaged spectra from 128 day long subsamples as red lines.": 

no red lines. 

Figure 6a:It is not clear what is the deepest instrument (1 or 2)? 

Figure 8: it is better to name B22 and B23 moorings on figure 8a 

 

 

 



Our response to reviewer #3 

 

We would like to thank reviewer #1 for his/her very positive evaluation of our manuscript, the 

constructive criticism and the very careful corrections and suggestions. 

Below, recommendations by the reviewer are in blue and our response in black. We generally 

followed the recommendations. 

 

 

These authors report on results from an admirable accomplishment -- the task of maintaining 

over the past two decades a network of current meter moorings at six transects across the 

Deep Western Boundary Current located between the Denmark Strait and the southern tip of 

the Grand Banks. They have selected only current meters at near-bottom depths such that the 

density exceeds 27.8 kg/m^3 so that they are within the Northeast Atlantic Deep Water and 

below the Labrador Sea Water, and thus part of the unventilated DWBC. The lengths of their 

time series are all at least 3 years, and the longest three sets span 15, 16, and 26 years.  

This article focuses on the dominant variability in the moored current time series, which 

occurs at periodicities from a week to a few months, i.e. intra-seasonal.  

Despite the diversity of institutions and people and year and measurements, they have 

achieved a remarkable degree of uniformity in the analyses (e.g., 128 d ensemble-averaged 

spectra) and discussions. Imperfect uniformity of plots and emphases, etc., but presented and 

summarized in an understandable format. 

 

The "highlights" listed (next to five bullets) capture their findings well.  

 

The model comparisons, while quite limited, suggest useful metrics by which these and future 

model comparisons might be judged. And they support the concept that resolution of bottom 

topography seems to be a key factor for successful model performance.  

Question: All arrays except Cape Farewell had a neighboring array in place during some of 

their measurement interval, which would allow investigation of whether any along-boundary 

coherence can be observed between neighbors? If the authors tried this and found 

insignificant coherence, even that would be useful to state.  

 

The spreading of anomalies along the boundary has been discussed for quite a while for both, 

the spreading of thermohaline anomalies (e.g. Stramma et al. 2004) and current fluctuations.  

On long time scales T/S-anomalies can be followed, but current anomalies are masked by 

high frequency current variability that has short spatial scales (generally less than the distance 

between the mooring arrays). This variability is so energetic that it appears to mask any 

possible coherent current structure on longer time- and space- scales. We mentioned this in 

the ms now on Page 18. 

 

 

p.2 THOR is listed with a "?" after it on p.5, but without it here. Should make it consistent.  

THOR throughout now 

 

p.4, Sec 2.2. Make the terminology more precise in line 3-4. Replace "… were used to 

estimate the energy conserving version of the variance spectra; thus…"  

with 

"…were used to estimate ensemble-averaged spectra (S) and plot these in variance-conserving 

form (fS vs. log(f) ); thus…" 

This has been done now and a more thorough description of the spectral  analysis is included  

on page 4. 

*Detailed Response to Reviewers



 

 

p.5, bottom. You might choose to suggest that the energetic 5-10 d variability may be partly 

driven non-locally by atmospheric forcing, such as atmospheric pressure fluctuations north of 

the sill. Or offer explanation why short Rossby radii would favor energy increase at periods of 

5-10 d. 

We changed this to: 

This has been in the focus since many years, and e.g. Smith, 1976 found baroclinic 

instabilities of the overflow plume at periods as low as 2.1 d for the most unstable wave. 

 

 

p.6, last line of Sec 2.3.2. change "form" to "from"  done 

 

p.7, top paragraph. The example of dominant 2-4 day variability in the DWBC at mid-depths 

(cited as Saunders pers. comm.) is so very different than anything shown in this paper - 

contradictory it seems -- that it demands further explanation. 

It would help to show the spectra and location and discuss why it is so different. 

 

Both reviewers objected to the sentence on p7 where we said the spectra at mid-depths were 

dominated by 2-4 day variability.  This information is taken from an unpublished draft 

manuscript led by Saunders.  The 2-4 day variability was found in a mooring close to the 

seafloor at 1629m, which is right on the upper limit of the plume of dense water of the 

DWBC, and comes from an IFREMER EGC data set, rather than the NOC DWBC data set. 

 This is why it does not show in the Fig 6 spectra.  We removed hat sentence instead added 

the Daniault, 2011 paper. 

 

 

p.8, Sec 2.3.5, paragraph 2. Because TRWs are the dominant variability, with variable 

currents large enough to flow in reverse of the mean for a few days (fig 9), 

no conclusion can be drawn about the lateral structure and position of the current based on a 

snapshot shipboard lowered ADCP section. The claim is unsubstantiated and should be 

removed that the moored array captured some known fraction like 2/3 of the total southward 

transport.  

Ok, the reviewer is right and we removed that sentence. 

 

p.13 top. The sentence "Quantitatively … noise level of +/- 3 cm/s," is not useful without 

discussion of time scales and degrees of freedom. The authors present that information later, 

in the final paragraph of the Summary. So move it all together in one place and delete it from 

the other.  

This is now covered in the discussion and a new table with these parameters is included. 

 

p.15, line 5. Clarify "…information is spreading faster along…" regarding what information 

and faster than what?  

Due to improved representation of the bottom topography by partially filled  cells  (also  used  

in  VIKING20), circulation changes communicated by topographic waves are simulated more 

realistically. 

 

p.16, last par. "… the maximum intra-seasonal variance is in summer…" Fig 17 indicates 

maximum in Sept-Oct-Nov, not "summer." 



Right, is changed to “fall to winter ”. Also noted by R2. This figure is now Figure 19. 

 

p.17 5th bullet, change "week" to "weak" 

done 

 

7th bullet - make it a complete sentence like the other six bullets. 

Moored observations are used to verify the representation of the high frequency variability in 

a high resolution model 

 

Fig 4 define bold black line 

Black line in Fig 4 a is: σθ= 27.8 kgm
-3

 

 

Fig 8. In this caption restate length of time series (~3 yr?), like in other captions. 

done 

 

Fig 12, left panel - label what depths are being compared? 

Fig 12 changed in response to recommendation of all reviewers; Figure 12 has been altered to 

near bottom comparison of model and observations with depth information included now. 

 

 

Fig 16. The locations of these two sections should be shown, e.g. on maps  

of Fig 1 or Fig 11. 

Has been done in Figure 1, together with the variance ellipses recommended by R2, cross-

reference is given in figure caption.  Figure 16 has become now figure 18. 



Our response to reviewer #4 

We would like to thank reviewer #4 for his/her positive evaluation of our manuscript, the 

constructive criticism and the recommendations for corrections and suggestions. Below, 

recommendations by the reviewer are in blue and our response in black. We generally agreed 

with the recommendations and changed the ms accordingly. 

I think this is a very good paper. The authors use current meter data collected along the North 

Atlantic's DWBC during the last 20 years or so to evaluate the variability of the current and 

its connectivity between Denmark Straits and the Grand Banks of Newfoundland. This 

research is timely given the new impetus that existing research on the ocean dynamics and 

climate of the subpolar gyre will receive once the international OSNAP and Canadian 

VITALS programmes begin in earnest. My sole major recommendation is that the authors 

include a short section (or long paragraph) describing and discussing the observed and 

modelled mean flow, its strength and its spatial distribution both vertically and along the 

DWBC. The measured mean flow is only shown for the Cape Farewell data, while full-

current time series are also included in the figures of K9 and K18. I think it would be 

appropriate to provide a brief comparison of the means of these fields before embarking on 

the 

analysis discussion of the variability. The paper is very clearly written and very readable. 

 

The main point that Reviewer #4 raises is a brief description of the mean appearance of the 

DWBC in both model and observations. In fact, the introductory figures of the different arrays 

with full ocean depth arrays (Cape Farewell and Labrador Sea arrays) have a component 

showing the Boundary Current flow structure from either the current meter moorings or other 

direct current observations.  In addition we extended the short description of the modelled 

boundary current flow when we introduce the model data. 

 

Page 3. Give the reference pressure/depth for <sigma><theta>. 

Done -- relative to surface pressure 

 

Page 4. "The current vectors were rotated". Do you mean "projected"? 

Ok – projected is the better wording 

 

Page 5. "of the of the" 

done 

Page 9. "father north" 

Done, farther north 

Page 10. "approach.," 

done 

Page 13. "can been" 

done 

Figure 6. Positive means southwards. 

Right, positive is approximately southward 

 

Figure 12. Left panel. What are the model depths for these three curves? 

Instruments from 50m above bottom – similarly for the model data (lowest cell above 

bottom). 
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Highlights: 

 A joint analysis of deep current meter records in the western North Atlantic 

 Intra-seasonal variability dominates the deep boundary current  

 Topographic waves near 10d periods trapped over steep topography  

 Basin centers are showing longer periods (50d) caused by the eddy field  

 Observed variability characteristics compared to high resolution model simulation.  

*Highlights (for review)
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Abstract 

 

The Deep Western Boundary Current (DWBC) along the western margin of the subpolar 

North Atlantic is an important component of the deep limb of the Meridional Overturning 

near its northern origins. A network of moored arrays from Denmark Strait to the tail of the 

Grand Banks has been installed for almost two decades to observe the boundary currents and 

transports of North Atlantic Deep Water as part of an internationally coordinated observatory 

for the Atlantic Meridional Overturning Circulation.  

The dominant variability in all of the moored velocity time series is in the week-to-month 

period range. While the temporal characteristics of this variability change only gradually 

between Denmark Strait and Flemish Cap, a broad band of longer term variability is present 

farther along the path of the DWBC at the Grand Banks and in the interior basins (Labrador 

and Irminger Seas). The vigorous intra-seasonal variability may well mask possible 

interannual to decadal variability that is typically an order of magnitude smaller than the high-

frequency fluctuations. Here, the intra-seasonal variability is quantified at key positions along 

the DWBC path using both, observations and high resolution model data.  The results are 

used to evaluate the model circulation, and in turn the model is used to relate the discrete 

measurements to the overall pattern of the subpolar circulation. Topographic waves are found 

to be trapped by the steep topography all around the western basins, the Labrador and 
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Irminger Seas. In the Labrador Sea, the high intra-seasonal variability of the boundary current 

regime is separated by a region of extremely low variability in narrow recirculation cells from 

the basin interior. There, the variability is also on intra-seasonal timescales, but at much 

longer periods around 50 days.  

 

 

1) Introduction and objectives 

 

A joint observational and modeling effort coordinated and temporarily supported by the 

European Union (EU) named THOR (Thermohaline Overturning at Risk) and with additional 

support from other national projects (e.g., the German North Atlantic and RACE programs) 

with a focus on western boundary current intensity, variability, and change has been 

undertaken in the subpolar North Atlantic over most of the last two decades.   

The focus of this paper is on a comparative analysis of intra-seasonal variability along the 

Deep Western Boundary Current (DWBC) beginning shortly after exiting the subarctic 

regime at Denmark Strait (Macrander et al., 2007, Jochumsen et al., 2012). The investigation 

(Figure 1) follows the path of the DWBC along the East Greenland shelf break with the 

Angmagssalik array (Dickson et al., 2008), and toward the southern tip of Greenland and the 

Cape Farewell array (Bacon and Saunders, 2010). The Cape Farewell region appears to be a 

region with a complex deep circulation, including recirculating pathways (Holliday et al., 

2009). 

From Cape Farewell, the DWBC then travels around the Labrador Sea as the deep part of the 

West Greenland Current, passing through the 53°N array (Fischer et al., 2010, Dengler et al., 

2006) off southern Labrador in the Deep Labrador Current (DLC) and entering the open 

subpolar North Atlantic at Flemish Cap (Rhein et al., 2011) and finally (for this investigation) 

exits the subpolar regime at the tail of the Grand Banks (Schott et al., 2004, 2006). Besides 

the DWBC there also are interior routes along which North Atlantic Deep Water (NADW) 

either recirculates in the subpolar basin or is exported into the subtropics (Bower et al., 2009).  

However, in a comparative analysis of the currents and transports in a high resolution (0.08° 

grid) isopycnic HYCOM model, Xu et al. (2013) show that the boundary flow at 53°N is 

correlated with the Meridional Overturning Circulation (MOC) transport across WOCE Line 

AR19 off the Grand Banks, and in an earlier study by Böning et al. (2006) it has been shown 

that the deep water export from the Labrador Sea is correlated with the mid-latitude 

Meridional Overturning Circulation (MOC). Toward the North, Bacon and Saunders (2010) 

discussed the deep boundary transport variations on long (decadal) time scales. By estimating 

the accuracy of the transports at Cape Farewell, they found that present-day transports were 

significantly weaker (30%) than in the 1970s. The older transport estimates correspond to 

what has been measured off Labrador (53°N array; Fischer et al., 2010) with only minor 

(insignificant) changes over the last 12 years.  
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The intraseasonal variability of the DWBC has been investigated in various publications, in 

particular for the region south of the Grand Banks, off Cape Hatteras, and was related to 

topographic waves. The variability is strong and may mask the mean flow of the DWBC. 

Based on the analysis of mooring arrays (e.g. Pickart and Watts, 1990) as well as from single 

moorings (e.g. Thompson and Luyten, 1976) the highest energy was found at about 40 days, 

characteristic of fluctuations associated with topographic Rossby Waves (TRW). For the Cape 

Hatteras region, the frequencies are consistent with remote forcing through meandering of the 

Gulf Stream as well as interaction of the Gulf Stream with rings (see Pickard and Watts, 

1990).  

 

The objectives of this study are:  

 Determination and comparison of the observed intra-seasonal variability of the subpolar 

DWBC. 

 Discussion of regional differences in the intra-seasonal variability – relating discrete, local 

observations to the large scale distribution from high resolution modeling. 

 How is intra-seasonal variability represented in a present day high resolution model – 

VIKING20?  

 What are the consequences of this variability on determining the spreading of circulation 

anomalies? 

 What consequences do intra-seasonal fluctuations have on uncertainties of boundary 

current transports as derived from limited observations? 

 What are the physics behind those fluctuations? 

 

The outline of the paper is as follows: we first describe how individual current records are 

treated to obtain a comparable data base for all the different mooring efforts in the western 

subpolar North Atlantic. Then we present an overview of the present and past observational 

efforts, namely location and structure of the individual current meter arrays. We explain why 

the arrays have been placed where they are, and what their present day status is. In each of the 

sections we then describe the deep intra-seasonal variability in terms of spectral 

decomposition and variance analysis. 

Thereafter, we briefly introduce the model data, key model parameters, and what has been 

done to generate products compatible with the observations. This will be followed by a 

discussion section in which regional aspects are discussed, including basin interior versus 

boundary current variability, and in which we will present a model – observation comparison 

for the various locations. 

 

2) The arrays, their metadata, and their deep intra-seasonal current variability 

From Denmark Strait to the tail of the Grand Banks, European groups have installed a series 

of current meter moorings during the previous decades. These moorings (see Figure 1 and 

Table 1) were mainly organized in arrays that cover parts or all of the DWBC. Most of the 

data are already published, some are just recently measured, but they have never been 

analyzed in a coherent and systematic context. Individual records are different in many 
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respects – e.g., their length and location. Here we select only those data that were measured at 

densities (relative to surface pressure) larger than  =27.80 kgm
-3

, meaning that we 

concentrate on currents found in the density range of the overflow components. Only in some 

cases we include data from shallower levels.  

 

2.1 Processing and selecting the data from observations and models 

As the mooring data were from different efforts and different nations, the processing of the 

data was somewhat different. Generally, the current meter data were de-tided (preferably by 

applying a 40-hour low pass filter) and subsampled at daily or half-daily resolution – for most 

data sets we applied this to the raw data rather than using a later processing stage by the 

originator. This procedure removes the most energetic tides and it is assumed that the 

remainder is dominated by longer term, but still sub-seasonal, variability (see time series of an 

example at 53°N in Figure 2). Here, we are interested in the variability on time scales up to a 

few months, as these appear to be the most energetic periods in the deep currents of the 

western subpolar North Atlantic. 

Common to all records and locations is that we mainly compare velocity data from the density 

range   > 27.80 kgm
-3

. This isopycnal marks the transition of the North East Atlantic Deep 

Water (NEADW) to the Labrador Sea Water (LSW) above. The depth of this density surface 

varies along the DWBC from less than 1000 m north of the Angmagssalik array to more than 

2000 m in the Grand Banks area. For this layer we were able to define boundaries 

(isopycnals), as these levels are not ventilated in the western SPNA during the last decade, 

and thus, long term modulation and the temporal variability at seasonal time scales is small. 

The current vectors were projected  to the direction of the DWBC by either using the direction 

of the mean flow or the direction of the principal axis of the variance (see Figure 1; to be 

discussed later), both of them agree within a few degrees, and are largely parallel to  the local 

isobaths. 

 

2.2 Intra-seasonal variability and spectra  

Along the DWBC, the most energetic variability in the respective array occurs in a period 

range of days to several weeks; i.e. much shorter than seasonal. In order to increase the 

significance of the spectra, overlapping segments (128 days long, 64-day overlap) of the time 

series were used to estimate the power spectral density. Spectra in this paper are derived  by 

Welch‘s  (Welch, 1967)  method  in the statistics package of the Matlab software, and it‘s the 

variance conserving representation that is used herein.  

Briefly, the input current vector U (alongshore speed) is divided into k overlapping segments 

according to the window width of 128d and 50% overlap. The specified window (Hamming 

window) is applied to each segment of U, thus interrupted time series segments of at least 128 

day length can be used. A Fast Fourier Transformation (FFT) is applied to the windowed data. 

The periodogram of each windowed segment is computed, and the resulting set of 

periodograms is averaged to form the spectrum estimate which results in the Power Spectral 

Density when divided by the sampling frequency (typically 1/day or 2/day. By this procedure 

we excluded seasonal modulations and longer term variability. 
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The time series are seldom uninterrupted over several years, but in some of the arrays we have 

multiyear long segments and are able to perform a spectral analysis in the frequency range 

from weekly to multiannual periods (Figure 3). For better detection of dominant time scales 

and increasing significance, the individual spectra were ensemble-averaged (red lines in 

Figure 3). This is the procedure that we performed for all records presented here and also for 

the model investigation later on. 

 

The full spectra shown here (Figure 3, blue lines) are from the longest segments of the central 

mooring (K9) in the Labrador Sea array at 53°N. These raw (de-tided) spectra are relatively 

noisy, but allowed us to look at the long term variability in comparison to intra-seasonal 

periods.  It is evident from Figure 3 that the variability on periods exceeding 100 days is small 

when compared to that of the 1-100 days band. However, we see a small seasonal peak, 

stronger near the surface than at the bottom, and there is almost no variability at timescales 

longer than a year. With regard to the origin of the intra-seasonal variability, previous 

investigations with a high resolution 1/12° model (Eden and Boening, 2002; Morsdorf, pers. 

communication.) revealed that the intra-seasonal variability of the Boundary Current at the 

Labrador shelf break is mainly caused by baroclinic instability, while the West Greenland 

Current becomes barotropically unstable with a maximum during the high wind stress curl in 

winter. 

2.3 Array overview 

We provide a brief description of each array with meta information, but do not describe the 

mooring designs and deployments in detail. For all arrays, publications already exist that 

describe the location and data, and in most cases there are Deep Water transport numbers 

given as well. Hence, we restrict the introduction of the arrays to the information relevant for 

this study. 

2.3.1 The Denmark Strait Overflow Array  

The aim of the mooring array in Denmark Strait is to observe the overflow and its long term 

variability when it enters the Atlantic Ocean. Downstream of the sill, vigorous entrainment 

dilutes the properties of the overflow water and enhances the volume transport. Therefore, 

measurements directly at the sill are ideal to detect changes in the strength of the overflow. 

 

The mooring program at Denmark Strait was initiated in 1996 by the Marine Research 

Institute in Iceland. In 1999, the University of Kiel contributed additional moorings in 

Denmark Strait. The results of a first 4-year period were published in Macrander et al. (2005). 

Since 2007, the moorings have been a joint effort of the University of Hamburg and the 

Marine Research Institute, Reykjavik in the framework of the European THOR 

(Thermohaline Overturning at Risk?) project, and the follow-up project NACLIM (North 

Atlantic Climate).  
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The array consists of two upward looking moored ADCPs (both 75 kHz instruments and 150 

kHz instruments were used), with two SBE-37SM Microcats, mounted close to the bottom. 

The first bin measured by each ADCP is only 26 m above the sea floor. The temporal 

resolution of the measurements is 20 minutes, but to reduce uncertainties the data were 

averaged to hourly values. Overflow transports were determined by Macrander et al. (2007), 

and by Jochumsen et al. (2012). The two ADCPs were deemed sufficient for estimating the 

overflow transport (Dickson et al., 2008). 

  

Attempts for an extension of the mooring array on the shelf were made during the first years 

of the array, but the region proved to be frequently visited by fishing vessels, and trawl-

resistant frames are needed to secure moored instruments in this region. Handling these 

frames is heavy work and they are more expensive than ordinary moorings. Therefore, only 

the two ADCP moorings in the deep part of the passage were in operation during the majority 

of the array deployment, which nevertheless cover the strongest signal (Figure 4a). 

Repeatedly taken shipboard ADCP sections extending onto the shelf confirmed the flow on 

the Greenland shelf to be weak. Some mooring losses occurred there as well and gaps in the 

transport time series resulted from these losses. Recently, the quality of the near-bottom 

measurements by the 75 kHz ADCPs was found to be lower than those of the 150 kHz data, 

hence only data from the 150 kHz ADCP deployments were used in this study. 

 

Spectral analysis (Figure 4b) has been performed on the ADCP current records from years 

2007-08, and from 2009 – 2011.  The intra-seasonal variance is very high at this location (as 

we will see later by comparison with the other locations) and it is here where the spectral peak 

lies around 200 cm
2
s

-2
. This peak is found at very short periods and the energy increase at 

periods of 5-10 d. The origin of these fluctuations has been discussed already in 1976 by 

Smith as a consequence of the baroclinically unstable overflow plume. In a simple model 

Smith found that the most unstable wave is 80km long at a period of 2.1d. Toward longer 

periods the variance is strongly decaying, and at 30d periods the variance level is less than 50 

cm
2
s

-2
.  Beside the 5 d peak, the overall maximum is located at 10 days, and it is this period 

that dominates the records at most of the stations. 

 

2.3.2 The Angmagssalik Current Meter Array  

 

The Angmagssalik Current Meter Array (Figures 1, 5) was initially funded in the mid-1980s 

(since 1995 as a full array) to monitor the core of the Denmark Strait overflow plume after it 

has completed the vigorous entrainment immediately downstream  of the sill. The plume here 

is at depths between 1000m and 2500m in a bottom layer up to 300m thick. This array is 

predominantly equipped with rotor current meters (Aanderaa RCM8), only very few acoustic 

current meters (RCM11 and Seaguard) were used in more recent years. The design of the 

array was altered repeatedly, especially on the steep and shallow slope, where most mooring 

losses occurred. The recent design is illustrated in Figure 5a. We only selected the records 

from moorings UK1 and UK2 as these are the longest records obtained at fixed positions and 

contained measurements in the chosen density range (Figure 5). 
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The current meter time series of the Angmagssalik Array is one of the longest in the Atlantic, 

and therefore well suited to study the boundary current variability. Spectra of the core 

Denmark Strait overflow (DSOW) layer (mooring UK2 instruments at 2400 – 2200m) show a 

very pronounced peak at periods near 12 days (Figure 5b). However, spectral energy rises 

already at very short time scales, namely at 5d-periods. 

The shorter record of UK1 upslope shows similar frequencies, with a variance maximum at 

12 days, that has the same amplitude as observations farther down the slope, but this record 

shows an additional, even higher peak at 8d-periods. This is the second largest variance of all 

locations, exceeded only by the flow in Denmark Strait. At both locations (UK1 and UK2) the 

variance decreases toward the bottom. The spectral decay to longer periods is strong and 

makes this location favorable for determining longer term variability as the intra-seasonal 

variance could be separated (filtered) effectively from the long term (interannual to decadal) 

time scales. 

 

 

2.3.3 The Cape Farewell Array The aim of the Cape Farewell array (Figure 6) was to measure 

the transport and variability of the DWBC just before it enters the Labrador Sea.  The 

mooring array (Figure 6a) was deployed in September 2005, recovered and redeployed in 

August 2006, and finally recovered in September 2008 (Bacon, 2006a, Bacon 2006b, Bacon, 

2010). The array was enhanced by a deployment by IFREMER of two further moorings 

inshore of the National Oceanography Centre (NOC) array, designed to measure the East 

Greenland Current, but not used in this study. From the combined array, the mean transport of 

water < 3.0°C was found to be 7.8 ± 0.8 Sv, and for  > 27.80 kg m
-3

, the mean transport was 

9.0 Sv (Bacon and Saunders, 2010).  

All records (Figure 6b) show a high frequency variance maximum around 10 day periods, and 

thus, the deep water transport (Daniault et al., 2010) also exhibits this spectral shape; in that 

paper, the effect of the intra seasonal fluctuations on the accuracy of bi-annual mean transport 

was discussed. However, it is the deepest record in mooring B, located at 2450m water depth 

that shows higher variance and a shift toward lower frequencies, with a peak near the 20d 

period. This behavior of a more ‗reddish‘ spectrum in the deeper basin will be investigated 

later. 

2.3.4 The 53°N Array off Labrador  

One of the areas of major importance for the formation and spreading of water masses in the 

Atlantic MOC (AMOC) is the Labrador Sea, characterized by a cyclonic (anticlockwise) 

boundary current surrounding one of the most active areas of water mass transformation in the 

world‘s ocean (Marshall and Schott, 1999). Along the Labrador shelf break, the three 

components of NADW merge into the DWBC as part of the cold water limb of the AMOC. 

Therefore, this location at 53°N is well suited to observe, and potentially monitor, long term 

changes of the outgoing component of those water masses which enter the North Atlantic 

from the Arctic Ocean. 

Since summer 1997 (Fischer et al., 2004, 2010), the array was installed and serviced every 

other year (Figure 7a). However, the spatial station coverage has varied significantly, ranging 
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from 5 moorings during the initial phase and during recent years to only one mooring in the 

middle of the period. However, mooring K9 in the center of the boundary current was 

continuously installed, and during the most recent years the array was enhanced with focus on 

the deep flow at DSOW levels (moorings DSOW1 and DSOW2 in Figure 7a). Over the last 

decade we saw a fairly constant DWBC flow on long (multiannual) time scales with 

significant intra-seasonal variability. This array will be continued and possibly will become 

one of the elements of the envisioned northern transatlantic MOC observing system. 

The mean flow is predominantly along the topography and is confined in an approximately 

100-150km wide boundary. Figure 7a shows the long term mean alongshore flow based on a 

large number (12 realizations) of lowered ADCP section data. The near bottom flow (DSOW 

layer) exhibits a well-defined current core associated with the DSOW. All moorings were at 

least partly within the deep boundary current, at K10 only the deepest records are in the 

DWBC.  Within the DWBC  all records reveal a frequency distribution with a peak near 10d 

periods (Figure 7). and variance levels of the DWBC increase with depth. The bottom 

maximum decreases to either side of the deep current core. Highest variance is observed in 

the central mooring (K9) and it is at this mooring where we are able to evaluate vertical 

variance structures. The flow at NEADW and DSOW levels (2500m and deeper) shows 

maximum variance and also maximum mean flow. Higher in the water column at LSW levels, 

the high frequency energy (variance) is only half of the deep variance. Nevertheless, all K9-

records showed variance decay toward lower frequencies and only a weak indication of longer 

(30d) variability.  It is interesting to note that at mooring K10, which is the farthest offshore 

mooring, we observe additional variance at longer periods.  At K10, this 30-50d variability 

dominates the deepest record, which is still located in the DWBC. The records above are 

located in the recirculating regime with weak mean flow and small variability. 

 

2.3.5 The Flemish Cap Array at 47°N  

The Flemish Cap mooring array (Figure 8) was installed with the aim of measuring strength 

and variability of the export of deep water from the subpolar North Atlantic and to compare 

the observed variability with measurements of the North Atlantic Current transport west of 

the Mid-Atlantic Ridge (Rhein et al., 2011). 

The array consists of three current meter moorings, which initially were located directly at the 

continental slope of Flemish Cap near 47°N. The moorings were first deployed in summer 

2009 and serviced in summer 2010. After the second deployment period the easternmost 

mooring was lost during recovery. Shipboard measurements illustrate how the mooring array 

is located relative to a snapshot of the boundary circulation. A continuation of the array for at 

least three more years from 2012 onwards has been funded. 

The topography at this location is steep, so that the DWBC is closely attached to the 

continental slope, with one mooring (B22) located directly in the velocity core of the DWBC 

(Fig. 8). The variance distribution is much more diverse compared to the more northerly ones. 

The time series are relatively short (about one year only) and thus, the significance of 

individual peaks is small. Besides the high frequency peak with less than 10d periodicity, the 

boundary current shows longer period variances that are not observed in the records discussed 
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so far. Longer periods appear in the most offshore mooring B23, where the topographic slope 

is gentler. In general, the energy level at the center mooring B22 shows very low variance, but 

at rather high frequency (peak near 7d periods). Farther offshore at B23, the energy is much 

higher, and it‘s at this location where fractions of the North Atlantic Current (NAC) are seen 

at the surface. 

In addition to the recent deployments off Flemish Cap, there has been a single one-year long 

mooring from July 1998 to August 1999, near that location. That mooring was located at 

4000m water depth, and it had current meter records (K18, Figure 9) in the deep water range 

at 1507, 3200, and 3954 m depth. The structure of the spectra around Flemish Cap begins to 

show other elements besides the high frequency (~10day periodicity). We still observe 

remnants of that variability, e.g. in mooring K18 the variance in the band below 10 d period 

still shows a maximum, but all three records reveal a broader peak near 30-50 d periods.  This 

can also be detected in the easternmost offshore mooring B23 of the Flemish Cap array at 

47°N (Figure 8b). 

This has immediate consequences for the investigation of longer term variability, as the 

degrees of freedom (DOF) in any estimate of the statistical moments will be significantly 

smaller, and thus uncertainties of mean flow estimates or long term trends will be larger; we 

will come to this later in the summary and discussion section .  

 

 

2.3.6 The Grand Banks Array  

The farthest downstream location in the DWBC considered here, is the tail of the Grand 

Banks (Figure 1), a place where the WOCE Array ACM 6 (1993-95) was established by 

Canadian researchers (Bedford Institute of Oceanography, BIO) and continued by the IFM-

GEOMAR group in 1999 to 2005 (Schott et al. 2004, 2006). While the focus of ACM6 was 

on the warm water flow of the upper ocean, the continuation array (Figure 10a, from Schott et 

al., 2006) focused on the deep water transport of the DWBC and its variability. The array was 

finally recovered in 2005 and not re-deployed, the main reason being the difficulty to 

determine DWBC transports in the presence of a deep reaching North Atlantic Current 

(NAC). However, for the present objective we have a long time series of the DWBC covering 

almost a decade. 

Regarding the mean currents at this location, we see increasing southward flow toward the 

bottom and underneath the  = 27.80 kgm-3 level (Figure 10). Mooring K104 is thereby 

located in the deep basin but close to the topographic slope of the Grand Banks. Here, the 

variance (Figure 10b) increases toward the bottom, while the mean flow is rather weak. 

The spectrum of alongshore currents is significantly shifted toward lower frequencies 

compared for example to the DWBC in the Irminger Sea. In relation to the mainly barotropic 

flow farther north, we here see the near surface flow associated with the North Atlantic 

Current (NAC) being strong and in opposite direction to the DWBC underneath. The longer 

periods of the DWBC variability are likely caused by NAC meandering, and this makes 
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transport estimates on longer time scales more difficult;  and uncertainties (the number of 

degrees of freedom, NDF, are smaller) are larger than farther up north. 

 

This topic has also been addressed in a recent paper of Peña-Molino et al. (2012) where the 

high frequency variability (19-50 day periods) in the deep flow along the US-coast (mooring 

line ‗W‘) has been associated with topographic Rossby waves (TRW), while the longer term 

variability is caused by the meandering and eddy shedding of the Gulf Stream. Different from 

what is observed in the subpolar region is the existence of multiple frequency peaks, while in 

the observations shown here, the variance is mainly concentrated in a single peak.  

At this point we like to summarize the main results from the observations obtained so far. All 

along the DWBC path, intra-seasonal variability dominates the deep flow. The longest time 

series at Angmagssalik and at the exit of the Labrador Sea exhibit the sharpest spectral energy 

peak with similar periods near 10d time scales. The shortest time scales (near 5d) are 

observed directly in Denmark Strait, and the longest boundary current fluctuations are along 

Flemish Cap and the Grand Banks. In the following we will compare these findings to the 

large scale by using model data, and at the same time test for consistency between the model 

and observations. 

3) VIKING20 –   high-resolution modeling of the subpolar North Atlantic 

 

For this study we use a very high-resolution model (VIKING20) that will be briefly 

described. The numerical ocean model is based on the NEMO code (version 3.1.1, Madec 

2008) and belongs to the DRAKKAR framework (DRAKKAR Group, 2007). The global 

ocean-sea-ice configuration (LIM2, Fichefet and Morales Maqueda, 1997) and is discretized 

on a tripolar horizontal grid with a nominal resolution of 0.25° (ORCA025) and 46 z-levels in 

the vertical. 

The vertical layer thickness is 6 m near the ocean surface and increases with depths. A partial-

cell approach is used for the bottom cell (Barnier et al., 2006). Especially in the subpolar 

North Atlantic it has been demonstrated that this leads to an improved boundary current 

circulation (Käse et al., 2001). A regional grid refinement (AGRIF, Debreu et al., 2008) over 

the northern North Atlantic (from ~ 30°N-85°N) is embedded in the global configuration via a 

―two-way nesting‖ approach. The horizontal resolution in this high-resolution domain is 

nominal 0.05° (corresponding to horizontal grid scales between ~5 km and ~1 km). The ―two-

way nesting‖ approach allows an active interaction of signals between both grids, thus 

embeds the regional grid in the global circulation at all time scales. The turbulent vertical 

mixing is simulated with a 1.5-level turbulent kinetic energy scheme (Blanke and Delecluse, 

1993). Viscosity is discretized for momentum by a bi-Laplacian, diffusion by an iso-neutral 

Laplacian scheme. The model does not simulate tides.  

The model uses climatological temperature- and salinity fields (Levitus 1998) for 

initialisation. The simulation is based on a 30-year spin-up with the base model alone, then a 

hindcast simulation was integrated using the CORE2 (Large and Yeager, 2008; Griffies et al., 
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2009) atmospheric forcing fields 6-hourly (wind speed, humidity, and atmospheric 

temperature), daily (short- and long-wave radiation), and monthly (rain and snow) resolutions, 

with interannual variability over the time range 1948–2007. To avoid a long-term model drift 

and taking uncertainties in the forcing fields into account, modelled sea-surface salinities 

(SSS) are weakly damped  towards climatology with a piston velocity of 16mm/day  

(corresponding to a time scale of eight years for 50m surface layer), except for ice covered 

regions and the continental shelf around Greenland (Behrens et al., 2013).  

As for the observational efforts we have chosen the 7 locations shown in Figure 1. Section 

orientation is perpendicular to the topography, although that is not so important for the 

present investigation. Here, we are interested mainly in the flow variance in main current 

direction, and for this we analyze the alongshore flow at individual grid point data. The model 

data for the long time scales are stored in 5-day averages, which is not sufficient for the short 

time scale investigation herein. Therefore, an additional model run over a two year period was 

performed for this investigation and stored as one-day averages. 

The model environment used herein is shown in Figure 11, where we see a snapshot (5-day 

mean) of the current speed along the density surface  = 27.85 kgm
-3

, i.e. in the density 

range of the overflow water masses. This map reveals the characteristic features of the deep 

flow in the model domain. Downstream from Denmark Strait, a continuous current maximum 

is hugging the continental shelf break. This is associated with the path of the overflow plume 

from its source along the East and West Greenland coast.  At the location of the 

Angmagssalik array the overflow plume covers most of the continental slope, and while the 

observations concentrate of the bottom layer only, the model shows an upward more 

barotropic extent of the flow. In this model snapshot the inner Labrador Sea shows regions of 

enhanced flow speed but is rather dominated by mesoscale activity. Along the Labrador shelf 

break we again see the band of strong currents, and the mean model-flow is quite similar to 

the observed one, even the bottom intensification is simulated by the model. The narrow 

DWBC exists until the flow enters the Orphan Knoll region where eddies dominate the flow. 

The DWBC is then re-established around Flemish Cap and the Grand Banks. In addition to 

the DWBC flow we see intense flow pattern in the central Labrador Sea and near the region of 

the Northwest Corner of the North Atlantic Current. What is also indicated in this 

instantaneous current field are the regions of low speed just offshore the DWBC and on both 

sides of the Labrador Sea; these are the recirculation cells reported by Lavender et al. (2000), 

Käse et al. (2001), and Fischer and Schott (2002). The Irminger Sea does not exhibit similar 

recirculation bands but instead a relatively intense eddy field offshore of the DWBC. 

 

Generally, in areas where the topographic slope is strong, a narrow DWBC hugging the 

continental slope is visible in the western subpolar North Atlantic. In contrast, the basin 

centers, e.g., the inner Labrador Sea, show less organized flow pattern. In these and other 

areas with weak bottom slopes the flow appears to be dominated by mesoscale eddies.  

Observations by profiling floats (Fischer and Schott, 2003) indicate that there is a long 

residence time of water in the basin interior, which might influence the exchange between the 

convective areas and the NADW export routes. 
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4) Discussion of Results  

 

For each of the array locations we extracted high resolution (VIKING20) model data to be 

compared with respect to statistical parameters (variance spectra). For model validation the 

models have to produce the gross flow structures and their variability. Gross structures are for 

example transports, which need to be represented in magnitude and variability.  Herein, we 

concentrated on the dominant variability of the DWBC in the subpolar North Atlantic. The 

observations are from discrete locations and the model will then be used to relate the 

individual flow structure to the large scale picture. 

 

4.1 Model Boundary Current variability related to the observations (Model validation) 

First we compare the model variability with the observations at the Labrador shelf break from 

the 53°N array (Figure 12). 

 

The model spectra from 50m above the bottom reveal variance maxima which are 

significantly lower than the corresponding deep records observed at the same location – the 

records from the DSOW core at 2700m to 2800m. The high frequency peak is shifted toward 

lower frequencies (20-day periods rather than 10-day periods in the observations). 

Additionally, the model variability has a secondary, even higher maximum, at 50d-periodicity 

which is not seen in the observations. In this 50d – band the observed variance  decays  to 

very low values – this may partly be caused by the much longer observations compared to the 

2-years of model data. However, at the inshore side of the K9 location this 50d period has 

vanished almost completely, while offshore there is only the 50d – peak.  

 

When we follow the path of the DWBC and compare model and observational spectra of the 

near bottom flow (Figure 13), then we see at several places that the observed variance exceeds 

that of the model variance. This is strongest for the records in Denmark Strait, where the 

model variance at the 5-10d-peak is a factor of 5 smaller than the observed variance at a 

similar period. The rather short model series results in 3 variance peaks at 30d, 8d and 4-5d 

periods.  

 

If we look into the records of Angmagssalik (Figures 5b, and 13), this time in comparison 

with the model data, then the first thing to note is the complex structure of the topography 

(very steep shoreward of the moored array and more gentle in the region of the array - model 

topography is close to ETOPO 2 data set and this corresponds well to high resolution 

shipboard bathymetry). The mean flow along the topography is almost twice as large in the 

model as in the observations, and contrary to the observations the deep model flow (not 

shown) exhibits a strong seasonal cycle, which is not detected in the observations (this needs 

further attention in a separate investigation). While the total variances are similar, near 50 cm
2
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-2

,
 
the frequency distribution is different. The model has strong intra-seasonal variability at 

very high frequencies (less than 10d) while the observations show the general 10d peak. If we 

chose grid points farther offshore, where the slope is even gentler, then the peak frequency 

shifts toward the observed 10 d variance.  

 

At Cape Farewell in the DWBC the high frequency variance is considerably smaller than 

farther upstream the DWBC, and here the observed variance is significantly higher than the 

modeled variance, and the same is true for 53°N in the Labrador Sea. Maximum variance at 

both locations occurs at similar frequencies, but these are not so well defined compared to 

Angmagssalik.  The much broader spectral shape may be due to the fact that the time series 

are short, but it may also be caused by the gentler slope of the topography at this location. The 

situation at 53°N can be described by a lower variance level in the model simulation and 

somewhat longer periods.  

 

At Flemish Cap, the shape of modeled and observed spectra is similar, and peaks occur 

around 50d with some variance at higher periods in the observations but not in the model. 

Along the DWBC this location is the only one where the variance peak is a little higher in the 

modeled flow.  Farther south, at the tail of the Grand Banks the model shows less variance, 

but again at similar but longer (30-50d) periods.  

Summarizing, the model reveals variance maxima at intra seasonal periods , but the model variance 

levels are generally smaller than the observed ones and the peak frequencies a rather different in 

some places although the topography appears to be represented properly. 4.2  Variability in the 

basin centers of the Labrador and Irminger Seas 

In terms of interpreting the larger scale variance distribution we also compare the boundary 

current regimes with the basin interior where we also have long term records in both, the 

Labrador and Irminger Seas. The Labrador Sea station (mooring K1, see Figure 1) is a 

continuation of the former Weather Ship ―BRAVO‖ and successive Canadian moorings. It is 

also located on WOCE section AR7W, which is occupied by BIO researchers every spring. 

From 1996 onwards, a mooring has been installed to measure open ocean convection and the 

large scale heat content by Acoustic Tomography. The mooring has current meters (Aanderaa 

rotor current meters and ADCP‘s) as well as T/S sensors from near surface to 2000m depth. 

This is of course too shallow for the overflow water mass layers, but as the flow was rather 

barotropic with even the spectral levels not very different between shallow and deep current 

records (Figure 14) we include this in our discussion about regional differences of intra-

seasonal current variability.  

 

Intra-seasonal variance in the central Labrador Sea is comparable or even larger than that of 

the boundary current, but the frequency distribution is very different.  Here, we have an 

energy maximum at 50d periods and there is almost no variance in the 5-10 day band. The 

mean flow thereby is small, and the variance ellipse has no principal axis, indicative of 

mesoscale eddies as the origin of the variance. This is similar for the corresponding model 

spectra (Figure 14), where lower frequencies around 50d also dominate the spectra. However, 
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while the variance level in the observations are almost the same over the top 1500m, the 

model variance decays considerably with depth.  

 

As a reference for the Irminger Sea basin we used observations from the Central Irminger Sea 

(CIS) mooring. CIS is equipped with ADCP (mainly upper 150m) and current meters (1000m 

and occasionally 2500m). The longest continuous record over 10 years at nominal 1000m 

depth was used for analysis which show variance maxima at lower frequency compared to the 

adjacent boundary current (Figure 14, right). However, the energy level is only half that of the 

central Labrador Sea, and the periods are more in the 20 to 30 day range. The model spectra at 

CIS reveal a similar frequency distribution, but the variance level is considerably smaller than 

observed. In the basin center the model variance peaks near 50d and at a level that is similar 

to that of the central Labrador Sea.  

 

4.3 Comparisons of observed and modeled spectral estimates across the Labrador Sea 

The WOCE AR7W-section runs from the Labrador shelf to West Greenland and passes 

through the position of mooring K1. We have spectral estimates from observations in the 

Boundary Current (at 53°N) and in the basin center. For comparison we extracted the AR7W 

section from the VIKING20 model data, calculated the EKE distribution on that section 

(Figure 15a), and performed a spectral analysis for individual depth levels. For comparison 

we have done this for two depth levels, the surface and at 1000m depth (Figure 15), because 

mooring K1 has only records in the upper 2000 m. 

 

Similar to the observations we see a different behavior of intra-seasonal fluctuations – longer 

periods in the basin interior and shorter periods in the boundary currents at both sides of the 

basin, and more pronounced at the Greenland side. It is also very interesting, that on either 

side of the interior variability maximum there is a zone of very low energy. When comparing 

this with the circulation of the Labrador Sea, then these low energy bands coincide with the 

weak recirculation cells that were first observed by Lavender et al. (2000, 2005) and by 

Fischer and Schott (2002) in the trajectories of profiling floats. 

 

In a related paper, Straneo et al. (2003) investigated the role of diffusion vs. advection on the 

spreading of LSW in adjacent basins. They estimated a rather long residence time of LSW in 

the central Labrador Sea (4.5 years) and with respect to the results shown here, the interior 

weakly stratified regime appeared separated from the boundary current regime. Evidence of 

interior separation is seen in individual float trajectories (Fischer and Schott, 2002) drifting 

slowly into the Labrador Sea within one of the recirculation cells connecting the Orphan 

Knoll area with the central Labrador Sea. There is additional evidence in the spectra of 

mooring K10 (Figure 7; the mooring at the transition between the DWBC and the 

recirculation) which showed much lower variance in all levels. The deepest record at the K10 

location is still inside the deep DSOW current core and contains the highest variance level at 

that position, but the variance maximum occurs near the interior periodicity. Higher up in the 
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water column the variance and the mean flow is much smaller and the mean current is in 

opposite direction to the DLC. 

 

By using an intermediate resolution model, Käse et al. (2001) were able to reproduce these 

recirculation cells and argued that the flow is controlled by bottom topography. Local wind 

forcing and the baroclinic structure of the dense overflow plume play an important role.  Due 

to improved representation of the bottom topography by partially filled cells  (also  used  in  

VIKING20), circulation changes communicated by topographic waves are simulated more 

realistically. 

 

Baroclinic structures of the boundary current at the exit of the Labrador Sea are confined to 

the shelf edge, where the Labrador Current is surface intensified and sheared down to a depth 

of several hundred meters (Fischer et al., 2004). 

 

The shear-zone extends out to mooring K8, but further out at K9 there is only weak shear 

down to the overflow level. However, the deepest records again show strong shear in the near 

bottom records, and this is also true at K10 even farther away from the shelf break. 

Apparently, the intra-seasonal variability is confined to the sloping topography. Theoretical 

consideration (Olbers et al., 2012) tells us that the period of topographic waves in the 

presence of weak stratification is mainly determined by the slope of the topography – in a way 

that steep topography leads to high frequency waves. So, why then are the periods so similar 

at 8 to 12 day periodicity? All along the western subpolar NA the topographic slope is steep, 

with one exception, and that is at Cape Farewell and its underwater extension, the Eirik 

Ridge, where the slope is twofold, first steep and then much gentler – and although not 

significant, the records from the CF-Array exhibit longer periods (20 days) as well.  

 

Another test for topographic Rossby Waves would be the principal orientation of the variance 

ellipses, which should be pointing in the direction of the DWBC flow. This has been shown 

farther downstream the DWBC in the Mid Atlantic Bight (Fratantoni and Pickart, 2003) and 

discussed for moored data at Line W (Pena-Molino et al., 2011) in which TRW are discussed 

to be responsible for bottom intensified variability at periods around 30d. For a comparable 

analysis we performed a principal axis de-convolution and found that the direction of the 

variance ellipse near the bottom is in the direction of the mean flow (within a few degrees). 

The 53°N array is well suited to discuss the structure of the variance orientation (Figure 16) in 

more detail. We already noted a frequency shift toward lower frequencies when we approach 

the deep sea basin (Figure 7 near bottom spectra). This is a strong indication that the 10-20 

day waves are trapped at the topography. Furthermore, we note that the near bottom variance 

(high pass filtered currents at 60d cut-off period) is larger along the topography than 

perpendicular to the isobaths for instruments on the slope. Offshore of the slope, the variance 

ellipses become more circular.  For the layers above the near bottom flow intensification, e.g. 

at mid-depth (Figure 16b) the orientation of the variance ellipses is no longer in the direction 

of the topography, and we therefore plotted  the ellipses for the whole water column in the 

center of the DWBC (mooring K9). Approximately 1000m above the bottom  the ellipses are 
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no longer oriented along the topography (Figure 16c) and the variances are somewhat smaller 

in this mid-depth layer and the main axis rotated from along the topography counterclockwise 

to almost perpendicular to the topography in the upper layers.  

 

The same products have been generated for the model data, i.e., the daily model currents were 

high pass filtered at 60d cut-off period and the near bottom current variance near the mooring 

line is shown in Figure 17.  Variance ellipses were oriented almost perfect along the 

topography and the cross-component is very small compared to that along the principle axis. 

This is different from the observations, where the ratio of the two components is much 

smaller.  Toward the deep basin the cross-variance increases and the overall variance becomes 

larger compared to that on the slope. Different to the observations is the vertical structure of 

the variance ellipses, which at mid-depth are still oriented along the topography showing 

similar structures to the near bottom model flow. Thus, the variance field is much more 

coherent in the model than in the observations.  

  

The different structure of the variance ellipses can be summarized in a single number, the 

ellipticity (EP) of the variance ellipsoid EP = (1-b/a), with a, b the magnitude of the variance 

axes (a in the direction of maximum variance.) In the case of pure eddy motion, a and b are 

equal and EP becomes zero; in the case of all variance concentrated in one direction EP 

approaches unity.  

The ellipticity, shown (Figure 18) for two different model configurations, exhibit strong 

maxima in the boundary current, that is clearly intensified toward the bottom where it 

approaches unity. Toward the basin center, the flow variability has no preferred direction and 

the small ellipticity indicates eddies as its origin. In the coarse resolution ORCA model the 

boundary currents are much wider, and especially the Deep Labrador Current extends 

unrealistically far into the basin. From just visual inspection the VIKING20 flow field 

resembles the real flow, and we have a bottom intensified DSOW core off the Labrador shelf 

break, which is not the case in lower resolution models.  

 

 

Similarly, the observed flow field on both sides of the Labrador Sea reveals variability which 

is mainly directed in mean flow direction. When comparing the upper and intermediate 

(LSW) layers at the 53°N array, then EP is in the range 0.1 to 0.2. The main variance axis (a) 

coincides with the mean flow direction. At depth, in the overflow layers the ellipticity is 

larger, between 0.3 and 0.5. this is in contrast to the interior Labrador Sea, where at mooring 

K1 we find rather low EP (O(0.1)), suggesting that mesoscale eddies dominate the variance 

field at this location.  

Interestingly, the spectra along the sloping shelf have discrete maxima (usually 1 or 2) 

suggesting that these are TRW‘s generated by the instability of the boundary current, and 

whose frequency is determined by the slope of the topography (e.g., Stocker and Johnson, 

1989). Increased stratification, as in summer situations, should increase the wave frequency, 

but this is not observed. Nevertheless this would be in agreement with the confined energetic 
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zone over the slope, a low energy band adjacent to the topography, and an interior zone of 

low frequency variance.  

 

4.4 Seasonality of the intra seasonal boundary current variability? 

 

Early investigations (Fischer et al. 2004) of the mean flow structure in the Labrador Sea 

showed an annual cycle of the shallow Labrador Current extending out to the location of K9, 

but no seasonality in the LSW layer. There was a weak indication of seasonality in the deep 

current core, but this was insignificant. These results are consistent with the time series 

analysis from the sill of Denmark Strait, were the seasonality was found to be very small in 

both the transports and the hydrographic properties (Jochumsen et al., 2012). Here, we ask the 

question, is there any seasonality in the intensity of the intra–seasonal fluctuations. And 

indeed, there is a shallow maximum in the 10-15 d variance band at the time of the winter 

maximum of wind stress curl over the Labrador Sea. For this plot (Figure 19) 128d segments 

centered monthly are used to generate variance spectra which are then ensemble-averaged 

over the whole mooring duration. As an example:  for the month March we used data from the 

period 64 days before March 15 until 64 days after March 15. For an individual month we had 

nine (the length of the time series at K9 is 9 years) such 128d long segments which we 

average in spectral domain to improve the significance of an individual spectral estimate.   

 

To our surprise we also see a deep seasonal cycle in the same period band, but with much 

lower variance (note the different scale in Figure 19). At depth, the maximum intra-seasonal 

variance is in fall to winter, i.e. the phase appears to be shifted.  This could explain the small 

seasonal variance peak seen in Figure 3, but this is a rather weak signal only detected  in the 

long time series at K9, and it is , but this could stimulate a future discussion about deep 

seasonal cycles in the subpolar North Atlantic.   

 

 

 

5)  Summary and discussion 

We investigated the intra-seasonal variability of the DWBC in mooring data from the 

overflow source at Denmark Strait, along East Greenland, from the interior Labrador Sea to 

its exit, then around Flemish Cap toward the tip of the Grand Banks.  

Long topographic waves are mostly independent of stratification, they are barotropic and the 

topographic slope determines their frequency. While strong slopes are observed around the 

Labrador Sea and off East Greenland, the array at Cape Farewell is located above a gentler 

descending shelf break. In fact, there is a steep part and a more moderate descent. This 

location has 10d variability, but it also shows some variance toward lower frequencies as one 

would expect from TRW‘s. For these TRW‘s, wave length of the order of 100 to 200 km are 

shorter or just comparable to the distance between arrays, and we tried to find indications of a 

coherent signal along the Labrador Sea shelf break (from Hamilton Bank to 53°N along the 

same isobath), but could not find any. This is different for thermohaline anomalies which on 
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much longer time scales were tracked from the Labrador Sea into the open North Atlantic 

(Stramma et al., 2004). 

 

There are four main aspects of this investigation, first there is the variability which is 

interesting by itself, and then there is a first validation of a new high resolution model 

regarding the representation of intra-seasonal variability near the continental margin. The 

model might be used to relate discrete and sparse observations to the large scale hydrographic 

and circulation pattern as has been shown here for the Labrador Sea. Finally, the intra-

seasonal energy peak controls how accurate estimates of long term (seasonal to decadal) 

fluxes and transports can be. In detail, these are the main results: 

 

 Topographic waves near 10d periods dominate the variance of the Boundary Current 

in the Irminger and Labrador Sea‘s. Shorter periods (~5d) were only found at the sill 

of Denmark Strait. 

 At Flemish Cap and farther south there is also strong variance at somewhat lower 

frequencies (30 – 60 d periods).   

 The central Labrador Sea (from Mooring K1 in its center) exhibits 50d periods as the 

most energetic with almost no variance at 10 days;  

 Simulations with a high resolution model are used to relate local observations to the 

larger scale environment. 

 The two regimes, DLC and interior Labrador Sea are separated by a band of weak 

mean flow into the Labrador Sea that also has very week eddy energy. 

 Topographic waves are trapped at the steep slopes around the subpolar NA and in the 

presence of low stratification the bottom slope determines the frequency of the waves. 

 

Comparison of the high frequency variability represented in a high resolution model with 

moored observations reveals remarkable differences at the intra-seasonal time scales. Having 

discussed the above points, we here will concentrate on the third point, namely the question 

how accurate are our estimates of deep water transports across 53°N for example, and what 

will be the influence of the intra-seasonal variance. Table 2 summarizes the statistics of the 

flow in the deep water range below  =27.80 kgm
-3

. We compare the total alongshore 

variance to the variance contribution for periods less than 60d and find that in almost any case 

the intra-seasonal variance accounts for 70 to 90 % of the total variance. For the error 

estimation of the mean flow (e.g. say for annual means) we estimate the integral time scale of 

the deep flow at several of the locations by two methods: first, through integration of the auto 

– correlation functions of the respective time series, and second by estimating the (degrees of 

freedom) DOF‘s from the first zero crossing of the autocorrelation function (usually better 

defined) multiplied by two   -- assuming data are statistically independent after half a 

wavelength. Both estimates are somewhat more conservative than for example the estimate of 

Daniault et al., 2010 of around 5 d for the Cape Farewell data set.  The error of annual mean 

flow is then estimated by:   stdev(U)/sqrt(DOF) and is listed in Table 2. The largest errors are 

expected in the Denmark Strait records, where the largest observed variance is not 
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compensated by the somewhat shorter integral time scale (more DOF). On the other hand the 

frequency shift observed south of Flemish Cap leads to smaller DOF (larger integral time 

scale) and thereby to larger errors. 

 

Another error estimation is carried out by successively  applying a low pass filter to the 

longest time series with increasing cutoff periods (5d to 100d).  From these filtered time series 

we calculated the residual variance over the whole duration (~5y). With increasing cut-off 

period the residual variance decreases as expected until a 20d cut-off period when most of the 

intra-seasonal variance is filtered out. Thereafter, the residual variance decreases much slower 

and approaches small values (< 10cm
2 

s
-2

) after a cut-off of 60d. These values might be used 

to determining the DOF. Thus, a one year long time series filtered that way has just 5-6 DOF, 

and the corresponding error of the mean is determined by dividing the residual standard 

deviation divided by the square root of DOF – at K9 the low pass filtered (60 day cut-off) 

time series reveals a residual variance of 7cm
2 

s
-2

, and thus an error of the mean of an 

individual record would be 1cm s
-1

.  For an individual LADCP section which takes about two 

days to perform, the inherent variance would be of the order of 25cm
2 

s
-2

 or a standard 

deviation of 5cms
-1

. While one would need 5 times 60d in the moored and filtered record, one 

has significantly more ship sections to perform in order to get an uncertainty less than or 

equal to 1cm s
-1

.   

Although  we discussed the impact of the intra-seasonal variance mainly for the 53°N array, 

the corresponding values for the other arrays are determined as well, and are  summarized in 

Table 2.  This result illustrates that in a highly resolved time series of say annual duration the 

intra-seasonal part is almost completely removed through averaging , with a tendency toward 

larger errors in the more southerly parts of the DWBC and in the basin interior. 
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Figure Captions 

 

Figure 1. The western subpolar North Atlantic and the location of current meter arrays along 

the path of the Deep Western Boundary Current (DWBC); from the sill at Denmark Strait to 

the transition into the subtropics at the tail of the Grand Banks.  At each location near bottom 

variance ellipses (red) are included (grey ellipsoid is for scaling only – units in cm
2
 s

-2
). Also 

included are variance ellipses from the central Labrador and Irminger Seas. Green line is the 

former WOCE line AR7W which is occupied annually by Canadian researchers.
 

 

Figure 2: Top to bottom time series of alongshore currents at the central mooring K9 of the 

53°N-Array. Thin gray lines are from detided time series and dots are annual mean currents.  

Figure 3:  The raw spectra (variance conserving) of two current meter records that are several 

years long (see Figure 2),  from mooring K9 in the center of the deep boundary current at the 

exit of the Labrador Sea.  Ensemble averaged spectra from 128 day long subsamples as solid 

lines. Note the narrower spectral peak for the deep instrument. This procedure has been 

applied to all the records – namely de-tided by 40 h low-pass filtering, subsampled at 1/2d  

resolution and overlapping (by 50%) data subsets used for spectral analysis, and then 

ensemble averaged spectra are determined (red curve).  

Figure 4: Overflow in Denmark Strait (a), currents in along-channel direction as a snapshot 

obtained from shipboard ADCP – blue is the Overflow; the heavy black line shows the 

isopycnal σθ= 27.8 kgm
-3

 . Spectra of the Overflow (b) in the deep current core at Denmark 

Strait. Data are from moored ADCPs at the depth cell of maximum flow close to the sill 

depth. For deployment times see figure legend. 

 

Figure 5: a) Snapshot of cross-section velocity from lowered ADCP data, as measured in July 

2010 during cruise Meteor M82-1. Negative velocities are toward the southwest (blue), while 

positive velocities are northeastward (red). Two isopycnals are included in black: σθ= 27.8 

kgm
-3

 as the upper boundary of the overflow components, and σθ = 27.85 kgm
-3

 as the upper 

Denmark Strait Overflow plume. The x-axis gives the distance starting on the Greenland 

shelf. The recent Angmagssalik array is illustrated in yellow. 

b) Spectra from the Angmagssalik array. Only near bottom records are shown; the depth 

above bottom is given in the figure legend (B-XXX). Left: Spectra from UK1 at 1980 m 

water depth, and a record length of 4 years. The record to the right (UK2 at 2350 m) is very 

long (almost 7 years) and it shows a very narrow spectral peak at 8-12 day periods.  

 

 

Figure 6: The Cape Farewell array.  a) Mean velocity cross-array flow (cm/s) and mean depth 

of the 3°C isotherm; b) Spectra from the deepest instruments at moorings B and H in the core 

of the DWBC and below the 3°C isotherm which in this case represent the upper limit of the 

overflow waters. Instrumental depth of H1 and H2 are 1900m and 2370m; B1 and B2 are 

1980m and 2450m, respectively. 
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Figure 7: The current meter array at 53°N (top) at the exit of the Labrador Sea, and in its 

current configuration; in the background the mean boundary current from all available 

LADCP section (1997 to 2010) data. Alongshore currents were de-tided before calculating 

variance-conserving spectra shown in the 4 panels below. Spectra of the three core moorings 

(K8, K9 and K10) of the 53°N array all show the spectral peak at periods of 10-12 d through 

all depth levels. Near-shore at K8 the highest variance is near the surface layer. In the center 

of the DWBC (mooring K9) the DSOW core has highest variance and similarly at K10, but at 

strongly reduced amplitudes. The lower right graph shows the variance-conserving spectra of 

the near bottom flow at 53°N with maximum variance in the DSOW core at mooring K9 in 

the center of the array.  

 

Figure 8: Distribution of instruments in the Flemish Cap mooring array. Mooring B22 is in 

the center, and B23 is located at the easternmost location, the moorings consist of several 

versions of acoustic current meters.  The meridional velocity (blue: southward, red: 

northward) from lowered ADCP as observed in summer 2008 is used as a background. The 

black lines denote isopycnals used as deep water mass boundaries (left). Velocity spectra 

(right) of the three deep records in moorings B22 and B23 below the density surface  > 

27.80 kgm
-3

. The time series are up to 3 years long. 

Figure  9: Currents at Flemish Cap from the mooring deployed 1998-1999 as a vector 

diagram (left) with currents rotated to 60° true, such that flow along the topography is 

downward; currents are offset by 50cm/s. Spectra of the time series (right). 

Figure 10: a) Mean ship section of ADCP/LADCP currents parallel to the topography of the 

Grand Banks (after Schott et al. 2006), composed from four cruises in summers of 1999, 

2001, 2002 and 2005. DWBC flows southward along the boundary, NAC flows northward 

offshore. Transports are given in density layers corresponding to the different NADW water 

masses.   

b) Spectra from the Grand Banks mooring K104. Note, the variance increases toward the 

bottom, and maximum energy is found around the period of 30 days. 

 

Figure 11: Model snapshot of the current speed along  = 27.85kgm
-3

 representing the upper 

limit of the DSOW layer. For model / observation comparisons the location of the 

investigated variability are indicated as black lines. 

 

 

Figure 12:  Model-(left) and observed (right) spectra of the alongshore flow at 53°N at the 

locations of moorings K8, K9, and K10. For illustration the main frequencies (periods of 3d, 

10d and 30d) are marked by dashed vertical lines. Data are from the near bottom instruments 

and corresponding grid cells of the model – variance scaling is different as observed variance 

is significantly larger. 
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Figure 13: Spectral comparison of intra-seasonal variance. Observed spectra in blue, modeled 

spectra are in red. The axes are scaled differently due to the very different variance levels in 

some places dashed lines at 3, 10 and 30 days for orientation purposes. 

 

Figure 14: Intra-seasonal variance (V-component) in the central Labrador Sea (left, mooring 

K1 and the model spectra) at two levels, 250m depth measured by an ADCP, and at 1500m 

(LSW layer) by a single point current measurement (rotor or acoustic current meter). 

Similarly we calculated a spectrum of the near surface variance in the Central Irminger Sea 

(CIS mooring) compared to variance spectra of the VIKING20 model at the CIS location and 

more to the east in the center Irminger Sea (dashed red).  

 

 

Figure 15: a) EKE distribution along the AR7W section from the 2-year long run of 

VIKING20; indicated is the position of mooring K1. b) Model spectral variance in 1000m 

depth and at the surface, and c) variance in 1000m depth along WOCE section AR7W (for 

location see Figure 1.  Spectral Amplitude is shown by color and is plotted for individual 

frequency (period) bands; note the different variance scale. 

 

Figure 16: Variance ellipses at the 53°N array; (a)  intra-seasonal variance ellipses measured 

close to the bottom (units are cm
2
 s

-2
); (b) the same, but for the 1500m level (LSW layer); and 

(c) vertical structure of variance ellipses at mooring K9 in the center of the array. Bottom 

topography is from the 2‘ ETOPO data set and smoothed over a 10nm length scale; in Fig. 

16c, the orientation of isobaths at K9 is indicated by dashed lines. All data were high pass 

filtered at 60d cut-off periods. 

 

Figure 17:  Variance ellipses as in Figure 17, but for model data near the 53°N mooring 

locations.  

 

Figure 18: Ellipticity of the flow at the AR7W section across the Labrador Sea and between 

the shelf break of Labrador (left) to that of Greenland. Top graph is from a run of a model that 

has ¼° resolution and the lower graph is from the VIKING20 model. 

 

Figure 19: Seasonal distribution of intra-seasonal variance. Spectral band (periods in days) is 

plotted versus time (month) of year. Data are from K9 near the surface (left) and near the 

bottom in the DSOW layer (right). Color bar is different from 0 to 30 cm
2 

s
-2 

and from 0 to 10 

cm
2 

s
-2

. 

 



Table 1: Summary of Meta data of moored Arrays 

 
Array location PI Institution Period 

DSOW Array Denmark Strait Quadfasel,  Send, 

Jochumsen, 

Valdimarsson, 

Jónsson 

ZMAW/MRI/GEOMAR 1996 – 2012 

(ongoing) 

Angmagssalik 

Array 

East Greenland 

Slope 

Dye, Quadfasel  CEFAS/ZMAW 1986 – 2012 

(ongoing) 

Cape Farewell Tip of 

Greenland 

Bacon, Holliday NOCS 2005 - 2008 

53°N Labrador Sea 

Exit 

Fischer, Visbeck, 

Karstensen, Zantopp  

GEOMAR 1997-2012 

(ongoing) 

FC-NA, 47°N Flemish Cap Rhein, Mertens University of Bremen 2009 – 2012 

ongoing 

Grand Banks Array Tail of Grand 

Banks 

Schott, Fischer, 

Zantopp 

GEOMAR 1999-2005 

 

 

Table2:  Near bottom current statistics for selected locations of the DWBC 

 

Location total 

variance 

cm
2
 s

-2
 

Hf-variance 

(<60d) 

cm
2
 s

-2
 

Variance 

ratio 

* Integral  

Time Scale 

days  

DOF  Error 

cm s
-1

 

Slope ** Ellipti

city 

Denmark Strait 313.8 305.3 0.97 8 45 2.6 ---- 0.47 

Angmagssalik 87.5 78.6 0.90 10 36 1.6 13*10
-3

 0.31 

Cape Farewell 38.1 32.3 0.85 12 30 1.1 (60) 9*10
-3

 0.30 

Central Lab. Sea 119.8 50.5 0.42 60 6 4.5 ---- 0.14 

53°N 23.6 17.5 0.75 15 24 1.0 15*10
-3

 0.50 

Flemish Cap 35.2 28.7 0.82 22 16 1.5 40*10
-3

 0.30 

Grand Banks 60.2 46.8 0.78 22 16 1.9 9*10
-3

 0.34 

 

 

Integral Timescale = first zero crossing of autocorrelation function at lag Tau/4 * 2 

DOF     for annual mean:   365d divided by integral time scale  

** Slope at location where  =27.80 kgm-3 or the 3°C isotherm   intersects the topography 

toward abyssal plane (reads as m/km) 

 

Table
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Figure 1 

 

 

 

 

 

 

 

Figure 1. The western subpolar North Atlantic and the location of current meter arrays along 

the path of the Deep Western Boundary Current (DWBC); from the sill at Denmark Strait to 

the transition into the subtropics at the tail of the Grand Banks.  At each location near bottom 

variance ellipses (red) are included (grey ellipsoid is for scaling only – units in cm
2
 s

-2
). Also 

included are variance ellipses from the central Labrador and Irminger Seas. Green line is the 

former WOCE line AR7W which is occupied annually by Canadian researchers.
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Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Top to bottom time series of alongshore currents at the central mooring K9 of the 

53°N array. Thin gray lines are from de-tided time series and dots are annual mean currents.  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 3 

 

 

 

 

 

 

 

 

 

Figure 3:  The raw spectra (variance conserving) of two current meter records that are 

several years long (see Figure 2), from mooring K9 in the center of the deep boundary 

current at the exit of the Labrador Sea.  Ensemble averaged spectra from 128 day long 

subsamples as red lines. Note the narrower spectral peak for the deep instrument. This 

procedure has been applied to all the records – namely de-tided by 40 h low-pass filtering, 

subsampled at 1/2d  resolution and overlapping (by 50%) data subsets used for spectral 

analysis, and then ensemble averaged spectra are determined (red curve).  



 

 

 

 

 

 

Figure 4 

 

 

 

 

 

Figure 4: Overflow in Denmark Strait (a), currents in along-channel direction as a snapshot 

obtained from shipboard ADCP – blue is the Overflow; the heavy black line shows the 

isopycnal σθ= 27.8 kgm
-3

 . Spectra of the Overflow (b) in the deep current core at Denmark 

Strait. Data are from moored ADCPs at the depth cell of maximum flow close to the sill 

depth. For deployment times see figure legend. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Figure 5 

 

 

 

 

 
 

 

 

 

Figure 5: a) Snapshot of cross-section velocity from lowered ADCP data, as measured in 

July 2010 during cruise Meteor M82-1. Negative velocities are toward the southwest (blue), 

while positive velocities are northeastward (red). Two isopycnals are included in black: σθ= 

27.8 kgm
-3

 as the upper boundary of the overflow components, and σθ = 27.85 kgm
-3

 as the 

upper Denmark Strait Overflow plume. The x-axis gives the distance starting on the 

Greenland shelf. The recent Angmagssalik array is illustrated in yellow. 

b) Spectra from the Angmagssalik array. Only near bottom records are shown; the depth 

above bottom is given in the figure legend (B-XXX). Left: Spectra from UK1 at 1980 m water 

depth, and a record length of 4 years. The record to the right (UK2 at 2350 m) is very long 

(almost 7 years) and it shows a very narrow spectral peak at 8-12 day periods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 6 

 

 

 

 

 

 

Figure 6: The Cape Farewell array.  a) Mean velocity cross-array flow (cm/s) and mean 

depth of the 3°C isotherm; b) Spectra from the deepest instruments at moorings B and H in 

the core of the DWBC and below the 3°C isotherm which in this case represent the upper 

limit of the overflow waters. Instrumental depth of H1 and H2 are 1900m and 2370m; B1 and 

B2 are 1980m and 2450m, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The current meter array at 53°N (top) at the exit of the Labrador Sea in its current 

configuration; in the background the mean boundary current from all available LADCP 

section (1997 to 2010) data. Alongshore currents were de-tided before calculating variance-

conserving spectra shown in the 4 panels below. Spectra of the three core moorings (K8, K9 



and K10) of the 53°N array all show the spectral peak at periods of 10-12 d through all depth 

levels. Near-shore at K8 the highest variance is near the surface layer. In the center of the 

DWBC (mooring K9) the DSOW core has highest variance and similarly at K10, but at 

strongly reduced amplitudes. The lower right graph shows the variance-conserving spectra of 

the near bottom flow at 53°N with maximum variance in the DSOW core at mooring K9 in the 

center of the array.  

 

 

 

 

 

 

Figure 8 

 

 

 

Figure 8: Distribution of instruments in the Flemish Cap mooring array. Mooring B22 is in 

the center, and B23 is located at the easternmost location, the moorings consist of several 

versions of acoustic current meters.  The meridional velocity (blue: southward, red: 

northward) from lowered ADCP as observed in summer 2008 is used as a background. The 

black lines denote isopycnals used as deep water mass boundaries (left). Velocity spectra 

(right) of the three deep records in moorings B22 and B23 below the density surface  > 

27.80 kgm
-3

. The time series are up to 3 years long. 

 



Figure 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  9: Currents at Flemish Cap from the mooring deployed 1998-1999  as a ”stick plot” 

(left) with currents rotated to 60° true, such that flow along the topography is downward. 

Spectra of the time series (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: a) Mean ship section of ADCP/LADCP currents parallel to the topography of the 

Grand Banks (after Schott et al. 2006), composed from four cruises in summers of 1999, 

2001, 2002 and 2005. DWBC flows southward along the boundary, NAC flows northward 

offshore. Transports are given in density layers corresponding to the different NADW water 

masses.   

b) Spectra from the Grand Banks mooring K104. Note, the variance increases toward the 

bottom, and maximum energy is found around the period of 30 days. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 11 

 

 
 

 

 

Figure 11: Model snapshot of the current speed along  = 27.85 kg m
-3

 representing the 

upper limit of the DSOW layer. For model / observation comparisons the location of the 

investigated variability are indicated as black lines; color bar for currents in ms
-1

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12:  Model (left) and observed (right) spectra of the alongshore flow at 53°N at the 

locations of moorings K8, K9, and K10. For illustration the main frequencies (periods of 3d, 

10d and 30d) are marked by dashed vertical lines. Data are from the near bottom instruments 

and corresponding grid cells of the model – variance scaling is different as observed variance 

is significantly larger. 

 

 

 

 

 

 

 

 

 

 

 



Figure 13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Spectral comparison of intra-seasonal variance. Observed spectra in blue, 

modeled spectra are in red. The axes are scaled differently due to the very different variance 

levels in some places dashed lines at 3, 10 and 30 days for orientation purposes. 

 



 

 

 

Figure 14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Intra-seasonal variance (V-component) in the central Labrador Sea (left, mooring 

K1 and the model spectra) at two levels, 250m depth measured by an ADCP, and at 1500m 

(LSW layer) by a single point current measurement (rotor or acoustic current meter). 

Similarly we calculated a spectrum of the near surface variance in the Central Irminger Sea 

(CIS mooring) compared to variance spectra of the VIKING20 model at the CIS location and 

farther to the east in the center Irminger Sea (dashed red).  

 

 

 

 

 

 

 

 

 

 



 

 

Figure 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: a) EKE distribution along the AR7W section from the 2-year long run of 

VIKING20; indicated is the position of mooring K1. b) Model spectral variance in 1000m 

depth and at the surface, and c) variance in 1000m depth along WOCE section AR7W (for 



location see Figure 1.  Spectral Amplitude is shown by color and is plotted for individual 

frequency (period) bands; note the different variance scale. 

 
 

 

Figure 16 
 

 

 

 

 

 

 

 

 

Figure 16: Variance ellipses at the 53°N array; (a)  intra-seasonal variance ellipses 

measured close to the bottom (units are cm
2
 s

-2
); (b) the same, but for the 1500m level (LSW 

layer); and (c) vertical structure of variance ellipses at mooring K9 in the center of the array. 

Bottom topography is from the 2’ ETOPO data set and smoothed over a 10nm length scale; in 

Fig. 16c, the orientation of isobaths at K9 is indicated by dashed lines. All data were high 

pass filtered at 60d cut-off periods. 

 

 



 

 

 

Figure 17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17:  Variance ellipses as in Figure 17, but for model data near the 53°N mooring 

locations.  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 18 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 18: Ellipticity of the flow at the AR7W section across the Labrador Sea and between 

the shelf break of Labrador (left) to that of Greenland. Top graph is from a run of a model 

that has ¼° resolution and the lower graph is from the VIKING20 model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 19 

 

 

 

 

 
 

 

 

Figure 19: Seasonal distribution of intra-seasonal variance. Spectral band (periods in days) 

is plotted versus time (month) of year. Data are from K9 near the surface (left) and near the 

bottom in the DSOW layer (right). Color bar is different from 0 to 30 cm
2 

s
-2 

and from 0 to 10 

cm
2 

s
-2

. 

 

 

 

 

 

 

 

 
 


