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ABSTRACT 15 

The >800-m-thick, Oligocene Ohanapecosh Formation records voluminous 16 

sedimentation of volcanic clasts in the Ancestral Cascades arc (Washington State, 17 

USA). Most volcaniclastic beds are dominated by angular pumice clasts and fiamme 18 

of andesitic composition, now entirely devitrified and altered. All beds are laterally 19 

continuous and have uniform thickness; fine sandstone and mudstone beds have 20 

features typical of low density turbidity currents and suspension settling; erosion 21 

surfaces, cross-beds and evidence of bi-directional oscillatory currents (i.e. wave 22 

ripples and swaley and hummocky cross-stratification) are almost entirely absent. We 23 

infer that the setting was subaqueous and below wave-base. 24 
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The abundance of angular pumice clasts, crystals and dense volcanic clasts, and 25 

extreme thickness of several facies suggest they were derived from magmatic volatile-26 

driven explosive eruptions. The extremely thick beds are ungraded or weakly graded, 27 

and lack evidence of hot emplacement, suggesting deposition from subaqueous, 28 

water-supported, high-concentration volcaniclastic density currents. Some of the 29 

thickest beds contain coarse, rounded dense clasts at their base and are interbedded 30 

with accretionary-lapilli-bearing mudstone; these beds are interpreted to be deposits 31 

from subaqueous density currents fed by subaerial pyroclastic flows that crossed the 32 

shoreline. Shallow basaltic intrusions and mafic volcanic breccia composed of scoria 33 

lapilli indicate the presence of intra-basinal scoria cones that may have been partly 34 

subaerial. 35 

The range in facies in the Ohanapecosh Formation is typical of below-wave-base, 36 

continental (lacustrine) basins that form in proximity to active volcanic arcs, and 37 

includes eruption-fed and resedimented facies. Extreme instantaneous aggradation 38 

rates are related directly to explosive eruptions, and sediment pathways reflect the 39 

locations of active volcanoes, in contrast to conventional sedimentation processes 40 

acting in non-volcanic environments. 41 

 42 

INTRODUCTION 43 

The Oligocene Ohanapecosh Formation (Washington State, USA) has been a key 44 

reference in the literature on subaqueous explosive volcanism (Fiske, 1963; Fiske et 45 

al., 1963). The highly influential work of Fiske (1963) explored general concepts of 46 

the nature of explosive eruption-fed subaqueous volcaniclastic density currents – then 47 

called “subaqueous pyroclastic flows” – and related them to sources, and transport 48 

and depositional processes. Despite the widespread extent of the Ohanapecosh 49 
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Formation in the central Cascades (>400 km2), and mapping of various sections, the 50 

depositional processes and paleo-environment remain debated, in part due to 51 

incomplete exposure. This voluminous volcaniclastic succession is basaltic to 52 

andesitic in composition, and records the northernmost eruptive activity of the 53 

Ancestral Cascades arc (Sherrod and Smith, 2000; du Bray et al., 2006; du Bray and 54 

John, 2011). 55 

We use facies analysis and the facies architecture of this succession to reassess the 56 

eruption styles and paleo-environments of eruption, transport and deposition. We 57 

focus on the range of volcanic and sedimentary processes that can reasonably be 58 

inferred for voluminous pumice-rich units deposited in a quiet water environment. 59 

These processes include subaqueous deposition from subaerial pyroclastic flows that 60 

entered water, and subaqueous resedimentation of unconsolidated pumice-rich 61 

aggregates. Previous interpretations are re-evaluated. 62 

Our facies analysis demonstrates the Ohanapecosh Formation to represent a water-63 

filled depocenter supplied almost entirely by volcanoes. Current understanding of 64 

non-volcanic basins (e.g. Johnson and Baldwin, 1996; Stow et al., 1996) cannot be 65 

applied directly to basins supplied by active volcanoes, because particle types, particle 66 

supply rates, transport and deposition processes, facies (especially bed thickness) and 67 

aggradation rates differ substantially. Using evidence from the Ohanapecosh 68 

Formation, we discuss the facies characteristics of strongly volcanic-influenced, basin 69 

successions, and how they differ from non-volcanic basins. 70 

 71 

Definitions and methods 72 

The bed thickness nomenclature follows Ingram (1954), and “extremely thick” is 73 

added for beds >10 m thick. “Breccia” is used as a non-genetic term to describe any 74 
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clastic facies composed of angular clasts coarser than 2 mm (Fisher, 1961b); the term 75 

“matrix” is used broadly for interstitial clasts <2 mm. 76 

Most components of the Ohanapecosh Formation are volcanic, and we follow the 77 

nomenclature of McPhie et al. (1993) to describe these rocks. In this paper, volcanic 78 

clast-rich rocks are grouped into the broad term “volcaniclastic”; facies generated by 79 

explosive eruptions are called “pyroclastic”. “Pumice” is used for highly vesicular 80 

(>60 vol.%) volcanic fragments that are intermediate to felsic in composition, 81 

whereas “scoria” clasts are less vesicular (<60 vol.%) and mafic in composition. 82 

Aligned lenticular clasts are called “fiamme” (Bull and McPhie, 2007) and most 83 

appear to have been pumice clasts that compacted during diagenesis, partly or fully 84 

losing their initial porosity. 85 

U/Pb analyses on zircons by LA-ICP-MS were performed on an Agilent 7500cs 86 

quadrupole ICPMS with a 193 nm Coherent Ar-F gas laser and the Resonetics M50 87 

ablation cell at the University of Tasmania (Australia). Rocks were crushed in a Cr-88 

steel ring mill to a grain size <400 microns; zircons were paned, separated from 89 

magnetic heavy minerals and hand-picked under the microscope. The selected zircon 90 

crystals were glued into epoxy and finally polished and cleaned (electronic suppl.). 91 

 92 

GEOLOGICAL SETTING OF THE OHANAPECOSH FORMATION 93 

Volcanism and tectonic setting of the Ancestral Cascades arc 94 

Subduction of the Pacific plate under the North American plate began in the Paleozoic 95 

era and is still continuing today (Dickinson, 2009). During the Cenozoic, the 96 

extremely long (>1,250 km) Ancestral Cascades arc developed on the Paleozoic and 97 

Mesozoic continental terranes of western North America. Uncertainties regarding the 98 

magmatism of the Ancestral Cascades arc (45-4 Ma; du Bray and John, 2011), and the 99 



 5 of 53 

early Cenozoic history of southern Washington are partly due to loss of the geological 100 

record by erosion in response to regional uplift of the northern Cascades (e.g. 101 

McBirney, 1978; Hammond, 1979; Reiners et al., 2002), and burial under Miocene 102 

and Quaternary volcanoes (Schuster, 2005; Hildreth, 2007). 103 

From the Eocene to the middle Oligocene, regional extension and transtension 104 

affected the northwestern part of the North American continent (Frizzell et al., 1984; 105 

Tabor et al., 1984; Johnson, 1985; Tabor et al., 2000). In southern Washington, major 106 

transcurrent faults offset the pre-Tertiary continental basement, in response to oblique 107 

subduction beneath the North American plate (Bonini et al., 1974; Johnson, 1984; 108 

Johnson, 1985; Armstrong and Ward, 1991; Blakely et al., 2002). From 57 to 43 Ma 109 

(Cheney and Hayman, 2009), these faults promoted the formation of separate basins 110 

that have distinct sedimentation and deformation histories (Johnson, 1984; Johnson, 111 

1985). The fills of these basins comprise the middle to late Eocene Puget Group, and 112 

Renton, Spiketon and Naches formations, which are partially conformably overlain by 113 

the Ohanapecosh Formation (Tabor et al., 2000). The Ohanapecosh Formation records 114 

the northernmost, early magmatism of the Ancestral Cascades arc in southern 115 

Washington (Tabor et al., 1984; Johnson, 1985; du Bray and John, 2011). 116 

The contact of the Ohanapecosh Formation with the underlying volcaniclastic and 117 

siliciclastic Puget Group, and Spiketon and Renton formations is everywhere 118 

conformable and commonly gradational (Fiske et al., 1963; Gard, 1968; Simmons et 119 

al., 1983; Vance et al., 1987). In contrast, the contact with the underlying Naches 120 

Formation is an unconformity (Johnson, 1985; Vance et al., 1987; Tabor et al., 2000).  121 

The middle to late Eocene Summit Creek Sandstone (~43 to 37 Ma; Vance et al., 122 

1987) consists of various sandstone units conformably underlying the Ohanapecosh 123 
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Formation in the areas from the eastern side of White Pass to the Naches River to the 124 

east (Ellingson, 1972; Vance et al., 1987; Hammond, 2005). 125 

 126 

The Ohanapecosh Formation 127 

The mostly volcaniclastic, pumice- and fiamme-rich Ohanapecosh Formation (Fiske 128 

et al., 1963) is early to middle Oligocene in age (36 to 28 Ma, mostly dated by fission 129 

tracks in zircons; Tabor et al., 2000). However, these dates include samples from a 130 

much wider area than the volcaniclastic facies described by Fiske et al. (1963) and 131 

this study. In addition, criteria to discern the Ohanapecosh Formation are subtle and 132 

its facies are poorly defined amongst the various generations of mappers, therefore it 133 

is commonly grouped with other formations into the broad name of Tertiary 134 

volcaniclastic units. The Ohanapecosh Formation was thought to be ~3 km thick 135 

(Fiske et al., 1963), exposed over >400 km2 in an area >700 km2 (Schuster, 2005) 136 

throughout Mt Rainier National Park and its surroundings, and is the basement upon 137 

which Mt Rainier volcano was built (Fig. 1). Coherent facies possibly related to the 138 

Ohanapecosh Formation occur at a few places (Fiske et al., 1963; Wise, 1970; 139 

Swanson, 1996; Swanson et al., 1997; Hammond, 2011 unpubl. data), and numerous 140 

younger dykes intrude the formation (Fiske et al., 1963). 141 

 The Ohanapecosh Formation sensu lato has been recognized from the Snoqualmie 142 

area (north) to Columbia River Gorge (south to Mt St Helens and Mt Adams), and 143 

from Mt Rainier and Lake Tapps (northwest) to Little Naches River area (east) (Fig. 144 

1; e.g. Fisher, 1961a; Fiske et al., 1963; Gard, 1968; Wise, 1970; Ellingson, 1972; 145 

Simmons et al., 1983; Frizzell et al., 1984; Evarts et al., 1987; Schasse, 1987; Vance 146 

et al., 1987; Smith, 1989; Swanson, 1996; Swanson et al., 1997; Tabor et al., 2000; 147 

Hammond, 2005; Schuster, 2005; Hammond, 2011 unpubl. data). Northeast of Mt 148 
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Rainier, the Ohanapecosh Formation contains sedimentary units derived from a 149 

granitic-metamorphic basement, bordering the northern end of the Cascade volcanic 150 

arc (Hammond, 1979). A crystalline basement source in eastern Washington and 151 

Idaho was suggested by Winters (1984) for feldspathic sandstone that occurs in the 152 

Ohanapecosh Formation southeast of Packwood. 153 

In the Mt Rainier National Park area, the Ohanapecosh Formation is overlain with an 154 

unconformable contact by the Oligocene (25-27 Ma) Stevens Ridge Member, which is 155 

the lower part of the Fifes Peak Formation (Vance et al., 1987; Tabor et al., 2000; 156 

Hammond, 2011 unpubl. data). This member is composed of multiple 5- to >100-m-157 

thick quartz-bearing rhyolitic ignimbrites, whereas the Fifes Peak Formation is 158 

dominated by basaltic and andesitic lavas (Fiske et al., 1963). At Backbone Ridge, 159 

southeast of Mt Rainier (Fig. 2), the top of the Ohanapecosh Formation is eroded, and 160 

clasts of the Ohanapecosh Formation and tree trunks occur in the base of the lowest 161 

ignimbrite of the Stevens Ridge Member (Fiske et al., 1963). In the Mt Rainier 162 

National Park, the Stevens Ridge Member was originally defined as a formation by 163 

Fiske et al. (1963). However, Tabor et al. (2000) found a gradational boundary 164 

between it and the overlying Fifes Peak Formation, and consequently re-defined the 165 

Stevens Ridge Formation as a Member of the Fifes Peak Formation. The Fifes Peak 166 

Formation covers large areas around Mt Rainier, at Fifes Peak and Tieton (Warren, 167 

1941; Fiske et al., 1963; Swanson, 1965, 1966, 1978; Schasse, 1987; Vance et al., 168 

1987; Tabor et al., 2000; Hammond, 2005, 2011 unpubl. data). In southern 169 

Washington, the Ohanapecosh Formation is unconformably overlain by the early 170 

Miocene Eagle Creek Formation (Wise, 1970), composed of very poorly sorted 171 

conglomerate containing pumice fragments, thin-bedded sandstone and pebble 172 

conglomerate, and paleosols. These Tertiary formations are mostly covered by thick 173 
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lavas and volcaniclastic aprons of the modern Cascades arc volcanoes (Mt Rainier, 174 

Goat Rocks, Mt Adams, Indian Heaven and Mt St Helens; Fig. 1; Crandell, 1976; 175 

Hildreth, 2007). 176 

 177 

Previous work on facies of the Ohanapecosh Formation 178 

The volcaniclastic facies of the Ohanapecosh Formation in the Mt Rainier area were 179 

studied extensively by Fiske (1963) and Fiske et al. (1963, 1964). Various processes 180 

and origins have been proposed (Fiske, 1963; Fiske et al., 1963; Winters, 1984; Stine, 181 

1987; Vance et al., 1987; Swanson, 1996; Swanson et al., 1997). The formation is 182 

mainly composed of andesitic and dacitic volcaniclastic facies; minor lavas, “arkose” 183 

and “sandstone” are present locally (Wise, 1970; Winters, 1984; Stine, 1987; Vance et 184 

al., 1987). The main volcanic clasts consist of pumice, crystals and dense andesite. 185 

Broken and unbroken accretionary lapilli are common in a few facies. Fossils of 186 

wood, leaves and poorly preserved benthic shells ("ostracods, gastropods, and perhaps 187 

even Foraminifera"; Fiske, 1963) are locally present, but not diagnostic of a marine 188 

versus lacustrine environment. 189 

The “thick” beds (Fiske, 1963) are well defined and laterally extensive (>hundreds of 190 

m), and 3 to 60 m thick (average thickness of 10 m). No welding textures or columnar 191 

joints were documented. The “thin” beds (Fiske, 1963) are well defined, laterally 192 

extensive over tens of meters, commonly normally graded, and mostly 50-60 cm 193 

thick. Some “thin” beds are internally stratified, but sole marks, slump structures and 194 

cross laminae are uncommon. Bed pinch-out structures were documented locally 195 

southeast of Packwood (Winters, 1984; Stine, 1987). No major faults were identified 196 

in previous studies of the Ohanapecosh Formation.  197 
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Fiske (1963), followed by Wise (1970), proposed that most of the formation was 198 

erupted and emplaced subaqueously, in quiet water such as a lake or sheltered 199 

embayment of the sea, thus representing the depocenter of underwater volcanoes. The 200 

quiet subaqueous depositional setting was inferred on the basis of: the laterally 201 

extensive, uniform-thickness bed geometry, internal grading, and the complete 202 

absence of unconformities, erosion surfaces and large-scale cross beds. The absence 203 

of typically marine fossils suggested a lacustrine rather than marine environment. 204 

However, more recent interpretations have assumed - on the basis of weak or 205 

incorrect evidence - a subaerial environment of deposition, such as a fluviatile and 206 

alluvial apron in which lakes were minor, shallow and temporary (Frizzell et al., 207 

1984; Winters, 1984; Stine, 1987; Vance et al., 1987; Swanson, 1996; Swanson et al., 208 

1997; Tabor et al., 2000). 209 

The Ohanapecosh Formation is intruded by numerous silicic dykes and sills that are 210 

related to the Miocene Tatoosh and Snoqualmie plutons (Fiske et al., 1963; Johnson, 211 

1985; Tabor et al., 2000). The dykes are commonly <10 m wide. The Ohanapecosh 212 

Formation is locally altered at contacts with the largest sills (>>10 m thick). The 213 

formation is well indurated and has a secondary mineral assemblage consistent with 214 

low-grade regional metamorphism (zeolite facies). All original glass and most original 215 

ferromagnesian and plagioclase phenocrysts have been replaced by secondary 216 

minerals. The alteration has been attributed to higher temperature and pressure 217 

associated with deep burial and contact metamorphism from intrusions (Fiske et al., 218 

1963). 219 

 220 

INTERNAL STRATIGRAPHY OF THE OHANAPECOSH FORMATION 221 
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In the studied area (Fig. 2), the Ohanapecosh Formation records deposition of almost 222 

exclusively volcaniclastic facies. This study subdivides the Ohanapecosh Formation 223 

into three main associations that each consists of similar volcaniclastic facies: the 224 

Chinook Pass association, the White Pass association and the Johnson Creek 225 

association.  226 

The Chinook Pass association comprises >350-m-thick volcaniclastic sequences 227 

exposed at Cayuse and Chinook Passes and at Cougar Lake (Fig. 3; electronic suppl.). 228 

The total thickness of the association is unknown. The Chinook Pass association is 229 

characterized by pale green, extremely thick, pumice and fiamme-rich beds of 230 

intermediate composition, interbedded with multiple, laterally continuous, thin to 231 

thick beds that have similar aspects. 232 

The White Pass association is >800 m thick and exposed in the road cuts of White 233 

Pass and Backbone Ridge, as well as on the slope from near the Ohanapecosh 234 

Campground up to the Backbone Ridge road (Fig. 4; electronic suppl.). The chiefly 235 

volcaniclastic White Pass association consists of dark to pale green, thin to extremely 236 

thick, pumice- and fiamme-rich beds of mafic and intermediate composition. A mafic 237 

component is common, whereas it has not been found in the other two associations of 238 

the formation. Thin to thick, fine sandstone and mudstone beds are common. 239 

The Johnson Creek association is exposed in scattered road outcrops to the southeast 240 

of Packwood (electronic suppl.). The dark green volcaniclastic facies are mostly 241 

similar to those in the Ohanapecosh Campground and Backbone Ridge sections 242 

(White Pass association), but beds are thinner and show rare cross-laminae and 243 

channel-like features. Rare fine grained siliciclastic facies have been reported 244 

(Winters, 1984; Stine, 1987).  245 

 246 
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Ohanapecosh Fault 247 

In the White Pass section at the bottom of Ohanapecosh River Valley, two units are 248 

used as stratigraphic markers (Fig. 4): an extremely thick (>15 m) bed of red fiamme 249 

breccia (unit 143, White Pass section) and a white, 5-m-thick, quartz-rich, matrix-250 

supported volcanic breccia (unit 147, White Pass section). The red fiamme breccia 251 

(unit 143) probably correlates with the red fiamme breccia of the Stevens Ridge 252 

Member of the Fifes Peak Formation outside the logged area at Backbone Ridge (Fig. 253 

4). At the base of White Pass (bed 147, top of the White Pass section), after more than 254 

200 m of intervening hidden exposures from bed 143, there is a poorly exposed, 255 

white, 5-m-thick bed of quartz-rich, fine ignimbrite that is also attributed to the 256 

Stevens Ridge Member. This outcrop of the Stevens Ridge Member and numerous 257 

beds higher in the stratigraphy are not shown on any geological maps (Fiske et al., 258 

1963; Schuster, 2005; Hammond, 2011 unpubl. data). 259 

On the basis of stratigraphic correlations in the Stevens Ridge Member and the White 260 

Pass association (Fig. 4), we infer that a major north-south fault separates the White 261 

Pass and Backbone Ridge sections. This fault follows the Ohanapecosh River Valley 262 

and is here named the Ohanapecosh Fault (Fig. 4). Its exact location and dip are 263 

unknown, but it doubles ~500 m of stratigraphy. The Ohanapecosh Fault accounts for 264 

repetition of the red fiamme breccia and quartz-rich fine ignimbrite in the Stevens 265 

Ridge Member (Fifes Peak Formation; Fig. 4). On the basis of the White Pass and 266 

Backbone Ridge sections, Fiske et al. (1963) proposed a thickness of ~3 km for the 267 

entire Ohanapecosh Formation. The fault repetition proposed here decreases the 268 

maximum thickness of the formation to >800 m (Fig. 4), because the Ohanapecosh 269 

Fault increases the apparent thickness of the White Pass association between White 270 

Pass and Backbone Ridge (Fig. 4; electronic suppl.). 271 
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 272 

New U/Pb in zircon dates 273 

Zircons in the lowermost and uppermost beds of the White Pass association have been 274 

dated at 31.9 ±1.4 Ma and 25.94±0.31 Ma, respectively (Fig. 4; electronic suppl.). 275 

U/Pb analyses of zircons by LA-ICP-MS of a pumice-rich bed in the Cayuse Pass 276 

section gave an age of 29.69±0.68 Ma (Fig. 3; electronic suppl.). These dates restrict 277 

the Ohanapecosh Formation to a time interval of ~6 million years, and to be overall 278 

younger than previously thought (Vance et al., 1987; Tabor et al., 2000). However, 279 

these former studies used samples from a wider area, and a very broadly defined 280 

Ohanapecosh Formation. In addition, former ages are essentially derived from fission 281 

tracks on zircons, which is a much less accurate technique than the U/Pb by LA-ICP-282 

MS analyses reported here. Method accuracy may explain why the age of the 283 

uppermost bed in the Ohanapecosh Formation (this study) is younger than the 284 

published fission track age of the overlying Stevens Ridge Member from the Fifes 285 

Peak Formation (Vance et al., 1987). 286 

 287 

COMPONENTS OF THE OHANAPECOSH FORMATION 288 

A dominant intermediate composition of the fiamme, pumice and dense clasts is 289 

suggested by abundant plagioclase and minor ferromagnesian phenocrysts. A minor 290 

part of the succession is mafic in composition (probably basaltic) and characterized by 291 

abundant ferromagnesian and rare feldspar phenocrysts in scoria and dense clasts. 292 

Pumice clasts and fiamme (Table 1) are ubiquitous throughout the Ohanapecosh 293 

Formation. Fiamme have their long axes oriented parallel to bedding, and they are 294 

considered to be former pumice clasts, now compacted. Scoria clasts are present in the 295 

White Pass association. Numerous types of dense clasts occur in the Ohanapecosh 296 
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Formation. The dense clasts are rich in feldspar and ferromagnesian crystals, but lack 297 

quartz, which reflects their mafic to intermediate compositions. The dense clasts are 298 

aphyric to moderately porphyritic and variably altered. The matrix (<2 mm) now 299 

includes crystal fragments (partly to fully altered, mostly feldspar, with minor 300 

ferromagnesian minerals). Apart from crystals, matrix is similar in color and texture 301 

to the preserved clasts, which strongly suggests that the original components were all 302 

volcanic, and had the same bulk composition. Rim-type accretionary and armored 303 

lapilli (Schumacher and Schmincke, 1991) were found in a few very thin beds, and 304 

can reach 20 mm across. They are absent in the thick to extremely thick beds. Plant 305 

fossils and casts of leaves and silicified tree fragments were found at various places, 306 

but in minor quantities. 307 

 308 

FACIES IN THE OHANAPECOSH FORMATION 309 

The Ohanapecosh Formation is composed of 13 major facies, most of them being 310 

volcaniclastic and composed entirely of volcanic clasts. The volcaniclastic facies were 311 

distinguished on the basis of bed thickness, grading, componentry, grain size and 312 

composition. A full description of the facies in the Ohanapecosh Formation is 313 

presented in Table 2, and additional field data and complete logs are added as an 314 

electronic supplement. The grain size distribution of selected facies was calculated by 315 

image analysis and functional stereology (Jutzeler et al., 2012), and will be presented 316 

in a further study. 317 

Coarse-grained, extremely thick facies occur everywhere in the Ohanapecosh 318 

Formation, and make a large part of the Chinook Pass and White Pass associations, 319 

where they are interbedded with thinner and finer grained facies. Most of the volume 320 

of the Chinook Pass association consists of tabular and laterally continuous, extremely 321 
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thick beds (up to >40 m) of normally graded fiamme-dense clast breccia (facies 1; 322 

Fig. 5), normally graded dense clast-fiamme breccia (facies 2; Fig. 6), normally 323 

graded fiamme breccia (facies 3; Fig. 7) and reversely graded fiamme breccia (facies 324 

4; Fig. 8), which are mostly composed of fiamme and pumice clasts, crystal fragments 325 

and dense clasts; some facies have a basal sub-facies rich in coarse, dense, angular to 326 

sub-rounded volcanic clasts. Rare polymictic breccia-conglomerate (facies 7) occurs 327 

in the White Pass section. 328 

In the White Pass association, the graded or massive volcanic breccia (facies 5; Fig. 9) 329 

and massive volcanic breccia (facies 6; Fig. 10) are very thick to extremely thick, 330 

laterally continuous, clast- or matrix-supported, and consist of variable amounts of 331 

fiamme, pumice clasts, dense clasts, and crystal fragments. In the Chinook Pass 332 

association, an unusual very thick (>3 m) succession of reversely to normally graded 333 

pumice breccia (facies 8; Fig. 11) occurs. It is extensive over >100 m and composed 334 

of six main beds of pumice breccia that are intercalated with tens of beds of 335 

mudstone. 336 

Most of the very thin to medium thickness beds in the Ohanapecosh Formation are 337 

fine sandstone and mudstone (facies 9; Fig. 12). They occur as m-thick groups, are 338 

laterally continuous, uniform in thickness, lack cross-bedded structures and 339 

commonly contain wood and accretionary lapilli. They are interbedded with the 340 

thicker facies. Voluminous successions of basaltic scoria breccia (facies 11; Fig. 13) 341 

occur in the White Pass association, and can be associated with vesicular basalt 342 

(facies 12), which is rarely found in the Chinook Pass association. Other minor facies 343 

include normally graded dense clast breccia to fiamme breccia (facies 10), flow-344 

banded dacite (facies 13), thin to very thick beds of relatively well-sorted, massive 345 
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mafic sandstone (facies 14), fine, dense clast volcanic breccia (facies 15), and thinly 346 

to thickly bedded, normally or reversely graded fiamme mudstone (facies 16). 347 

 348 

INTERPRETATION AND DISCUSSION 349 

Origins of clasts in the Ohanapecosh Formation 350 

The high abundance of relatively fine (mostly <10 cm) pumice clasts and fiamme, and 351 

crystal fragments in most volcaniclastic facies (Table 1) strongly suggests that these 352 

components were produced by explosive eruptions and are thus considered to be 353 

pyroclasts. Free broken crystals are interpreted as pyroclasts derived from the same 354 

magmas as the pumice clasts and fiamme (Table 1). Scoria clasts are the most 355 

abundant components in the basaltic scoria breccia (facies 11) and massive mafic 356 

sandstone (facies 14), and are also considered to be pyroclasts. Most dense clasts of 357 

the Ohanapecosh Formation contain microlites and phenocrysts that attest to their 358 

volcanic origin (Table 1) and have intermediate to mafic compositions. Angular dense 359 

clasts that occur with abundant pumice clasts or fiamme are possibly pyroclasts. The 360 

origins of sub-angular to rounded dense volcanic clasts cannot be resolved because 361 

these clasts were abraded prior to and/or during final deposition. The matrix other 362 

than crystals is interpreted to be mostly made of fine, originally glassy pyroclasts. 363 

Rare beds of dark grayish brown fine sandstone to mudstone (facies 9) that contain 364 

wood chips and leaves are probably partly derived from decay of organic components. 365 

A few beds of fine sandstone to mudstone (facies 9) in the Johnson Creek association 366 

contain abundant non-volcanic feldspar crystals that reflect continental erosion 367 

(Winters, 1984). 368 

 369 

Depositional setting 370 
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Poorly preserved fossils "ostracods, gastropods, and perhaps even Foraminifera" 371 

described by Fiske et al. (1963) indicate a subaqueous depositional setting for the 372 

Ohanapecosh Formation. In addition, the Ohanapecosh Formation includes several 373 

very thinly to thickly bedded facies (facies 9, 14, 15) in which beds are planar and 374 

laterally continuous, and that lack cross-stratification, erosional surfaces or paleosols. 375 

The overall absence of cross-beds, erosional surfaces and paleosols precludes a 376 

subaerial to shallow water setting. Most clasts - including pumice - in the 377 

Ohanapecosh Formation are angular, which suggests minimum residence in a 378 

subaerial or shoreline environment. We agree with Fiske (1963) that these bed 379 

characteristics strongly constrain the depositional setting of most of the formation to 380 

below wave base (Fig. 14). 381 

The Ohanapecosh Formation was probably deposited in a deep lake, or a protected sea 382 

embayment because of its setting close to the continental margin (e.g. McBirney, 383 

1978; Johnson, 1985; Dickinson, 2009). The relatively common occurrence of wood 384 

chips and leaves in the very thin to thickly bedded facies (facies 8, 9 and 16; Table 1) 385 

indicates proximity to land. Lakes are likely to produce scarce carbonaceous facies 386 

(Platt and Wright, 1991), have shores with gentler gradients, and wave action is much 387 

weaker than in conventional marine settings, reducing coastal erosion and limiting the 388 

abundance of well-rounded clasts (e.g. Manville, 2001). Lacustrine environments in 389 

active tectonic areas, such as an intra-continental rift, can be deep (i.e. >500 m) and 390 

subside rapidly so that subsidence compensates for the high accumulation rates of 391 

volcaniclastic facies (e.g. Baltzer, 1991; Gaylord et al., 2001). The lack of facies 392 

indicative of shoreline processes, such as coarse conglomerate, well sorted pebbly 393 

sandstone, cross-bedded sandstone, evidence of bi-directional oscillatory currents (i.e. 394 

wave ripples and swaley and hummocky cross-stratification), mega-breccia from 395 
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large-scale failure events, and abundant coastal shell fragments (e.g. Busby-Spera, 396 

1985; White and Busby-Spera, 1987; Busby-Spera, 1988; Allen, 2004b; Allen et al., 397 

2007) precludes a volcaniclastic apron environment. We infer that the Ohanapecosh 398 

Formation accumulated on a quiet, below-wave-base, very low-gradient slope. The 399 

presence of accretionary lapilli in fine sandstone to mudstone (facies 8) is not an 400 

indicator of the depositional environment, as they can be robust enough to withstand 401 

sedimentation and resedimentation in water (e.g. Boulter, 1987). 402 

The upper part of the Ohanapecosh Formation is poorly exposed and the presence or 403 

the absence of the planar thinly bedded facies, partial indicators of a subaqueous 404 

environment, is unknown. The overlying Fifes Peak Formation was deposited 405 

subaerially (Fiske et al., 1963), after an episode of erosion and deformation (Fiske et 406 

al., 1963; Hammond, 2011 unpubl. data). It is possible that a shallow water or 407 

subaerial setting existed during the last stage of deposition of the Ohanapecosh 408 

Formation. However, the volume of potentially shallow to subaerial facies is minor 409 

compared to the total thickness and extent of the Ohanapecosh Formation. 410 

 411 

Transport and depositional processes 412 

The lithofacies characteristics suggest that most of very thick to extremely thick 413 

clastic facies were produced by high concentration, subaqueous volcaniclastic density 414 

currents (Fig. 14, Table 3). In contrast, most very thin to thick beds show better 415 

sorting and grading, consistent with deposition from low-concentration density 416 

currents and vertical settling from suspension, and are discussed separately below. 417 

However, lithofacies analysis in the Ohanapecosh Formation remains difficult 418 

because the finest (<2 mm) clasts were destroyed during diagenesis, preventing 419 

description of the total grain size distribution.  420 
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 421 

Very thick to extremely thick beds 422 

Most facies of the Ohanapecosh Formation consist of very thick to extremely thick 423 

tabular beds with sharp bases that are distinctly graded or massive, and are typical of 424 

deposits from high-concentration density currents in general (Lowe, 1982; Mulder and 425 

Alexander, 2001; Kokelaar et al., 2007; Piper and Normark, 2009; Sumner et al., 426 

2009; Talling et al., 2012). Such currents can have hot volcanic gas (pyroclastic flows 427 

sensu stricto) or water as the interstitial fluid. Although composed primarily of 428 

pyroclasts, all facies in the Ohanapecosh Formation lack textures related to hot state 429 

deposition, such as welding, columnar joints and gas segregation pipes (Cas and 430 

Wright, 1991). Also, pumice clasts are typically angular and indicate that clast-to-431 

clast interaction was more limited than is typical of pyroclastic flow transport (e.g. 432 

Dufek and Manga, 2008; Manga et al., 2011). Further, the internal textures and 433 

organization of the very thick to extremely thick beds are uniform everywhere in the 434 

>400 km2 area of exposure, indicating that throughout this area, the transport and 435 

depositional processes were also uniform. Therefore, the density currents must have 436 

propagated for several to tens of km in the below-wave-base setting. There are no 437 

examples known of laterally extensive subaqueous pyroclastic flow deposits sensu 438 

stricto, and theoretical arguments imply that gas-supported phases under water should 439 

be replaced quickly by water, by condensation of the gas phase during cooling 440 

(Legros and Druitt, 2000; Freundt, 2003; Head and Wilson, 2003; Dufek et al., 2007; 441 

Allen et al., 2008). Notable exceptions may include very proximal, submarine inner-442 

caldera environment (Busby-Spera, 1986) and where subaerial pyroclastic flows 443 

rather push than enter a water body (Legros and Druitt, 2000) where flat shore occur. 444 
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On this basis, we infer that the Ohanapecosh Formation volcaniclastic density currents 445 

were water-supported, rather than hot gas-supported. 446 

The term “subaqueous volcaniclastic density current” is used for the density currents 447 

that produced the very thick to extremely thick facies in the Ohanapecosh Formation 448 

(Table 3); the term is intended to imply that the density currents were water-449 

supported, high concentration and composed of volcanic particles and is inclusive of 450 

all the triggering mechanisms (eruption-fed versus resedimentation) and source 451 

settings (subaerial versus subaqueous). The apparently abundant matrix and poor 452 

sorting in the extremely thick facies suggest deposition from a type of volcaniclastic 453 

density current in which the particle concentration was very high and turbulence was 454 

suppressed. 455 

 456 

Very thin to thick beds 457 

Very thin to thick beds in the Ohanapecosh Formation are laterally continuous and 458 

have a uniform thickness, which suggests deposition from a combination of 459 

suspension settling and low density turbidity currents. Low density pumice clasts and 460 

very fine particles can be temporarily suspended in the water column. Settling 461 

involves discrete particle fallout and/or vertical density currents, minimal particle 462 

interaction and typically produces very good hydraulic sorting (Rubey, 1933; 463 

Cashman and Fiske, 1991; Wiesner et al., 1995; Manville et al., 2002; Burgisser and 464 

Gardner, 2006). In the reversely to normally graded pumice breccia (facies 8) at 465 

Chinook Pass, the lateral continuity of the pumice-dominated beds, presence of 466 

mudstone interbeds and the sub-rounded shape of the pumice clasts (Fig. 11; Table 3) 467 

suggest that the pumice clasts settled from pumice rafts (Fig. 14a; e.g. White et al., 468 

2001; Manville et al., 2002).  469 
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Beds of fine sandstone and mudstone (facies 9) in the Ohanapecosh Formation are 470 

interpreted to be deposits from low density turbidity currents (turbidity currents sensu 471 

stricto; Bouma, 1962; Lowe, 1982; Shanmugam, 2002) or suspension in the water 472 

column (Fig. 14; Table 3). Conventional low density turbidity currents sensu stricto 473 

are defined by their high degree of turbulence and lack of cohesion; they can transport 474 

a relatively low concentration (<10 vol.%) of mostly fine-grained (<2 mm) clasts 475 

under water (Lowe, 1982; Mulder and Alexander, 2001; Piper and Normark, 2009) 476 

and commonly produce regular successions of relatively thin (up to a few m) beds that 477 

are massive or graded (Bouma, 1962; Lowe, 1982; Shanmugam, 2002). 478 

 479 

Eruption-fed versus resedimented pyroclastic facies 480 

Distinguishing between eruption-fed and resedimentation-driven processes of 481 

initiation of subaqueous volcaniclastic density currents is an ongoing challenge 482 

(Fisher and Schmincke, 1984; McPhie et al., 1993; White, 2000; White et al., 2003). 483 

Piper and Normark (2009) concluded that there is no simple relationship between the 484 

characteristics of subaqueous density current deposits and the initiating processes. 485 

Subaerial explosive eruptions may generate a wide range of eruption-fed subaqueous 486 

facies, including subaqueous volcaniclastic density current deposits and suspension 487 

deposits (e.g. Sparks et al., 1980; Yamada, 1984; Whitham and Sparks, 1986; 488 

Whitham, 1989; Cas and Wright, 1991; Carey et al., 1996; Mandeville et al., 1996; 489 

White et al., 2001; Manville et al., 2002; Freundt, 2003; Dufek et al., 2007). The 490 

lower, concentrated part (“basal underflow”) of subaerial pyroclastic flows may be 491 

dense enough to enter a body of water and transform into water-supported subaqueous 492 

volcaniclastic density current; the much more dilute overriding ash cloud and 493 

pyroclastic surges can travel over water for some distance (e.g. White, 2000; Freundt, 494 
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2003; Edmonds and Herd, 2005; Dufek et al., 2007). Pumice-forming, explosive 495 

eruptions can also occur from sea-floor vents, producing density currents underwater 496 

(Fiske, 1963; Kokelaar, 1983; Kano, 2003; White et al., 2003; Allen and McPhie, 497 

2009). Furthermore, subaqueous volcaniclastic density currents can originate from 498 

resedimentation of saturated aggregates (Allen and Freundt, 2006). 499 

The presence of pumice clasts in submarine water-supported volcaniclastic density 500 

current deposits implies that the pumice clasts were denser than water when entrained 501 

in the current. The pumice clasts available for transport in subaqueous volcaniclastic 502 

density currents can be: (1) sufficiently hot on contact with water to ingest water 503 

immediately and sink (Cas and Wright, 1991; Allen et al., 2008), (2) already 504 

sufficiently waterlogged (Allen and Freundt, 2006), and/or (3) low-vesicularity types 505 

that are denser than water. Pumice clasts with a vesicularity <60 vol.% will sink 506 

because their density is greater than that of water, regardless of the vesicles being gas- 507 

or water-filled (Manville et al., 1998; White et al., 2001; Manville et al., 2002). (Cas 508 

and Wright, 1991). Pumice clasts of intermediate composition commonly have 509 

vesicularities <60 vol.% (e.g. Whitham, 1989; Allen, 2004a). 510 

Assessing the source and the transport processes on the basis of deposit characteristics 511 

is especially difficult for pyroclast-rich facies in which there is no evidence of hot 512 

emplacement (e.g. Cas and Wright, 1991), as in the case for volcaniclastic units in the 513 

Ohanapecosh Formation. The characteristics used herein to infer a pumice-forming, 514 

explosive eruption-fed origin for volcaniclastic density current deposits include 515 

abundant pumice clasts and crystals fragments that reflect a single magma 516 

composition, and very thick to extremely thick sedimentation units that reflect large 517 

eruption volumes (Table 3). On the other hand, resedimentation events are expected to 518 

involve diverse clast compositions, thus generating deposits that are strongly 519 
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polymictic. Resedimentation processes affect pre-existing unconsolidated deposits, 520 

and each resedimentation event is likely to remove only a portion of the pre-existing 521 

deposits. Thus, the volumes (and thicknesses) of single beds derived from 522 

resedimentation events are predicted to be smaller in comparison to eruption-fed beds, 523 

especially in cases involving felsic and intermediate explosive eruptions. 524 

 525 

Eruption-fed units in the Ohanapecosh Formation 526 

The normally graded fiamme-dense clast breccia (facies 1), normally graded dense 527 

clast-fiamme breccia (facies 2), normally graded fiamme breccia (facies 3), reversely 528 

graded fiamme breccia (facies 4) and some beds of graded or massive volcanic 529 

breccia (facies 5) are all characterized by extreme bed thickness, massive aspect and a 530 

high abundance of pyroclasts of similar composition. These facies are interpreted to 531 

be explosive eruption-fed products (Fig. 14; Table 3). 532 

In the reversely to normally graded pumice breccia (facies 8), pumice clasts are sub-533 

rounded, and dense clasts are absent. The distinctive grading of facies 8 is consistent 534 

with saturation grading (Fig. 11). Waterlogging of pumice clasts a few cm in diameter 535 

is immediate when the pumice clasts are still hot, whereas it can take up to several 536 

months if the pumice clasts are cold and highly vesicular (Whitham and Sparks, 1986; 537 

Manville et al., 1998; White et al., 2001; Bryan et al., 2004). Therefore, facies 8 is 538 

probably eruption-fed, but the complex grading and presence of mudstone (likely to 539 

consist originally of glassy ash) and accretionary lapilli interbeds indicate that the 540 

pumice clasts sank progressively in batches from rafts (Fig. 14). 541 

In the White Pass section, a succession of upward arching, normally graded and well 542 

sorted beds of basaltic scoria breccia (facies 11) that includes impact sags (Fig. 13a; 543 

Table 2) is interbedded with fine sandstone and mudstone (facies 9) that contains 544 
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accretionary lapilli. The succession is interpreted to be the remnant of a scoria cone, 545 

probably produced by a combination of strombolian and surtseyan activity (Kokelaar, 546 

1986; White, 2001), and most beds are considered to be eruption-fed, or slightly 547 

resedimented on the steep slopes of the volcanic cone (Fig. 14c). Units of vesicular 548 

basalt (facies 12) beneath the scoria cone facies are probably related to shallow 549 

intrusions or small lavas. 550 

 551 

Resedimented units in the Ohanapecosh Formation 552 

The polymictic breccia-conglomerate (facies 7) is likely to be resedimented, because 553 

it contains rounded clasts that were abraded in an above wave-base environment, and 554 

occurs in a bed that is only 3 m thick. Some of the beds of basaltic scoria breccia 555 

(facies 11) are likely to represent short-distance resedimentation on the scoria cone 556 

(Fig. 14). The graded or massive volcanic breccia (facies 5), massive volcanic breccia 557 

(facies 6) and some of the beds of fine sandstone and mudstone (facies 9) are not 558 

diagnostic of a single initiation process, and can be either eruption-fed or 559 

resedimented, and both alternatives probably occur (Fig. 14).  560 

 561 

Setting of source volcanoes 562 

The abundance of pyroclasts in the Ohanapecosh Formation attests to its origin from 563 

explosive eruptions (Table 3). The laterally continuous, very thin to thick beds imply 564 

deposition in a subaqueous environment. However, the setting of source vents is 565 

difficult to constrain for most facies although both subaerial and subaqueous vents are 566 

possible, and may have co-existed; a chiefly subaerial setting of source volcanoes is 567 

preferred. The most efficient ways to introduce voluminous pumice and dense clasts 568 

to a subaqueous setting are by subaerial pyroclastic flows crossing the shoreline 569 
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(Whitham, 1989; Cas and Wright, 1991; Allen and Smith, 1994; Kurokawa and 570 

Tomita, 1998; Legros and Druitt, 2000; Allen et al., 2003; Freundt, 2003; Allen et al., 571 

2012), or alternatively by subaqueous explosive eruptions (Busby-Spera, 1986; Allen 572 

and McPhie, 2009). Subaqueous eruptions are not likely to have been persistent 573 

throughout the millions of years of the Ohanapecosh Formation, and known facies 574 

derived from subaqueous explosive eruptions (Cas and Wright, 1991; Kano, 2003; 575 

Allen et al., 2008; Allen and McPhie, 2009) are not represented in the Ohanapecosh 576 

Formation. The vents of intra-basinal subaqueous volcanoes would rapidly reach the 577 

water surface, considering the growth of the volcanic edifice and minor wave erosion 578 

in a quiet lake environment, filling the basin and producing distinctive above wave-579 

base facies at its top. In addition, the many facies of the Ohanapecosh Formation 580 

imply multiple sources, thus many of them would not be positioned in the basin, but 581 

at its rim. It is more likely that most of the vents associated with the Chinook Pass 582 

association were subaerial, because rare intercalated facies contain rounded clasts 583 

resedimented from above wave-base environments (polymictic breccia-conglomerate, 584 

unit 58 in the Chinook Pass section; facies 7). Pumice-rich facies interpreted to 585 

originate from pumice rafts, and accretionary lapilli occur together in unit 60 of the 586 

Chinook Pass section (facies 8; Table 3), both of which imply the existence of a 587 

subaerial eruption plume. In addition, the basal dense clast breccia in the three 588 

extremely thick, fiamme-rich facies (facies 1–3) include coarse sub-rounded dense 589 

clasts that could have been collected at the shoreline, although such rounded clasts 590 

may have been previously transported under water from the shore (such as facies 7) 591 

and picked-up by the newly arriving density currents. These facies (1, 2, 3, 7, 8) all 592 

occur interbedded in the Chinook Pass association, and all other intercalated facies are 593 

in conformable contact and contain similar clast types, suggesting a similar source. 594 
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Hence, the entire Chinook Pass section is most likely to have been chiefly generated 595 

by subaerial pyroclastic flows that crossed a shoreline and transformed into water-596 

supported volcaniclastic density currents. In addition, the pumice rafts represented by 597 

unit 60 (facies 8) probably formed immediately before or after a climactic eruption 598 

represented by extremely thick beds of reversely graded fiamme breccia (facies 4; 599 

units 59 and 61, respectively). We infer that the broadly similar, extremely thick beds 600 

of the fiamme-rich facies (facies 1–4) in the other associations have the same origin. 601 

Some features in facies 1–4 deserve particular consideration. The pumice clasts are 602 

distinctly angular and there is abundant matrix (<2 mm), at least in the middle and 603 

upper sub-facies. Pumice clasts transported in pyroclastic flows are quickly rounded 604 

(e.g. Dufek and Manga, 2008; Manga et al., 2011) so the angular clasts imply that 605 

transport by this mode was short. The poor sorting suggests that transport of pumice 606 

clasts in water-supported density current was relatively short because in general this 607 

transport mode results in relatively good grading and sorting (White, 2000). Thus, the 608 

distance between the vents and the deposition site was probably short, and the source 609 

volcanoes were nearby. The apparent abundance of matrix in facies 1–4 also suggests 610 

that the pyroclastic flows were not very expanded when they crossed the shoreline 611 

(e.g. Cas and Wright, 1991). 612 

 613 

The Ohanapecosh Formation basin 614 

Chinook Pass association 615 

The Chinook Pass association comprises volcaniclastic facies from one main source, 616 

because most clasts have similar mineralogy and composition, and the beds have been 617 

deposited by similar types of subaqueous volcaniclastic density currents. Most of the 618 

thickness of the Chinook Pass association (~70% of the exposed sections) is 619 
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dominated by extremely thick, tabular and laterally continuous beds that originated 620 

from subaerial pyroclastic flows (normally graded fiamme-dense clast breccia, facies 621 

1; normally graded dense clast-fiamme breccia, facies 2; normally graded fiamme 622 

breccia, facies 3; reversely graded fiamme breccia, facies 4). Each extremely thick 623 

bed in the Chinook Pass association was probably related to a magma eruption 624 

volume of 0.1 to >10 km3. These extremely thickly bedded facies are interbedded 625 

with facies composed of much thinner beds (e.g. facies 5, 9 and 15). Such a transition 626 

from single eruption-fed beds to multiple, compositionally similar but much thinner 627 

beds may record voluminous deposition from a large-scale explosive eruption, 628 

followed by syn- to post-eruptive resedimentation of more proximal, upslope deposits 629 

into deeper water (Fig. 15). The latter is preferred for the Chinook Pass association, 630 

because most facies in the Chinook Pass association consist of the same coarse 631 

components, suggesting that following the main eruptive events, parts of the eruption-632 

fed deposits upslope were resedimented in the Chinook Pass association. The 633 

relatively thinly bedded intervals probably also include deposits that are unrelated to 634 

eruptions, and instead represent the “background” sedimentation. 635 

 636 

White Pass association 637 

The White Pass association comprises volcaniclastic facies from at least two main 638 

sources. One source produced voluminous and widespread pumiceous volcaniclastic 639 

facies of intermediate composition that occur in very thin to extremely thick, planar 640 

and laterally continuous beds (graded or massive volcanic breccia, facies 5; massive 641 

volcanic breccia, facies 6; fine sandstone and mudstone, facies 9). Whether these 642 

source volcanoes were subaqueous, subaerial or both, and whether some beds of the 643 

facies are eruption-fed could not be determined from facies characteristics. However, 644 
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the abundance of beds, most of them polymictic, strongly suggest that many beds are 645 

derived from resedimentation, and that resedimentation processes greatly contributed 646 

to the filling of the basin. The second source generated small-volume, basaltic, very 647 

thinly to thickly bedded volcaniclastic facies (fine sandstone and mudstone, facies 9; 648 

massive mafic sandstone, facies 14; basaltic scoria breccia, facies 11). These facies 649 

were generated by intrabasinal, weakly explosive, basaltic eruptions and 650 

resedimentation, from one or more shallow-water or subaerial vents (Figs 14, 16). 651 

In modern subaqueous basins, maximum bed thickness and maximum coarseness 652 

occur close to the main transport path and in a medial position relative to the source 653 

(e.g. Trofimovs et al., 2006). Distal and lateral equivalents are thinner and finer 654 

grained. Strong differences in grain size and average bed thickness that occur between 655 

sections in the White Pass association (Fig. 4; Fig. 15) could reflect two settings in 656 

relation to the sediment transport path, or intercalation of proximal and distal deposits 657 

of two volcanic sources respectively. The White Pass section contains the coarsest and 658 

thickest beds of the White Pass association (up to 25 m; massive volcanic breccia, 659 

facies 6). This section is interpreted to record deposition centered on the main 660 

sediment transport path at a medial position from the source, in a low-gradient basin. 661 

In the lower part of the White Pass section, stacks of facies 5 are overlain by stacks of 662 

facies 6, which reflects an increase in thickness (electronic suppl.) and coarseness 663 

(Fig. 4; electronic suppl.) of the beds. Such a dramatic change may result from 664 

progradation (Busby-Spera, 1988), or from different sources and/or pathways of 665 

sedimentation. In comparison, beds present in the Ohanapecosh Campground and 666 

Backbone Ridge sections are overall thinner and finer grained (fine sandstone and 667 

mudstone, facies 9; fine, dense clast volcanic breccia, facies 15; normally or reversely 668 

graded fiamme mudstone, facies 16). These sections were probably situated in more 669 
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distal and/or lateral positions compared to the main sediment transport path recorded 670 

in the White Pass section. These facies variations suggest a main broad westward 671 

direction of sediment transport in the White Pass association. 672 

The two sections of the White Pass association from each side of the Ohanapecosh 673 

Fault include multiple beds of basaltic scoria breccia (facies 11; Fig. 13). These beds 674 

are interpreted to broadly correlate. The thick sequence of basaltic scoria breccia 675 

containing fine sandstone and mudstone (facies 9) with accretionary lapilli and 676 

intrusions of vesicular basalt (facies 12) in the White Pass section indicate proximity 677 

to a subaerial to shallow water scoria cone, whereas the thinner sequences of basaltic 678 

scoria breccia in the Ohanapecosh Campground and Backbone Ridge sections 679 

probably formed at a greater distance from the vent(s). 680 

 681 

Johnson Creek association 682 

The Johnson Creek association consists of very similar facies to the Backbone Ridge 683 

section of the White Pass association, and is therefore interpreted in a similar way. It 684 

is chiefly composed of thin to very thick beds of pumice fragments of intermediate 685 

composition (graded or massive volcanic breccia, facies 5; normally or reversely 686 

graded fiamme mudstone, facies 16). These facies probably accumulated in a distal 687 

and/or lateral environment with respect to the coarser and thicker facies in the White 688 

Pass association. A broadly westward direction of sedimentation was proposed by 689 

Winters (1984) on the basis of minor beds of fine sandstone and mudstone containing 690 

clasts derived from pre-Tertiary basement rocks. 691 

 692 

Basin architecture and duration 693 
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The Ohanapecosh Formation provides a good example of the complexity possible in 694 

subaqueous volcaniclastic basins (Figs 15, 16). The age of the lowermost (31.9 ±1.4 695 

Ma) and uppermost (25.94±0.31 Ma) beds in the White Pass association constrain the 696 

>800 m of volcaniclastic sediments to have been sedimented during ~6 million years. 697 

An average sedimentation rate of 65-120 m/my can be estimated considering the two 698 

beds are separated by 500 m in the stratigraphy (Fig. 4)..The three associations are 699 

close enough (<10 km) to be part of a single, wide basin. However, the lithofacies of 700 

the Chinook Pass association are different from those in the White Pass association 701 

and Johnson Creek association. The difference could be explained by supply from 702 

different volcanic sources, and/or by the presence of two sub-basins within a larger 703 

basin. The poor exposure between the studied sections precludes a better 704 

understanding of the stratigraphic relationships between the depocenters. 705 

 706 

Sources of the Ohanapecosh Formation 707 

The regional extent (>400 km2) and >6 million years in duration of the Ohanapecosh 708 

Formation (Tabor et al., 2000; Schuster, 2005; this study), the presence of the 709 

remnants of at least one scoria cone in the White Pass association (facies 11, Fig. 13), 710 

and the variations in clast mineralogy (Tables 1, 2) all imply that volcaniclastic 711 

sediments were supplied from multiple volcanic edifices (Fiske, 1963; Vance et al., 712 

1987; this study). The major eruption centers that fed the Ohanapecosh Formation 713 

have not been identified. Lavas or shallow intrusions that could be marking the 714 

locations of source vents for the volcaniclastic facies are uncommon and not 715 

obviously related to the volcaniclastic facies. Minor lavas within the eastern and 716 

northeastern part of the formation (sensu lato) are contemporaneous (Hammond, 2011 717 

unpubl. data). Coherent andesite units found in the area southeast of Packwood 718 
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(Swanson, 1996; Swanson et al., 1997) and at Indian Bar (Fiske et al., 1964) were 719 

identified as possible sources of the Ohanapecosh Formation, however nearby 720 

volcaniclastic facies could not be directly correlated to these units. The flow-banded 721 

dacite (facies 13) at Cougar Lake is probably contemporaneous with the Ohanapecosh 722 

Formation, and reflects emplacement of an intrabasinal lava or dome.  723 

The Mt Aix caldera, 20 km southeast of Chinook Pass (Fig. 1), is a plausible source of 724 

the Ohanapecosh Formation. The age of the caldera-forming eruption (24.7 Ma; 725 

Hammond, 2005) is too young compared to the Ohanapecosh Formation, and it 726 

produced a rhyolitic ignimbrite (Bumping River tuff). Silicic calderas can be long-727 

lived and commonly form after a period of volcanism involving less evolved 728 

(andesitic) magma (e.g. Bailey et al., 1976; Bacon, 1983). Thus, pre-caldera volcanic 729 

activity at the vicinity of the Mt Aix caldera could have been a source of the 730 

Ohanapecosh Formation. With the exception of the White Pass example, it remains 731 

unclear whether or not the mafic intrusions (vesicular basalt, facies 12) were a source 732 

of the Ohanapecosh Formation. The White Pass and Chinook Pass associations (Fig. 733 

15) comprise facies that reflect filling of the basin primarily during eruptions and the 734 

immediate post-eruptive period of resedimentation (e.g. Busby-Spera, 1988; Smith, 735 

1991). 736 

 737 

The Ancestral Cascades arc in Washington 738 

Extending over more than >400 km2 in Washington, the Ohanapecosh Formation 739 

records an important part of the northern tip of the Ancestral Cascades arc (45–4 Ma, 740 

du Bray and John, 2011) during the Oligocene. The depocenter could have formed as 741 

a far-field response to the regional extension farther to the northeast during the 742 

Eocene (Johnson, 1984; Johnson, 1985; Vance et al., 1987; Cheney and Hayman, 743 
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2009; Evans, 2010), and thus extend the time and area affected by this regional 744 

extension event. 745 

The remnants of magmatic activity are more abundant in Washington for the late 746 

Oligocene to Miocene period, suggesting a peak of volcanic activity around 25 Ma 747 

(e.g. du Bray and John, 2011). However volumetric comparisons should be subject to 748 

caution, considering how volcaniclastic deposits are relatively poorly preserved and 749 

much less studied in comparison to lavas and intrusions, as exemplified with the few 750 

contributions on the Ohanapecosh Formation. Thus, the importance and volume of 751 

volcaniclastic deposits are likely to be wrongly minimized (e.g. du Bray et al., 2006). 752 

In central Washington, several volcanic centers and intrusions were emplaced after 753 

the deposition of the Ohanapecosh Formation, and confirm the continuation of the 754 

magmatism in the Ancestral Cascades arc in central Washington. The relationship 755 

between the Ohanapecosh Formation and its overlying formations (in particular the 756 

Fifes Peak Formation) remains poorly understood and they are likely to be part of 757 

different eruptive cycles. Volcanic rocks to the northeast were mostly grouped into the 758 

Fifes Peak Formation (Fiske et al., 1963; Tabor et al., 2000; Hammond, 2011 unpubl. 759 

data), and important late Oligocene to Miocene volcanic centers include the Mount 760 

Aix caldera (late Oligocene), Timberwolf Mountain volcano (late Oligocene), Fifes 761 

Peak volcano (Oligocene-Miocene) and Tieton volcano (Late Miocene), and 762 

intrusions include the Tatoosh pluton (Late Miocene), Bumping Lake granite 763 

(Oligocene) and White River pluton (Miocene) (Fig. 1; Fiske et al., 1963; Swanson, 764 

1966; Hammond, 2005, 2011 unpubl. data). The relationship of the Oligocene-765 

Miocene Snoqualmie plutons in central Washington with the Ancestral Cascades arc 766 

remains unclear (du Bray and John, 2011).  767 
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In Washington and Oregon, 45 million years of Ancestral and modern Cascades arc 768 

magmatic activity has been concentrated in a relatively narrow segment of continental 769 

crust (Sherrod and Smith, 2000; Schuster, 2005) indicating that the volcanic front has 770 

remained in more-or-less the same position relative to the subduction zone. This 771 

apparent stability could be responsible for the Ohanapecosh basin remaining an active 772 

depocenter for ~6 million years, and for the largely intact preservation of the basin 773 

fill. This long-lived basin strongly suggests the Ohanapecosh Formation to chiefly 774 

record explosive activity and erosion from multiple volcanic centers, principally to the 775 

east, north and south of the studied area. In contrast, the southern segment of the 776 

Ancestral Cascades arc from Nevada to California migrated westwards in response to 777 

slab roll-back (Colgan et al., 2011) throughout the Oligocene, Miocene and Pliocene. 778 

Volcaniclastic basins also formed in the southern segment of the arc (Busby, 2012), 779 

but they were relatively short lived (e.g. <1.5 million years; Busby et al., 2006), 780 

accumulated thicker sediment piles (10 and 4 km during very fast basin subsidence, 781 

respectively; Busby et al., 2005; Busby et al., 2006), and were substantially disrupted 782 

by fault active during and after filling (Busby and Bassett, 2007). The differences 783 

between the two segments of the Ancestral Cascades arc have been attributed to the 784 

presence of a long-lived slab tear in the Farallon plate (Colgan et al., 2011). 785 

 786 

Characteristics of deep subaqueous volcaniclastic basins 787 

The Ohanapecosh Formation lacks shallow water facies, implying sedimentation in a 788 

relatively deep lake, or in a basin subsiding at the same rate as filling. In addition, the 789 

Ohanapecosh basin had a low gradient, because the succession does not include any 790 

slide and slump-related facies. Therefore, the Ohanapecosh Formation had a similar 791 

setting to other below-wave-base, deep, quiet basins (e.g. Johnson and Baldwin, 1996; 792 
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Stow et al., 1996), but it consists of very different and distinctive facies. Deep, quiet, 793 

non-volcaniclastic basins comprise turbidites and suspension-settled facies that may 794 

relate to sediment dispersal via submarine fans (e.g. Johnson and Baldwin, 1996; 795 

Stow et al., 1996; Talling et al., 2012). Single events (flood, landslide, earthquake, 796 

etc.) that produce density currents can introduce huge volumes (up to 100 km3) of 797 

sediments (Talling et al., 2012). Single turbidites range in thickness of a few cm to 798 

~10 m, depending on their proximity to source, and are typically composed of <2-799 

mm-particles, relatively well sorted and commonly graded (Piper and Normark, 2009; 800 

Talling et al., 2012). 801 

Non-volcanic detritus in the Ohanapecosh Formation (i.e. organic matter and fine 802 

sandstone and mudstone of continental origin; part of facies 9) is minimal (< a few 803 

vol.%), and implies that the depocenter was almost exclusively supplied by volcanic 804 

processes. Andesitic explosive eruptions were the principal supplier of sediment, and 805 

this sediment was delivered by means of eruption-fed subaqueous volcaniclastic 806 

density currents, and by resedimentation events. Each extremely thick bed was 807 

probably related to a magma volume of 0.1–10 km3 erupted more-or-less 808 

instantaneously. From our zircons ages, the average sedimentation rate in the White 809 

Pass association is 65–120 m/my, which is comparable to accumulation rates at 30 km 810 

offshore Montserrat island (90 m/my; Expedition 340 Scientists, 2012) and in some 811 

conventional siliciclastic environments (e.g. Sadler, 1981). Eruptions and syn-eruptive 812 

resedimentation events are rapid, producing extreme instantaneous aggradation rates 813 

(m to tens of m per hour/year). Single subaqueous volcaniclastic density currents must 814 

be more voluminous and/or prolonged and more concentrated than single turbidity 815 

currents because their deposits are much thicker, less well sorted, less well graded and 816 
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in most cases, coarser than conventional turbidites. Wide variations in pyroclast 817 

density, size and shape produce facies that cannot be generated by other mechanisms.  818 

In active volcanic arc settings, the eruption-fed sediment supply is controlled by 819 

eruption frequency, style and magnitude. Sediment dispersal pathways are related to 820 

the locations of active volcanoes. In addition, explosive volcanic eruptions disperse 821 

large volumes of pyroclasts over wide areas, eliminating any sediment from other 822 

sources. In some cases, pyroclasts are introduced independently of established surface 823 

pathways, such as by settling of pumice from pumice rafts, or settling of accretionary 824 

lapilli and ash from the atmosphere to the water column over large areas (facies 8 and 825 

9).  826 

 827 

CONCLUSIONS 828 

The >400 km2 Ohanapecosh Formation (Washington State, USA) is an Oligocene 829 

volcaniclastic succession generated by volcanism in the Ancestral Cascades arc. The 830 

formation is mainly composed of andesitic volcaniclastic facies and was deposited 831 

over ~6 million years. The thickness of the formation in the studied area is >800 m, 832 

and part of the succession has been repeated by an inferred fault in the Ohanapecosh 833 

River Valley. Three associations have been defined on the basis of lithofacies 834 

characteristics and area of distribution. Multiple sources, eruption styles, and transport 835 

and depositional processes are necessary to explain the extent and diversity of the 836 

volcaniclastic lithofacies. However, the depositional setting remained subaqueous and 837 

below wave-base, and the environment of deposition was low-energy, such as within 838 

a continental basin. The lack of lenticular conglomerate and well-sorted cross-bedded 839 

sandstone typical of shoreline settings suggests the original basin was larger than the 840 

preserved remnants. The most abundant facies (by volume) are extremely thick (up to 841 
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50 m), internally massive or graded, and composed of andesitic pyroclasts. They were 842 

deposited from eruption-fed, water-supported, subaqueous volcaniclastic density 843 

currents generated by pyroclastic flows that crossed the shoreline.  844 

Below-wave-base deposition in basins associated with active subaerial volcanoes 845 

differs from that of non-volcanic basins. The supply of sediments is controlled by the 846 

frequency, style and magnitude volcanic eruptions, and sediment pathways are 847 

influenced by the locations of active volcanoes. The instantaneous accumulation rate 848 

of deposits from single explosive eruption-fed events in a volcanic arc basin is likely 849 

to be much higher than in a non-volcanic environment, even though the average 850 

accumulation rate may be similar or lower. The longevity and overall good 851 

preservation of the Ohanapecosh basin possibly reflects the relative stability of the 852 

northern Cascades arc compared with the extension-affected southern Cascades arc. 853 
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FIGURES 862 

Fig. 1 863 

Regional geological map of the Ancestral Cascades arc, simplified from Schuster 864 

(2005) . The Ohanapecosh Formation is part of the Tertiary volcaniclastic formations. 865 

 866 
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Fig. 2 Local geological map of the Ohanapecosh Formation in the Mt Rainier area; 867 

simplified and slightly modified after Schuster (2005) and Fiske (1964). Logged 868 

locations are white dots with letter. Thick black lines are boundaries between the 869 

lithological associations of the Ohanapecosh Formation: Chinook Pass association 870 

(A), White Pass association (B); Johnson Creek association (C). Dips are in the range 871 

20–45° (Fiske et al., 1963). O.C. for Ohanapecosh campground. 872 

 873 

Fig. 3 Stratigraphy of the Chinook Pass association of the Ohanapecosh Formation at 874 

Cayuse Pass (locality a in Figure 2) and Chinook Pass (localities b, c, d and e in 875 

Figure 4). The proportions of clasts and matrix in representative samples of facies 876 

were estimated in the field, and on polished rock slabs and thin sections in the 877 

laboratory (Jutzeler, 2012). The log gives the mean clast diameter (i.e. most common 878 

long-axis dimension of clasts) on the horizontal scale (in mm); some beds have 879 

separate mean clast size for pumice clasts and fiamme (P) and dense clasts (D); 880 

isolated clasts on right-hand side give outsized clast dimensions (i.e. maximum 881 

dimension of the coarsest clast). Logs are in direct upward continuity from left to 882 

right. Log locality (bold letter) refers to Figure 2; unit number (italic type), facies 883 

number (bold type) and stratigraphic thickness (plain type) are given on the left-hand 884 

side of logs; units (or group of units in thin facies) were separately numbered from 885 

base to top of the logs. Pie diagrams give vol.% of different clast types from image 886 

analysis (field and rock slabs): white for pumice clasts and fiamme, black for dense 887 

clasts, gray for matrix (<2 mm), including crystal fragments. See electronic suppl. for 888 

complete logs. For clarity, dykes and intrusions are not shown in the stratigraphic 889 

logs. Dates are from U/Pb analyses on zircons by LA-ICP-MS; ages in brackets 890 

suggest caution, as only one grain of zircon was used (see electronic suppl.). 891 
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 892 

Fig. 4 a) Simplified stratigraphic log of the Ohanapecosh Formation and Stevens 893 

Ridge Member (Fifes Peak Formation) using sections at White Pass (1; localities l, m, 894 

n and o in Figure 2), Ohanapecosh Campground (2; locality h in Figure 2) and 895 

Backbone Ridge (3; localities i, j and k in Figure 2). Only dominant facies are 896 

indicated; b) Inferred Ohanapecosh Fault; the faults repeats ~500 m of the White Pass 897 

association (Ohanapecosh Formation) and the Stevens Ridge Member (Fifes Peak 898 

Formation). The Stevens Ridge Member was dated at 25-27 Ma by Hammond (2011 899 

unpubl. data). See electronic supplement for complete logs and U/Pb geochronology. 900 

 901 

Fig. 5 Facies 1 - Normally graded fiamme-dense clast breccia; a) Middle part of 902 

facies 1 (unit 40) with porphyritic fiamme (black) and dense clasts (white and gray) in 903 

a gray matrix; b) Basal facies 1 (unit 40, Cayuse Pass section) composed of dense 904 

clasts, rare fiamme and feldspar crystal fragments (white) in a green matrix; c) 905 

Typical stratigraphic log of facies 1 in unit 40, Cayuse Pass section. Dense clast (D), 906 

fiamme (F), pumice clast (P), scoria (Sc), feldspar crystal (xl), cement (cem), 907 

accretionary lapilli (al), mudstone (m); graphic log features and key as in Figure 3. 908 

 909 

Fig. 6 Facies 2 - Normally graded dense clast-fiamme breccia. a) Base of normally 910 

graded dense clast-fiamme breccia (facies 2, unit 42, Cayuse Pass section) with sub-911 

rounded dark gray dense clasts in a gray matrix. This basal sub-facies is very similar 912 

to the basal part of the normally graded fiamme-dense clast breccia (facies 1); b) 913 

Stratigraphic log, unit 42, Cayuse Pass section. Graphic log features and key as in 914 

Figures 3 and 5. 915 

 916 
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Fig. 7 Facies 3 - Normally graded fiamme breccia. a) Base of unit 57 (Chinook Pass 917 

section) in the Chinook Pass association. Abundant fiamme (pale green), minor dense 918 

clasts (dark gray and black) in matrix; b) Stratigraphic log, unit 57, Chinook Pass 919 

section. Graphic log features and key as in Figures 3 and 5. 920 

 921 

Fig. 8 Facies 4 - Reversely graded fiamme breccia. a) Unit 61 (Chinook Pass section) 922 

overlying units 60a, 60b, 60c (reversely to normally graded pumice breccia, facies 8) 923 

at Chinook Pass; top of unit 61 is not seen. Note the lateral continuity of the thin beds 924 

and the knife sharp-contacts; b) Middle of unit 61 at Chinook Pass, with numerous 925 

fiamme and pumice clasts (dark), rare dense clasts (white and pale gray) and feldspar 926 

crystal fragments (white) in a pale matrix; c) Typical stratigraphic log of facies 4, unit 927 

61, Chinook Pass section. Graphic log features and key as in Figures 3 and 5. 928 

 929 

Fig. 9 Facies 5 - Graded or massive volcanic breccia; a) Tube pumice clasts and dense 930 

clasts in a fine (<0.2 mm) matrix (unit 5, White Pass section); b) Clast-supported 931 

facies 5 at Indian Bar; pumice clasts and fiamme (dark), dense clasts and feldspar 932 

crystals (white); c) Facies 5 at the base of the Ohanapecosh Formation (unit 5, White 933 

Pass), dark fiamme, pumice clasts and dense clasts supported in a pale matrix; d) 934 

Typical stratigraphic log of two beds of facies 5 in the White Pass section. Graphic 935 

log features and key as in Figures 3 and 5. 936 

 937 

Fig. 10 Facies 6 - Massive volcanic breccia; a) Coarse volcanic breccia, White Pass 938 

section (unit 62), composed of fine pumice clasts and fiamme (black) and dense 939 

clasts, including a poorly vesicular basalt clast (bas); b) Typical stratigraphic log of 940 

facies 6. Graphic log features and key as in Figures 3 and 5. 941 
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 942 

Fig. 11 Facies 8 - Reversely to normally graded pumice breccia. a) Unit 60b, Chinook 943 

Pass section. Note the reverse grading in pale gray pumice clasts in the lower unit, and 944 

dark gray interbeds of mudstone; b) Reversely graded pumice clasts and mudstone 945 

interbeds in facies 8 at Chinook Pass (unit 60); c) Sub-rounded pumice clasts (unit 946 

60b); white zeolite cement fills interstices between pumice clasts; d) Two detailed 947 

logs of laterally continuous units (60b and 60c) of facies 8 in the Chinook Pass 948 

section. Log A is >80 m to the east of log B. The lines link the main parts of the two 949 

sections that can be traced in the field. Graphic log features and key as in Figures 3 950 

and 5. 951 

 952 

Fig. 12 Facies 9, Chinook Pass association (a, b) and White Pass association (c, d) - 953 

Fine sandstone and mudstone. a) Succession of parallel-bedded facies 9 in lower 954 

Cayuse Pass; b) Laminated facies 9 at Cougar Lake. Accretionary lapilli occur in 955 

these beds. c) Beds of fine sandstone and mudstone (arrows, unit 78, White Pass) 956 

interbedded with graded or massive volcanic breccia; d) Succession of very thin beds 957 

and laminae of fine sandstone and mudstone (facies 9, unit D11 at Backbone Ridge); 958 

fossil leaves were found in these beds. Key as in Figure 5. 959 

 960 

Fig. 13 Facies 11 - Basaltic scoria breccia. a) Thick, well bedded basaltic scoria 961 

breccia (facies 11, lateral equivalent of bed 137) at White Pass. Note the upward arch 962 

in the beds, interpreted to be primary dip. Cliff face (140-160°) is parallel to the 963 

general bedding strike of the Ohanapecosh Formation. White circles for interpreted 964 

impact sags, arrow for mafic sill. Inset gives a detailed view of an interpreted impact 965 

sag; b) Unit 22 in the Ohanapecosh Campground section, with normally graded beds 966 
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of monomictic dark basaltic scoria clasts and pale-gray cement; c) Scanned slab of 967 

facies 11 (unit 137 in the White Pass section), dark gray basaltic scoria clasts in pale 968 

matrix and white zeolite cement; d) Stratigraphic log of unit 137, White Pass section. 969 

Graphic log features and key as in Figures 3 and 5. 970 

 971 

Fig. 14 Inferred depositional processes in the Ohanapecosh Formation. a) Subaerial 972 

magmatic gas-driven, pumice-forming explosive eruption (A) followed by collapse of 973 

the eruption column and creation of magmatic gas-supported pyroclastic flow towards 974 

water body (B). Coastal steam explosion (C) due to contact of hot pumice with water 975 

(e.g. Cas and Wright, 1991; Freundt, 2003; Dufek et al., 2007). Accretionary lapilli 976 

may form in subaerial eruption plumes. Dilute pyroclastic density current flows over 977 

the water body (D). Pumice clasts from dilute pyroclastic density currents may stay 978 

buoyant and create a pumice raft (E), to eventually generate saturation grading in 979 

reversely to normally graded pumice breccia (facies 8). Dense part of the pyroclastic 980 

flow enters water and transforms into a subaqueous volcaniclastic density current (F) 981 

that deposits very thin to extremely thick, tabular beds (facies 1–5, 8, 9) on the basin 982 

floor (G). Background sedimentation (H) produces fine grained thin beds (facies 9); 983 

b) Mass-wasting processes (K) resediment unconsolidated aggregates, creating 984 

subaqueous volcaniclastic density currents (L) that form tabular beds (facies 5–7, 9) 985 

on the basin floor (M). Background sedimentation (H) produces interlayers of fine 986 

grained thin beds (facies 9); c) Same resedimentation process (K) as in b, but in 987 

shallower water, such as in the upper part of the White Pass association. Subaqueous 988 

volcaniclastic density currents (N) generate tabular beds on the shallow basin floor 989 

(O). Shallow intrusions of basalt (P; facies 12) and subaqueous to locally subaerial 990 

eruptions (Q) build scoria cone of basaltic scoria breccia (R; facies 11) by subaerial 991 



 41 of 53 

and water-settled fallout; thick proximal facies are affected by resedimentation (S). 992 

Scoria cone (R, facies 11) is discordant with general stratigraphy. Background 993 

sedimentation and fallout from eruption column produces interlayers (T) of fine 994 

grained thin beds (facies 9). 995 

 996 

Fig. 15 997 

Simplified stratigraphic logs of the Chinook Pass and White Pass associations 998 

showing the contrasts between eruption-fed facies and resedimented facies. See 999 

Figures 3 and 4 and electronic supplement for complete logs. 1000 

 1001 

Fig. 16 1002 

Reconstruction of the Ohanapecosh basin. Active subaerial andesitic volcanoes to the 1003 

east supply most of the volcaniclastic facies preserved in the Ohanapecosh Formation. 1004 

The depositional setting for most facies was subaqueous and below wave-base. Local 1005 

intrabasinal scoria cones are present. The Chinook Pass association and White Pass 1006 

association probably accumulated in two sub-basins, here separated by the thick gray 1007 

dashed line. Flow-banded dacite at Cougar Lake not represented. Chinook Pass and 1008 

Cayuse Pass, CP; Cougar Lake, CL; White Pass, WP; Backbone Ridge, BBR. 1009 

 1010 

TABLES 1011 

Table 1 Textural characteristics of clasts in the Ohanapecosh Formation. 1012 

 1013 

Table 2 Lithofacies in the Ohanapecosh Formation. 1014 

 1015 
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Table 3 Current type, origin and environment at source of main facies of the 1016 

Ohanapecosh Formation. 1017 

 1018 

ELECTRONIC SUPPLEMENT 1019 

 1020 

Additional field data 1021 

Chinook Pass and White Pass associations; GPS coordinates (WGS 84) of start, 1022 

intermediary points and end of log section locations in the Ohanapecosh Formation. 1023 

 1024 

Fig. A Complete stratigraphic log of Cayuse Pass section, Chinook Pass association; 1025 

locality a in Figure 2. Logs are vertically continuous from left to right. Graphic log 1026 

features and key as in Figures 3 and 5. 1027 

 1028 

Fig. B Complete stratigraphic log of Chinook Pass section, Chinook Pass association; 1029 

localities b, c and d in Figure 2. Logs are vertically continuous from left to right. 1030 

Graphic log features and key as in Figures 3 and 5. 1031 

 1032 

Fig. C Complete stratigraphic log of Cougar Lake section, Chinook Pass association; 1033 

localities f and g in Figure 2. Graphic log features and key as in Figures 3 and 5. 1034 

 1035 

Fig. D Complete stratigraphic log of White Pass section, White Pass association; 1036 

localities l, m, n and o in Figure 2. Logs are vertically continuous from left to right. 1037 

Graphic log features and key as in Figures 3 and 5. 1038 

 1039 
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Fig. E Complete stratigraphic log of Ohanapecosh campground section, White Pass 1040 

association; locality h in Figure 2. Logs are vertically continuous from left to right. 1041 

Graphic log features and key as in Figures 3 and 5. 1042 

 1043 

Fig. F Complete stratigraphic log of Backbone Ridge section, White Pass association, 1044 

localities i, j and k in Figure 2. Logs are vertically continuous from left to right. 1045 

Graphic log features and key as in Figures 3 and 5. 1046 

 1047 

Fig. G Typical stratigraphic log of the Johnson Creek association; locality p in Figure 1048 

2. Graphic log features and key as in Figures 3 and 5. 1049 

 1050 
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TABLE 1. CLASTS IN THE OHANAPECOSH FORMATION 
Clast type Color and size Crystals Other textures 
Pumice and 
fiamme 

1–60 mm; max 300 
mm. 
Pale to dark green to 
black. 

Largely euhedral 
phenocrysts, 0–20 vol.% in 
general. Plagioclase and 
mostly altered 
ferromagnesians; no quartz. 
 
Chinook Pass association: 
25-30 vol.% phenocrysts (up 
to 5 mm) in coarse fiamme; 
small fiamme aphyric or too 
small to contain crystals. 
White Pass association: 
generally <30 vol.% 
phenocrysts. 
 

Pumice clasts mostly angular. 
Former groundmass entirely 
devitrified, composed of 
secondary minerals. 
Aspect ratio of pumice clasts is 1-
2.5 on average, maximum 5 for 
fiamme. 
Vesicles rarely preserved, round 
to very elongate (tube pumice, 
aspect ratio >>100). 

Free broken 
crystals 

N.A. Mostly plagioclase; relics of 
ferromagnesians (pyroxene, 
amphibole). No quartz. 

Broken on one face to multiple. 
Free crystal population matches 
the euhedral phenocryst 
populations in fiamme, pumice 
and dense clasts. 
 

Scoria 2–10 mm. 
Red or dark grey to 
black. 

Altered ferromagnesians 
common but difficult to 
distinguish from 
groundmass, feldspar 
microlites arranged in a 
trachytic texture, <1 vol.% 
plagioclase phenocrysts.  
 

Sub-angular to very angular. 
Poorly to moderately vesicular 
(<40 vol.%), rounded to highly 
contorted vesicles (<0.1–1 mm 
across) filled with zeolites and 
other secondary minerals. 

Accretionary 
lapilli 

20 mm. 
Pale to dark gray, core 
up to 10 mm or absent. 

N.A. Rim-type accretionary and 
armored lapilli; commonly show 
multiple rims, and their cores are 
up to 10 mm (Cougar Lake, 
Ohanapecosh Campground) or 
absent (e.g. Backbone Ridge, 
Ohanapecosh Campground, White 
Pass). Broken and intact 
accretionary lapilli occur together. 

Dense clasts <1–1,000 mm. 
White Pass association: 
red, dark red, dark 
green, and dark brown 
dense clasts 
Chinook Pass 
association: white, 
green or dark green to 
dark brown aphyric 
dense clasts; lacks red 
dense clasts, except 
where in contact with 
Miocene Tatoosh sills. 
 

0–50 vol. % plagioclase 
minor amounts of relic 
ferromagnesian crystals. 

Range from rounded to very 
angular, but mostly angular. 

Plant fossils <1–20 mm. 
Black. 

N.A. Leaves, wood, rare >20 cm long 
silicified trunk fragment was found 
at lower Cayuse Pass. 
 

Matrix <2 mm. 
Pale to dark green, red 
to dark violet, braun to 
black. 

Fragments of plagioclase 
crystals (0–15 vol.%) and 
relics of ferromagnesians. 

Former groundmass entirely 
devitrified, composed of 
secondary minerals. 

Note: N.A. = not applicable 
 

Table 1



 
TABLE 2. FACIES IN THE OHANAPECOSH FORMATION 

Facies Lithofacies Typical 
unit/section; 
association 

Unit 
thickness; 

grading 

 Clast and lithology 

1 
  
  

Normally graded 
fiamme-dense clast 
breccia 

Cayuse 40, 
Chinook 64, 
Cougar Lake 
 
CPA 

>15 m 
 
Normal 

 Facies 1 is represented by unit 40 at Cayuse Pass, which consists of a >20-m-thick, tabular 
bed laterally continuous over >400 m (Fig. 5). It overlies a sequence of very thin to thick beds 
with a sharp contact (Fig. 3). Unit 64 at Chinook Pass is composed of similar facies, but less 
rich in pumice clasts and fiamme. It is exposed in a 15-m-high cliff (electronic suppl.) that 
overlies a thick (~1 m) bed of facies 10. 

base The basal sub-facies consists of 3 m of clast-supported, normally graded polymictic breccia, 
mostly composed of a variety of coarse dense angular to sub-rounded volcanic clasts (50 
vol.%; some with all edges modified), dominated by dark aphyric dense clasts (Fig. 5). The size 
of the dense clasts gradually decreases upward from 60–80 mm to 6–10 mm, and rare sub-
rounded outsized clasts occur (up to 1 m). The other components are abundant feldspar crystal 
fragments (>10 vol.% of the rock), black moderately porphyritic fiamme and pumice clasts (6–
10 mm, 15 vol.%; 15–20 vol.% feldspar phenocrysts) and matrix (<20 vol.%). 

mid The middle sub-facies (10 m thick) is matrix-supported, normally graded breccia. The volume of 
dense clasts decreases to 10–15 vol.%, whereas fiamme become abundant (Fig. 5; >15 vol.%); 
average size is 10-20 mm and rarely up to 400x150 mm. The content of crystal fragments in 
the matrix remains high (>10 vol.%). 

top The upper sub-facies is normally graded, matrix-supported breccia (average diameter 6–2 mm, 
max 20 mm) and occupies the upper third (6–7 m) of the unit. Fiamme are minor (<5 vol.%) and 
the matrix is up to 90 vol.% and includes 20 vol.% of feldspar crystal fragments. At Cougar 
Lake, coarse tube pumice clasts (max 30 cm) occur in unit A1. Several m-long altered, tabular 
clasts (possibly stratified mudstone or coarse fiamme) are present at the top of unit B7. Poorly 
exposed, laminated or cross-laminated mudstone (>10 m thick) above may be part of the unit. 
 

2 
  

Normally graded 
dense clast-fiamme 
breccia 

Cayuse 42  
 
CPA 

>20 m 
 
Normal 

 Facies 2 is >20 m thick, tabular and laterally continuous over >400 m. Directly overlies a 1-m–
thick interval of laminated crystal-rich sandstone (facies 14) with a sharp boundary (Fig. 3). 
Very similar to facies 1, but rounded dense clasts are coarser and more abundant in this facies 
(Fig. 6). 

base The lower sub-facies is <10 m thick. The angular to sub-rounded dense volcanic clasts 
(dominated by a green aphyric type) are normally graded from 80 to 10 mm in average size and 
account for 40–60 vol.% (clast-supported). Outsized clasts (up to 1 m) are sub-rounded (Fig. 
6), some with all edges modified. Fiamme (up to 15 mm) are relatively abundant (15–20 vol.%). 
The matrix includes feldspar crystal fragments and dense clasts. 

top The upper sub-facies is matrix-rich (up to 80 vol.%). Dense clasts (15 vol.%, up to 25 mm), 
angular pumice clasts (8–10 mm) and small fiamme (<5 vol.%; <4 mm) are also present. 
 

3 
  
  

Normally graded 
fiamme breccia 

Chinook 57  
Cougar Lake B10 
CPA 

>20 m 
 
Normal 

 Facies 3 is poorly preserved, in tabular, 20-m-thick beds with two gradational sub-facies of 
similar thickness. 

 

   
base The basal sub-facies is clast-supported in pale-to-dark green fiamme and pumice clasts (Fig. 7; 

>40 vol.%, 10 mm average, max 30 mm), feldspar crystals fragments (5–10 vol.%) and minor 
sub-rounded dense clasts (<5 vol.%, up to 15 mm). 

Table 2



top The size and abundance of fiamme and pumice clast is smaller than in basal sub-facies (30 
vol.%, 2-3 mm average), and this sub-facies is matrix-supported. The size of dense clasts is 
smaller and their abundance remains similar than the basal sub-facies. 
 

4 
  

Reversely graded 
fiamme breccia 

Chinook 59, 
Chinook 61  
 
CPA, (WPA) 

>40 m 
 
Reverse 

 Facies 4 consists of tabular, 40- to 50-m-thick beds (Fig. 8). A bed at the top of Backbone 
Ridge (White Pass association) is tentatively included in this facies. 

base The basal sub-facies contains pale-to-dark green fiamme and pumice clasts (40 vol.%, 2–5 
mm), feldspar crystal fragments (>10 vol.%), dense clasts (<5 vol.%) and matrix. The fiamme 
and pumice clast sizes increase to 10 mm upwards (Fig. 8) and feldspar crystal fragments 
become more abundant (>15 vol.%). 

top The upper 10 m of the unit shows a drastic increase in fiamme and pumice clast sizes (average 
30-40 mm, max 150 mm). Less than 5 vol.% of dense clasts is found throughout the whole bed. 
 

5 Graded or massive 
volcanic breccia 

White Pass 
 
WPA, JCA, (CPA) 

mostly 1–5 m, 
max 15 m 
 
Normal, 
massive; rarely 
reverse 

  This facies is made of very thick beds that can be clast-supported or matrix-supported, and 
dominated by fiamme or dense clasts (Fig. 9). The average grain size decreases from 10 to 4 
mm upwards, or shows no change (10 mm). The components are green to dark grey fiamme 
and pumice clasts (Fig. 9; 30–60 vol.%), very angular dense clasts (10–30 vol.%), feldspar 
crystal fragments and matrix (20–60 vol.%). The dense clasts are a mixture of red- and dark-
grey clasts of probable mafic and intermediate composition. Reversely graded units (southern 
Packwood, Johnson Creek association; top of the Backbone Ridge section) have similar 
characteristics except the increase in clast size. 
 

6 Massive volcanic 
breccia 

White Pass 
 
WPA, JCA 

mostly 1–5 m, 
max 25 m 
 
Massive or 
normal 

  This facies occurs at White Pass, Ohanapecosh Campground and Backbone Ridge (White 
Pass association) and shows slight coarse-tail normal grading in the size of dense clasts (Fig. 
10; 60 to 40 mm). Clasts are angular to sub-rounded. Dense clasts (50–70 vol.%), pumice 
clasts and fiamme (10–20 vol.%), and feldspar crystal fragments together are dominant over 
matrix (10–25 vol.%). Fiamme are green to dark grey. 
 

7 Polymictic breccia-
conglomerate 

Chinook 58 
 
CPA 

3 m 
 
Normal 

  This facies separates two extremely thick beds of facies 3 and 4; it is poorly preserved. It 
contains abundant (>60 vol.%) sub-rounded to rounded, poorly porphyritic dense clasts (40 mm 
average, 200 mm max) at the base of the unit, and grades into fine-grained facies.  
 



8 
  
  

Reversely to normally 
graded pumice 
breccia 
  
  

Chinook 60 
 
CPA 
  

2.5 m 
 
Reverse and 
normal 
  

  
  
  

Beds of this facies are laterally extensive over >100 m. The main part of the facies consists of 
pumice breccia chiefly composed of pale yellow to pale brown sub-rounded pumice clasts 
(average 1 to 10 mm, max 30 mm), with minor fiamme and rare feldspar crystals fragments (<1 
mm) and <2 cm, unbroken and broken, rim-type accretionary lapilli (Fig. 11). The mudstone at 
the top of the units contains wood fragments (<2 cm). The grading of the pumice breccia is 
laterally continuous over tens of meters, but mudstone interlayers vary in thickness laterally and 
commonly disappear locally. 
Unit 60a is poorly preserved and its base is covered by vegetation. The base of unit 60b 
overlies unit 60a with 20 cm of smooth erosional relief over 3 m laterally. In units 60b and 60c, 
there are six main beds that are reversely to normally graded and range from clast-supported to 
matrix-supported (Fig. 11). Most units are interrupted with tens of laminae or very thin beds of 
mudstone. The upwards continuity in the reverse and normal grading of the pumice clasts in 
the pumice breccia is continuous, despite the intercalation of mudstone (Fig. 11). The matrix is 
made of pale yellow to pale brown mudstone of similar color to the sub-rounded pumice clasts. 
The mudstone matrix is absent in a few places and inter-clast space is filled with calcite and 
zeolite cement. 
 

9 Fine sandstone and 
mudstone 

Ohanapecosh 
Formation 
 
CPA, WPA, JCA 

1 mm – 1 m 
 
Massive or 
normal 

  Laterally extensive, very thin to thick beds of fine sandstone and mudstone facies are present 
throughout the Ohanapecosh Formation (Fig. 12). The beds are laterally continuous and 
uniform in thickness; very rare cm-deep scours and cm-wavelength cross-laminations occur. 
The beds commonly occur in m-thick groups separating groups of very thick to extremely thick 
beds. Beds can be dark grey, purple or pale grey and most beds are probably composed 
exclusively of volcanic components. Crystal content is commonly <10 vol.%, but can reach >20 
vol.%. Small pieces of wood (<1 cm) as well as rare accretionary lapilli and armored lapilli are 
spread throughout the thickness of some of the thin beds or concentrated in layers within very 
thin beds, especially in the Backbone Ridge section (White Pass association). Wood fragments 
are present in some beds; the largest fossil wood trunk was found in a pale grey unit at lower 
Cayuse Pass (Chinook Pass association). In the southern Packwood region (Johnson Creek 
association), fossil leaves are abundant in a >3-m-thick unit of cross-laminated fine feldspathic 
sandstone that was interpreted by Winters (1984) to have continental source. 
 

10 Normally graded 
dense clast breccia to 
fiamme breccia 

Chinook 63, 
Cougar Lake 
 
CPA 

1 m 
 
Normal 

  The facies is clast-supported and consists of coarse dense clast breccia at the base (up to 40 
cm thick), that grades upwards into fiamme breccia (fiamme 10–40 mm long); it is overlain by 
massive black sandstone to mudstone. 
 
 

11 
  

Basaltic scoria 
breccia 
  

White Pass 137 
 
WPA 
  

<1 m 
 
Normal 
  

  
  

This facies occurs in thin to thick, normally graded beds, and is composed of very angular 
scoria clasts (average 2-4 mm, max 10 mm). The scoria clasts are red to dark brown, and 
contain ovoid to highly contorted vesicles. The abundance of feldspar microlites is variable. The 
matrix makes up 20–95 vol.%, and the clast-supported varieties have monomodal grain size 
distribution and are cemented by white zeolites (Fig. 13). 
In a cliff close to White Pass (unit 137), the gently undulating beds occur in a 70-100-m-thick 
succession that is discordant to the regional strike. The orientation of beds in the section 
defines an upward arch (Fig. 13), defining a scoria cone structure. This succession includes 
scattered <2-m-long depressions in fine-breccia beds that contain 0.5-1 m clasts. The unit 137 
is interbedded with a minor amount of beds of facies 9, and a couple of them show high 
concentration of accretionary lapilli. 



 

12 Vesicular basalt White Pass 
 
CPA, WPA 

0.3 m – 3 m   The basalt has sharp contacts and is conformable with bedding. Coherent vesicular basalt 
contains ellipsoidal vesicles (1-2 cm across) filled by secondary minerals (zeolites). In unit 62 at 
Chinook Pass, the size of vesicles increases upwards, and the vesicles occur in bands. Large 
tortuous cavities up to 10 cm long are common in the Cougar Lake section. No associated 
brecciated facies is present, except for one, poorly preserved outcrop at White Pass (unit 107) 
where basalt is overlain by mafic volcanic breccia. 
 

13 Flow-banded dacite Cougar Lake 
 
CPA 

30 m   Feldspar crystals (>20 vol.%, <1 mm) and flow-banding in this coherent facies contrast with the 
typically massive Miocene Tatoosh sills. The vertical and horizontal extent of the dacite remains 
undetermined due to erosion and difficult access, but it is possibly up to 30 m thick and 
continuous over several hundred meters laterally; the top of the unit is inaccessible. It directly 
overlies facies 9 with a sharp contact. No flow-banded clasts that could have been derived from 
this dacite body were found in the Ohanapecosh Formation. 
 

14 Massive mafic 
sandstone 

White Pass 
 
WPA 

<1 m 
 
Massive 

  Beds of relatively well-sorted, massive mafic sandstone mostly consists of red-oxidized to dark 
grey, poorly vesicular scoria clasts (>95 vol.%) of probable mafic composition and feldspar 
crystal fragments (<2 vol.%); fiamme are absent. The cement is composed of zeolites and other 
secondary minerals. The scoria clasts are made of minor feldspar laths and ferromagnesian 
phases. The vesicles are ovoid to highly contorted. 
 

15 Fine, dense clast 
volcanic breccia 

Chinook 51 
 
CPA 

10 cm – 2 m 
 
Normal, or 
reverse to 
normal 

  This facies is normally graded breccia dominated by pale grey, grey and black dense clasts; 
rare fiamme of similar size are also present. Clast size averages 8-10 mm; largest clasts are 25 
mm across. The pale grey clasts contain minor feldspar crystals (<10 vol.%). The proportions of 
matrix and clasts vary from unit to unit, but dense clasts are commonly >60 vol.%. 
 

16 Normally or reversely 
graded fiamme 
mudstone 

Cougar B13 
 
CPA, WPA 

<1 m 
 
Normal or 
reverse 

  Normally or reversely graded fiamme mudstone is matrix supported. The average fiamme size 
is 2–4 mm; coarser fiamme (up to 50 mm) are minor. Rare cross laminae, dense clasts and 
wood occur. 
 

Note: CPA, Chinook Pass association; WPA, White Pass association; JCA, Johnson Creek association. 

 



TABLE 3. INTERPRETATION OF THE OHANAPECOSH FORMATION 
Facies Lithofacies characteristics Transport process Current behaviour Eruption-fed versus 

resedimented products 
Environment at source 

1, 2, 
3, 4, 5 

Extremely thick (>20 m), laterally 
continuous beds, overall matrix-
supported. Commonly 
dominated by angular pumice 
clasts; rich in crystal fragments. 
Facies 1, 2 and 3 have a basal 
dense clast breccia that is 
dominated by angular to sub-
rounded dense clasts. Facies 5 
spans from matrix- to clast-
supported (20-60 vol.% matrix). 

 
 
 
High-concentration 
density current, 
weakly cohesive 
 
 
 
 
 
 
 
High-concentration 
density current, 
moderately 
cohesive 

Non-cohesive current, deposited 
under some degree of turbulence. 
Sub-rounded coarse dense clasts 
in basal breccia suggest accidental 
pick-up. Reverse grading in facies 
4 probably explained by lower 
density of larger pumice clasts 
present in the upper part of the 
bed, or delayed waterlogging.  

Extreme thickness, abundance 
of angular pumice clasts and 
crystal fragments suggest 
products from explosive 
eruptions, fed directly from 
voluminous pumice-rich density 
currents. 

Presence of facies 7 and 8, wood and 
accretionary lapilli in the beds of 
volcaniclastic sequence of the 
Chinook Pass association suggests 
the entire sequence to be mostly 
derived from subaerial environment. 
Basal breccia composed of sub-
rounded dense clasts suggests 
resedimentation of clasts abraded in 
above wave-base environment. 
Angularity of pumice clasts denotes 
short subaerial transport. 
 

5, 6 Extremely thick (>20 m), laterally 
continuous beds that span from 
matrix- to clast-supported beds 
(20-60 vol.% matrix), and 
dominated by pumice clasts and 
fiamme or dense clasts. Rich in 
crystal fragments. Normally 
graded or massive, absence of 
basal dense clast breccia. 

Absence of dense clast breccia 
and weak grading suggest a more 
coherent current behaviour. Sub-
rounded coarse clasts in facies 6 
indicate weak clast abrasion during 
transport, or accidental pick-up. 

Very thick to extremely thick 
beds, and abundance of 
angular pumice clasts and 
crystal fragments suggest 
products from explosive 
eruptions or resedimentation. If 
eruption-fed, directly fed from 
voluminous pumice-rich density 
currents. If resedimented, 
pumice clasts were previously 
saturated (e.g. Allen and 
Freundt, 2006). 
 

Where preserved, angularity of 
pumice clasts denotes short subaerial 
transport. Sub-rounded dense clasts 
suggests at least partial source from 
above wave-base environment. 
Presence of wood and accretionary 
lapilli in other beds of the White Pass 
association suggests that part of the 
sequence is derived from subaerial 
environment.  

7 Very thick, normally graded 
breccia-conglomerate that is 
dominated by sub-rounded to 
rounded dense clasts at its base. 
Pumice clasts and fiamme 
absent. 

High-concentration 
density current 

Strong normal grading in relative 
thin bed indicates weakly cohesive 
current. 

Relative small thickness and 
absence of pumice clasts and 
fiamme suggests deposition 
from a density current. 

Resedimentation of dense clasts 
previously abraded in above wave-
base environment. 

Table 3



8 Thick, laterally continuous, 
reversely to normally graded, 
well sorted beds. Dominated by 
sub-rounded pumice clasts and 
former glass shards. Numerous 
very thin mudstone interbeds 
composed of presumed former 
glass shards do not interrupt 
grading in pumice clasts. 
Accretionary lapilli and wood are 
present in few mudstone 
interbeds. 

Vertical settling Distinctive reverse grading and 
presence of sub-rounded pumice 
clasts records saturation grading 
from progressive waterlogging of 
pumice clasts as a function of their 
size. Beds with normal grading 
indicate that the coarsest particles 
sank faster than the smaller ones, 
in a type of sedimentation 
dominated by hydraulic sorting. 
Interbeds of former glass shards 
reflect complex sedimentation of 
fine-grained clasts 
contemporaneously with the 
sinking of the pumice clasts. 
Origins could be abrasion of 
pumice clasts that formed the raft, 
ash from disintegration of 
pyroclastic flows at the shoreline, 
or fallout of ash from atmospheric 
ash plumes. 
 

Eruption-fed, and formed in a 
two-step process: (1) a pumice-
forming subaerial explosive 
eruption deposited pumice 
lapilli and ash onto the water 
body, forming pumice rafts 
(e.g. White et al., 2001), and 
(2) subsequent waterlogging in 
pumice rafts and settling of the 
pumice clasts, ash, wood and 
accretionary lapilli. 

The accretionary lapilli demonstrate 
the presence of wet, ash-rich clouds 
(Cas and Wright, 1991); wood 
indicates source to be at least partially 
subaerial. The formation of pumice 
rafts is likely to be associated with 
deposition of pumice clasts that 
cooled in the atmosphere (Whitham 
and Cas, 1991). 

9 Relatively thin (<1 m), laterally 
continuous, normally graded to 
massive beds. Contains mostly 
fine-grained (<2 mm) 
components. Wood, pumice 
clasts and accretionary lapilli can 
occur in small amount. 
 

Low density 
density current; 
vertical settling 

Good grading and fine-grained 
nature of the beds indicate 
deposition from low density 
currents or vertical settling 
processes. 

Vertical settling of explosive 
eruption-fed products or 
resedimentation of saturated 
unconsolidated aggregates. 

Subaerial eruption plumes deposited 
onto water, or resedimentation of 
unconsolidated aggregate. 

11 Normally graded, laterally 
continuous, clast-supported and 
dominated by angular scoria 
clasts and crystal fragments, 
interbedded with beds of fine 
sandstone and mudstone (facies 
9) that rarely contain 
accretionary lapilli. Unit 137 in 
White Pass section shows a 
scoria cone architecture with 
impact sags, and is associated 
with vesicular basaltic intrusions 
(facies 12). Dip and strike differ 
from general structure of the 
Ohanapecosh Formation. 

Grain flow, low 
density density 
current; vertical 
settling 

Normal grading, and clast-
supported facies indicate 
deposition from overall non-
cohesive, dilute density current, 
vertical settling or grain flow. 

Scoria cone, impact sags, 
accretionary lapilli in mudstone 
interbeds and scoria-clasts-
dominated deposits suggest 
eruption-fed facies, such as 
surtseyan. However, slopes on 
scoria cones are typically 
unstable and partial 
resedimentation of loose 
aggregates over a short 
distance is probable. 

Scoria cone, impact sags and 
accretionary lapilli indicate subaerial 
or shallow-water (<30 m) vent 
environment. Different dips and 
strikes with other beds of 
Ohanapecosh Formation denote this 
facies to be localized and intrabasinal. 
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