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Foreword 

Electrical conductivity is one of the fundamental geophysical properties of rock formations and 

can be measured at field and laboratory scales. A recent airborne geophysical survey of the Isle 

of Wight has provided an assessment of the near-surface (close to outcrop) electrical 

conductivities associated with Palaeogene and Cretaceous formations. This study examines the 

degree to which the high resolution survey data contain distinctive geological and lithological 

signatures. The geostatistical nature of the conductivity distributions are examined in relation to 

two existing sedimentary bedrock schemes involving lithostratigraphical and simpler lithological 

descriptions. A close association between conductivity and bedrock geology is evident. It is then 

demonstrated how the central moments and dispersion statistics of the distributions may be used 

to predict the continuous, bedrock conductivity distribution across a large area of southern 

England, containing, as it does, a high population density and extensive infrastructure. 
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Summary 

This report describes an application of the electrical conductivity data recorded during a recent 

HiRES airborne geophysical survey of the Isle of Wight.  The data are used to determine if 

geological and lithological signatures are contained in the high frequency geophysical 

measurements.  Geostatistical analysis is undertaken in relation to various bedrock identification 

schemes, allowing central moments and dispersion characteristics to be determined as a function 

of lithostratigraphical and lithological descriptions.  Noting a close association between 

conductivity and a lithological description of sedimentary bedrock it is demonstrated that a 

continuous bedrock conductivity across a significant proportion of southern England can be 

predicted. 
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Introduction 

The electrical properties of UK soils and rocks were investigated during the 1930s in both the 

laboratory and using geophysical field measurements. These early measurements were intended 

to provide a framework for understanding the potential impact of ground conductivity on the 

then developing radio and telephone transmission systems.  The laboratory experiments, 

typically using ‘soil’ samples to depths of about 3 m, are described by Smith-Rose (1933, 1935).  

In 1935 the British Electrical and Allied Industries Research Association (generally known as the 

Electrical Research Association, ERA) presented two electrical resistivity maps of 

England/Wales and southern Scotland. The maps show colour contours of apparent resistivity of 

the ground for an apparent depth of 500’ (152 m). The indicated large investigation depth is 

thought to be due to the large separations and low frequency of the electromagnetic 

measurements carried out. The maps, apparently not available in the public domain, provide 

national scale information and show a strong correlation with bedrock geology.  Smith-Rose 

(1935) undertook a comparison of his laboratory measurements and the mapped information and 

notes a number of evident geological controls on both sets of information.  

During the latter half of the last century more routine electrical and electromagnetic geophysical 

measurements provided a wealth of localised survey information for a variety of applications 

across the UK. Many of the measurements comprised vertical electric soundings (VES) for 

groundwater applications. The National Resistivity Sounding Database (Barker et al., 1996) was 

developed from over 8,000 such soundings. The database information, comprising raw 

resistances, continues to be used in a geological context (Cuthbert et al., 2009; Busby et al., 

2011). Electromagnetic measurements have also been used to guide geological mapping, usually 

in the near-surface (e.g. Zalasiewicz et al., 1985; Cornwell & Carruthers, 1986) and these and 

other case studies indicate that clays and clay-rich units can be effectively distinguished from 

other lithologies such as sandstone and limestone.  

In more recent times, a number of high-resolution airborne geophysical surveys have been 

conducted across onshore UK (Peart et al., 2003; Beamish & Young, 2009). These High 

Resolution Airborne Resource and Environmental (HiRES) surveys have typically acquired 

radiometric (gamma-ray spectroscopy), magnetic and electromagnetic (conductivity) 

measurements at 200 m line spacing and at low altitude (< 60 m). The HiRES survey areas are 

shown in Figure 1. The airborne electromagnetic (AEM) data is acquired at multiple frequencies 

and the highest frequency provides information on the bulk electrical conductivities of near-

surface formations. Due to their sensitivity to enhanced pore-fluid conductivities, the data have 

been used in a wide-range of localised environmental investigations in relation to industrial sites, 

coal-mine spoil and both open and closed landfills (Beamish, 2002, 2003). The impact of colliery 

spoil zones across the Permo-Triassic aquifer of Nottinghamshire has been described by 

Beamish & Klinck (2006). 

Due to their systematic coverage, the airborne conductivity data provide almost continuous 

information across each survey area with a typical along flight line sampling of less than 15 m. 

The Isle of Wight (IoW) survey (Figure 1) was the first survey to acquire airborne conductivity 

information in the south of England and the impact of industrial legacy across the survey area is 

minimal. The Palaeogene and Cretaceous bedrock formations encountered on the IoW are some 

of the youngest bedrock lithologies to be assessed by the HiRES surveys. Since the lithologies 

are also representative of much of the southern, central mainland of England, the new 

information has a wider relevance. Beamish & White (2011a) used the IoW conductivity data to 

conduct a GIS-based assessment of the electrical conductivity information in relation to 

geological bedrock classification. The analysis used over 104,000 measurements across onshore 

IoW and established statistical and average electrical properties as a function of bedrock 

geology. Here the conductivity information obtained at the highest frequency (most relevant to 
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outcrop geology) is re-evaluated using a revised statistical framework together with a 

consideration of superficial geology. The geological classification of a geophysical measurement 

may take several forms and relies on existing classifications within a geological lexicon. Here 

the 1:50k digital lexicon DiGMap-GB50 (BGS, 2008) is used to investigate two forms of 

geological attribution. The first scheme considered uses a LEX-RCS (Rock Characterisation 

Scheme) procedure that provides a basis for standard lithostratigraphical geological map 

attribution with geophysical values. The second scheme considered uses a simpler RCS 

procedure that embodies a lithology-only classification of the bedrock units present. This second 

scheme may be considered more appropriate to geophysical attribution in that it represents a 

more generic description of the rock lithologies present (e.g. chalk, sandstone, limestone, etc).  

 

Figure 1.  Airborne geophysical survey location map showing UK areas covered by HiRES 

surveys since 1998 (areas with shade). 

Having established the statistical behaviour of the near-surface conductivity of the geological 

units across the IoW, the ability of these data to perform predictive mapping across a large 

central area of southern England is considered. This extended bedrock conductivity map has the 

potential to allow assessments of the degree to which localised measurements are consistent 

with, or represent departures from, the norm. The GIS-based predictive mapping of geophysical 

information is particularly significant across this area due to the high spatial density of the built 

environment with large population centres and associated infrastructure which tend to hamper 

systematic geophysical surveying.   
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1 Background 

Geophysical measurements provide volumetric estimates of total formation conductivity t or its 

reciprocal, resistivity t. The use of formation (or bulk) conductivity to investigate the subsurface 

relies on an ability to understand the factors that control it in a given geological setting. The 

formation conductivity ( t) of a clean (a rock matrix that is perfectly insulating) fully saturated 

formation is proportional to the conductivity ( f) of the fluid. The constant of proportionality is 

referred to as the formation factor (FF): 

FF  =  f  / t                         (1) 

Assuming negligible clay content, an empirical relationship developed by Archie (1942) 

indicates the bulk material conductivity is related to pore fluid conductivity ( f), fractional 

porosity ( ) and degree of saturation (S) as: 

t =  a’ f S
n
 

m
            (2) 

where a’ is an empirically determined constant and S is the fluid-filled fraction of the pore space 

with an exponent (n) of about 2. The porosity exponent (m) is also an empirically determined 

parameter that depends on the geometric factor of grain shape and packing. In practice, even the 

cleanest formations contain small amounts of clay, or argillaceous bands, which can exert a 

significant influence on t.  A second term, due to mineral surface conduction can be introduced 

into equation (2) to allow for this (Glover et al., 2000; Kirsch, 2006). In the near-surface, with 

materials displaying similar porosities and saturations, clay content is often the most significant 

factor in determining the bulk conductivity. 

2 The airborne survey 

The Isle of Wight (IoW) is England’s largest island; situated off the south coast of Hampshire it 

offers a diverse range of geology for an area of its size (380 km
2
). The island and part of the 

mainland were surveyed in 2008 as part of the HiRES airborne geophysical program (Figure 1). 

The IoW airborne survey area is contained within a rectangle of 36 x 22 km with flight lines 

spaced at 200 m in a N-S direction, orthogonal to the major structural trends of the region. A 

nominal survey altitude of 56 m was adopted, but over the built environment a regulatory flight 

altitude of 240 m was required. The primary aim of the survey was to determine the geophysical 

responses of specific geology, characteristic of much of southern England, in relation to geologic 

map revision.  The data acquired included magnetic, radiometric and electromagnetic (electrical 

conductivity) measurements. The acquisition parameters and processing procedures applied to 

the survey data are described by Beamish & Cuss (2009) and White et al. (2009).  The survey 

obtained over 4,500 line km of data and provided the first airborne EM (AEM) measurements 

obtained across southern England. 

The geology of the Isle of Wight can be fairly evenly divided into a northern zone of Palaeogene 

sands, clays and limestones and a southern region of Cretaceous strata. The structure is 

dominated by a prominent east-west trending monoclonal fold or ramp structure (White, 1921; 

Melville & Freshney, 1982). The two zones are divided by the east-west trending chalk beds of 

the late-Cretaceous.  Geological units across the survey area are discussed in detail later. Since 

the lithologies under investigation are repeated extensively on the mainland, the survey data have 

provided a first opportunity to report on the geophysical behaviour expected across a significant 

area of southern England. 
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2.1 APPARENT CONDUCTIVITY 

Electromagnetic (EM) data acquired by airborne frequency domain systems comprise coupling 

ratios of secondary to primary field at individual frequencies (e.g. Fraser 1978). These data 

exhibit a sensitive dependence on altitude. The standard method of removing the altitude 

dependence is to convert the coupling ratios to estimates of apparent, half-space conductivity, at 

each frequency. The most common procedure employs the Fraser pseudo-layer transform (Fraser 

1978). Inversion procedures may also be used to estimate the half-space conductivity (Beamish 

2004a). Such estimates provide conductivity models with a validity that depends on a vertically 

uniform, 1D assumption. The highest frequency provides the shallowest depth of investigation 

and the half-space conductivity assessments at a frequency of 25 kHz are used here to assess 

bedrock formations at outcrop.  

The volume (i.e. both laterally and vertically) of the subsurface involved in each measurement is 

quite complex since it depends on frequency, altitude and the conductivity of the subsurface. 

Beamish (2004b) describes the volumetric footprints (skin-depths) of the airborne system 

considered here. Each measurement may typically be associated across a principal area of 

sensitivity of less than 100 x 100 m over the ground surface. The depth of investigation depends 

on frequency and the vertical distribution in conductivity. In order to summarise the behaviour of 

the depth of investigation of the 25 kHz data, centroid depth estimates (Siemon, 2001) have been 

calculated across a range of uniform half-spaces. Centroid depths can be regarded as the mean 

depth of the in-phase current system at each frequency and are shown in Figure 2.  For 

conductivities greater than 100 mS/m, centroid depths are confined to the upper 10 m. Centroid 

depths decrease with increasing half-space conductivity and exceed 30 m at conductivities less 

than 10 mS/m.  Thus the potential for variation in formation thickness to influence the 

conductivity estimate is most pronounced in resistive environments. The degree of influence will 

be controlled by the conductivity contrasts between layers and the thicknesses involved. 
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Figure 2. Electromagnetic centroid depths as a function of half-space conductivity. 

2.2 DATA SCREENING 

The principal analysis conducted here is a geological/geostatistical appraisal of the conductivity 

data and it is advantageous to condition the data set prior to analysis. The full survey rectangle 

provided 289,068 onshore and offshore AEM measurements.  The survey area (Figure 1) is 

coastal and the conductivity of seawater is far in excess of that arising from geological materials.  

The data used in this analysis are therefore restricted to onshore data values only.  When only 

onshore AEM data is assessed across the IoW, the number of available measurements is reduced 

to 126,292.  

The survey area also contains a number of major conurbations together with a road and 

infrastructure network. The airborne EM data acquired are subject to a range of non-geological 

perturbations and localized cultural interferences. Many of these perturbations are large 

amplitude and positively-biased i.e. they produce high conductivity outliers in the data 

distributions. The data set used in this analysis has been limited (clipped) to a maximum value of 

500 mS/m.  

The airborne EM data are typically less reliable in urban areas because a significant proportion 

of the ground area is covered by a variety of structures, and the flight altitude may be in excess 

of 200 m compared with about 56 m over rural areas. In the following analysis the data set has 

first been restricted to locations where the survey altitude is less than 100 m, removing 6% of the 

total data points. This condition also has the equivalent effect of restricting the data set over 

urban areas. The road network and associated service routes may also produce low amplitude, 

localised perturbations to the EM data. Using a GIS-based approach, a pre-existing road network 
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route was used to define a buffer zone (150 m of data exclusion around A and B-roads) to enable 

a cut procedure to be applied to the data set. The resulting gaps in the data coverage may be 

subsequently reconstituted by interpolation when gridding procedures are applied. The 

conditioned data set comprises 104,704 measurements. 

2.3 IOW CONDUCTIVITY DATA 

This study uses the highest frequency (25 kHz) survey data converted to half-space, apparent 

conductivity values following the rejection and screening procedure discussed previously.  The 

apparent conductivity values based on a natural-neighbour grid using a cell size of 50 x 50 m 

across the IoW are shown in Figure 3. Figure 3 also shows geological boundaries (black lines) 

from the corresponding 1:50k bedrock geological map (discussed below). The urban-centres 

(high-fly) areas are identified by black zones.  The conductivity data provides both structural 

edge information and, at the broader scale, an assessment of the intrinsic conductivity of the 

geological formations. It is very evident that the Palaeogene is characterised by values 

consistently in excess of 100 mS/m and a surprisingly high degree of spatial heterogeneity.  

 

Figure 3.  Image of the gridded apparent conductivity data obtained at 25 kHz with the 

geological line-work (LEX-RCS) superimposed. Black zones denote urban/fly-high areas. 

In broad terms, there is a clear division in the very high and variable conductivities observed in 

the north (the younger Palaeogene rocks) and the far more resistive formations observed in the 

south (the Cretaceous rocks).  The Palaeogene formations across the survey area are the youngest 

bedrock formations to be assessed by AEM measurements in the UK and the high degree of 

variability is noteworthy. Given the nature of the lithologies encountered it is likely that the data 

reflect highly variable percentage clay content. The youngest (Oligocene) Hamstead Formation 

displays some strong edge effects and the largest localised values in conductivity. Being a 

coastal survey, there is also potential for a consideration of the conductivity data in relation to 

saline conditions. These are most evident, at the scale used in Figure 3, across portions of the 

low-lying coastal strip of the mainland in the north-west corner.  
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3 Geology 

3.1 SUPERFICIAL GEOLOGY 

The superficial classification across the survey area is based on the current 1:50k scale digital 

data for DIGMap-GB50 version 5.18 (BGS, 2008). The Lexicon Rock Characterisation Scheme 

(LEX-RCS) identifies 5 superficial units across the 36 x 22 km survey area (see Figure 4) and 

these are described in Table 1.  Three of the units have content that is described as clay, silt, sand 

and gravel.   In broad terms the superficial deposits are relatively sparse and considered to be 

thin (typically < 5 m).  

 

Figure 4.  Superficial deposit map for survey area with bedrock (LEX-RCS) line-work 

superimposed.  See Table 1 for further details of the codes used. The Clay-with-flints 

formation (CWF) is highlighted in relation to the bedrock outcrop of the Upper Chalk 

(shown with cross hatch). 

The superficial deposits have the potential to interfere with assessments of the conductivity 

properties of underlying bedrock units in cases where they present a significant thickness and a 

marked contrast in conductivity. 

Table 1. Superficial rock lexicon codes (LEX_RCS) together with lexicon descriptions (LEX_D) 

and rock characterisation descriptions (RCS_D) for the IoW. 

LEX_RCS LEX_D RCS_D 

ALV_XCZSV Alluvium Clay, silt, sand and gravel 

BTFU-

XCZSV 

Beach and tidal flat deposits 

(undifferentiated)  

Clay, silt, sand and gravel 

CWF-XCZSV Clay-with-flints formation Clay, silt, sand and gravel 

Peat-P Peat Peat 

RTDU-XSV River terrace deposits 

(undifferentiated) 

Sand and gravel 
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Background information (from boreholes) on the depth to bedrock variations across the area 

indicates that the clay with flints formation (CWF, red polygons in Figure 4) may have 

thicknesses that exceed 10 m. The degree to which the CWF formation may interfere with 

conductivity assessments of the bedrock formations was investigated across the Upper Chalk 

formation (identified in Figure 4) occupying the western, central area. The issue investigated is 

whether the thickness of the at-surface CWF formation coupled with a potential enhancement in 

the conductivity of the formation due to, say, increased clay content influences the estimation of 

the conductivity of the underlying bedrock. 

 

Figure 5.  Bedrock (LEX-RCS) map for the survey area. See Table 3 for further details of 

the codes used. Urban areas are identified in cross-hatch. 

Two conductivity distributions were extracted from the 25 kHz apparent conductivity data 

samples across the Upper Chalk. The first distribution occupies the area of the CWF formation 

above the Upper Chalk and provides 1626 data points. The second distribution occupies the 

remaining outcrop of the Upper Chalk, with no mapped superficial cover and this sampling 

provides 3336 data points. As discussed later, the apparent conductivity distributions obtained 

across selected geological areas are distinct from conventional statistical distributions. They are 

typically highly peaked, with one or two long tails. Conventional statistical tests, such as the 

Shapiro-Wilk test (Shapiro and Wilk, 1965), for normality or log-normality typically indicate 

that the distributions conform to neither. This is a common situation when dealing with large 

scale regional data sets (Reimann & Filzmoser, 2000). 

For convenience, the statistics of the linear distributions of apparent conductivity are summarised 

in Table 2. The table also includes the equivalent statistics obtained across the whole outcrop of 

the Upper Chalk (including all areas of superficial cover as shown in Figure 4, and additional 

outcrops in the south). 
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Table 2.  Statistics of the apparent conductivity (AC at 25 kHz) distributions observed across the 

Upper Chalk (LPCK) in three areas. Clay with Flints (CWF) above Upper Chalk, Central area 

of Upper Chalk with no overlying superficial deposits and whole of the Upper Chalk. N refers to 

number of samples. 

 AC  (mS/m) 

CWF + Central 

LPCK 

AC (mS/m) 

Central LPCK 

AC (mS/m) 

All LPCK 

N 1626 3336 8622 

Minimum 0.52 0.13 0.11 

Maximum 20.96 77.48 300.37 

Mean 5.78 4.68 6.78 

Median 5.07 4.19 5.09 

25% percentile 3.82 2.73 3.37 

75% percentile 7.15 5.84 7.7 

Geometric mean 5.05 3.66 4.85 

 

From Table 2, it is evident that the central moments of the 3 test distributions are equivalent with 

a suggested slight marginal increase in the estimate of the LPCK conductivity in the presence of 

overlying superficial deposits.  The results indicate that estimation of bedrock conductivities in 

the presence of superficial deposits for the IoW data can be conducted solely on the basis of 

bedrock classification. 

3.2 BEDROCK GEOLOGY 

The bedrock classification across onshore IoW is based on the current 1:50k scale digital data for 

bedrock geology DIGMap-GB50 version 5.18 (BGS, 2008). The Lexicon Rock Characterisation 

Scheme (LEX-RCS) identifies 22 bedrock units across onshore IoW on the basis of 

lithostratigraphical type. The 22 units are described by LEX-RCS code and by name in Table 3. 

Table 3 also shows the number of data samples available across each formation. The distribution 

of bedrock units is shown in the geological map of Figure 5. As can be seen using Table 3 and 

Figure 5, the data sampling of some of the formations is limited particularly across the near-

vertical beds associated with the central ramp structure. Thus the London Clay (LC-CLSS) is 

sampled at only 983 points across a compact outcrop zone along the ramp. Also the Headon 

Formation (HE-CLSS) is sampled at only 20 points in two separate zones and therefore any 

derived statistical results may not be significant. 
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Table 3. The LEX-RCS bedrock geological classification for the Isle of Wight. Codes are as 

described in the text. N refers to number of data samples. 

LEX_ROCK NAME N RCS RCS_X RCS_D 

HM-CLSS Hamstead Beds 23951 CLSISA CLAY+SANDU+SILT Clay, silt & 

sand 

BMBG-CAMU Bembridge Marls 7108 CAMU CAMU Calcareous 

mud 

BMBG-CLAY Bembridge Marls 4759 CLAY CLAY Clay 

BEL-LMAR Bembridge Limestone 2679 LMAR LMST+AROC Limestone 

& subequal 

argillaceous 

rocks, 

interbedded 

HE-CLSS Headon Formation 20 CLSISA CLAY+SANDU+SILT Clay, silt & 

sand 

HEOS-CLSS Headon and Osborne 

Beds 

4839 CLSISA CLAY+SANDU+SILT Clay, silt & 

sand 

HEOS-LMST Headon and Osborne 

Beds 

85 LMST LMST Limestone 

BRBA-CLSS Bracklesham Group 3592 CLSISA CLAY+SANDU+SILT Clay, silt & 

sand 

LC-CLSS London Clay 983 CLSISA CLAY+SAND+SILT Clay, silt & 

sand 

LMBE-CLSS Lambeth Group 660 CLSISA CLAY+SANDU+SILT Clay, silt & 

sand 

LPCK-CHLK Upper Chalk (White) 8621 CHLK CHLK Chalk 

WNCK-CHLK Middle Chalk  3551 CHLK CHLK Chalk 

WZCK-CHLK Lower  Chalk (Grey) 3017 CHLK CHLK Chalk 

UGS-SDST Upper Greensand 5288 SDCH CHRT+SDST Sandstone & 

chert 

UGS-SDCH Upper Greensand 432 SDST SDST Sandstone 

GLT-MDST Gault 4242 MDST MDST Mudstone 

CAW-SDSM Carstone 2840 SDSM MDST+SDST+SLST Sandstone, 

siltstone & 

mudstone 

SIOW-SDSM Sandrock 5183 SDSM MDST+SDST+SLST Sandstone, 

siltstone & 

mudstone 

FRS-FGST Lower Greensand 

(Ferruginous Sands) 

18546 FRS_FGSST FGSST Ferruginous 

sandstone 

AC-MDST Atherfield Clay 965 MDST MDST Mudstone 

W-MDST Wealdon 3156 MDST MDST Mudstone 

W-SDST Wealdon 110 SDST SDST Sandstone 

  104627    

 

Two bedrock formations underlie the mainland component of the survey area. The first unit is 

that of the Headon and Osborne Beds (HEOS-CLSS). This formation also exists on the IoW and 
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the mainland data are used to test and compare the behaviour of the statistical sampling of two 

spatially distinct areas of the same bedrock formation. The second bedrock unit is that of the 

Becton Sand Formation (BECH-SSCL) which outcrops along the low lying coastal strip of the 

mainland. The conductivity data appear strongly influenced by seawater saturation (e.g. Figure 

3) which extends significantly inland (up to 1 km).  The resulting conductivity distribution is 

highly bimodal and it is therefore difficult to assign a representative conductivity for this 

formation.  

A bedrock classification of all the four frequency apparent conductivity data was conducted by 

Beamish and White (2011a) using the LEX-RCS classification discussed above.  Here the 

analysis of the geological classification uses only the 25 kHz data and the analysis takes place 

using the logarithm (base 10) of the conductivity data. As noted previously, although the data 

distributions are neither normal nor log-normally distributed, in a strict sense, there is a general 

tendency for the distributions to be closer to log-normally distributed when standard statistical 

tests are applied.  Figure 6 provides an example of the histograms of apparent conductivity 

(logarithm) obtained for 3 of the larger bedrock formations which possess distinctly separate 

conductivity levels. The formations considered are the resistive Upper Chalk (LPCK-CHLK, 

with 8621 samples), the Lower Greensand (FRS-FGST, with 18,546 samples) and the conductive 

Bembridge Marls (BMBG-CAMU, with 7109 samples).  It should be noted that the scale of 

conductivities covers 4 orders of magnitude. The best fitting normal distributions to the observed 

distributions are indicated. It can be seen that all 3 distributions are highly peaked with different 

effects observed in the tails of the distributions.  The LPCK-CHLK distribution has a particularly 

long low value tail. A detailed examination of the conductivity values of < 1 mS/m indicates that 

they are not associated with spatially persistent zones and the data in the tail may reflect the 

presence of localised zones of highly competent (tight) chalk. The high data value screening 

limit of 500 mS/m is observed in the BMBG-CAMU distribution and indicates, it could be 

argued, that 500 mS/m is too low a limit for the intrinsic high conductivities associated with this 

formation. The accumulation of high values in the final bin (500 mS/m) shows why this limit has 

been applied. Non-geological (cultural) perturbations have a tendency to produce localised high 

values, and these, together with some unrepresentative values from coastal locations (i.e. due to 

the influence of sea water) combine to produce the behaviour observed. It can also be noted that 

despite the large spatial sampling involved in the assessment, the distributions appear unimodal. 
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Figure 6.  Normalised distributions of 25 kHz apparent conductivity (logarithmic scale) for 

3 bedrock formations. Upper Chalk (LPCK-CHLK), Lower Greensand (FRS-FGST) and 

the Bembridge Marls (BMBG-CAMU). The best-fitting normal distributions are also 

shown. 

The bedrock classified distributions of the 25 kHz apparent conductivity (logarithmic units) for 

all 22 formations across onshore IoW are summarised in the box-whisker plot shown in Figure 7.  

The leftmost 10 units comprise the northern Palaeogene formations while the remaining 12 units 

are the southern Cretaceous formations. In Figure 7, the infilled box indicates the inter quartile 

range between the first and third quartiles of each distribution with the enclosed horizontal bar 

denoting the median value. The terminating bars denote the range of the data and the discrete 

symbols indicate outliers.  Within the Palaeogene the first 3 formations comprising the Hamstead 

Beds and Bembridge Marls (clays and mud) provide the highest conductivity levels (discounting 

the small sampling associated with the Headon Formation, HE-CLSS). The lowest conductivity 

within the Palaeogene is associated with the limestone formation (HEOS-LMST). The lack of 

outliers is probably related to the small sampling population (85 data points). Within the 

Cretaceous the 2 uppermost chalk units (LPCK-CHLK and WNPCK-CHLK) provide the lowest 

conductivities observed across the IoW. As identified in Figure 7, there is a progressive and 

distinct increase in conductivity with increasing age across the 3 chalk units. Since a similar 

trend is also observed in the radiometric data obtained from the airborne survey (Beamish & 

White, 2011b) the behaviour is interpreted as indicating an increasing mineralogical (e.g. clay) 

content with increasing age.  Increasing values of conductivity with age are also observed across 

the oldest formations on the island from the Lower Greensand (FRS-FGST) through to the 

Wealdon Formation (W-MDST and W-SDST).  
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Figure 7.  Box and whisker plot summarising the statistical behaviour of the 25 kHz 

apparent conductivity values (logarithmic scale) classified according to bedrock (LEX-

RCS) geology. See Table 3 for details of the codes used. A trend, of increasing conductivity 

with increasing age, across the three chalk units is indicated. 

As noted previously the observed distributions of classified conductivity values appear slightly 

unusual due to the behaviour of the tails of the distributions. Non-geological effects producing 

high values were noted previously however the behaviour of the outliers at low values should 

also be noted. The apparent conductivity data are estimated on the basis of a uniform, half-space 

assumption and there is the potential for interference from lateral effects between adjacent 

formations that exhibit contrasting conductivities. From a theoretical perspective, it is possible to 

buffer/remove data points within a fixed radius of a geological contact however due to the 

outcrop pattern across the IoW many data points would be omitted. In these circumstances it 

seems preferable to retain such data to be accumulated in the high and low tails of the 

distributions. There is then a case for trimming the data as discussed later. 

3.3 PREDICTIVE COMPARISON OF CLASSIFIED VALUES 

As noted previously the Headon and Osborne Beds Formation (HEOS-CLSS) outcrops on both 

the IoW and the mainland. The preceding analysis has provided a statistical analysis of the 

HEOS-CLSS distribution on the IoW using these data (4839 samples). An equivalent assessment 

of the conductivity data across this formation on the mainland was also undertaken and this 

analysis provided 10,607 samples. It should also be noted that the HEOS-CLSS distribution on 

the mainland (Figure 5) is overlain to a significant extent by superficial sand and gravel deposits 

(RTDU-XSV, Figure 4).  Figure 8 shows the histograms of apparent conductivity (logarithm) 

obtained for both the mainland and IoW data sets. 
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Figure 8.  Normalised distributions of 25 kHz apparent conductivity (logarithmic scale) for 

the same bedrock formation, the Headon and Osborne Beds (HEOS-CLSS) obtained on the 

mainland and on the IoW. The best-fitting normal distributions are also shown. 

The best fitting normal distributions to the observed distributions are also indicated. It can be 

seen that the 2 distributions are highly peaked and both retain an accumulation of high values in 

the final bin due to the reasons discussed previously. The proposition that the statistical analysis 

of the IoW data can be used to predict the behaviour on the same formation outcropping on the 

mainland is supported by the equivalence of the central moments observed in Figure 8.  

Transformation to the results to linear apparent conductivity provides population means of 48.8 

mS/m (IoW) compared with 41.7 mS/m (mainland). 

3.4 A DETAILED EXAMPLE 

Due to the large single outcrop (67.12 km
2
) on the IoW, the Lower Greensand Formation (FRS-

FGST) is particularly well sampled (Table 3).  The conductivity distribution shown in Figure 3 

contains highly significant spatial information when examined in detail. Figure 9 shows the 

location of the outcrop of the FRS-FGST and the distribution of apparent conductivities 

observed.  The gaps in the sampling points are due to the broad data screening applied (roads and 

high-fly zones) together with other more specific data exclusion areas. The largest data sampling 

gap in Figure 9 is due to EM coupling effects associated with large scale metallic zoo enclosures. 
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Figure 9.  The 25 kHz apparent conductivities within the Lower Greensand Formation 

(FRS-FGST). (a) Outcrop polygon containing 1:50k OS topographic location map. (b) 

Posted values of apparent conductivity using a 5-range classification. 

The conductivity values shown in Figure 9 can be seen to define spatially persistent zones of 

low, medium and high values that represent significant changes in the near-surface electrical 

properties across the formation. The FRS-FGST succession broadly comprises a number of 

coarsening-upwards units, dark grey sandy muds passing up into fine to medium, grey-green 

glauconitic sands. There are reported to be five cycles of sedimentation in the FRS-FGST, each 

going from glauconitic clay (with the potential to increase bulk conductivity above the norm) to 

clean sands (with the potential to decrease bulk conductivity below the norm). Although such 

detailed information provides a basis for further interpretation of the localised behaviour, the 

summary distribution shown in Figure 6 can be seen to provide a geologically relevant 

assessment of the central moments and variance of the data in relation to the distributions 

obtained for other formations. 

4 Lithological classification of the data 

Beamish & White (2011a) used medians of the linear apparent conductivity data distributions for 

each of the 22 bedrock units to generate baseline geological conductivity maps for the IoW.  

Since the analysis was conducted using the four available frequencies it was also possible to 

summarise the average behaviour of conductivity with depth. While such an analysis provides 

specific geological conductivity information it is also possible to consider whether the LEX-RCS 

lithostratigraphical characterisation of conductivity information is the most appropriate choice 

for this type of analysis. Thus in Figures 3 and 7, it can be noted that the youngest and oldest 
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formations, HM-CLSS and W-SDST respectively, both provide elevated conductivities in excess 

of 100 mS/m. Given the established dependence of bulk conductivity on porosity together with 

fluid and clay content, a rock characterisation scheme based on the type(s) of material should, in 

theory, offer a more relevant assessment.  The use of a simpler material type classification 

should also offer a more generic approach to the prediction of material properties elsewhere. 

The rock classification scheme for UK sediments and sedimentary rocks is described in detail by 

Hallsworth & Knox (1999).   The current digital bedrock geology DIGMap-GB50 version 5.18 

(BGS, 2008) provides a rock characterisation material attribute referred to as RCS (a code) 

together with RCS_X (an enhanced code) and a further associated descriptive attribute referred 

to as RCS-D.  This classification protocol identifies 11 units across the IoW and these are listed 

in Table 4. Table 3 provides a cross-reference of the RCS and LEX-RCS codes. Obviously the 

reclassification according to lithological content alone has resulted in a simplification of bedrock 

characterisation; in this case by a factor of 2.  

Table 4. The RCS bedrock geological classification for the Isle of Wight. Codes are as described 

in the text. N refers to number of data samples. 

RCS RCS_X RCS_D N 

CLSISA CLAY+SANDU+SI

LT 

Clay, silt & sand 34050 

CAMU CAMU Calcareous mud 7109 

CLAY CLAY Clay 4759 

LMAR LMST+AROC Limestone & subequal 

argillaceous rocks, 

interbedded 

2679 

LMST LMST Limestone 85 

CHLK CHLK Chalk 15191 

SDCH CHRT+SDST Sandstone & chert 432 

SDST SDST Sandstone 5398 

MDST MDST Mudstone 8365 

SDSM MDST+SDST+SLS

T 

Sandstone, siltstone & 

mudstone 

8024 

FRS_FGSST FGSST Ferruginous sandstone 18546 

 

The RCS bedrock attribution for the 11 units is shown in colour in Figure 10 in association with 

the linework of the previous LEX-RCS classification. As can be seen in Table 4 and Figure 10 

the CLAY-SAND-SILT formation (CLSISA) provides over 34,000 samples while the limestone 

(LMST) unit provides only 85. As previously, the distributions of the 25 kHz apparent 

conductivity (logarithmic units) for the 11 RCS formations are summarised in the box-whisker 

plot of Figure 11; again the scale of conductivities spans 4 orders of magnitude. Three sets of 

associated behaviour are indentified by the dotted lines. In the first instance it is observed that 

the CLAY and CLAY-SAND-SILT units (circled) provide similar high conductivity levels. The 

central moments of the CLAY unit are also similar to those of the CAMU (Calcareous mud) unit. 

Secondly the limestone unit (LMST), although sampled at only 85 points provides a conductivity 

value significantly below that of the limestone with subequal amounts of interbedded 

argillaceous rocks (LMST-AROC).  This indicates, as would be expected, that the clay 

component significantly enhances the bulk conductivity of the limestone.   The third observation 

relates to the mudstone unit (MDST) which, by definition, would be considered a fine-grained 

sedimentary rock formed from silt and clay. This unit provides an enhanced conductivity over 
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those associated with both the MDST-SDST-SLST unit and the SDST unit, which have similar 

conductivities. 

 

Figure 10.  Lithological (RCS) units observed on the IoW. Detailed descriptions of the 

codes are given in Table 4. 

The logarithmic apparent conductivity distributions summarised in Figure 11 have been 

subjected to further study and it is again noted that, in part due to the tails of the distributions, 

none can be regarded as log-normally distributed. Despite this, the majority of the distributions 

appear unimodal and can be described by a combination of their central moments together with 

measures of their dispersion (e.g. quartile or decile intervals). Two of the distributions however 

display behaviour associated with mixtures. The histograms for the CHLK and CLAY-SAND-

SILT distributions (logarithmic) are shown in Figure 12. The CHLK distribution indicates the 

onset of bimodal behaviour and this is not unexpected given the previous results, summarised in 

the box-whisker plot of Figure 7, that used the full 3 formation grouping (upper, middle and 

lower) of the Chalk sequence. Detailed examination of the behaviour observed in Figure 12 

indicates that the lower value (leftmost) peak in the CHLK distribution is formed by the 

combined distributions associated with the Upper Chalk (LPCK-CHLK) and the Middle Chalk 

(WNPCK-CHLK). The higher value peak is associated with the Lower Chalk (WZCK-CHLK). 
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Figure 11.  Box and whisker plot summarising the statistical behaviour of the 25 kHz 

apparent conductivity values (logarithmic scale) classified according to bedrock (RCS) 

geology. See Table 4 for details of the codes used. Dotted lines are referred to in the text. 
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Figure 12.  Normalised distributions of 25 kHz apparent conductivity (logarithmic scale) 

for two bedrock RCS lithologies, the CHLK and CLAY-SAND-SILT formations. 

The CLAY-SAND-SILT distribution is taken from a large spatial area (Figure 10) and is 

obtained from 34050 samples. The low value tail displays evidence of at least two knees that 

may be present due to data sampling across areas with much reduced clay content.  Although the 

spatial detail of this is potentially useful (e.g. Figure 9) , the overall distribution can still be 

considered representative of the bedrock formation sampled as long as the central moments 

together with the details of the variance behaviour are retained. 

4.1 ANOVA ANALYSIS 

The observed variations of conductivity across geological units have been summarised in the 

box-whisker plots of Figures 7 (LEX-RCS classification) and 11 (RCS classification). The 

results demonstrate the degree to which conductivity signatures for mapped geological units are 

different. An analysis of variance (ANOVA) was used to further assess the contribution of 

geology to observed variations of the conductivity data.  ANOVA is a statistical model that tests 

whether or not groups of data have the same or differing means. The ANOVA model operates by 

comparing the amounts of dispersion experienced by each of the groups to the total amount of 

dispersion in the data. ANOVA tests the hypothesis that the means of two or more populations 

are equal. The null hypothesis states that all population means are equal while the alternative 

hypothesis states that at least one is different. The samples are assumed to be close to normally 

distributed and have similar variances. 
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Using the logarithms of the conductivity data, the data were first statistically trimmed by 

rejecting the upper and lower deciles of the classified data sets to remove outliers. ANOVA 

analysis was then conducted on the data sets within the LEX-RCS (22 units) and RCS (11 units) 

attribution schemes. For the LEX-RCS classified data, it was also possible to consider data 

subdivided according to age. Table 5 summarises the analyses conducted and shows the 

percentages of the conductivity data variability that can be explained by the geological 

attribution. As expected, the percentages are remarkably high. In the case of the LEX-RCS 

classification, the results indicate a slightly higher proportion of variability is obtained across the 

older Cretaceous units. The high percentage obtained across all 22 units in the LEX-RCS 

classification is reduced but still remains high in the simpler 11 unit RCS scheme. 

Table 5. Results of ANOVA analysis applied to trimmed distributions of the logarithms of the 

conductivity data. Percentage of conductivity variability explained by geological classification. 

The two classifications considered are LEX-RCS and RCS. 

 All units Palaeogene units Cretaceous units 

LEX_RCS 87 % 67 % 79 % 

RCS 80 % ------ ----- 

5 Predictive use of geologically-classified conductivity 

In order to investigate some of the issues involved in assigning bulk conductivity values on the 

basis of the lexicon descriptions of rock characterisation, a large area of southern England 

containing the IoW was selected. The rectangular extent, as shown on the location map of Figure 

13, is some 150 x 136 km and extends from Bath in the west to London in the east. As noted 

previously only Palaeogene and Cretaceous formations outcrop on the IoW. The test area 

contains geological attributes across a total area of 16,297 km
2
 and the sampling of the area in 

terms of geologic period is summarised in Table 6. 

Table 6. Summary of geological bedrock formations and their areal extent within the test 

rectangle (150 x 136 km) across southern England. 

Geological 

Period 

Area (km
2
) % of Total Area 

Devonian 0.15 0.0009 

Carboniferous 0.44 0.006 

Triassic 11.0 0.09 

Jurassic 2255.7 13.8 

Cretaceous 9122.8 56.0 

Palaeogene 4906.7 30.1 

 

Table 6 indicates that the Cretaceous and Palaeogene formations, such as those outcropping on 

the IoW, account for a large percentage (86.1%) of the total area. Also, in terms of geologic 

period, the Jurassic rocks, outcropping mainly in the west of the test area, form a substantial 

fraction (14%) of the total area considered.  It is however the characterisation of the bedrock 

formations in terms of either lithostratigraphy (LEX-RCS) or in terms of the simpler rock 

material description (RCS) that is relevant here. Two studies were performed to consider the 
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issues involved when performing an attribution according to LEX-RCS and the simpler RCS 

rock descriptions. 

 

Figure 13.  Topographic map showing main population centres and road structure within 

the test area rectangle (150 x 136 km). 

As noted previously, the LEX-RCS analysis for the IoW provided a 22 unit classification as 

shown in Table 3. When examined in relation to the larger test area, it can be noted that a 

number of the LEX-RCS classifications are confined to the IoW. The nine units are the 

Hamstead Beds (HM-CLSISA), the Bembridge Marls (BMBG-CAMU and BMBG-CLAY), the 

Bembridge Limestone Formation (BEL-LMAR), a part of the Headon and Osborne Beds 

(HEOS-LMST), the Bracklesham Group (BRBA-CLSISA), the Carstone (Isle of Wight 

Formation, CAW-SDSM), the Sandrock Formation (SIOW-SDSM) and the Lower Greensand 

(Ferruginous Sandstone, FRS-FGSST). In effect the original 22 units reduce to 11 in terms of 

their wider application to the test area.  The spatial sampling provided by the 22 unit 

classification across the test area is summarised in Figure 14a. The area sampled is 3,760.7 km
2
 

which amounts to 23% of the total area. 

The RCS analysis summarised in Table 4 provided 11 units across the IoW bedrock formations. 

The spatial sampling provided by the 11 unit RCS classification is summarised and compared 

with the previous LEX-RCS sampling in Figure 14b. Using the existing lexicon nomenclatures, 

the area sampled is 13,489.6 km
2
 which amounts to 83% of the total area. However it is found 

that the RCS code for Sandstone is SDST on the IoW and is SANDU on the mainland. Taking 

this into account increases the sampling area to 93% of the total as shown in Figure 14b. 

It is perhaps also worth noting the behaviour of the sampling of the Chalk formations across the 

test area. The LEX-RCS descriptions of the Chalk on the IoW provide 3 units from upper to 

lower sequences as described in Table 3. The results of applying the 3 LEX-RCS descriptions to 

the test area are summarised in Table 7. Table 7 also shows the area obtained using the RCS 

code. 
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Figure 14.  Area within test area rectangle (150 x 136 km) sampled by (a) a 

lithostratigraphical (LEX-RCS) classification and (b) a lithological (RCS) classification. 

Sampled area is in black. 
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Table 7. Summary of areal extent sampled by LEX-RCS and RCS classifications of the Chalk 

formation within the test area. 

LEX-RCS code RCS code Area (km
2
) 

LPCK-CHLK (Upper Chalk)) CHLK 192.6 

WNPCK-CHLK (Middle 

Chalk) 

CHLK 12.4  

WZCK-CHLK (Lower Chalk) CHLK 246.2 

- CHLK 6460.7 

 

It should be noted that the Middle Chalk formation (WNPCK-CHLK) outcrops only on the IoW. 

The total area classified as Chalk (CHLK) is 6460.7 km
2
.  It seems evident, from Table 7, that in 

order to attribute properties of the chalk formation extensively across southern England it is 

necessary to use the simpler RCS code description.  It should also be noted that the conductivity 

values derived for the chalk from airborne measurements are low, possibly a consequence of the 

upturned beds.  Extrapolation of these values across the whole of southern England should be 

undertaken with this in mind. 

The median values of the lithologically-derived distributions of the apparent conductivity have 

been used to generate an observed (IoW) and predicted (mainland) bedrock apparent 

conductivity map (1:50k) as shown in Figure 15. The map uses a simplified 5 range colour 

scheme. The resistive chalk outcrop is a dominant feature across the mainland while the IoW 

displays the largest range of values by virtue of the conductive Calcareous Mudstone formation. 

The map represents an estimate of the baseline near-surface bedrock conductivities as defined by 

their central moments. According to the analysis conducted it does not include the effect of any 

superficial deposits. The map, together with associated measures of the dispersion statistics, 

allows the degree to which localised measurements represent correspondence with, or departures 

from, the norm to be assessed. The departures could arise, for example, from distinct geological 

conditions (specific mineralogies) and/or environmental influences. 

The distribution of bedrock formations, classified according to their RCS descriptions (Figure 

14b) potentially represents the maximum amount of geological information, across the test area, 

which can be attributed with the geophysical properties derived from the airborne survey of the 

IoW. The formations omitted from the current map have been analysed in detail. The most 

extensive omissions within the RCS classification are due to formations within the Jurassic and 

Palaeogene periods. In order to complete the map in a comprehensive manner, it would be 

necessary to consider all the omitted formations and this is further discussed below. 
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Figure 15.  Near-surface, bedrock apparent conductivity distribution across test area (150 

x 136 km) obtained by a lithological attribution scheme. Onshore white areas denote no 

data. The red stars identify the locations of the available VES soundings from the UK 

national database.  The location of three of the clusters are identified as A, B and C and are 

discussed in the text. 

6 Discussion 

It is possible to investigate the predicted conductivity values using existing data such as that 

contained in the National Resistivity Sounding Database (Barker et al., 1996). Only 7 clusters of 

such soundings are available across the test area as shown in Figure 15. In order to compare like-

with-like, it is necessary to model/invert the database information (resistances) to provide 

vertical model assessments of bedrock values (i.e. below any superficial deposits present). In a 

number of cases the soundings are too limited (shallow) to provide this information. In other 

cases, the bedrock models appear inconsistent across the local scales of the soundings. The 

investigation conducted has generated models for 3 sets of VES soundings (A, B and C, Fig.15) 

that allow a limited comparison with the predicted bedrock conductivity values. The 

comparisons are obtained for (A) Mudstone (RCS=MDST), (B) Clay, Silt and Sand 

(RCS=CLSISA) and (C) Chalk (RCS=CHLK). The latter uses the information from just 4 

soundings. The values of bedrock conductivity obtained from the VES soundings within the 

MDST group range from 72 to 98 mS/m which compares with a predicted interquartile range of 

40 to 96 mS/m.   The values of bedrock conductivity obtained from the VES soundings within 

the CLSISA group range from 42 to 120 mS/m which compares with the predicted interquartile 

range of 60 to 174 mS/m.   Finally the values of bedrock conductivity obtained from the 4 VES 

soundings within the CHLK group range from 7 to 9 mS/m which compares with a predicted 

interquartile range of 4 to 17 mS/m. 

It is also possible to examine whether the estimates of bedrock conductivities omitted by the 

present analysis can be provided by a larger scale assessment of VES soundings in relation to the 

lithological units requiring estimates. In general, the database VES locations are not strategically 
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sampled in relation to bedrock geology. The largest area omitted from the current map is 

associated with the Ooidal Limestone (RCS=LMOOL).  Interrogation of the database reveals 

that this unit is sampled in 4 widely separated clusters across the UK and that 92 soundings are 

available for investigation. The degree to which existing information can supplement the 

methodology discussed here is the subject of ongoing studies (e.g. Busby et al., 2011). 

7 Conclusions 

A HiRES airborne geophysical survey of the IoW has provided an assessment of the near-surface 

(close to outcrop) electrical conductivities associated with Palaeogene and Cretaceous 

formations. The purpose of the present investigation has been to examine the degree to which the 

high resolution survey data contain distinctive geological and lithological signatures. The 

geostatistical nature of the conductivity distributions have been examined in relation to two 

existing sedimentary bedrock schemes involving lithostratigraphical and lithological 

descriptions. An examination of the central moments and dispersions of the classified data 

(ANNOVA analysis) indicates that 80% of the variability observed can be accounted for by 

lithological characterisation and that this increases to 87% when a lithostratigraphical 

characterisation is used. The ability of the baseline data on the IoW to predict corresponding 

conductivity values on the nearby mainland has been examined and confirmed. The simpler 

lithological characterisation possesses a far greater ability to predict and thus map equivalent 

baseline conductivities across the south of England. The conductivity distributions for two of the 

lithologies (CHALK and CLAY-SAND-SILT) display behaviour associated with mixtures. The 

CHALK behaviour is due to a detectable increasing conductivity with age from the Upper to 

Lower Chalk sequence. The large sampling of the CLAY-SAND-SILT lithology appears to 

identify areas of clay-content deficiency with respect to the norm. Accurate prediction requires 

knowledge of the observed (non-parametric) distributions and this can be accommodated by 

recording decile intervals. A lithological-based bedrock conductivity map of a significant portion 

of the south of England has been obtained. The baseline conductivity map, and associated 

statistics, allows the degree to which localised measurements represent departures from the norm 

to be assessed. The extent to which the methodology described here can be supplemented by 

existing or additional geophysical measurements is the subject of ongoing studies. 
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