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Summary 

Modelling the impact of an alien invasion: Harmonia axyridis in Britain. 

Richard Comont, Linacre College, Trinity term 2013 

Submitted for the degree of Doctor of Philosophy 

 

Harmonia axyridis is a ladybird native to Asia, but introduced widely as a biocontrol agent.  It is 

invasive and detrimental to native species in North America, which meant its arrival in Britain was met 

with concern.  Establishment was seen as an opportunity to track the spread of an invasive alien 

species (IAS) whilst also monitoring impacts on native species. 

 

The aims of this thesis were to examine the responses of native British ladybirds to the arrival of H. 

axyridis, to establish the effect of the IAS on native ladybirds when compared to other drivers, and to 

investigate the possible facilitation of the H. axyridis invasion by natural enemy release.   

 

Modelling ladybird distributions with life-history and resource-use traits found that species predatory on 

a wide range of prey families had larger range sizes than those which ate fewer prey types.  This 

suggests that the wide diet breadth of the IAS is likely to have played a critical role in the species’ 

rapid spread.  Dietary niche overlap between H. axyridis and native ladybirds showed positive 

correlation with declines of native ladybirds.  This indicates that the IAS is playing an important role, 

but the significance of urbanisation suggests habitat destruction is also significant. 

 

Abundance of H. axyridis was influenced by habitat type and aphid abundance, but not by the native 

ladybird community, suggesting the spread of the IAS will not be slowed by biotic resistance.  

Harmonia axyridis is attacked by native parasitoids, but at a much lower rate than is the native 

Coccinella septempunctata, in line with natural-enemy release theory.  There was no evidence of 

attack rate increasing with time since arrival in an area. 

 

Overall, H. axyridis is an extremely successful IAS, with detrimental effects on native ladybirds which 

are likely to continue.   
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Chapter 1. General introduction 

1. 1.1. Defining alien species and invasive alien species 

The United Nations Convention on Biological Diversity (CBD: http://www.cbd.int) defines an alien 

species as ‘a species, subspecies or lower taxon, introduced outside its natural past or present 

distribution; includes any part, gametes, seeds, eggs, or propagules of such species that might survive 

and subsequently reproduce’ (COP 6, decision VI/23).  The term has many synonyms in the literature, 

including non-native, introduced, exotic, foreign, and non-indigenous, but is not synonymous with 

invasive alien species (IAS), which are defined by the CBD as ‘an alien species whose introduction 

and/or spread threatens biological diversity’ (COP 6, decision VI/23).   

 

1. 1.2. Impacts and costs of Invasive Alien Species 

IAS have long been recognised as a significant component of environmental change worldwide, often 

resulting in a significant loss in the biological diversity and function of invaded ecosystems (Wittenberg 

& Cock, 2001; Hulme et al., 2009). They have been identified as one of the  ‘Evil Quartet’ of major 

drivers of biodiversity loss worldwide (Diamond, 1984), and more recently highlighted in the Millennium 

(2005) and UK National (2011) Ecosystem Assessments, and included in the IUCN’s Direct Threats 

Taxonomy (Salafsky et al., 2008).  It has been estimated that the direct costs of IAS amount to around 

US $1.4 trillion, approximately 5% of global GDP (Pimentel et al., 2001), with annual costs of £1.7 

billion within Britain alone (Williams et al., 2010). 

 

Some biological invasions have become major public issues in the invaded countries as a result of the 

damage caused. For example, the cane toad Rhinella (Bufo) maritima (L) was first introduced into 

northern Australia in 1935 (Easteal, 1981) to control the cane beetle Dermolepida albohirtum 

(Waterhouse) (Doody et al., 2009). It failed to control the beetle, instead having significant negative 

effects on native fauna including mammals, lizards, snakes and the freshwater crocodile Crocodylus 

johnsoni (Krefft) (Braithwaite & Griffiths, 1994; Doody et al., 2009; Shine, 2010) 

 

http://www.cbd.int/
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1. 1.3. Trends in arrival, establishment and spread of IAS 

Alien species have been introduced into new areas since ancient times, particularly in Europe, and in 

some cases the impact of the introduction was so long ago that the biodiversity effects can no longer 

be seen (Genovesi & Shine, 2004).  Occasionally, the introduced species has become an important 

link in the modern-day ecosystem, e.g. the rabbit Oryctolagus cuniculatus L. (Lagomorpha: 

Leporidae), which is the primary non-domestic grazing animal of grassland in Britain (Asher et al., 

2001).  Although some introductions are ancient in origin, the rate of introductions has increased 

rapidly over the last two hundred years (Hulme et al., 2009), paralleling the rise global trade, 

particularly in the last half-century (Beggs et al., 2011; Roy et al., 2011c).   

 

Within Europe, the identity of IAS, and their rate of arrival, has been catalogued by the Delivering Alien 

Invasive Species Inventories for Europe project (DAISIE), which currently lists 10,961 alien species 

introduced within Europe alone.  The majority of these (6,630 species) are plants, followed by 

terrestrial invertebrates (2,426 species), and aquatic marine organisms (1,000) (Hulme et al., 2009; 

DAISIE, 2013b).  The rate of introduction of alien arthropods have increased from around 0.05 species 

per year (15 species introduced 1500-1799), to more than 19 species per year in the 21
st
 century (174 

species introduced 2000-2008) (Roy et al., 2011c). Similarly, introductions of plant species have 

increased massively post-1800 (Pysek et al., 2009). 

 

Recent analyses highlight that the invasion of new regions by alien species is closely tied to human 

activity (Pysek et al., 2010; Essl et al., 2011a).  Pysek et al. (2010) found that economic and 

demographic variables were significant predictors of patterns of introduction in Europe, as they 

integrate the effects of factors that determine invasion success such as human disturbance and 

propagule pressure (a composite measure of introduction effort, comprising estimates of the number 

of separate introduction events, and the number of individuals introduced per event).  

 

Essl et al. (2011a) stressed the relevance of the well-known time lags between introduction, 

establishment and spread in invasions by currently-established alien species. These analyses 

revealed that, for several taxonomic groups, current numbers of established IAS are more closely 

related to socioeconomic indicators from the year 1900, than to equivalent indicators from 2000. This 
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`invasion debt’, however, was not detected for terrestrial insects, which are better accounted for using 

current indicators, which may reflect the short generation times and high dispersal capacities of most 

arthropod species.  In particular, the flight capabilities of most insects allow them the possibility of 

rapidly exploring a range of habitats and circumvent barriers between the original site of introduction 

and patches of suitable habitat in the surrounding area (Essl et al., 2011a). 

 

1. 1.4. Pathways of introduction and spread – how do IAS arrive? 

At its simplest, alien species can arrive either by deliberate introduction, accidental human-mediated 

transfer, or natural spread from an introduced population, termed ‘leading-edge dispersal’.  However, 

Hulme et al. (2008) recognise six distinct introduction pathways, 1 – deliberate release, 2 – 

unintentional escape, 3 – unintentional contaminant of another commodity, 4 – unintentional stowaway 

on transport, 5 – natural dispersal aided by human-made corridors (such as the Suez canal), 6 – 

unaided natural dispersal. 

 

The relative importance of these various pathways varies between taxa, and a single species may be 

introduced using multiple pathways (Pyšek et al., 2011).  Of the known pathways for terrestrial 

vertebrates arriving in Europe, the most important single pathway was deliberate release (>300 

invasion events), ahead of escape (around 190 invasions), with unintentional transport (58 recorded 

invasions, contaminant and stowaway pathways not distinguished) and natural dispersal (56 

invasions) making up much of the remainder.  For terrestrial invertebrates, by contrast, the 

unintentional transport pathway (both stowaway and contaminant), with approximately 6750 invasion 

events, dwarfs all other invasion routes (the next highest is the 750 deliberate releases) (DAISIE, 

2013a). 

 

Species can also arrive by ‘piggybacking’ on the movement of other species.  This is particularly likely 

where some or all of the life-histories of the two species are tightly linked, such as leaf-miners or gall-

causers which spend the majority of their life cycles not just on but inside a host plant.  For example, 

both the gall midge Obolodiplosis robiniae (Haldeman) (Diptera: Cecidomyiidae) and its parasitoid 

Platygaster robiniae Buhl & Duso (Hymenoptera: Playgastridae) were accidentally introduced to 

Europe on imported specimens of the black locust tree Robinia pseudoacacia L. (Fabales: Fabacaea) 



4 
 

(Buhl & Duso, 2008; Pernek & Matosevic, 2009; Kim et al., 2010).  Similarly, the worldwide movement 

of honey bees, Apis mellifera L. (Hymenoptera: Apidae), facilitates the movement of bee parasites 

such as the mite, Varroa destructor Anderson & Trueman (Parasitiformes: Varroidea) (Roy et al., 

2011c).   

 

Other linked introductions may be more the product of chance.  The Asian tiger mosquito, Aedes (= 

Stegomyia) albopictus (Skuse) (Diptera: Culicidae) has been introduced worldwide, and has been 

reported to spread as an adult stowaway in vehicles (Rabitsch, 2010), as a larva in shipments of lucky 

bamboo, Dracaena sanderiana (Mast) (Asparagales: Asparagacaea) (Linthicum et al., 2003) and as a 

drought-resistant egg on shipments of car tyres (Adhami & Murati, 1987). 

 

1. 1.5. From alien to invasive 

Only a small subset of the alien species introduced to a new area will actually become established 

(defined as ‘the process of an alien species in a new habitat successfully producing viable offspring 

with the likelihood of continued survival’: COP 6, Decision VI/23), and a yet smaller subset of these will 

go on to become invasive (Lodge, 1993).  This subsetting of establishment and invasion is often 

referred to as the ‘tens rule’, after one of the first papers to examine the relative proportions  of 

introductions, establishment and invasion found that, for plants in Britain, approximately one species 

establishes from every ten introduced and, of every ten established species, one will become invasive 

(Williamson & Fitter, 1996).  Later research in other areas and taxonomic groups have found little 

empirical evidence for these particular proportions (Jeschke & Strayer, 2005; Vander Zanden, 2005).  

 

Blackburn et al (2011) set out a unified framework for biological invasions, combining the barrier-

based framework of botanists (Richardson et al., 2000) with the stage-based framework commonly 

used by zoologists (Williamson, 1996; Williamson & Fitter, 1996). This framework sets out the process 

of invasion as four distinct stages (transport, introduction, establishment, and spread), each containing 

barriers (geographical barriers containing a species in its native range, barriers to survival in 

captivity/cultivation, barriers to survival and reproduction in the introduced range, barriers to dispersal 

in the introduced range, and environmental barriers in the introduced range).  Failure to circumvent a 

barrier results in failure to become invasive, although the exact outcome varies depending on which 
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barrier proved impossible to circumvent, from species which persist as sustainable populations 

established in the introduced range, back to species which never leave their native range (Blackburn 

et al., 2011). 

 

1. 1.6. From alien to invasive – the traits of invasive species 

Establishing the traits which allow species to become invasive (and drive circumvention of the barriers 

at each stage of the invasion process) has been a major goal of invasion biology for many years. 

Although no single trait has emerged as the overall driver across taxa, regions and stages, some 

generalisms have emerged (Jeschke & Strayer, 2008; Blackburn & Jeschke, 2009; Jeschke et al., 

2012).  Species with large native distributions tend to be more likely to be introduced (Jeschke & 

Strayer, 2005, 2006), while establishment is largely dependent on the organism’s tolerance of 

temperatures in the introduced range (particularly for overwintering survival in temperate regions) 

(DeBach, 1964; Walther et al., 2009). For this reason, climate matching has often been used to 

consider the likelihood of establishment for deliberate introductions (van Lenteren et al., 2006).  

 

Some generalisations of predictors of invasiveness can be made, particularly within groups.  For 

plants, where the majority of this work has been done, the ability to reproduce vegetatively is a good 

predictor of the ability to establish (Kolar & Lodge, 2001; Kuster et al., 2008; Lososova et al., 2008), 

and elevated reproductive and growth rates correlate with spread of invasive plants in most studies 

(Kolar & Lodge, 2001; van Kleunen et al., 2010).  Additionally, studies have found that several other 

traits correlate well with invasiveness, including the leaf-area allocation, physiology, shoot allocation, 

size, and fitness (van Kleunen et al., 2010), the presence of perfect flowers, seed size, and the length 

of time fruit remains on the plant (Reichard & Hamilton, 1997), amongst several others.   

 

In animals, and particularly in insects, good dispersal ability is often important in both establishment 

and invasion (van Lenteren et al., 2006; Robinet & Liebhold, 2009; Essl et al., 2011a), as it allows 

rapid spread beyond the original point of introduction.  Species which are able to utilise a wide range 

of habitat types (habitat generalists) and those which are able to feed (and survive and reproduce 

successfully) on a wide range of food species/types (dietary generalists) are more likely to become 

invasive (van Lenteren et al., 2006; Jeschke & Strayer, 2008). Particularly for invertebrates, fecundity 
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(large brood sizes and multivoltinism) appears to be important in the invasion process, particularly in 

circumventing the barrier between establishment and invasion (Grabowski et al., 2007; van Lenteren 

et al., 2008).   

 

In general, the one thing that all invasive species have in common is that, when presented with an 

opportunity to establish and spread, they were capable of taking it. This suggests that the key features 

may be more to do with ecological flexibility than any innate trait of invasiveness, and this has lead to 

the theory than the habitats and communities invaded may be as important to an invasion’s success 

as the species invading (Drake et al., 1989; Thebaud et al., 1996; Lonsdale, 1999). 

 

1. 1.7. Invasibility of native communities – the diversity-invasibility hypothesis 

There is evidence to suggest that the invasibility of the ecosystem may be as important as traits of the 

IAS in determining the success of invasions (Drake et al., 1989; Thebaud et al., 1996; Lonsdale, 1999; 

Davis et al., 2000).  The idea that invasibility of a community is negatively related to its diversity can be 

traced back to Elton’s work on invasion ecology (Elton, 1958), and was generalised to a theory of 

resource availability by Davis et al (2000).  It states that the displacement of native species by IAS is 

facilitated by degradation of the ecosystem, which moves the competitive advantage away from 

previously well-adapted native species, to newly-arrived IAS (Howarth, 1991; Suarez et al., 1998; 

Davis et al., 2000; Seabloom et al., 2003; Evans, 2004; Powell et al., 2011).  This may result from 

increased stress for native species or the erection of larger barriers to recruitment for natives 

(Gurevitch & Padilla, 2004; MacDougall & Turkington, 2005; King & Tschinkel, 2008), making it easier 

for IAS to colonise depauperate or highly-dynamic systems, rather than replacing native species 

occupying niches in more settled communities.  

 

For any species, the environment is a mosaic of habitat patches of varying quality, ranging from highly 

suitable to uninhabitable.  IAS must establish in, and spread from, initial source habitats to populate 

the mosaic of habitats encountered in new landscapes, and the most invaded habitats appear to be 

those which have been extensively anthropogenically modified (Lopez-Vaamonde et al., 2010; Evans 

et al., 2011).   
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1. 1.8. Anthropogenic habitat change 

The dominant landscape influence in the late twentieth and early twenty-first century is the huge 

modification of natural landscapes by humans (Evans et al., 2011). Major modifications (largely for 

urbanisation and agriculture) include the excess supply of nutrients (direct and indirect fertilisation) 

and ecosystem simplifications (functional, structural, biotic, and phylogenetic homogenisations), which 

increase the number of vacant niches and reduce the resilience of the ecosystem, greatly increasing 

the likelihood of establishment and spread of alien species (Lockwood & McKinney, 2001; Shea & 

Chesson, 2002; Canfield et al., 2010).  The original hypothesis of Elton (1958) was that anthropogenic 

activities such as cultivation simplify ecosystems, reducing the diversity and abundance of resident 

native species, lowering the biotic resistance to invasion via competition and predation (Elton, 1958; 

MacArthur, 1972). Therefore the theory of biotic resistance states that invasibility should decrease as 

community biodiversity increases: IAS should be largely confined to low-diversity systems while high-

diversity systems have low invasibility and are relatively immune to invasion. 

 

Recently, however, emphasis has shifted to stress the importance of productivity (Davis et al., 2000; 

Levine, 2000) and niche opportunity (Shea & Chesson, 2002) in the invasibility of an area or habitat, 

as highly-productive habitats can also favour invasion, even in the continuing presence of a highly-

diverse native community. This can lead to positive correlations in the numbers of alien and native 

species at some spatial scales, rather than the negative correlations predicted by the hypothesis of 

biotic resistance (Stohlgren et al., 1999; Fridley et al., 2007). For example, in the Mediterranean 

coastal scrub habitat of southern California, both alien and native spiders occur in their greatest 

numbers in the most productive habitat remnants (Burger et al., 2001; Bolger et al., 2008). Local 

productivity (partially expressed as high numbers of spider prey) of individual remnants depends on 

landscape context, with likely enhancement from surrounding disturbed (urban) areas within this 

landscape (e.g., from increased water availability due to run-off from asphalt surfaces; Bolger et al., 

2008). 

 

Anthropogenic habitat modifications also in part increase the invasibility of native ecosystems by 

deleteriously affecting the persistence of native species, both directly, and indirectly as the result of 

negative interactions with IAS.  However, for both fish and birds in Europe and North America, 
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different characteristics corresponded with invasion success for alien species, and extinction risk for 

native species, rather than opposite ends of the spectrum of each trait.  Only one out of 20 

characteristics, range size, was correlated both positively with invasion success, and negatively with 

threat status (Jeschke & Strayer, 2008; Blackburn & Jeschke, 2009). 

 

It is possible that human-modified habitats which mimic the habitats of IAS in their native range (e.g. 

where the habitat itself has been introduced, such as crop species cultivated in a similar manner 

around the world) may be especially suitable for IAS when compared to native species confronted by a 

new habitat (Evans et al., 2011). For example, the Indo-European ladybird Coccinella septempunctata 

L (Coleoptera: Coccinellidae) continues to reproduce more successfully in North American fields of the 

Indo-European crop alfalfa (Medicago sativa L) (Fabales: Fabacaea) than does its close relative 

Coccinella transversoguttata Faldermann (Coleoptera: Coccinellidae), a species native to North 

America, even as aphid populations in the alfalfa fields of northern Utah have subsided to low levels 

after the initial establishment of C. septempunctata (Kajita & Evans, 2010).   

 

1. 1.9. Habitat loss and fragmentation 

The major modifications of urbanisation and agriculture lead to whole-scale loss and fragmentation of 

natural habitats by reconfiguring entire landscapes (Forman, 1995). Habitat loss, degradation and 

fragmentation are considered leading causes of biodiversity loss (Millennium Ecosystem Assessment, 

2005), and attention has been drawn to the likely frequent interaction between these and IAS as major 

drivers of global decline in biodiversity (Didham et al., 2007; Bolger et al., 2008).   

 

Habitat fragmentation and degradation negatively affect native community biodiversity, particularly 

through the island biogeography mechanism (MacArthur & Wilson, 1967), although in general the 

effects are weaker, less consistent and more insidious than those of habitat loss (Fahrig, 2003; Ewers 

& Didham, 2006).  IAS may also be more able to colonise fragmented habitats as the biotic resistance 

of the native community decreases.  For example, the invasion of the Argentine ant in southern 

California was facilitated by habitat fragmentation because smaller fragments provide less refugia for 

native species, and increase the chances of their local extinction (Suarez et al., 1998; Suarez & Case, 

2003)  
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The ability of IAS to colonise highly-productive disturbed habitats can allow them to reach high 

abundance (Didham et al., 2007), which promotes subsequent dispersal into habitat fragments (Evans 

et al., 2011). The detrimental effects of this habitat spill-over can be exacerbated when the species 

leaving the crops become established in native habitats. For example, parasitoids of agricultural pest 

Lepidoptera were introduced as biological control agents to Kauai Island, Hawaii, early in the twentieth 

century, expanding to establish large populations attacking native moth species across the island 

(Henneman & Memmott, 2001; Sheppard et al., 2004). 

  

1. 1.10. Climate change: a particular form of anthropogenic habitat change 

The abiotic context of the ecosystem can also govern the impacts of IAS. The climate of an area plays 

a central role in allowing alien species to establish there (Elton, 1958; Williamson, 1996). Roura-

Pascual et al. (2011) found that climatic suitability and the extent of human modification of habitats are 

primarily responsible for the global distribution of the Argentine ant, Linepithema humile (Mayr) 

(Hymenoptera: Formicidae), while Kobelt and Nentwig (2008) also found greater than expected 

number of introductions of alien spiders to Europe from the eastern Palearctic and Indomalayan 

versus other geographic regions, attributed to the relatively similar climates of these regions and 

Europe.  

 

Intriguingly, the microclimate of fluctuating temperature and humidity in transport (e.g., inside a 

standard ship container) may further influence patterns of invasion: Kobelt and Nentwig (2008) 

hypothesise that a superior ability to survive such conditions may account for the tendency of alien 

spider species to be of larger body size than counterparts in Europe, as temperature and humidity 

fluctuations are high stress factors for spiders, but which are buffered by body size, with smaller 

species disproportionately affected (Pulz, 1987), while Nedved et al (2011) found that most of the 

arachnids invasive in Europe are species able to survive long periods without food. 

 

Climate change has the potential to remove or diminish currently-existing barriers to some alien 

species at every stage of the invasion process (Hellmann et al., 2008; Walther et al., 2009): it can 

change trade pathways and characteristics, e.g. by generating new consumer habits; it alters the 
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establishment and survival probabilities by changing the climate and microclimates of an area, e.g. 

greenhouse species that were formerly not able to survive outdoors may have the chance to do so (for 

example the southern European predator Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) in the 

Netherlands, (Aukema & Loomans, 2005)).  The distributional ranges and the niche breadth of species 

can change: climate change may even change the invasiveness of species, by selecting for invasive 

traits or allowing them to be expressed, or by tipping the competitive advantage away from one 

species and towards another altering the invasibility of habitats due to the breakup of biotic 

interactions (Walther et al., 2009; Schweiger et al., 2010). Hence an indirect effect of warming may 

occur if a change in temperature has deleterious effects on indigenous species and thereby weakens 

biotic resistance to invasion. For example, indigenous ants become inactive during summer afternoons 

whilst the non-native L. humile, being more tolerant of high temperatures, remains active (Human & 

Gordon, 1996). 

 

As ectothermic species, invertebrates are predicted to react more severely to climate change than 

warm-blooded animals (Maes et al., 2010).  In Britain and Europe, climate change appears to be 

driving the northwards expansion of several taxa (Hickling et al., 2006), including butterflies (Roy et al., 

2001; Altermatt, 2010), bush-crickets (Hochkirch & Damerau, 2009; Wissmann et al., 2009), and 

dragonflies (Ott, 2010).  Global warming is enhancing voltinism and population growth of many 

arthropod species in their existing ranges, which could force more individuals to disperse, so 

extending their native ranges (Hochkirch & Damerau, 2009; Altermatt, 2010).  Additionally, the 

previously-suboptimal areas outside the original range have become more suitable, allowing species 

to establish in regions in which they previously could not survive and reproduce (Walther et al., 2009).  

For example, dragonflies from Africa and the Mediterranean appear to have spread northwards 

(Walther et al., 2009; Ott, 2010), while temperature and dispersal limitation have been found to drive 

invasion patterns in the range-expanding wasp spider Argiope bruennichi (Scopoli) (Aranea: 

Araneidae) in Europe (Kumschick et al., 2011; Krehenwinkel & Tautz, 2013).  

 

The relationship between climate and communities is far from simple, however, and there is no linear 

positive relationship between temperature and arthropod diversity. Many species are adapted to cooler 

climates and suffer when the thermal environment changes, for example alpine species (Johnson et 
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al., 2010).  Additionally, climate change is not itself a straightforward process of thermal alteration, but 

involves changing almost every aspect of annual weather patterns (IPCC, 2007).  Non-thermal 

components of climatic changes, such as an increase in annual precipitation, also have the potential 

to pave the way for invasion by altering the effective invasibility of a habitat.  In California, L. humile 

readily invades mesic but not dry scrub and riparian habitats (Holway, 1998; Holway et al., 2002), and 

the increasingly high summer rainfall has promoted the spread of the species into new areas in 

northern California, including traditionally-dry habitats such as chaparral and high elevation grasslands 

and woodlands (Heller et al., 2008).  

 

A changing climate may act directly in widening the window of opportunity for alien populations to gain 

a foothold that leads to long-term persistence in a new geographic region (Walther et al., 2009) For 

example, in the River Thames in Britain, the Chinese mitten crab Eriocheir sinensis (Milne-Edwards) 

was recorded sporadically in the estuary between 1935 and 1991, but it is thought that low flow events 

following droughts during 1989-91 allowed the species to establish a young population upstream, 

where it rapidly colonized tributaries well upstream of the estuary (Attrill & Thomas, 1996; Clark et al., 

1998). 

 

Although IAS are often opportunist species tolerating broad environmental conditions, specialists can 

also be successful if their requirements are satisfied. For example, monophagous species or host-

specific parasitoids may have a difficult start after introduction, but can prosper if translocated together 

with their hosts, or if these are already available in the introduced range (Buhl & Duso, 2008). The 

same is true for predators, although prey specialisation usually is less developed in predatory species.  

 

1. 1.11. Horizon scanning, risk assessment and management 

Due to the threats posed by IAS, the Bern Convention on the Conservation of European Wildlife and 

Natural Habitats (1979) (known as ‘the Bern Convention’) required signatory governments to ‘strictly 

control the introduction of non-indigenous species’ and the CBD added the requirement to ‘eradicate 

those species which threaten ecosystems, habitats, or species’.  The CBD Guiding Principles laid out 

a three-stage hierarchical approach as the basis for controlling IAS: 
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1. Prevention of IAS introductions between and within states is generally far more cost-

effective and environmentally desirable than measures taken after IAS introduction and 

establishment. 

2. If an IAS has been introduced, early detection and rapid action are crucial to prevent 

its establishment: the preferred response is often to eradicate the organisms as soon as 

possible. 

3. Where eradication is not feasible or resources are not available, containment and 

long-term control measures should be implemented 

 

In practical terms, this increased awareness of the potential negative effects of IAS has led to the 

implementation of stringent regulations (such as major pre-release risk assessments) on the release of 

biocontrol agents (van Lenteren et al., 2006).  Consequently, this pathway is declining in importance 

for most groups compared to accidental introduction via the contaminant or stowaway pathways 

(Kenis et al., 2007; Hulme et al., 2008; Engelkes & Mills, 2011; Roy et al., 2011c).  

Pre-release risk assessments and horizon-scanning efforts (looking at species which may potentially 

arrive) attempt to quantify the risks of species in turn arriving, establishing and spreading.  The 

movement of species – particularly deliberate releases for farming, forestry, biocontrol and others – 

has a net economic and social benefit, with very few species becoming problematic: for these 

problematic species, the most cost-effective way to reduce impacts is to prevent introduction (Keller et 

al., 2011).  Accurate risk assessment tools can support policy and management efforts to reduce the 

overall impacts from harmful invaders while allowing importation of beneficial species.  The logic of the 

risk assessment process is that patterns in historical data can be identified and applied to future 

species introduction events to determine the likelihood that each species will pass through the 

establishment and spread steps to become invasive.   

 

A standard approach has been to look for traits which confer an aptitude for invasiveness, in order to 

identify risk species.  Many studies have taken this approach for plant species (Reichard, 1997; 

Reichard & Hamilton, 1997; van Kleunen et al., 2010), but it has also been used for some vertebrate 

and invertebrate species (Kolar & Lodge, 2002; Louda et al., 2003; Marchetti et al., 2004a, b; Vila-

Gispert et al., 2005; Lenz et al., 2011). 
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This is a particularly complex area and, there is no single, consistent cause of invasiveness.  It has 

been suggested that the different stages that IAS pass through (introduction, establishment and 

spread) may require separate, even conflicting traits (Marchetti et al., 2004a; Burns, 2006), and that 

these will vary greatly depending on the type of organism and the invaded ecosystem, with different 

combinations of traits equipping species to invade different ecosystems (Thebaud et al., 1996).  Some 

studies have even found that individual-level traits such as inquisitiveness can vary considerably 

between individuals, and could prove to be the difference between introduction and successful 

establishment, or between establishment and speed of spread (Cote et al., 2010; Chapple et al., 

2011). 

 

Research such as this has fed into risk assessment frameworks, particularly to assess the potential 

non-target effects of species deliberately introduced for biocontrol (Rosecchi et al., 2001; Louda et al., 

2003; Bartell & Nair, 2004; Gevrey et al., 2006; Essl et al., 2011b; Keller et al., 2011).  A retrospective 

risk analysis of the widespread invasive ladybird Harmonia axyridis (Pallas) (Coleoptera: 

Coccinellidae) in Europe found that the species showed many of the more widely-accepted risk 

indicators for IAS for Europe.  The species is able to establish outside, has good dispersal capabilities, 

both natural and anthropogenically-assisted, occupies a broad range of habitats, has high 

reproductive potential, broad climatic tolerance, and a wide dietary range, including a propensity to act 

as an intraguild predator within the aphidophagous guild (Ware et al., 2005; Majerus et al., 2006; 

Berkvens et al., 2008a; Roy & Wajnberg, 2008; Brown et al., 2011a).  Its activities are thought to have 

resulted in the reduction of populations of native predators in North America, where it is also known as 

a nuisance species; and it may develop further as a pest of fruit in North America (van Lenteren et al., 

2008).  

 

1. 1.12. The Enemy Release Hypothesis (ERH) 

The potential lack of natural enemies, particularly specialists, attacking IAS in the introduced range is 

the foundation of the Enemy Release Hypothesis (ERH) (also referred to as the ‘escape-from-enemy 

hypothesis’, ‘enemy-free space hypothesis’, or ‘enemy escape’) (Elton, 1958; Jeffries & Lawton, 1984; 

Wolfe, 2002).  The assumptions of this theory are that natural enemies play a role in regulating 
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populations, that the regulatory effect of natural enemies is stronger in the native range than in the 

introduced range for IAS, and that the decline in regulatory pressure in the invaded range allows 

increased population growth of the alien species (Elton, 1958; Colautti et al., 2004; Roy et al., 2011b).  

This increased population growth may arise through two mechanisms: regulatory release (where a 

species is released from the strong regulatory effect of a natural enemy, increasing survivorship or 

other demographic parameters), or compensatory release (also known as the Evolution of Increased 

Competitive Ability (EICA) hypothesis), where energy normally (in the native range) devoted to 

resisting predation can instead be diverted to population growth (Shea & Chesson, 2002; Roy et al., 

2011b). 

 

Though intuitively attractive, the ERH lacks definitive supporting empirical evidence (Wolfe, 2002).  For 

the ERH to be supported in full, a decrease in the number of successful attacks by natural enemies of 

an IAS in its invaded range must be the primary cause of greater population growth in the invaded 

range compared to the native range of the IAS (Roy et al., 2011b).  A decrease in abundance and 

species richness of natural enemies in the invaded range is a common finding in studies of IAS 

(Torchin et al., 2001; Torchin et al., 2003; Torchin & Mitchell, 2004; Cottrell & Shapiro-Ilan, 2008; 

Blumenthal et al., 2009), but few studies have quantitatively compared the native and invaded ranges, 

or considered contributing factors such as time since colonisation, so the evidence for the ERH 

remains largely circumstantial (Torchin & Mitchell, 2004; Liu & Stiling, 2006).   

 

The invasion process certainly seems able to act as a filter to remove some or all of the natural 

enemies – particularly parasites and pathogens – which co-occur with IAS in their native range 

(Torchin & Mitchell, 2004).  This is likely to happen in several different ways: the IAS may arrive as a 

life-stage which is not attacked by a parasitoid species, or the invaded range may not contain another 

host species needed by parasites with complex life cycles (Torchin et al., 2003; Torchin & Mitchell, 

2004).  Alternatively, the infected individuals of the invasive species may not survive the introduction 

process, or the parasite may not be able to survive in the invaded environment (Torchin et al., 2002; 

Yang et al., 2010).  Finally, the low numbers of introduced individuals characteristic of introductions 

and founder populations may purge IAS of parasites, as only a subset of the native population is 

introduced, and density-dependent transmission breaks down at small population sizes (Torchin et al., 
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2003; Torchin & Mitchell, 2004).  While predators, and other natural enemies, are likely to occur in the 

invaded range, they are not co-evolved with the IAS to the same extent as predators in the native 

range, and may take some time to adapt to a novel food resource (Berkvens et al., 2008b; Koyama & 

Majerus, 2008; DAISIE, 2009). 

 

Additional environmental changes that affect alien species also can result in a disconnect or 

decoupling of predator-prey and parasitoid-host interactions (Schweiger et al., 2010). For example, 

larvae of the pine beauty moth Panolis flammea Denis & Schiffermüller (Lepidoptera: Noctuidae) in the 

UK exhibit lower levels of parasitism on an introduced food plant than on a native host due to a 

difference in the period of larval suitability on the two host species, resulting in an asynchrony between 

the parasitoid and larvae on the introduced plant (Hicks et al., 2007). 

 

1.1.13. Range of impacts – from co-existence to invasional meltdown 

Once established and beginning to spread, alien species can have a range of impacts.  The majority 

of species show co-existence with the native environment, with negligible deleterious effects.  For 

example, a population of the southern European scorpion Euscorpius flavicaudis (de Geer) 

(Scorpiones: Chactidae) has lived in a dockside wall in Sheerness, Kent, UK since the 1870s with no 

reported detrimental effects (Benton, 1992)  

 

At the other end of this spectrum is the process of invasional meltdown, when the direct and indirect 

effects of IAS combine to produce a synergism in impacts (Simberloff & Von Holle, 1999). The best-

known case of this is the impact of the supercolonial yellow crazy ant Anoplolepis gracilipes Smith 

(Hymenoptera: Formicidae) on Christmas Island. The ant was present at low densities on the island 

for several decades with no obvious impact on the island’s biodiversity, but the formation of 

supercolonies greatly increased the tending of populations of scale insects, guarding them against 

natural enemies and feeding on the honeydew produced. The resulting high population densities of 

scale insects caused a major increase in mildews and sooty moulds growing on the excreted 

honeydew, promoting canopy dieback and tree death (O'Dowd et al., 2003; Abbott, 2005). The ants 

also underwent population increases as a result of the abundant honeydew, and by 2001, twelve 

years after supercolonies were first noted in the Christmas Island ant population, c. 25 km
2
 (25% of 
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the island’s rainforest) was covered by supercolonies of A. gracilipes (O'Dowd et al., 2003).  The 

keystone species on Christmas Island is the red land crab Gecarcoidea natalis Pocock (Decapoda: 

Geocarcinidae), which virtually monopolises litter processing on the island (Green et al., 1999). The 

crab has declined massively in areas invaded by the ant supercolonies (crab burrow density 

decreased 42-fold in ant-invaded compared to ant-free areas), slowing litter breakdown, releasing 

seedling recruitment, enhancing seedling species diversity and decreasing litter and canopy diversity 

(O'Dowd et al., 2003).  The combined effect is to rapidly transform the rainforest ecosystem through 

both top-down and bottom-up effects (O'Dowd et al., 2003). 

 

Between these two extremes, there is a spectrum of human and ecosystem impacts.  Ecosystem 

impacts of the hundred worst IAS are detailed by Vilà et al. (2009), and include spreading disease to, 

hybridising with, or simply outcompeting native species, modifying habitats to the detriment of natives, 

and straightforward predation. 

 

The impacts on humans are similarly variable.  One major effects is on food security: for example, the 

Asian hornet Vespa velutina Lepeletier (Hymenoptera: Vespidae), raids and destroys honeybee nests 

(López et al., 2011), and the western corn rootworm Diabrotica virgifera LeConte (Coleoptera: 

Chrysomelidae), is a crop pest which is predicted to have an economic impact of around €500 million 

per year in its invaded range in Europe (DAISIE, 2009).  IAS can also affect human health: an 

example is ragweed, Ambrosia artemisiifolia L. (Asterales: Asteraceae), a North American plant 

species occurring as an alien in Britain, whose copious quantities of airborne pollen cause hayfever.  

More seriously the mosquito Aedes albopictus is capable of vectoring a variety of human-pathogenic 

viruses and parasites, and has been widely introduced, particularly in Europe (Gratz, 2004; Roy et al., 

2009). 

 

Many species can have both ecosystem and human impacts.  One such IAS is the Harlequin ladybird, 

H. axyridis, which is the focal species of my thesis.  It can act as a nuisance pest to humans by 

entering houses in large numbers to overwinter (Roy et al., 2009), and is a major threat to many other 

wild species (Roy et al., 2012). 
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1.2.1. The most invasive ladybird on Earth – Harmonia axyridis 

Harmonia axyridis is a ladybird native to north-eastern Asia, including Japan, Korea, China, Mongolia, 

and Siberia, where it is most frequently found in disturbed habitats such as orchards, parks, gardens 

and agricultural fields (Brown et al., 2011a; Osawa, 2011).  It is a large species, 4.9-8.2 mm long and 

4.0-6.6 mm wide (Kuznetsov, 1997) which, although primarily an aphid predator, is capable of 

surviving on a wide range of food types in a wide range of habitats, making it a generalist both in terms 

of habitat and diet (Roy et al., 2011d).  It is a highly-polymorphic species in terms of colouration, 

particularly of the elytra and pronotum (Tan & Li, 1934), and in Britain it has three main adult colour 

forms: two melanic, with the elytral base colour black and either one (form conspicua, Fig. 1.1) or two 

(f. spectabilis, F. 1.1) red spots on each elytron, and one non-melanic (f. succinea, Fig 1.2).  This 

colour form is highly variable, with the elytral base colour varying from pale yellow to red, and with 

between 0 and 21 black spots (typically nineteen, with 8 on each elytron and a shared scutellary spot) 

(Tan & Li, 1934; Michie et al., 2010).  The larvae are large, reaching approximately 11 mm in length, 

and black in colour, with six large branching spines on each segment. Final-instar larvae bear an 

orange stripe down each side of the abdomen (segments 1-5), and three pairs of orange spines (one 

each on abdominal segments one, four and five) (Fig. 1.3).  Younger larvae lack the orange spines: 

second and third-instar larvae show only the stripes, while first-instar larvae are completely black (Fig. 

1.3).  The pupa is similarly large, orange and black, and usually bears the characteristically-spiny shed 

larval skin at the point of attachment to the substrate (Fig. 1.3). 

 

  

Figure 1.1. Harmonia axyridis melanic adults, form conspicua (l) and form spectabilis (r). 
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Figure 1.2. Harmonia axyridis adults of form succinea, illustrating the typical colouration (c), and variation (loss of spots, l, and 
spot fusions, r). 

   

Figure 1.3. Juvenile stages of H. axyridis: 3
rd
-instar larva (l), final-instar larva (c), and pupa (r) 

 

1.2.2. Trends in arrival, establishment and spread of H. axyridis across Europe 

The species has a long history of introduction as a biocontrol agent of pest insects such as aphids, 

beginning in North America in 1916 (Gordon, 1985), including several releases into Europe (Trouve et 

al., 1997; Adriaens et al., 2003; Coutanceau, 2006).  Despite many further releases across the USA, it 

was not recorded as established in the wild until it was found in Louisiana during 1988 (Chapin & 

Brou, 1991).  However, from this starting point the species has spread rapidly: by 1994, 24 states in 

the USA had records of the beetle, and it had been found in Canada (Coderre et al., 1995; Koch et al., 

2006).   

 

Around the turn of the century, the species began to be found wild in other continents, particularly 

following release as a biocontrol agent.  It has now been found in the wild in Europe (recorded from 30 

countries following France, 1991, and Greece, 1998), South America (seven countries following 

Argentina, 2001), and Africa (five countries, starting with South Africa, 2001), and the species is now 
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established in at least 38 countries worldwide with records from a further 14 (Brown et al., 2011a) (Fig. 

1.4). 

 

Within Europe, H. axyridis was released into what are now Belarus and the Ukraine from 1968 and 

1964 respectively (Sidlyarevich & Voronin, 1973; Katsoyannos et al., 1997), although establishment 

was only reported from the Ukraine in 2009, and the species’ current status in Belarus is unknown 

(Brown et al., 2011a).  The next phase of introductions was into Western Europe, beginning in France 

in 1982, and the species was made commercially available by several suppliers from 1995 (Adriaens 

et al., 2003; Coutanceau, 2006).  Wild individuals were found in Greece in 1998 (although 

establishment is doubtful), and the species has since spread rapidly, particularly post-2002, and is 

now also found in many countries where it was never officially released (Brown et al., 2008b; Brown et 

al., 2011a). 

 

1.2.3. Pathways of introduction and spread of H. axyridis 

Recent genetic studies using neutral molecular markers (18 microsatellites) have suggested that it is 

the eastern North American population (originating from Louisiana) which is particularly invasive, 

acting as a ‘bridgehead’, a particularly successful invasive population which serves as a source of 

colonists for remote new colonies (Lombaert et al., 2010; Lombaert et al., 2011).  The western North 

American population is likely to have been a separate introduction from the native range, which is now 

mixing with the eastern North American population.  The same genetic markers from the European 

populations reveal a mixture of biocontrol and North American origin (Lombaert et al., 2010).  Further 

afield, genetic studies on populations established in South Africa and across South America suggest a 

North American origin for these introductions (Lombaert et al., 2010; Lombaert et al., 2011) (Fig. 1.5).  

 



20 
 

 
Figure 1.4. Distribution of H. axyridis ≤ 2010 (confirmed wild sightings): a globally; b in Europe, originally published in Brown 

et al (2011) as figure 1. Note: entire countries are coloured, but this does not mean that H. axyridis necessarily occurs 

throughout. A Austria, Be Belgium, Bo Bosnia &Herzegovina, Bu Bulgaria, Cr Croatia, Cz Czech Republic, D Denmark, F 

France, Ge Germany, Gr Greece, H Hungary, Ir Ireland, It Italy, L Latvia, Ne Netherlands, No Norway, P Poland, R Romania, Se 

Serbia, Sk Slovakia, Sn Slovenia, Sp Spain, Swe Sweden, Swi Switzerland, U Ukraine, UK United Kingdom. 
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Figure 1.5.  Worldwide routes of invasion of H. axyridis.  The most likely scenario of invasions into eastern North America 

(ENA), western North America (WNA), South America (SA), Europe (EU) and Africa (AF) by H. axyridis, from analyses based on 

approximate Bayesian computation. For each invaded area the year of first detection of invasive populations is given.  The 

arrow indicates the most likely invasion pathway and the associated posterior probability value (P), with 95% confidence 

intervals in brackets. The European biocontrol strain (Ebc; blue arrow) was initially collected from the native area in 1982 and 

was subsequently used for biocontrol efforts in both Europe and South America. Introductions to North America from the native 

area (green arrows) may have involved releases for biocontrol efforts (Originally published in Lombaert et al (2010) as figure 1). 

 

 

This suggests that, in addition to deliberate releases, H. axyridis uses other pathways of introduction, 

and there is evidence to suggest that this is the case.  For instance, the species has not yet 

established in Australia, but has twice been intercepted at the borders: several dead individuals were 

imported with excavating equipment in 2008, and a further 20, including live specimens, were 

intercepted in 2009 (Brown et al., 2011a).  Similarly, H. axyridis has been found in Britain on a 

shipment of packing cases from Canada (Majerus et al., 2006), and more than 2000 adult beetles 

were discovered in a shipment of timber from the USA to Norway (Saethre et al., 2010).  Indeed, the 

first record in Norway was from a consignment of horticultural plants (Thuja sp.) (Staverlokk et al., 

2007), while the first records from Northern Ireland (Murchie et al., 2008), northern England (Brown et 

al., 2008a), and the Orkneys, northern Scotland (Ribbands et al., 2009) were all on fresh produce, and 

the first Scottish record was from a suitcase (Majerus et al., 2008). 
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Once a population has established, the species spreads very quickly, either by anthropogenic 

dispersal as above, or by local-scale natural dispersal.  The species is a strong flier with a strong 

dispersal capability (Hodek et al., 1993; Berkvens et al., 2008a), and actively disperses over several 

kilometres to overwintering sites (Hodek & Honek, 1996; Raak-van den Berg et al., 2012).  In the 

introduced range, it has been estimated to spread at 500 km year
-1

 in South Africa, 442 km year
-1

 in 

North America, and 200 km year
-1

 in Europe (Brown et al., 2011a).  In Britain, probably the best-

studied country in the invaded range, it was estimated to disperse 105 km year
-1

 northwards and 145 

km year
-1

 westwards between 2004 and 2008 (Brown et al., 2011a) (Fig. 1.6).  It is interesting to note 

that this north-westerly spread in Britain is against the prevailing south-westerly wind direction, so 

wind-borne passive transport is unlikely to have played a major role, although this is the method 

thought to have been employed by the species to originally arrive in the country (Brown et al., 2008a; 

Brown et al., 2011a). 
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Figure 1.6. Recorded spread of H. axyridis in the British Isles, 2004-2012 

1.2.4. Habitat range of H. axyridis 

Harmonia axyridis has such a wide range of habitat suitability that it can be found, to a greater or 

lesser degree, in every habitat occupied by other British ladybird species, so even species which do 

not directly compete for prey could be at risk.  For instance, the orange ladybird, Halyzia 

sedecimguttata L. (Coleoptera: Coccinellidae), is a medium-sized mildew-feeding ladybird, which 

reproduces mainly on sycamore, Acer pseudoplatanus L. (Sapindales: Sapindaceae).  This tree is also 

a major habitat for H. axyridis, which feeds on colonies of the aphids Drepanosiphum platanoidis 
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(Schrank) and Periphyllus testudinaceus (Fernie) (Hemiptera: Aphididae).  Adult aphids disperse or 

die during the autumn, frequently whilst larvae of H. axyridis are still present on the tree, leaving them 

looking for a food source.  As another late-breeding species, the larvae of H. sedecimguttata are likely 

to be at high risk of becoming prey, and indeed have been found to be declining post-invasion (Roy et 

al., 2012). 

 

1.2.5. Invasive traits of H. axyridis 

A major part of the extraordinary success of H. axyridis as an IAS appears to be the degree to which it 

benefits from the presence of humans.  A species which, in the native range, overwinters in buildings 

and, outside, in caves and under exposed rocks in the Japanese uplands, is well-adapted to the 

artificial caves of our cities; sheds, porches and window frames.  This habit is one of the main ways it 

impinges directly on humans, and has led to it being highlighted as a nuisance insect species in 

Britain, as it aggregates in homes in huge numbers during the autumn (Roy et al., 2009).  This allows 

the species to avoid the worst of the winter weather (a key mortality period for ladybirds) and so 

remain highly abundant at the beginning of spring (Labrie et al., 2008). 

 

These large populations can be rapidly increased as H. axyridis is facultatively multivoltine, and in 

Britain regularly produces two or even three generations per year (Katsoyannos et al., 1997; Brown et 

al., 2008a), whereas native species are usually univoltine, with some occasionally producing a partial 

second generation (Roy et al., 2011d; Roy et al., 2013).  As H. axyridis females have been recorded 

laying up to 2,200 eggs each (Wang et al., 2009) this allows for a rapid population expansion and very 

high annual abundance, with the concomitant knock-on effects of a super-abundant predator (Brown 

et al., 2011b; Roy et al., 2012). 

 

In the native range, it is largely a species of disturbed habitats (Osawa, 2011), which makes it 

especially suited to establishing in similar habitats elsewhere, particularly as these highly-productive 

disturbed habitats are thought to be most at risk from invasion more generally (Lockwood & McKinney, 

2001; Shea & Chesson, 2002).  As the species is a habitat generalist, most areas are vulnerable to 

colonisation to some extent, particularly when high abundance in core areas causes spillover into less-

preferred habitats (Comont et al., 2012).  
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Another trait of H. axyridis commonly found in IAS is dietary generalism.  The species feeds on a very 

wide range of prey, even including non-insect species (Berkvens et al., 2008c; Koch & Galvan, 2008; 

van Lenteren et al., 2008; Lundgren, 2009), which means that it can survive in more areas, so 

increasing the chances of establishment, and presenting a greater risk to the invaded ecosystem (van 

Lenteren et al., 2008).  Harmonia axyridis is a large species, with a correspondingly large appetite, 

which means that it provides better aphid control than many natives (Brown & Miller, 1998; Brown, 

2011), but also that potential effects on native species may be greater (Brown et al., 2011b; Roy et al., 

2012; Thomas et al., 2013). 

 

1.2.6. Impacts of Harmonia axyridis 

The lack of predation pressure on the species, and its ability to feed on a wide range of prey species 

combined with its high fecundity and short generation time, means that H. axyridis can become 

abundant very quickly, and this can lead to impacts, both on humans and on the invaded ecosystems.  

Before aggregating in houses to overwinter, large numbers of H. axyridis collect within bunches of 

grapes in vineyards across North America, feeding on the fruit.  When the bunches, complete with 

ladybird stowaways, are harvested and crushed, the ladybird’s defensive secretions taint the wine with 

an unpleasant taste and odour, rendering it unfit for sale and causing significant economic loss to the 

vineyards (Galvan et al., 2008). 

 

The most serious effects of H. axyridis as an IAS are, however, on biodiversity, with the focus 

particularly on other members of the aphidophagous guild.  There are 46 other species of the family 

Coccinellidae resident in Britain, and many are obligate carnivores, competing with the invader for 

food.  The voraciousness of H. axyridis, particularly at the larval stage, means that virtually any 

species which come into contact with them are at risk, and many native species are very palatable to 

the invader (Ware & Majerus, 2008; Ware et al., 2009).  A major international study investigating the 

distribution and abundance of several common and widespread ladybird species in Western Europe 

(Adalia bipunctata, A. decempunctata, Psyllobora vigintiduopunctata, Propylea 

quattuordecimpunctata, Halyzia sedecimguttata, Exochomus quadripustulatus, C. septempunctata, 

and Calvia quattuordecimguttata) found that seven of the eight species investigated (all except C. 
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septempunctata ) either began to decline, or had a previous decline exacerbated, after H. axyridis 

established (Roy et al., 2012). 

 

The lack of vertebrate predators of ladybirds means that most occurrences of ladybird predation are of 

one ladybird larva preying on another, and the outcome is usually in favour of the larger individual 

(Ware & Majerus, 2008; Ware et al., 2009).  The large size of the final-instar larva of H. axyridis gives 

the invader an advantage over the majority of the species with which it comes into contact, with the 

exception of a couple of native species which are generally larger (Anatis ocellata L. and Myzia 

oblongoguttata L. (Coleoptera: Coccinellidae)).  These species are both habitat specialists of conifers 

where, interestingly, H. axyridis does not yet dominate. 

 

The species thought to be most at risk from the H. axyridis invasion is the 2-spot ladybird, A. 

bipunctata.  A generalist species around half the size of H. axyridis, it too is found mainly in trees, 

feeding on aphids, in the same habitat and dietary niches as H. axyridis (Adriaens et al., 2008).  Adalia 

bipunctata even overwinters in the same sites as the invader, so overlaps with it throughout the year.  

Evidence of precipitous declines in the abundance of A. bipunctata in the invaded range of H. axyridis, 

(Brown, 2003; Roy et al., 2012), laboratory studies indicating palatability (Ware & Majerus, 2008; Ware 

et al., 2009) and anecdotal evidence of predation in the wild of A. bipunctata by H. axyridis provoked 

gut content analysis studies of the invader.  These have found evidence for intra-guild predation (IGP) 

by 7-30% of H. axyridis on A. bipunctata in the field (Hautier et al., 2008; Aebi et al., 2011; Hautier et 

al., 2011; Thomas et al., 2013) 

 

1.2.7. Predators, parasites and pathogens - what will stop the invader? 

Ladybirds have aposematic colouration warning of their chemical defences, and have correspondingly 

few vertebrate predators; instead, they suffer from a range of parasites, parasitoids and pathogens 

(Cottrell & Shapiro-Ilan, 2008; Riddick et al., 2009; Steenberg & Harding, 2009; Roy et al., 2011a).  In 

line with the predictions of the ERH, H. axyridis has a low parasite burden in the invaded range.  The 

invasive British population is more resistant to the fungal pathogen Beauvaria bassiana ((Bals.-Criv.) 

Vuill.) than either H. axyridis from Japan (within the native distribution), or two species native to Britain, 

A. bipunctata or C. septempunctata (Roy et al., 2008).   
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Similarly, in Britain, several species of endoparasitic Hymenoptera and Diptera attack ladybirds. Some 

of these have a Holarctic distribution, and are known to attack H. axyridis in its native range: 

Dinocampus (=Perilitus) coccinellae (Schrank) (Hymenoptera: Braconidae) (Kuznetsov, 1997; Ware et 

al., 2010); Homalotylus flaminius Dalman (Hymenoptera: Encyrtidae) (Kuznetsov, 1997); Oomyzus 

scaposus (=Tetrastichus coccinellae) Thomson (Hymenoptera: Eulophidae) (Kuznetsov, 1997) and 

Medina separata (Meigen) (Diptera: Tachinidae) (Kuznetsov, 1997) (often erroneously referred to as 

M. luctuosa (Hodek et al., 2012)), while others (Phalacrotophora fasciata (Fallén) and Phalacrotophora 

berolinensis Schmitz (Diptera: Phoridae) (Disney & Beuk, 1997, Disney et al., 1994)) are European in 

distribution but are closely related to Phalacrotophora philaxyridis Disney (Diptera: Phoridae) which 

attacks H. axyridis in Japan (Disney, 1997). There is evidence that some natural enemies of ladybirds, 

notably D. coccinellae, O. scaposus, P. berolinensis and P. fasciata, can develop in the IAS, but these 

are only gradually beginning to utilise the abundant resource that H. axyridis provides, and it is 

parasitised at a far lower rate than equivalent native species (Firlej et al., 2005; Berkvens et al., 2008b; 

Koyama & Majerus, 2008; Hall et al., 2009; Riddick et al., 2009; Ware et al., 2010). 

 

1.2.8. Summary 

IAS are clearly a major and multifaceted threat to native ecosystems, and H. axyridis is recognised as 

one of the worst (Vilà et al., 2009).  The species has been closely monitored since first establishing in 

the wild in North America in 1988 (Brown et al., 2011a), but investigation of the large-scale impacts on 

native species has been hindered by a lack of long-term pre-invasion monitoring in much of the 

introduced range.  In 2004, H. axyridis became established in south-east England, and the species’ 

spread across Britain has since been monitored by the UK Ladybird Survey (UKLS; 

http://www.harlequinsurvey.org and http://www.ladybird-survey.org) (Brown et al., 2008a). Britain has 

probably the best-studied flora and fauna in the world (Harding, 1992), and the ladybird recording 

scheme contains over 140,000 ladybird records from 1832 to the present day, both casual sightings 

and the results of systematic surveys (e.g. from county atlases). This provides an unparalleled 

opportunity to study an IAS in the process of invading, and to investigate its impacts on native species 

in the light of both historic patterns and other drivers of change. 
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1.3.1. Aims of the thesis 

The primary objectives of this thesis are to quantify the responses of native UK ladybirds (with differing 

levels of habitat specialisation, climatic requirements and dietary preferences) to the invasion of H. 

axyridis, to establish the effect of H. axyridis when compared to other environmental drivers acting on 

native species, and to investigate the possible facilitation of H. axyridis invasion by natural enemy 

release. 

Specifically: 

 

1. What life-history and resource-use traits are important in driving the range 

characteristics of ladybirds in Britain? 

 

2. What is the relative role of environmental factors, and life-history and resource-use 

traits, in driving the distributional trends of native ladybirds?  Are native ladybirds with a 

high degree of ecological overlap with H. axyridis more likely to decline in invaded areas 

than are species which do not overlap? 

 

3. Is the IAS H. axyridis parasitised at a lower rate at sites where it has been present for a 

shorter period, and is its parasitism rate lower than that of the functionally-similar native 

ladybird C. septempunctata, concomitant with the predictions of the ERH?  

 

4. What effect does the diversity of the native ladybird community have on its resilience to 

invasion by H. axyridis, considered relative to environmental factors such as aphid abundance?  

At a local scale, what effect does H. axyridis have on the abundance of native ladybird species?   
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Chapter 2. Using biological traits to explain ladybird distribution 

patterns  

2.1. Abstract 

2.1.1. Aim Species differ in terms of their respective life-history and resource-use traits (e.g. 

fecundity, diet niche breadth), and these differences are likely to affect the species’ distribution 

patterns.  Determining the extent of this influence may lead to an improved understanding of the 

impacts of environmental change on biodiversity.  We investigated the extent to which traits can 

explain distribution patterns in the ladybird fauna (Coleoptera: Coccinellidae) of Great Britain. 

 

2.1.2. Location The British mainland and inshore islands (Anglesey, the Isle of Wight and the Inner 

Hebrides). 

 

2.1.3. Methods Distributions of 26 ladybirds resident in Britain were characterized in terms of their 

range size (from 2661 10-km grid-squares across Britain) and proportional range fill (at 10- and 50-km 

scales).  These were assessed relative to five traits (body length, elytral colour pattern polymorphism, 

voltinism, habitat specificity and diet breadth). The role of phylogenetic autocorrelation was examined 

by comparing the results of phylogenetic and generalized least-squares regressions. 

 

2.1.4. Results Diet breadth was the only trait correlated with range size: species with broad diets 

had larger range sizes than dietary specialists.  Range fill was sensitive to the average recording 

intensity of a species across inhabited squares; models including both recording intensity and range 

size provided more explanatory power than models incorporating ecological traits alone. 

 

2.1.5. Main conclusions Habitat specificity is often invoked to explain the distribution patterns of 

species, but here we found diet breadth to be the only ecological correlate of both range fill and range 

size.  This highlights the importance of understanding predator–prey interactions when attempting to 

explain the distribution patterns of predatory species.   



48 
 

Our results suggest that the diet breadth of predatory species is a better correlate of range size and fill 

than other measures such as habitat specificity. 

2.2. Keywords  

Coccinellidae, diet breadth, distribution, Great Britain, insects, niche breadth, range fill, range size, 

traits. 

2.3. Introduction 

The striking differences in the spatial distribution of taxonomically related species are intriguing, and 

understanding the processes governing these spatial distribution patterns is one of the central themes 

of ecology (e.g. Andrewartha & Birch, 1954; MacArthur, 1972).  In recent years species distributions 

have been shifting in response to climate change (Hickling et al., 2006; Poyry et al., 2009) and so 

biogeographical studies have assumed an added significance.  By exploring the relationships between 

species’ distribution patterns and their life-history and resource-use characteristics, we may gain a 

better understanding of the biological mechanisms underpinning range size and fill (Ockinger et al., 

2010), which can inform conservation management.   

 

Species’ distribution patterns can be characterized either in terms of extent of occurrence (EOO, 

defined as the area encompassed by the outermost geographic limits of a species’ occurrence) or 

area of occupancy (AOO, the area within those limits where the species actually occurs) (Gaston & 

Fuller, 2009).  The AOO is usually measured in terms of the number of grid cells occupied (typically 1-, 

10- and 100-km square grid cells), and can also be characterized by the proportion of the potential 

range that is actually occupied (‘range fill’ or ‘aggregation’) (Gregory & Gaston, 2000; Wilson et al., 

2004).   

 

Life-history and resource-use characteristics (hereafter referred to as ‘traits’) are distinct, heritable 

characteristics of the species’ phenotype.  Traits of vertebrate and plant taxa have been widely studied 

and used in systematic biogeographical investigations to explain patterns of distribution (Pocock et al., 

2006; Van der Veken et al., 2007; Bradshaw et al., 2008; Blackburn et al., 2009; Wang et al., 2009; 

Astegiano et al., 2010; Navarro et al., 2010).  Less consideration, however, has been given to 
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assessing the relationship between multiple traits and the distribution patterns of invertebrates (e.g. 

Bräendle et al., 2002).   

 

Body size is often invoked as a species trait correlated with the distribution patterns of species (e.g. 

Juliano, 1983; Tingley et al., 2010; Verberk et al., 2010).  However, body size is strongly correlated 

with other traits such as dispersal ability (Rundle et al., 2007a) and trophic level (Romanuk et al., 

2011). Species that are generalists in terms of both dietary and habitat requirements occupy larger 

ranges and exhibit a greater proportion of range fill in many taxa, such as tropical sphingid moths 

(Beck & Kitching, 2007), and British bumblebees (Goulson et al., 2005).  The ability to survive in a 

wide range of habitats is strongly associated with commonness among native species (Cadotte & 

Lovett-Doust, 2002), and with an alien species’ likelihood of becoming invasive (Blackburn et al., 

2009).  The underlying factors determining the distribution of habitats (geology, land-use history, 

rainfall, etc.) are spatially structured, leading to patterns in the distribution of plant species (Pocock et 

al., 2006), and thus also the distribution of species which feed on the different plant species.  

Therefore species which can utilize more of the available resources (food or habitat types) have a 

larger niche breadth (Gaston & Blackburn, 2000) and are likely to be able to survive and reproduce 

across a wider geographical range. 

 

Variation in other life-history traits, e.g. polymorphism and voltinism (the number of generations per 

year), may also allow species to achieve larger range sizes and a greater degree of range fill. For 

example, species with high voltinism have, by definition, a shorter generation time than similar species 

with lower voltinism.  This means they often achieve a higher reproductive rate, and so have more 

opportunities for dispersal per year, potentially resulting in greater colonization of marginal habitats, 

and therefore both larger range sizes and a greater degree of range fill (Altermatt, 2010).  Polymorphic 

species, with the extended phenotypic range of several distinct forms, could potentially fill a wider 

niche, so colonizing larger areas.  In the grasshoppers Chorthippus parallelus (Zetterstedt) and Tetrix 

undulata (Sowerby), for example, different colour morphs have been found to preferentially inhabit 

differing habitat types, and to vary in fecundity (Ahnesjo & Forsman, 2003, 2006; Unsicker et al., 

2008).   
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In this paper we investigate distribution patterns in relation to ecological traits (body size, habitat and 

dietary specialization, voltinism and phenotypic polymorphisms) for 26 species of ladybird (Coleoptera: 

Coccinellidae) resident in Great Britain.  Ladybirds provide key ecological services as predators of 

crop pest insects (Day et al., 2006; Costamagna & Landis, 2007; Obrycki et al., 2009) and provide a 

novel contrast to previous studies of range characteristics which have focused on herbivores (Goulson 

et al., 2005; Beck & Kitching, 2007; Unsicker et al., 2008).  Britain has an unparalleled history of 

biological recording schemes, with excellent spatial, temporal and taxonomic coverage, which 

presents the opportunity to carry out a detailed study on distribution patterns across a large 

geographical region. 

  

By combining detailed trait data and biological records within the same model framework, we examine 

the relative importance of resource use (diet breadth, habitat specialisation) and life-history traits (body 

size, voltinism, and elytral colour pattern polymorphism) in explaining the distribution patterns (range 

size and fill) of ladybirds in Britain.  European subfamilies and guilds of ladybirds are well represented 

in Britain and there is evidence to suggest that, as for other insect groups, responses to environmental 

change have been shown to be broadly equivalent between Britain and continental Europe (Parmesan 

et al., 1999; Hill et al., 2003).   

2.4. Materials and Methods 

2.4.1. Distribution data 

The distribution data for the 26 ladybird species were taken from the UK Ladybird Survey (UKLS; 

www.harlequin-survey.org and www.ladybird-survey.org).  The recording scheme contains over 

140,000 ladybird records from 1832 to the present day, both casual sightings and the results of 

systematic surveys (e.g. from county atlases).  Data are much less extensive for the 21 smaller 

inconspicuous coccinellids and these are excluded from the current analysis.  All records used in this 

analysis have been identified to species by experts, either in the field or from a specimen or good 

photo submitted to the recording scheme.   

 

The 30-year period from 1980 to 2009 (inclusive) was chosen as the study period because it 

encompasses the two main periods of intense recording activity.  The first of these was during the 
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1980s and early 1990s, when widely publicized through the Cambridge Ladybird Survey (Majerus, 

1994), and the second from 2004 to date when the arrival of the invasive alien ladybird Harmonia 

axyridis (Pallas) again raised the public profile of the recording scheme (Brown et al., 2010; Roy et al., 

2011).   

 

The range size of ladybirds was characterized as presence/absence at a 10-km grid square resolution 

over the 30-year period.  The study area used was mainland England, Scotland and Wales, plus the 

inshore islands of Anglesey, the Isle of Wight and the Inner Hebrides, but excluding Northern Ireland 

and the offshore islands of Scilly, Man, Lundy, Shetland, Orkney, the Outer Hebrides and the Channel 

Islands, to avoid species’ distribution patterns being influenced by the mosaic of land and sea common 

in archipelagos.  This yielded a total of 86,259 records across the 26 ladybird species (ranging from 

eight records for Hippodamia tredecimpunctata L. to 21,761 for Coccinella septempunctata L.). 

 

For each species, the proportion of squares occupied (counted from a nationwide total of 2662) was 

calculated.  This was then logit-transformed to produce the variable ‘range size’.  This transformation 

has been shown to be a valid means of achieving normality in range size datasets which are bounded 

at the right and left of the distribution (Williamson & Gaston, 1999).  Range fill was calculated from the 

10-km grid square distribution pattern following a method developed by Condit et al. (2000), and used 

by Wilson et al. (2004, outlined in their supplementary material), modified here to account for the 

configuration of land and sea in coastal squares.   

 

For each grid square, the number of occupied squares whose central point lies within circular radii of 

10- or 50-km from the central point of the tested square was counted.  This was divided by the total 

number of squares possible given a circle of this size (four or 80, respectively, minus any squares that 

were purely marine).  This gives a value of between zero and one for each square-species 

combination (zero – no other squares occupied, one – all possible squares occupied).  These square 

values were averaged for each species across the study area at each spatial scale to produce a range 

fill score, Dx (where x is the spatial scale).  
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2.4.2. Explanatory traits 

Ecological traits with the potential to influence distribution characteristics were selected a priori on the 

basis of evidence from the literature.  Overall, 352 sources were used (3–151 sources per species. An 

EndNote (Thompson Reuters, New York, USA) library of these references is available on request). 

Ecological traits were subdivided into life-history traits and resource-use traits as follows. 

 

1. Life-history traits: 

(i) Voltinism, defined as the number of generations per year for each species within Britain 

(ranging from one to three).  There is variation within species between localities and years, so the 

modal value was used. 

 

(ii) Elytral colour pattern polymorphism, characterized as a binomial presence/absence of melanic 

forms, following Roy et al. (2011).  Individual-level variation within colour forms is not captured by 

this measure, but it avoids the problem of the different levels of study for different species. 

 

(iii) Body size, defined as the length in mm from head to abdomen tip, calculated as the mid-point 

of the upper and lower body lengths quoted in Roy et al. (2011) (range from 3 to 7.8 mm).  These 

are from Pope (1953) and Hawkins (2000), based on measurements from populations across 

Britain, except for H. axyridis which was taken from Kuznetzov (1997) and checked against 

specimens submitted to the recording scheme from across Britain.  Although the full extent of 

within-species variation is not captured by this measure, we believe it provides a reasonable 

reflection of body size differences among species. 

 

2. Resource-use traits: 

(i) Habitat use, measured as the number of EUNIS level 2 habitat categories (ranging from 1 

to11) which the species has been recorded from in Britain.  The EUNIS (European Nature 

Information System) habitat classification is a pan-European classification of terrestrial, freshwater 

and marine habitats that has been developed for the European Environment Agency by the 

European Topic Centre on Biological Diversity (ETC/BD). The latest version can be accessed at 

http://eunis2.eea.eu.int/.  

http://eunis2.eea.eu.int/
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(ii) Diet breadth, measured as the number of prey families (ranging from 1 to 12) consumed by 

either adults or larvae of each species. Only natural diets were considered and laboratory diets 

such as drone powder, Ephestia eggs and agar-based diets were excluded. 

We also included a measure of the recording intensity for each species.  A potential problem with data 

from this kind of survey, with a high proportion of citizen science involvement, is that recording 

intensity may vary amongst species and across geographical regions.  Some species are under-

recorded, and the extent of this is likely also to depend on other traits such as habitat use, with, for 

example, strictly tree-dwelling species under-recorded.  Although it is difficult to eliminate all such 

biases from the data, a range size-independent measure of recording intensity per species was 

included as a covariate in the pool of potential explanatory variables.  This was the mean number of 

records across the 10-km squares occupied by a species. 

2.4.3. Data analysis 

The relationships between species traits and range characteristics were examined using generalized 

linear models (GLM; (McCullagh & Nelder, 1989) implemented in the statistical software program R, 

version 2.10.1 (R Development Core Team, 2009, Vienna, Austria). Three global GLMs were 

constructed with all five traits (and recording intensity) as explanatory variables and the range size, D10 

or D50 in turn as the dependent variable.  For the measures of range fill, D10 and D50, the best traits 

models were compared to models using range size and recording intensity as the only explanatory 

variables.  This comparison was performed because although range size has been found to be a 

strong correlate of range fill in other taxa (Wilson et al., 2004; Pocock et al., 2006), the importance of 

primary biological traits that govern both range size and range fill was the focus of our study. 

 

Collinearity between trait variables was tested for by calculating variance inflation factors (VIFs) for 

each trait in each model using the ‘car’ package (Fox & Weisberg, 2011).  A common rule of thumb is 

that VIFs exceeding five indicate high levels of multiple collinearity. All the VIFs in the global GLMs 

were below five, hence severe collinearity was not observed and all traits were retained in the global 

models.  A correlation analysis was also carried out on the traits, and found no significant correlation 

between them (Kendall’s Τ < 0.7 in all cases) (Table 2.1). 
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Table 2.1 Table of Kendall’s tau for correlations between the explanatory trait variables habitat use, diet breadth, body size, 

voltinism and elytral colour pattern polymorphism for British ladybirds.  Significance of the tau values is indicated as * P =0.05, ** 

P = 0.01, *** P = 0.001 for these univariate comparisons. 

Traits Habitat use Diet breadth Size Voltinism 

Diet breadth 0.39 *    

Size –0.09 0.02   

Voltinism 0.29 0.30 0.26  

Polymorphism 0.11 0.46 ** 0.16 0.29 

 

The final GLM for each dependent variable was selected using a stepwise optimal model selection 

procedure based on corrected Akaike’s information criterion (AICc) values, appropriate for small 

sample sizes (Akaike, 1974; McQuarrie & Tsai, 1998; Burnham & Anderson, 2002).  To verify the 

robustness of the final model, a bootstrap procedure with 10,000 replicates was implemented in the 

‘boot.StepAIC’ package within R (Austin & Tu, 2004).  This approach uses random bootstrap samples 

drawn from the original dataset to investigate the variability of model selection under the step AIC 

stepwise algorithm (Austin & Tu, 2004). Within each bootstrap sample, forwards and backwards 

stepwise selection was used to determine the most parsimonious model, based on AICc (ΔAICc of 2 

required to incorporate an additional term).  AICc values were also calculated for the global and null 

(intercept-only model without any explanatory variables) models for each range characteristic to 

assess the importance of the final model.  Goodness-of-fit was also calculated as deviance for each 

model. 

 

To avoid the problem of phylogenetic autocorrelation, phylogeny was controlled for using a 

phylogenetic least squares approach (Freckleton et al., 2002), and the performance of the 

phylogenetic and non-phylogenetic regression approaches compared using information criteria.  

Expected covariance between species was calculated on the basis of a phylogeny based on the 

taxonomy of Duff (2008), assuming equal branch lengths (computed after Grafen, (1989). The tree 

was created using the program TREEMAKER 1.3 (Crozier et al., 2005) and the R package ‘ape’ (Paradis 

et al., 2004).  The R package ‘CAIC’ (Agapow & Isaac, 2002) was used to fit a phylogenetic 

generalized linear model (PGLM) (Freckleton et al., 2002) equivalent to each of the three best GLMs, 
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and selection between the PGLM and equivalent GLM for range characteristics was made on the 

basis of AICc.  

 

In the event that the PGLM performed better than the original GLM, Pagel’s λ (Pagel, 1999) was used 

to estimate the degree of phylogenetic autocorrelation in the model, where 0 indicates no phylogenetic 

signal in the data and 1 indicates perfect phylogenetic correlation. The pglmEstLambda function of the 

‘CAIC’ package was used to identify the maximum likelihood value of the lambda parameter and to 

test whether this value was significantly different from 0 or 1 using a log-likelihood test (Agapow & 

Isaac, 2002; Freckleton et al., 2002).  Residuals from all models were checked for normality using 

normal probability graphs, and for heteroscedasticity by plotting residuals against fitted values. 

 

Selection between PGLMs and GLMs was made on the basis of AICc and goodness of fit (deviance, 

D
2
, adjusted for small sample sizes), which allows for comparison between models with different 

numbers of parameters.  Univariate models were also constructed for each of the traits as a 

comparison for the best traits models. 

 

2.5. Results 

The degree of phylogenetic autocorrelation in relationships between range characteristics and 

ecological traits was found to be negligible in all three traits models and in the model for D50 containing 

range size and recorder intensity only (Pagel’s λ not significantly different to 0), so GLMs were 

preferred for these.  There was significant phylogenetic autocorrelation in the residuals of the model 

for D10 containing range size and recorder intensity (Pagel’s λ = 0.627, P < 0.001), so the PGLM was 

retained (Table 2.2).   

 

Diet breadth was the only trait variable retained in the final model for range size, explaining 31.7% of 

the variation in range size between species (F1,24 = 12.58, P = 0.0016, slope = 0.32 ± 0.09, intercept = 

-3.71 ± 0.45) (Fig. 2.1a).  A lack-of-fit sum of squares test was performed, which rejected the nonlinear 

model (F6,18 = 0.2254, P = 0.9632).   
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Range fill at a 10-km grid square resolution, D10, was not significantly related to any ecological traits, 

but was significantly related to recording intensity (slope = 0.034 ± 0.006, intercept = 0.24 ± 0.04), 

which explained 54.6% of the variation in range fill at this scale (F1,24 = 31.05, P <0.001) (Fig. 2.1b).  

The D10 range size and recording intensity model, by contrast, explained 83.3% of the between-

species variation (F2,23 = 63.27, P <0.001) (Fig. 2.1b).   

 

Three variables were significantly related to range fill at a 50-km grid square resolution, the traits 

model explaining 66.7% of the total variation between species in D50 (F3,22 = 17.65, P < 0.001) (Fig. 

2.1c).  The significant variables were diet breadth, recorder intensity (both positively related to range 

fill), and body size (negatively related).  The alternative model (containing just range size and recorder 

intensity as explanatory variables) explained 90.5% of the variation in D50 (F2,23 = 119.6, P < 0.001) 

(Fig. 2.1c).  The most important univariate variable in both the D10 and D50 models was range size 

(Table 2.3). 
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Table 2.2  Comparative performance of models at predicting range characteristics of British ladybirds (range size and range fill 

at the 10-km and 50-km scale): global models (all traits: body size, voltinism, elytral colour pattern polymorphism, diet breadth, 

habitat use), null models (no explanatory traits: the null hypothesis), range size and recording intensity-only models, and the 

best ecological traits-only models.  GLM = generalized linear model fitted by ordinary least squares regression. PGLM = GLM 

fitted using phylogenetic generalized least squares regression.  Deviance is the model residual deviance.  ΔAICc (corrected 

Akaike’s information criterion) was calculated from the model with the lowest AIC (marked by ‘–‘ in the ΔAICc column). Models 

selected as ‘best models’ in the text are marked with *.  

(b) D10 – Range fill at 10-km grid square resolution 

(c) D50 – Range fill at 50-km grid square resolution 

 

 

 

(a) Range size       

Model Traits Deviance  
(Adj. deviance) 

AICc ΔAICc λ (PGLMs only) 

Best trait PGLM  Diet breadth 41.94 (43.64) 91.82 – 5.099 × 10
–5

 

Best trait GLM* Diet breadth 41.94 (43.64) 93.31 1.49 – 

Null GLM  63.92 (63.92) 101.70 9.88 – 

Global GLM  34.57 (34.57) 105.66 13.84 – 

      

Model Traits Deviance  
(Adj. deviance) 

AICc ΔAICc λ (PGLMs only) 

Range size & recording 
intensity  PGLM* 

Range size, recording 
intensity 

0.19 (0.12) –50.26 – 0.627 

Range size & recording 
intensity  GLM 

Range size, recording 
intensity   

0.18 (0.11) –46.05 4.21 – 

Best trait PGLM Recording intensity 0.50 (0.48) –23.27 26.99 6.662 × 10
–5

 

Best trait GLM  Recording  intensity 0.50 (0.48) –21.78 28.48 – 

Global GLM  0.36 (0.36) –13.13 37.13 – 

Null GLM  1.15 (1.15) –2.76 47.5 – 

      

Model  Traits Deviance  
(Adj. deviance) 

AICc Δ AICc λ (PGLMs only) 

Range size & recording 
intensity  PGLM 

Range size, recording  
intensity 

0.11 (0.03) –60.29 – 6.611 × 10
–5

 

Range size & recording 
intensity  GLM* 

Range size, recording  
intensity 

0.10 (0.03) –59.66 0.63 – 

Best trait GLM  Diet breadth, size,  
recording  intensity 

0.36 (0.26) –25.17 35.12 – 

Best trait PGLM Diet breadth, size, 
recording  intensity 

0.35 (0.26) –24.9 35.39 6.004 × 10
–5

 

Global GLM  0.33 (0.33) –15.46 44.83 – 

Null GLM  1.20 (1.20) –1.77 58.52 – 
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Table 2.3  Univariate models showing the individual contribution of traits selected in the range fill models (recording intensity, 

diet breadth, body size) and range size, used as an explanatory trait.  ΔAICc (corrected Akaike’s information criterion) was 

calculated as the difference between the AICc of the univariate models compared to that of the best model (at that grid square 

resolution), presented in Table 2.2   

D10 – Range fill at 10-km grid square resolution, component models 

Trait Coefficients (± SE) Intercept (± SE) t-value R
2
 (adj. R

2
) P-value AICc ΔAICc 

Range size & recording 

intensity  PGLM 

RS: 0.08 (0.01) 

RI: 0.02 (0.003) 

0.54 (0.05) RS: 8.16 

RI: 6.07 

0.891 (0.881) <0.001 –50.26 – 

Range size 0.11 (0.02) 0.70 (0.04) 7.20 0.683 (0.670) <0.001 –30.10 20.17 

Recording intensity 0.03 (0.01) 0.24 (0.04) 5.57 0.564 (0.546) <0.001 –21.78 28.48 

 

D50 – Range fill at 50-km grid square resolution, component models 

Trait Coefficients (± SE) Intercept (± SE) t-value R
2
 (adj. R

2
) P-value AICc ΔAICc 

Range size & recording 

intensity  GLM 

RS: 0.09 (0.01) 

RI: 0.02 (0.003) 

0.42 (0.04) RS: 9.41 

RI: 6.25 

0.912 (0.905) <0.001 –59.66 – 

Range size 0.12 (0.01) 0.61 (0.04) 8.79 0.763 (0.753) <0.001 –36.67 23.66 

Recording intensity 0.04 (0.01) 0.12 (0.05) 5.70 0.575 (0.557) <0.001 –21.45 38.84 

Diet breadth 0.05 (0.01) 0.10 (0.05) 5.15 0.525 (0.505) <0.001 –18.54 41.75 

Body size –0.01 (0.04) 0.34 (0.18) –0.15 <0.001 (–0.041) 0.88 0.78 61.07 
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2.6. Discussion 

Diet breadth of ladybirds is positively correlated with range size.  This is consistent with the literature 

for other groups, particularly Lepidoptera (Quinn et al., 1997; Beck & Kitching, 2007; Garcia-Barros & 

Benito, 2010).  The fact that this relationship is found across taxa, and is so strong for ladybirds, 

suggests that diet breadth should be considered a key niche-breadth determinant, particularly for 

predatory groups. 

 

Many historical and geographical events can affect the realized distribution of species, so very precise 

predictions of range characteristics cannot be expected from species-specific traits alone (Beck & 

Kitching, 2007).  Indeed, for range fill at both the 10- and 50-km grid-square level, models including 
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Figure 2.1 Observed values vs. predicted values 

from the models of range characteristics for British 

ladybirds: (a) range size at a 10-km grid square 

resolution, (b) range fill at a 10-km grid square 

resolution (D10), (c) range fill at a 50-km grid 

square resolution (D50).  Grey lines show the best 

traits models;  black lines are the range size and 

recording intensity (RS & RI) models.  Dotted lines 

are lines of equivalence, where observed = 

predicted.   
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range size and recorder intensity predicted observed distribution patterns far better than traits-only 

models.  At the 10-km level, no resource-use or life-history traits were included in the minimum 

adequate models, although the relationship between range size and diet breadth suggests the latter 

may play a role in structuring the pattern of range fill and it is explicitly selected at the 50-km level.   

The diet breadth achieved by a species is intuitively dependent, in part, on the distribution of the prey 

organisms encountered in its range.  In general, species that consume a greater number of species 

are likely to have a wider distribution than species with more limited prey ranges (although it is 

possible that a species which consumes a few common species could have a wider distribution than a 

species which feeds on several rare species, all other factors being equal).  For example, Ichneumon 

eumerus (Wesmael) is a specialist parasitoid of two endangered lycaenid butterfly species, Phengaris 

rebeli (Hirschke) and P. alcon (Denis & Schiffermüller) (Thomas & Elmes, 1993; Tartally, 2005), but is 

considerably rarer than another specialist parasitoid wasp, Listrodromus nycthemerus (Gravenhorst), 

which feeds only on the widespread lycaenid butterfly Celastrina argiolus (L.) (Heath & Emmet, 1989; 

Revels, 2006). 

 

It should be noted that no distinction was made between essential and alternative food sources within 

this analysis.  Essential food sources are those on which the ladybird can feed solely while retaining 

the ability to mature and reproduce, whereas alternative food sources are those on which the ladybird 

can survive, but without reproducing (Hodek & Honek, 1996). The separation between essential and 

alternative food sources has only been categorized comprehensively for a few intensively studied 

species.  Although individuals show decreased fecundity or increased mortality in the laboratory when 

fed solely on alternative prey (Hodek & Honek, 1996; Jalali et al., 2009), an ability to prey on 

alternative species allows individuals to survive longer periods without essential prey (Hodek & 

Michaud, 2008).  Across taxa, species with a wide diet breadth, including a wide range of alternative 

prey should therefore be able to persist for longer in less favourable areas than diet specialists, and 

exhibit a greater degree of range fill and a larger range size.   

 

The phylogenetic signal visible in the range fill model residuals at the 10-km scale indicates that, at a 

local scale, closely related species share similar variance around the relationship between range fill 

and range size/recording intensity. This probably arises because species within the same families may 
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be subject to a similar level of recording intensity, or may be sampled intensively within similar 

geographic areas.  However, this phylogenetic signal was not present at the larger scales studied, 

reinforcing the view that different and potentially opposing factors may be important  in determining 

species ranges at different spatial scales (Hamilton et al., 2005; Cadotte et al., 2009). 

 

For range size, there is an apparent group of four species which are particularly restricted in Britain, 

compared to their distributions as predicted from their traits: these are Hippodamia tredecimpunctata, 

Coccinella magnifica Redtenbacher, Henosepilachna argus (Geoffroy), and Coccinella 

quinquepunctata L.  Hippodamia tredecimpunctata has recently (2011) re-established itself as a 

breeding species on the south coast after being declared extinct in Britain in 1952, and is otherwise 

only recorded as an occasional immigrant (Comont & Willerton, 2012), while H. argus is a recent 

establishment in Britain (1997) and is only spreading slowly (Menzies & Spooner, 2000).  Neither 

species is therefore likely to have a distribution in equilibrium with its environment in Britain. Neither C. 

quinquepunctata nor C. magnifica is currently restricted by historical factors, but each has specific 

habitat requirements (river shingle banks and an association with species of Formica ants, 

respectively).  Both these species have restricted distributions in Britain when compared to the 

availability of their specific habitats, and all four species are likely to be limited in Britain by a 

combination of thermal and dispersal factors that are not captured by a coarse habitat categorisation 

system such as EUNIS.  However, only H. tredecimpunctata is identified statistically as an outlier 

(Grubbs’ test). 

 

The other recent addition to the ladybird fauna of Britain, H. axyridis, is still found in fewer grid squares 

than is predicted by the models, but to a far smaller degree than the previous four species: H. axyridis 

is recorded from 1009 10-km grid squares (predicted 1428 grid squares, 70.66% colonization); C. 

magnifica 18/161, 11.18%; C. quinquepunctata 19/87, 21.84%; H. argus 12/87, 13.79%; H. 

tredecimpunctata 4/118, 3.39%.  This is likely to result from the combination of extremely rapid 

colonization (Brown et al., 2008) and a thorough recording through well-publicized citizen-science 

recording scheme targeted particularly at this species (http://www.harlequin-survey.org). 

 

http://www.harlequin-survey.org/
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A species’ spatial distribution pattern is the result of the interplay between its life-history traits coupled 

with the biotic and abiotic components of the environment (Lambdon, 2008).  Our analyses cannot 

determine the causal mechanisms of the resulting correlations, but may allow predictions that help in 

the identification of conservation priorities and extinction risks as part of the wider process of 

identification of correlates of rarity.  Whilst the direction of causality can be disputed, the large changes 

in AIC when traits are dropped from the best models strongly suggest that the selected traits all make 

independent contributions. 

 

Our results demonstrate that, for ladybirds, species’ resource-use traits better explain range size and 

fill than do life-history traits.  Species that can utilize a greater range of prey species have larger range 

sizes and a greater degree of range fill (at the 50-km grid square level).  A life-history trait, body size, 

was important at the 50-km grid square level of range fill, however, with smaller species exhibiting a 

greater degree of range fill than larger species, which  is likely to result from the correlation between 

body size and other traits, particularly dispersal ability.   

 

Dispersal ability is likely to be important for ladybirds and other predatory beetle species, as it is for 

freshwater invertebrates such as the Odonata (and, to a lesser extent, Plecoptera and 

Ephemeroptera), where it has been suggested that dispersal ability, and in particular wing size, is the 

trait which links size and distribution patterns (Malmqvist, 2000; Rundle et al., 2007a; Rundle et al., 

2007b). Species with more limited dispersal abilities, such as the smaller ladybirds, tend to spread in 

smaller increments, creating a more clumped distribution pattern, with high levels of range fill when 

compared to more dispersive species.  

 

Unfortunately, it did not prove possible to include a direct measure of dispersal ability as an 

explanatory variable, as this information is lacking for most ladybird species.  Some ladybird species 

also possess wing-length polymorphisms (fully-winged, brachypterous, apterous forms), which will 

clearly have an effect on a species’ dispersal ability, and thus also on distribution patterns, but this is 

rare and only one species in Britain is known to exhibit brachyptery: Subcoccinella 

vigintiquattuorpunctata (L.) (Pope, 1977).  This would be an important parameter to include for taxa 

which exhibit this variation, e.g. the Orthoptera or Heteroptera. 
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A potential problem with data from this kind of survey, with a high proportion of citizen science 

involvement, is that recording intensity may vary among species.  Widespread, common species are 

frequently better-studied and better-recorded than are rare species, and recorder intensity was an 

important contributor to range fill, with more intensively recorded species having a higher proportion of 

range fill than less intensively recorded species.  It is interesting to note, however, that recording 

intensity was not a significant variable in the range size model, possibly because ladybirds are 

charismatic species that are all quite well recorded. 

 

2.7. Conclusions 

Our results suggest that a species’ ability to feed on a wide range of prey taxa can be a better 

correlate of both range fill and range size than more usual measures, such as habitat specificity.  This 

may be particularly true of predatory taxa, where the presence of prey species is a major factor in 

determining habitat suitability (Kruess & Tscharntke, 1994; Verberk et al., 2010) (22 of the 26 ladybird 

species resident in Britain are primarily carnivorous, and only one species has not been recorded as a 

facultative predator).  While species such as H. argus are likely to remain comparatively 

geographically restricted through reliance on a single plant species, other species may be threatened 

in the short to medium term not only by their narrow diet breadth but also by their niche overlap with 

dominant competitors such as H. axyridis. 
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Chapter 3.  Ecological correlates of local extinction and 

colonisation in the British ladybird beetles (Coleoptera: 

Coccinellidae). 

3.1. Abstract 
Five main drivers of population declines have been identified: climate change, habitat degradation, 

invasive alien species, overexploitation and pollution.  Each of these drivers interacts with the others, 

and also with the intrinsic traits of individual species, to determine species’ distribution and range 

dynamics.   

 

We explored the relative importance of life-history and resource-use traits, climate, habitat, and the 

invasive alien species (IAS) Harmonia axyridis in driving local extinction and colonisation dynamics 

across 25 ladybird species (Coleoptera: Coccinellidae). Species were classified as continually present, 

continually absent, extinct, or colonising in each of 4642 1-km
2
 grid squares. The spatial distribution of 

local extinction and colonisation events (in the grid squares) across all species’ ranges were related to 

ecological traits, overlap with H. axyridis, climate, and habitat factors within Generalised Linear Models 

(GLMs).  GLMs were also used to relate species’ traits, range characteristics, and niche overlap with 

H. axyridis to extinction and colonisation rates summarised at the species level.   

 

Bayesian Model Averaging was used to account for model uncertainty, and produce reduced sets of 

models which were well-supported by data. Species with a high degree of niche overlap with H. 

axyridis suffered higher extinction rates in both analyses, while at the spatial scale extinctions were 

more likely and colonisations less likely in areas with a high proportion of urban land cover.  In the 

spatial analysis, polymorphic species with large range sizes were more likely to colonise and less 

likely to go extinct, and sunny grid squares were more likely to be colonised. Large, multivoltine 

species and rainy grid squares were less likely to colonise or be colonised.   

 

In conclusion for ladybirds, extinction and colonisation dynamics are influenced by several factors.  

The only factor that both increased the local extinction likelihood and reduced colonisation likelihood 

was urban land cover, while ecological overlap with H. axyridis greatly increased extinction rates.  
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Continued spread of H. axyridis is likely to adversely affect native species and urban areas may be 

particularly vulnerable. 

3.2. Keywords: Climate, Coccinellidae, colonisation, extinction, habitat, niche overlap, traits 

3.3. Introduction 
Increased population-level, regional, and global extinctions of species is a major concern (Thomas et 

al., 2004).  Long-term declines have been reported for well-studied insect taxa such as Lepidoptera 

(Fox et al., 2011; Fox, 2012), Hymenoptera (Goulson et al., 2005; Connop et al., 2009) and 

Coleoptera (Roy et al. 2012).  Five main drivers of population declines have been identified: climate 

change, habitat degradation, invasive alien species, overexploitation and pollution (Millennium 

Ecosystem Assessment, 2005; UK National Ecosystem Assessment, 2011).  Each of these drivers 

interacts with the others, and also with the intrinsic traits of individual species, to determine species’ 

distribution and range dynamics (Brook et al., 2008).  As short-lived ectotherms, many of which are 

reliant on a single host or prey species, insects are likely to respond particularly quickly to changes in 

these drivers (McIntyre et al., 2001; Musolin, 2007).  

 

Controversy has arisen over whether biological invasion is a leading cause of species extinction (e.g. 

Gurevitch & Padilla, 2004; Ricciardi, 2004) since evidence cited in favour of this hypothesis was based 

on simple spatial or temporal correlations between dominance of invasive alien species and native 

species decline in degraded ecosystems (Didham et al., 2005). Recent work, largely in marine 

systems, has highlighted the necessity of considering invasion impacts alongside competing causes of 

extinction within the same analytical framework (e.g. Light & Marchetti, 2007) and of examining 

extinction at the population level rather than species level (Ricciardi, 2004).  

 

Relating population changes to ecological characteristics (traits) across taxa (Tremlova & 

Munzbergova, 2007; Barbaro & van Halder, 2009; Poyry et al., 2009; Bell & Sotka, 2012; Salido et al., 

2012) has shed some light on the traits that make species more vulnerable to environmental change 

and permitted the design of indicator species for monitoring change (e.g. the habitat-based wild bird 

indicators used in the UK (Newson et al., 2006).  However, few studies have investigated how traits 

and environmental factors interact to govern species’ range dynamics.  These interactions have 

implications for predicting where, and under which conditions, species loss is likely to occur and for 
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understanding how community composition and ecosystem function may alter under environmental 

change (Webb et al., 2010). Long-term and large-scale presence-absence distribution datasets, such 

as those compiled through the Biological Records Centre (www.brc.ac.uk) within the Centre for 

Ecology & Hydrology, offer opportunities to understand how traits and environmental factors influence 

distribution changes through their impacts on the probability of local extinction and colonisation events 

(Doxford & Freckleton, 2011). 

 

The breadth of trait characteristics amongst British ladybirds (Coleoptera: Coccinellidae) makes them 

an ideal group to investigate trait-environment relationships, particularly as range characteristics have 

already been shown to be dependent on ecological traits, such as diet breadth (Comont et al., 2012).  

As well as being subject to land use and environmental changes of varying intensity across Britain, 

native ladybird communities are also currently being disrupted by the invasion of Harmonia axyridis 

(Pallas), a large ladybird species native to temperate Asia. This species has been widely used as a 

biocontrol agent against pest aphids and is now an Invasive Alien Species (IAS) in more than 30 

countries worldwide (van Lenteren et al., 2008; Brown et al., 2011a).  It became established in Britain 

in 2004, and has been implicated in the declines of native ladybirds (Ware & Majerus, 2008; Brown et 

al., 2011b; Roy et al., 2012). The diversity of habitat and dietary preferences amongst native ladybird 

species provides a spectrum of overlap with the ecological niche of the invasive alien ladybird species, 

H. axyridis.  This provides an ideal system for understanding the importance of invasion versus abiotic 

drivers and trait-environment interactions in underpinning species declines. We investigated the 

influence of habitat, climate and an IAS on local extinctions and colonisations of ladybirds within 

Britain with the following specific objectives: 

 

(i) to understand whether species-level rates of local extinction/colonisation and proportional 

range change, summarised across their ranges, are predictable from biological traits; 

(ii) to understand the relative importance of biological traits, environmental factors and trait-

environment interactions in determining where particular species are vulnerable to local extinction or 

able to colonise. 

http://www.brc.ac.uk/
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3.4. Methods 

3.4.1. Distribution data 

The distribution data for all ladybird species were taken from the UK Ladybird Survey (UKLS; 

www.harlequin-survey.org and www.ladybird-survey.org).  The recording scheme contains over 

140,000 ladybird records from 1832 to the present day, both casual sightings and the results of 

systematic surveys (e.g. from county atlases).  Data are much less extensive for the 21 smaller 

inconspicuous coccinellids and these are excluded from the current analysis.  All records used in this 

analysis have been verified to species either in the field or from a specimen or photograph submitted 

to UKLS.   

 

Ladybird distribution was characterised as presence/absence at a 1-km
2
 grid square resolution across 

mainland England, Scotland and Wales (i.e. excluding Northern Ireland and the offshore islands of 

Scilly, Man, Lundy, Shetland, Orkney, the Outer Hebrides and the Channel Islands).  These were then 

aggregated into two periods: 1991-2003 (before H. axyridis establishment), and 2004-2010 (post-

establishment), such that each database row represented a unique species-1-km
2
-period combination. 

 

For analysis, we included only 1-km
2
 grid squares which were ‘well-sampled’ in both periods, such that 

if at least three species were recorded in a particular grid square-period combination, we inferred that 

all other species were absent (after Biesmeijer et al., 2006; Roy et al., 2012).  These criteria restricted 

our dataset to a smaller subset of high-quality data (Roy et al., 2012), 4642 1-km
2
 grid squares in total 

(Table 3.1).  H. axyridis was removed from the dataset as a species because, as a recent colonist, its 

distribution was not at equilibrium during the study period. 

 
Table 3.1. Summary of ladybird distribution in Britain. Data collected by volunteers and collated through a national recording 

scheme, the UK Ladybird Survey: each record is one observation of a ladybird species within a 1-km
2
 grid square in a year. Our 

analyses were based on a filtered data set which excluded Harmonia axyridis, and consisted of records from 1-km
2
 grid squares 

which were ‘well-sampled’ i.e. contained at least three species records in both of the study periods (1991-2003 and 2004-10).  

Category Count 

Total number of records (all years, all species) 106,952 

Total number of surveyed 1-km
2
 1991-2010 18,546 

Total number of  1-km
2 
used for analysis 4,642 

Number of 1-km
2
 used for local extinction analysis 2,704 

Number of 1-km
2
 used for colonisation analysis 4,642 

Number of  1-km
2 
with Harmonia axyridis recorded present 1,978 
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3.4.2. Environmental and trait data 

Climate and habitat predictors were obtained for each 1-km
2
 grid square within the subset, along with 

the year that H. axyridis was first recorded in each grid square (if at all). Habitat predictors were taken 

from the 1990, 2000, and 2007 editions of the Land Cover Map (LCM) of Great Britain (Barr et al., 

1993; Fuller et al., 2002; Smith et al., 2007). Although the maps were created using different methods 

and classification groupings, the data were extracted at the aggregate class level, where such 

differences were minimal. Four habitats were chosen (broadleaf woodland, coniferous woodland, 

natural grassland and urban areas), as these cover the major habitats for the majority of the ladybirds 

in Britain. Aggregate classes rejected were either of extremely limited value for ladybirds (e.g. 

freshwater, saltwater, and coastal), or of value only to a few rare species (e.g. the ‘mountain, heath 

and bog’ category, which is of value mainly to the scarce Coccinella hieroglyphica L.).  A mean 

percentage cover value was taken for each habitat in each grid square, averaged across each of the 

three LCM editions (Table 3.2).  We predict that a high proportion of the four specified habitats 

(broadleaf woodland, coniferous woodland, natural grassland and urban) within a grid square will 

promote colonisation and limit extinction across ladybirds (Hodek et al., 2012).  

 

Climate data were taken from the Met Office’s UK Climate Projections (UKCP09) dataset 

(downloadable from http://www.metoffice.gov.uk/climatechange/science/monitoring/ukcp09/).  Three 

predictors were chosen for the analysis: rainfall, sunshine and growing degree-days (GDD) (Table 

3.2).  We predict that decreasing rainfall, increasing sunshine and growing degree-days will be 

positively associated with colonisation of a grid square, and conversely negatively associated with 

extinction in a grid square. 

 

The invasion and H. axyridis overlap traits include measures of the dietary and habitat niche overlap 

between H. axyridis and each other ladybird species. The number of years that H. axyridis has been 

present in each grid square was calculated as a geographic measure of impact. We hypothesise that 

the effect of H. axyridis is likely to scale with duration of temporal overlap (i.e., worse impact the longer 

the species have co-occurred within the grid square), and with the intimacy of ecological overlap (i.e., 

species with a greater niche overlap will be affected to a greater extent).   
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The Bray-Curtis similarity index (Somerfield, 2008) was used to measure habitat use and diet overlap 

of each species with H. axyridis (cf. Adriaens et al. 2008).  This is the inverse of the Bray-Curtis index 

of dissimilarity, and is calculated as 1/ BCDi,j, where BCDi,j is the Bray-Curtis dissimilarity score 

between species i and j, k is the resource use measure (number of species eaten in family y or 

presence/absence in habitat y), and n is the total number of species. This index ranges between 0 (no 

similarity, i.e. no resource overlap between species) and 1 (identical resource use).  See Appendices 

S1 and S2 in Supporting Information.  

 

Ecological traits with the potential to influence population and distribution characteristics were selected 

a priori from the literature (Table 3.2).  We predict that large, polymorphic, multivoltine species with a 

wide diet breadth but with limited overlap with H. axyridis are more likely to colonise and resist local 

extinction in comparison to species not exhibiting these traits.   

 

To account for variation in recording intensity amongst species and geographic regions, range size 

and recording intensity (measured at both the species and grid-square levels) were included as 

covariates (Doxford & Freckleton, 2011) (Table 3.2).  

 

3.4.3. Modelling approach 

3.4.3.1. Spatial models 

We performed a spatially-explicit, local scale (1-km
2
 grid squares) analysis to consider the relative 

importance of environmental factors (climate and habitat, recording intensity), species traits, range 

characteristics, and measures of niche overlap with H. axyridis in determining where ladybirds are 

vulnerable to local extinction or able to colonise (hereafter referred to as spatial models).  From 

species’ presence or absence in the two periods, we determined whether each species had colonised, 

persisted, gone locally extinct, or never occupied each 1-km
2
 grid square.  Extinction/persistence and 

colonisation/continued absence were then extracted and used as binary response variables in 

separate analyses of local extinction and colonisation.  For these, we used generalised linear models 

(GLMs)  with Bernouilli errors (special case of binomial where there is a single observation of an event 

per sample unit) fitted using R version 2.15 (R Development Core Team, 2011). Interactions included 

were between ‘years with H. axyridis’ and the habitat use and dietary niche overlap predictors, as 
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overlap with H. axyridis would only be relevant if H. axyridis was present in the grid square. Model 

residuals were assessed for spatial and phylogenetic autocorrelation using the package ‘ape’ version 

3.0-6 within R (Paradis et al., 2004). Though both species and grid square
 
effects are incorporated in 

these models, for convenience we hereafter refer to these as local extinction and colonisation models. 

 

To reduce the uncertainty implicit in model predictor selection, Bayesian Model Averaging (BMA) was 

applied throughout, as implemented in the R package ‘BMA’, version 3.15.1 (Raftery et al., 2012). 

Rather than try to identify a single best model, BMA averages over a set of competing well-fitting 

alternatives, weighted by their posterior probabilities (the likelihood of each model being the best fit to 

the data) (Raftery, 1995).  This package uses the ‘leaps and bounds’ algorithm to identify up to 1000 

good models per number of predictors, which were fitted and then further reduced to a set of well-

fitting models by the Occam’s window method, whereby models 20 times less likely than the best-

supported model were discarded (Madigan & Raftery, 1994). All models in the well-fitting set have 

Bayesian Information Criteria (BIC) values within 6 BIC units of the model with the highest posterior 

probability. As a measure of the overall conformity of the top models to the data, the Area Under the 

Curve (AUC) (Fielding and Bell 1997) statistic is calculated. AUC ranges between 0.5 and 1.0, with 0.5 

indicating no discrimination ability; values below 0.7 are low, values between 0.7 and 0.9 are useful in 

some cases, and values > 0.9 indicate high discrimination (Swets 1988). 

3.4.3.2. Species models 

We used binomial GLMs to examine which species-level traits were best correlated with local 

extinction and colonisation rates, calculated for each species at a national scale by summarising the 1-

km
2
-scale data.  Local extinction rate was calculated as the total number of extinction events out of  

the number of grid squares reported occupied in the first period (formatted as a two column binomial 

dependent variable – number of extinctions, number of sustained presences) , whilst colonisation rate 

was the total number of colonisation events out of the number of grid squares unoccupied in the first 

period (formatted as a two column binomial dependent variable – number of colonisations, number of 

sustained absences).  
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Table 3.2. The traits and environmental predictors used to model local-scale extinction and colonisation in the British ladybirds.  

Climate data were extracted from the Met Office’s UK Climate Projections (UKCP09) dataset, and habitat data from the 1990, 

2000, and 2007 editions of the Land Cover Map of Great Britain at the aggregate class level.  Resource use and life-history 

predictors were taken from the literature (352 sources examined, see Comont et al (2012) for details), and ecological overlap 

predictors were calculated from data in the literature.  Range characteristics and invasion predictors were calculated from the 

distribution data of the UK Ladybird Survey (1991-2010). 

Predictor type Predictor Description 

Environmental   

Climate Growing degree-days 20-year mean (1987-2006) of annual degree-days over 5.5°C, per 1-km
2
 grid 

square. 

 Sunshine 20-year mean (1987-2006) of annual hours of sunshine, per 1-km
2
 grid square. 

 Rainfall 20-year mean (1987-2006) of annual millimetres of rainfall, per 1-km
2
 grid 

square. 

Habitat Broadleaf woodland % cover of broadleaf woodland per 1-km
2
 grid square. 

 Coniferous woodland % cover of coniferous woodland per 1-km
2
 grid square.  

 Natural grassland % cover of unimproved grassland per 1-km
2
 grid square.  

 Urban % cover of urban and suburban habitats per 1-km
2
 grid square.  

Invasion Years with H. axyridis Number of years between the arrival of H. axyridis in a grid square and the end 
of the study period (0 if never present in a grid square). 

Traits   

Ecological overlap 
with H. axyridis 

Dietary niche overlap  Calculated as an inverse Bray-Curtis dissimilarity index, such that 1 indicates 
the same diet composition and 0 indicates no shared dietary items between H. 
axyridis and native species.  See Appendix S1. 

Habitat niche overlap  Calculated as an inverse Bray-Curtis dissimilarity index, such that 1 indicates 
the same habitat use and 0 indicates no shared habitats between H. axyridis 
and native species.  See Appendix S2. 

Resource use Diet breadth Number of prey families (ranging from 1 to 12) recorded as consumed by 
either adults or larvae of each species. Only natural diets were considered and 
laboratory diets such as drone powder, Ephestia eggs and agar-based diets 
were excluded. 

Life-history Polymorphism Elytral colour pattern polymorphism, characterised as a binomial 
presence/absence of melanic forms, following Roy et al. (2011).   

 Body size Length (mm) from head to abdomen tip, calculated as the mid-point of the 
upper and lower body lengths quoted in Roy et al. (2011) (3 to 7.8 mm).  Data 
from Pope (1953) and Hawkins (2000), based on measurements from 
populations across Britain, except for H. axyridis which was taken from 
Kuznetzov (1997) and checked against specimens submitted to the recording 
scheme from across Britain.   

 Maximum voltinism The maximum number of generations per year recorded in the field in Britain 
for each species. 

Range 
characteristics 

Recording intensity Mean number of records per 1-km
2
 grid square for each species (2004-2010). 

Range size Number of grid squares that each species was recorded from (2004-2010). 

 

3.5. Results 

Ladybirds were more likely to go extinct than colonise over the study period. The mean local extinction 

rate for the species models was 0.84 (SD ± 0.20) (where 1 is complete local extinction and 0 is 

complete local persistence) and the mean colonisation rate was 0.098 (± 0.15).  Species only occurred 
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in a fraction of the studied grid squares: each species colonised 161.4 (± 194.0) grid squares on 

average, but went locally extinct in a mean of 210.44 (± 242.9) squares. 

 

The BMA set (all the models with a BIC within six units of the best model) for species-level local 

extinction rates contained eight models, with a cumulative posterior probability (the likelihood of each 

model being the best fit to the data) across the best five models of 0.891 (see Appendix S1). Within 

this model set four predictors had a significant impact on species extinction rates, i.e. had a greater 

than 90% probability that the coefficient was not equal to 0 (p!=0) (Table 3.3). This showed that 

species with a higher dietary niche overlap with H. axyridis, a lower maximum voltinism, a lower range 

size or a lower recording intensity were more likely to go extinct. 

 

Table 3.3. Model-averaged coefficients for trait effects on species-level local extinction, colonisation and net change 

rates (in 1-km
2
 grid squares) for British ladybirds.  Values presented are means across each Bayesian Model Averaging 

(BMA) model set. For each predictor, EV is the coefficient, averaged across models, SD is the standard deviation of the 

coefficient, p!=0 is the probability that the coefficient is not equal to zero (i.e., the probability that that predictor should be 

included in the model), and % included is the percentage of models within the BMA set which include that predictor.  Terms in 

bold are those which have a greater than 90% probability that the coefficient (EV) is not equal to 0, terms in italics are where this 

probability is between 80 and 90 percent. 

Trait group Predictors 

Local extinction rate Colonisation rate Net change rate 

p!=0 % 
included 

EV SD p!=0 % 
included 

EV SD p!=0 % 
included 

EV SD 

 (Intercept) 100 100 1.27 0.06 100 100 -0.07 0.03 100 100 0.03 0.05 

Ecological 
overlap with H. 
axyridis 

Dietary niche 
overlap 

100 100 0.30 0.09 11.2 20.0 0.00 0.01 80.0 72.9 -0.11 0.08 

Habitat niche 
overlap 

12.0 22.2 -0.00 0.03 28.3 36.0 -0.01 0.03 19.5 37.1 -0.00 0.04 

Resource use Diet breadth 11.6 22.2 -0.00 0.00 15.9 28.0 0.00 0.00 24.1 40.0 0.00 0.00 

Life history Body size 14.8 33.3 -0.00 0.01 87.9 80.0 0.01 0.01 33.2 34.3 0.00 0.01 

Polymorphism 14.9 33.3 0.00 0.01 10.0 16.0 0.00 0.00 61.6 58.6 -0.03 0.03 

Maximum 
voltinism 

100 100 -0.19 0.05 9.8 16.0 -0.00 0.00 57.6 51.4 0.03 0.04 

Range 
characteristics 

Range size 9.1 11.1 -0.00 0.00 100 100 0.00 0.00 94.0 85.7 0.00 0.00 

Recording 
intensity 

100 100 -0.08 0.01 25.6 36.0 0.00 0.00 28.4 30.0 -0.00 0.01 
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Table 3.4.  Results of colonisation and local extinction of British ladybirds obtained by Bayesian Model Averaging 

(BMA) of spatial Generalised Linear Models (GLMs). Model diagnostics include the area under the receiver operating 

characteristics curve (AUC) and the posterior probabilities that the model terms are equal to zero, compared to the null model. 

Model diagnostics Local extinction Colonisation 

No. data points 6276 51734 

No. species 25 25 

No. 1-km
2
 2699 4642 

No. models in BMA dataset 16 11 

Posterior probability of best model 0.163 0.260 

Cumulative posterior probability of BMA dataset best five models 0.612 0.811 

AUC 0.854 0.900 

AIC best model (AIC null model) 4201 (4542) 19808 (22974) 

BIC (null model) 4282 (4562) 19941 (23001) 

LogLik (null model) -2089 (-2268) -9889 (-11484) 

Deviance (null model) 4177 (4536) 19778 (22968) 

  

The species-level colonisation rate BMA set contains seven models, the best five of which have a 

cumulative posterior probability of 0.921 (see Appendix S2). Within this model set five predictors had a 

significant impact on species colonisation rates (Table 3.3). Species a higher habitat overlap with H. 

Axyridis and which had larger range sizes or were small bodied were more likely to colonise new grid 

squares, (Table 3.3).Species that were recorded less intensively and had a lower maximum voltinism 

were more likely to colonise new grid squares, as well as being more likely to go extinct across their 

distributions (see above). 

 

The BMA set for spatial models of local extinction contained 16 models and had a cumulative posterior 

probability for the best five models of 0.612.  The equivalent set for spatial models of colonisation 

contained 11 models (best five models cumulative posterior probability 0.811) (Table 3.4).  Both 

analyses had a good discriminatory ability (high Area Under Curve (AUC) score), and were well 

calibrated (Table 3.4). 

 

 

The BMA model set for spatial models of local extinction contains six predictors with a >90% 

probability that the coefficient is not equal to zero.  Local extinctions were more likely in grid squares 

with a higher proportion of urban area. Species were also more prone to local extinction if they were 

had smaller range sizes, were not facultatively multivoltine, or had a greater dietary niche overlap with 
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H. axyridis and in squares that were recorded less intensively.  Local extinctions were negatively 

correlated with the interaction between habitat niche overlap with H. axyridis and the number of years 

that the invader was present in the grid square, suggesting that species which share habitat 

preferences with H. axyridis were less likely to be lost from a grid square when the invader has been 

present for a longer period (Table 3.5). 

 

Figure 3.1. Goodness-of-fit plots for the models of local-scale extinction and colonisation in the British ladybirds, 

actual values plotted against fitted values extracted from the best models (a. local extinction per species, b. 

colonisation per species, c. local extinction per 1-km
2
 grid square, d colonisation per 1-km

2
 grid square). Expected rates 

for individual species and grid squares
 
were calculated from the means of the fitted probabilities of the best model (Cox, 1970). 

 

The BMA set for spatial models of colonisation contains ten predictors with a >90% probability that the 

coefficient is not equal to zero.  Colonisations were more likely in grid squares which received more 

sunshine and less rainfall, and which contained a lower proportion of urban areas.  Species were more 
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likely to colonise new grid squares if they had a smaller body size, had larger range sizes, were not 

facultatively multivoltine, had a smaller diet breadth, or were polymorphic and in squares that were 

recorded more often,.  Colonisation was also positively correlated with the interaction between habitat 

niche overlap and years with H. axyridis (0.26 ± 0.026), suggesting species which share habitat 

preferences with H. axyridis were more likely to colonise grid squares where the invader has been 

present for longer (Table 3.5). 

 
Table 3.5.  Model-averaged coefficients for environmental and trait effects on the 1-km

2
-scale probabilities of local 

extinction and colonisation in British ladybirds (spatial models).  Values presented are means across each Bayesian 

Model Averaging (BMA) model set. For each predictor, EV is the coefficient, SD is the standard deviation of the coefficient, p!=0 

is the probability that the coefficient is not equal to zero, and % included is the percentage of models within the BMA set which 

include that predictor.  Terms in bold are those which have a greater than 90% probability that the coefficient (EV) is not equal to 

0, terms in italics are where this probability is between 80 and 90 percent.  

  1-km
2
 extinction 1-km

2
 colonisation 

 Trait group Predictor  p!=0 % included EV SD p!=0 % included EV SD 

  (Intercept) 100.0 100.0 4.98 1.02 100.0 100.0 -2.25 0.34 

Climate Growing degree-days 52.5 37.50 -0.00 0.00 3.8 9.1 0.00 0.00 

Sunshine 39.2 37.50 -0.02 0.02 96.2 90.9 0.03 0.01 

Rainfall 86.7 87.50 0.00 0.00 100.0 100.0 -0.00 0.00 

Habitat Broadleaf woodland 38.6 50.0 -0.00 0.01 46.0 54.6 -0.00 0.00 

Coniferous woodland 48.2 50.0 -0.01 0.01 70.5 72.7 0.01 0.00 

Natural grassland 0.0 0.0 0.00 0.00 86.5 81.8 -0.00 0.00 

Urban 97.0 87.50 0.01 0.00 100.0 100.0 -0.01 0.00 

Invasion Years with H. axyridis 0.0 0.0 0.00 0.00 1.5 9.1 0.00 0.01 

Ecological 
overlap with 
Harmonia 
axyridis 

Dietary niche overlap 100.0 100.0 2.45 0.51 9.5 27.3 0.04 0.14 

Habitat niche overlap 0.0 0.0 0.00 0.00 0.0 0.0 0.00 0.00 

Dietary niche overlap * 
Years with H. axyridis 

0.0 0.0 0.00 0.00 0.0 0.0 0.00 0.00 

Habitat niche overlap * 
Years with H.axyridis 

100.0 100.0 -0.40 0.05 100.0 100.0 0.26 0.03 

Resource use Diet breadth 0.0 0.0 0.00 0.00 100.0 100.0 -0.07 0.01 

Life-history Body size 0.0 0.0 0.00 0.00 100.0 100.0 -0.36 0.02 

Polymorphism 0.0 0.0 0.00 0.00 100.0 100.0 0.21 0.05 

Maximum voltinism 100.0 100.0 -0.68 0.19 100.0 100.0 -0.26 0.06 

Range 
characteristics 

Range size 100.0 100.0 -0.00 0.00 100.0 100.0 0.00 0.00 

Recording intensity 100.0 100.0 -0.05 0.00 100.0 100.0 0.01 0.00 
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The observed and predicted extinction and colonisation rates were highly correlated (Figure 3.1) 

showing that the models explained substantial proportions of spatial and species variability in these 

ratesalthough this correlation was lower for spatial models, particularly for local extinction.   

3.6. Discussion 
Most studies exploring the interactions between ecological traits of species and environmental factors 

do not consider population or distribution changes.  A few recent studies have examined the role of 

ecological traits in explaining distribution patterns of animals. For example, habitat use and diet 

breadth are important traits in explaining distribution patterns of isopods (Purse et al., 2012) and 

coccinellids (Comont et al., 2012) respectively.  However, the dual effects of both ecological traits and 

environmental drivers in determining distribution trends (colonisation and local extinction) of species 

have largely been ignored, making it difficult to understand where species with particular ecological 

characteristics (and performing particular ecosystem functions) will decline, and, why.  Here we 

investigated determinants of local extinction and colonisation events at both the species and 

population level (as recommended by Ricciardi, 2004), and detected significant impacts of both 

ecological traits and environmental factors on the dynamics of ladybirds.  Additionally we revealed that 

an invasive alien species, Harmonia axyridis, constitutes a key biotic environmental pressure on native 

ladybirds, and has species-specific impacts, depending on overlap of resource use of individual 

species with the invader.   Here we discuss the potential biological mechanisms underpinning the 

significant trait and abiotic environmental affects before considering the wider implications of the 

impacts of H. axyridis on native ladybirds. 

 

Local extinction and colonisation rates were predict more accurately at the spatial level rather than for 

species (Fig. 3.1), but taking a spatially-explicit, population approach (so-called spatial models above) 

revealed the environmental conditions that made species more vulnerable to local extinction (e.g. 

areas with a high degree of urban cover) and indicated a wider range of traits to be involved in 

buffering species against environmental change. Key impacts of intrinsic traits that were consistent 

between species-level and spatial models included those of range size, voltinism and habitat overlap 

with H. axyridis on colonisation rates, and those of range size, voltinism and diet overlap with H. 

axyridis on local extinction rates. The key environmental factor that both increased the likelihood of 
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local extinction and reduced that of colonisation was urban land cover. More marginal effects included 

diet breadth, polymorphism, body size, recording intensity, sunshine and rainfall.  

 

Urbanisation was shown to be an important driver of both local extinction and colonisation at the 1-km
2 

scale.  Although gardens and parks in urban areas often seem to be favourable for individual ladybird 

species (Roy et al., 2011), our results indicate that overall increases in urban land cover are not 

favourable for ladybirds as a group.  In terms of habitat specificity, ladybirds in Britain span the range 

from generalist (e.g., Coccinella septempunctata L. and H. axyridis) to highly specialist (Myrrha 

octodecimguttata L., found in the canopies of mature pines, and Coccinella hieroglyphica, found in 

heather on heath and moorland).  Urban areas are probably good for the small subset of eurytopic 

(habitat-generalist) species but poor for specialist species, leading to decreasing colonisations and 

increasing local extinctions.  This may be the result of destruction and fragmentation of the preferred 

habitats of specialist species, promoting biotic homogenisation (McKinney, 2006), but may also be 

exacerbated by competition from increased prevalence of eurytopic species such as H. axyridis in 

urban areas. 

 

Ladybird species with larger range sizes were more likely to colonise new grid squares and less likely 

to suffer local extinctions.  Large range sizes (high occupancy) are often associated with high 

abundances (Quinn et al., 1997; Freckleton et al., 2005) and more abundant species are less likely to 

go locally extinct and more likely to colonise by virtue of their larger population size (Breininger et al., 

1999; McCarthy & Thompson, 2006). As expected, colonisation events were more likely and extinction 

events less likely in grid cells that were recorded more intensively. However, at the species level, 

species recorded more intensively were less likely to colonise new grid squares across their 

distribution overall. Species may be intensively recorded because they are common and abundance 

and encountered frequently or because they are rare and their records are much sought after (Roy et 

al. 2011). In fact the direction of the relationship between recording intensity and species colonisation 

rates was determined largely by Coccinella quinquepunctata which is absent from much of Britain and 

colonised only a single square of between the two periods, but which has been recorded very 

intensively in that square (Roy et al. 2011). This illustrates the potential superiority of geographical 

versus species measures of recording intensity for understanding drivers of colonisation and extinction 
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- by averaging across common and rare species, geographical measures smooth out impacts of 

species attractiveness on recording effort.  

 

Species which are capable of having more than one generation were less likely to go extinct, and were 

also less likely to colonise new grid squares.  This produces a more stable distribution pattern than is 

present in species which are declining or colonising.  Species which are facultatively multivoltine may 

be more buffered against changes in the environment, as they can produce more offspring in 

favourable conditions (Pereira et al., 2012) and may also benefit from greater genetic exchange 

between generations (Watts & Thompson, 2011). 

 

The negative impacts of H. axyridis were greater in species with high dietary niche overlap with the 

invader, both at a species and spatial scale: native species which had a high dietary niche overlap 

with H. axyridis were more likely to go locally extinct than species with a low niche overlap.  This 

supports recent studies which have implicated H. axyridis in the declines of native ladybird species.  

Ware & Majerus (2008) found that H. axyridis was a predator of native species in captivity, and 

declines have been found in native species after the arrival of H. axyridis at a local  (Brown et al., 

2011b) and European scale (Roy et al., 2012).  Diet overlap was a more consistent predictor of local 

extinction or colonisation than habitat niche overlap, suggesting that competition for food is the most 

important mechanism by which H. axyridis causes declines in native ladybird species. This is despite 

the existence of species such as Halyzia sedecimguttata (L) and Exochomus quadripustulatus (L), 

which share habitat with H. axyridis but have very limited dietary niche overlap.  However, it should be 

noted that predation may also play an important role: within a given habitat, species exploiting the 

same food resource as H. axyridis are likely to come into contact with the invader more frequently, and 

so be at a greater risk of predation, which correlates positively with encounter rate (Raak-van den 

Berg et al., 2012).  Phenology may also play a role in regulating both competition and predation: larval 

H. sedecimguttata are thought to be more at risk from predation by H. axyridis larvae as a 

consequence of developing late in the year, when aphids are scarce (Roy et al., 2012). 

 

The interaction between habitat use and the number of years that H. axyridis has been present in a 

grid square was positively associated with continued presence in a grid square, and with local 
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colonisation.  This suggests that the negative effects of H. axyridis were reduced in eurytopic species, 

even where more of this niche was potentially shared with the invader. This may indicate that these 

species are able to utilise habitat patches which are less-favoured by H. axyridis as refugia, due to 

their low habitat specificity.  This has been found in North America (Evans, 2004), where native 

ladybird species were displaced from agricultural areas after the arrival of C. septempunctata, and in 

freshwater fish species in Lake Nabugabo, Uganda, after the establishment of the Nile perch, Lates 

niloticus L (Chapman et al., 1996).  Alternatively, it may indicate that eurytopic species are colonising 

the same grid squares as H. axyridis, at a higher rate than are oligotrophic species, for an as-yet 

unknown reason, or that areas with H. axyridis become more suitable for eurytopic species several 

years after invasion, possibly because of the lack of competition other than H. axyridis 

 

Species which are polymorphic are more likely to colonise new grid squares than are monomorphic 

species, and
 
grid squares which receive more hours of sunshine are more likely to be colonised than 

less sunny areas.  It is probable that the effect of polymorphism results from species with an extended 

phenotypic range of several distinct forms being able to inhabit a wider range of 

habitats/microclimates, so colonising more grid squares.  Differences in large-scale distribution 

patterns have been found to be related to changes in colour pattern in the ladybird A. bipunctata in the 

Netherlands (Brakefield, 1985; de Jong et al., 1996; de Jong & Brakefield, 1998), and the grasshopper 

Chorthippus parallelus (Zetterstedt) and the groundhopper Tetrix undulata (Sowerby) have been found 

to have different colour forms preferentially inhabiting different habitat types (Ahnesjo & Forsman, 

2003, 2006).  As ectotherms, ladybirds are dependent on environmental heat sources, particularly 

temperature.  Sunshine and temperature are usually positively correlated, and ladybirds can minimise 

their reliance on the external temperature by basking in sunshine to raise their body temperatures 

above ambient (de Jong et al., 1996; Clusella Trullas et al., 2007), which seems to be important in 

allowing dispersal to colonise new grid squares.   

 

At a local (1-km
2
) scale, increased rainfall decreases the probability of colonisation.  This is probably 

because wet weather tends to be unsuitable for insect activity, so reducing both dispersal into a grid 

square and the chances of establishing there. For example, rainfall has been found to be strongly 

negatively correlated with apparent butterfly abundance on transects (Pollard, 1988), and to be a 
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strong driver of decreased adult survival in Culex mosquito species (Jones et al., 2012).  Ladybirds 

with a large body size, and those which had a wide diet breadth were also less likely to colonise new 

grid squares.  This may be because these species were already at their range limit during the first 

period, as range size and range fill in ladybirds is driven by diet breadth (Comont et al., 2012), and 

body size is often found to correlate strongly with range size in insects (Bräendle et al., 2002; Chown 

& Gaston, 2010).   

 

Overall, it is clear that external environmental factors, species-level life-history and resource-use traits 

are having effects on ladybird local extinction and colonisation dynamics, both at a species level and 

1-km
2
 spatial scale. However, even with these effects taken into account, the invasive alien ladybird H. 

axyridis is having a significant deleterious impact on native species, greatly increasing extinction rate 

at both the 1-km
2
 and large scale.  These results, particularly when considered with those of Roy et al. 

(2012), who found that seven of eight common native ladybird species began to decline, or began to 

decline faster than before, after the arrival of H. axyridis at a local level across Britain and Belgium, 

suggest that the continued spread of H. axyridis will lead to the ecological extinction (Estes et al., 

1989) of native species, particularly those with a high niche overlap with H. axyridis. Areas of Britain 

that are urban or undergoing urbanisation in which H. axyridis has invaded may be particularly 

vulnerable to loss of ladybird biodiversity. 
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3.9.1. Appendix S1.  Bray-Curtis similarity index measures of dietary overlap between each native ladybird species and H. axyridis. 
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Hippodamia tredecimpunctata 0.20 0.58 0.72 0.36 0.25 0.75 0.30 0.00 0.38 0.17 0.50 0.17 0.49 0.36 0.33 0.29 0.17 0.00 1.00 

Hippodamia variegata 0.52 0.78 0.54 0.12 0.10 0.55 0.29 0.11 0.15 0.06 0.17 0.47 0.87 0.32 0.11 0.66 0.06 0.00 0.44 1.00 

Myrrha octodecimguttata 0.11 0.30 0.48 0.57 0.50 0.40 0.28 0.00 0.50 0.25 0.75 0.08 0.24 0.34 0.50 0.17 0.25 0.00 0.57 0.22 1.00 

Myzia oblongoguttata 0.05 0.15 0.40 0.67 0.36 0.21 0.14 0.00 0.36 0.29 0.57 0.04 0.13 0.14 0.57 0.07 0.29 0.00 0.31 0.17 0.44 1.00 

Propylea quattuordecimpunctata 0.49 0.79 0.51 0.12 0.11 0.57 0.18 0.00 0.16 0.06 0.18 0.43 0.81 0.22 0.18 0.69 0.06 0.00 0.45 0.86 0.22 0.11 1.00 

Psyllobora virgintiduopunctata 0.09 0.29 0.36 0.50 0.31 0.38 0.27 0.00 0.46 0.22 0.67 0.08 0.24 0.27 0.67 0.14 0.22 0.00 0.53 0.21 0.73 0.40 0.32 1.00 

Subcoccinella vigintiquattuorpunctata 0.02 0.07 0.08 0.20 0.13 0.09 0.06 0.00 0.13 0.18 0.18 0.02 0.06 0.06 0.36 0.07 0.18 0.00 0.12 0.05 0.15 0.17 0.10 0.29 1.00 

Tytthaspis sedecimpunctata 0.04 0.14 0.09 0.22 0.14 0.09 0.06 0.00 0.14 0.20 0.20 0.07 0.06 0.06 0.40 0.10 0.20 0.00 0.13 0.05 0.17 0.18 0.21 0.31 0.27 
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3.9.2. Appendix S2.  Bray-Curtis similarity index measures of dietary overlap between each native ladybird species and H. axyridis 
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Adalia bipunctata 1.00 

Adalia decempunctata 0.43 1.00 

Anatis ocellata 0.17 0.00 1.00 

Anisosticta novemdecimpunctata 0.00 0.00 0.00 1.00 

Aphidecta obliterata 0.17 0.00 1.00 0.00 1.00 

Calvia quatuordecimguttata 0.53 0.29 0.00 0.00 0.00 1.00 

Chilocorus bipustulatus 0.40 0.29 0.40 0.00 0.40 0.50 1.00 

Chilocorus renipustulatus 0.00 0.00 0.00 0.00 0.00 0.00 0.40 1.00 

Coccinella hieroglyphica 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

Coccinella magnifica 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

Coccinella quinquepunctata 0.40 0.29 0.00 0.33 0.00 0.75 0.50 0.00 0.00 0.00 1.00 

Coccinella septempunctata 0.64 0.29 0.17 0.00 0.17 0.40 0.40 0.00 0.00 0.00 0.27 1.00 

Coccinella undecimpunctata 0.31 0.00 0.00 0.00 0.00 0.67 0.00 0.00 0.00 0.00 0.33 0.15 1.00 

Exochomus quadripustulatus 0.53 0.29 0.40 0.00 0.40 0.50 0.25 0.00 0.00 0.00 0.25 0.40 0.67 1.00 

Halyzia sedecimguttata 0.53 0.00 0.00 0.00 0.00 0.50 0.25 0.00 0.00 0.00 0.50 0.40 0.33 0.25 1.00 

Harmonia axyridis 0.64 0.29 0.00 0.00 0.00 0.27 0.13 0.00 0.00 0.00 0.27 0.55 0.15 0.27 0.53 1.00 

Harmonia quadripunctata 0.17 0.00 1.00 0.00 1.00 0.00 0.40 0.00 0.00 0.00 0.00 0.17 0.00 0.40 0.00 0.00 1.00 

Henosepilachna argus 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.50 0.40 0.00 1.00 

Hippodamia tredecimpunctata 0.17 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.17 0.67 0.40 0.00 0.00 0.00 0.00 1.00 

Hippodamia variegata 0.43 0.00 0.00 0.00 0.00 0.57 0.00 0.00 0.00 0.00 0.29 0.14 0.80 0.57 0.29 0.29 0.00 0.00 0.50 1.00 

Myrrha octodecimguttata 0.17 0.00 1.00 0.00 1.00 0.00 0.40 0.00 0.00 0.00 0.00 0.17 0.00 0.40 0.00 0.00 1.00 0.00 0.00 0.00 1.00 

Myzia oblongoguttata 0.17 0.00 1.00 0.00 1.00 0.00 0.40 0.00 0.00 0.00 0.00 0.17 0.00 0.40 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 

Propylea quattuordecimpunctata 0.80 0.33 0.20 0.00 0.20 0.62 0.46 0.00 0.00 0.00 0.46 0.80 0.36 0.62 0.62 0.50 0.20 0.31 0.20 0.33 0.20 0.20 1.00 

Psyllobora virgintiduopunctata 0.53 0.29 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.50 0.53 0.00 0.00 0.75 0.40 0.00 0.50 0.00 0.00 0.00 0.00 0.62 1.00 

Subcoccinella vigintiquattuorpunctata 0.29 0.00 0.00 0.00 0.00 0.57 0.29 0.00 0.00 0.00 0.29 0.29 0.40 0.29 0.29 0.14 0.00 0.00 0.50 0.33 0.00 0.00 0.33 0.29 1.00 

Tytthaspis sedecimpunctata 0.15 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.15 0.50 0.33 0.00 0.00 0.00 0.00 0.67 0.40 0.00 0.00 0.18 0.00 0.80 
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Chapter 4. Escape from parasitism by the invasive alien ladybird, 

Harmonia axyridis. 

4.1. Abstract  
Alien species are often reported to perform better than functionally-similar species native to the 

invaded range, resulting in high population densities, and a tendency to become invasive. The Enemy 

Release Hypothesis (ERH), explains the success of invasive alien species (IAS) as a consequence of 

reduced mortality from natural enemies (predators, parasites and pathogens) compared to native 

species. The harlequin ladybird, Harmonia axyridis, a species alien to Britain, provides a model 

system for testing the ERH.  

 

Pupae of H. axyridis and the native ladybird Coccinella septempunctata were monitored for parasitism 

between 2008 and 2011, from populations across southern England in areas first invaded by H. 

axyridis between 2004 and 2009. Additionally, a semi-field experiment was established to investigate 

the incidence of parasitism of adult H. axyridis and C. septempunctata by Dinocampus coccinellae. 

 

Harmonia axyridis pupae were parasitised at a much lower rate than conspecifics in the native range, 

and both pupae and adults were parasitised at a considerably lower rate than C. septempunctata 

populations from the same place and time (H. axyridis: 1.67%; C. septempunctata: 18.02%) or in 

previous studies on Asian H. axyridis (2-67%). We found no evidence that the presence of H. axyridis 

affected the parasitism rate of C. septempunctata by D. coccinellae.  

 

Our results are consistent with the general prediction that the prevalence of natural enemies is lower 

for introduced species than for native species at early stages of invasion. This may partly explain why 

H. axyridis is such a successful IAS. 

 

4.2. Keywords:  

Coccinella septempunctata, enemy release hypothesis, Harmonia axyridis, invasive alien species, 

native species, natural enemies 
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4.3. Introduction: 

Biological invasions are a major threat to native ecosystems (Millennium Ecosystem Assessment, 

2005, UK National Ecosystem Assessment, 2011), and the rate of establishment of alien species is 

accelerating (Roy, Bacon, Beckmann et al., 2012b, Roy, Roy & Roques, 2011). Not all the species 

introduced to an area establish: 10% is commonly acknowledged as the proportion of new arrivals that 

establish successfully, but this is based on an assessment of plant species in Britain (Williamson & 

Fitter, 1996) and there is evidence that this rate may not hold true for other taxa (Jeschke, Aparicio, 

Haider et al., 2012, Jeschke, 2008).  

 

Some introduced species have become spectacularly successful in the new regions they occupy, and 

are termed invasive alien species (IAS) in view of their rapid spread and high impact on native 

diversity. Many new arrivals do less well, failing to establish or surviving only as small, isolated 

populations (Lodge, 1993). One commonly-cited potential explanation for this discrepancy is the 

Enemy Release Hypothesis (ERH) (Elton, 1958, Torchin, Lafferty, Dobson et al., 2003), also known as 

enemy-escape (Brown, Abrahamson, Packer et al., 1995) or the escape-from-enemy hypothesis 

(Wolfe, 2002). This predicts that an alien species introduced to a new region will experience reduced 

mortality from specialised natural enemies (e.g., predators, parasites and pathogens) compared to 

native species. The co-evolved natural enemy species remain in the native range of the IAS, while 

natural enemies native to the introduced range of the IAS will not be co-evolved with it, and will often 

take time to adapt to a novel prey or host species. This gives the IAS a competitive advantage, 

assuming that natural enemies are important in regulating populations (Roy & Lawson Handley, 

2012c), and allows a rapid increase in the abundance and distribution of the alien species (Elton, 

1958, Torchin et al., 2003, Colautti, Ricciardi, Grigorovich et al., 2004). 

 

Two mechanisms have been proposed to account for the increase in population growth of the alien 

species in comparison to the native species: regulatory or compensatory release (Colautti et al. 2004). 

For hosts that are strongly regulated by enemies in their native range a reduction in enemies in the 

introduced range may lead to direct changes in survivorship, fecundity, biomass or other parameters 

(regulatory release). Alternatively, for hosts that are well-defended and, consequently, lack natural 

enemies within their native range, a reduction in enemies may be of minimal consequence for hosts. 
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Indeed for well-defended hosts, fewer enemies may lead to a reallocation of resources from defence 

to population growth over ecological time (Roy & Lawson Handley, 2012), so-called compensatory 

release or as the Evolution of Increased Competitive Ability (EICA). Empirical evidence for the role of 

the ERH or EICA in invasion success is lacking (Roy et al. 2011), particularly for invertebrates, 

 

The harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is considered to be a 

highly successful IAS (Roy, Brown & Majerus, 2006, Brown, Adriaens, Bathon et al., 2008a, Roy & 

Wajnberg, 2008). It is native to temperate Asia, but is now established across Europe, Africa, and both 

North and South America (Brown, Thomas, Lombaert et al., 2011b). There has often been a time lag 

between introduction of H. axyridis, as a biological control agent for aphids and coccids, and 

establishment (Koch, 2003).  This species is also known to colonise through natural spread but also 

anthropogenically on produce and along transport networks (Brown, Adriaens, Bathon et al., 2008b). 

Harmonia axyridis established in Britain in 2004 (Majerus, Mabbott, Rowland et al., 2006), and spread 

at more than 100 km per year (Brown, Roy, Rothery et al., 2008), contributing to declines in several 

native species (Roy, Adriaens, Isaac et al., 2012a, Ware & Majerus, 2008, Brown, Frost, Doberski et 

al., 2011a) most likely through competition and predation (Ware & Majerus, 2008). 

 

The invasive nature of H. axyridis is thought to result from several factors. The species has good 

dispersal capabilities, occupies a broad range of habitats, has high reproductive potential, broad 

climatic tolerance, and a wide dietary range, including a propensity to act as an intraguild predator 

within the aphidophagous guild (Majerus et al., 2006, Ware, Majerus, Roy et al., 2005, Roy & 

Wajnberg, 2008, Berkvens, Baverstock, De Clercq et al., 2008, Brown et al., 2011b, Soares, Borges, 

Borges et al., 2008). As a well-defended species, with strong chemical defences and large larval 

spines (Sloggett, Magro, Verheggen et al., 2011, Ware et al., 2008) introduced to a new continent 

many thousands of kilometres from its native range, there is also a strong possibility that enemy 

release plays a role in the success of H. axyridis. 

 

In Britain, several species of endoparasitic Hymenoptera and Diptera attack ladybirds. Some of these 

have a Holarctic distribution, and are known to attack H. axyridis in its native range: Dinocampus 

coccinellae (Schrank) (Hymenoptera: Braconidae) (Kuznetsov, 1997, Ware, Michie, Otani et al., 2010); 
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Homalotylus flaminius Dalman (Hymenoptera: Encyrtidae) (Kuznetsov, 1997); Oomyzus scaposus 

(=Tetrastichus coccinellae) Thomson (Hymenoptera: Eulophidae) (Kuznetsov, 1997) and Medina 

separata (Meigen) (Diptera: Tachinidae) (Kuznetsov, 1997) (often erroneously referred to as M. 

luctuosa (Hodek, van Emden & Honek, 2012)), while others (Phalacrotophora fasciata (Fallén) and 

Phalacrotophora berolinensis Schmitz (Diptera: Phoridae) (Disney & Beuk, 1997, Disney et al., 1994)) 

are European in distribution but are closely related to Phalacrotophora philaxyridis Disney (Diptera: 

Phoridae) which attacks H. axyridis in Japan (Disney, 1997). 

 

There is evidence that some natural enemies of ladybirds, particularly the holarctic species known to 

attack H. axyridis in Asia, are beginning to attack it in Britain too (Ware et al., 2010, Hall, Ware & 

Michie, 2009). It is unclear what effect this will have on native ladybird species. As parasitoids are 

shared across ladybird species, there is the potential for apparent competition (Holt, 1977, Bonsall & 

Hassell, 1997), where high abundance of H. axyridis elevates rates of parasitism in susceptible native 

species. Alternatively, H. axyridis may act as a parasitoid sink, whereby the parasitoid may oviposit in 

the IAS but the eggs do not produce an adult, potentially reducing the population density of the 

parasitoid and thus the parasite burden on native populations. This has been suggested for the 

parasitoid wasp D. coccinellae, which in laboratory studies oviposited approximately equally into H. 

axyridis and Coccinella septempunctata L., the primary native host in Britain, but which successfully 

eclosed from a significantly greater proportion of C. septempunctata (Koyama & Majerus, 2008).  

Additionally a study comparing parasitism of Coleomegilla maculata De Geer with that of H. axyridis by 

D. coccinellae also concluded that H. axyridis was an unsuitable host (Hoogendoorn & Heimpel, 

2002).  Teratocyte cells, produced by D. coccinellae, are involved in immunosuppression of the host 

and nutrition of the parasitoid, interestingly follow an abnormal pattern of growth within H. axyridis 

which could explain the impeded development of D. coccinellae within this marginal host (Firlej, 2012).  

Therefore, it is unlikely that D. coccinellae will limit the population growth of H. axyridis within invaded 

ranges (Berkvens, Moensa, Berkvens et al., 2010, Hoogendoorn et al., 2002). Intriguingly a recent 

study demonstrated that H. axyridis individuals contain high numbers of obligate parasitic microsporidia 

which while not seemingly harmful to H. axyridis are lethal when artificially injected into the native ladybird 

C. septempunctata (Vilcinskas, Stoecker, Schmidtberg et al., 2013).   
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In this paper, we examine the following hypotheses: 

 

 Time since establishment will affect parasitism of the IAS H. axyridis resulting in low 

rates of parasitism at sites which have been colonised relatively recently by H. axyridis. 

 

 The parasitism rate of the functionally-similar native ladybird C. septempunctata will 

be higher than for H. axyridis, concomitant with the predictions of the ERH. 

 

 

We examined these hypotheses through a field survey of pupal parasitism (monitoring pupae of the 

two ladybird species for parasitism by the native parasitoids P. fasciata, P. berolinensis and O. 

scaposus, at a large spatial and temporal scale) and a semi-field experiment of adult parasitism 

(monitoring parasitism by the parasitoid wasp D. coccinellae in overwintering aggregations of adults of 

the two ladybird species within mesocosms). 

4.4. Methods: 

4.4.1. Field Survey - pupal parasitism: 

Mature pupae of C. septempunctata and H. axyridis were collected between May and September from 

Loughborough, Leicestershire (during 2008-2011), Oxfordshire (2010-11), London (2010-11), 

Cambridge (2011) and Plymouth, Devon (2011) (Table 4.1). Pupae were collected by visually 

searching vegetation, primarily sycamore (Acer pseudoplatanus L.), lime (Tilia spp.) and nettle (Urtica 

dioica L.), between ground level and 2.5 metres and removing the leaf on which the pupae were 

attached.  

Collected pupae were kept in individual containers at a constant temperature and light regime (18°C, 

16:8 L:D), and checked for emergence or parasitism on a daily basis. Parasitoids which emerged were 

allowed to reach adulthood and then identified after death.  Owing to time constraints the few pupae 

from which nothing emerged were not dissected. Individual Phoridae from 66 C. septempunctata 

pupae and 32 H. axyridis pupae (representing half of the Phoridae broods) were dissected to 

determine species.  
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4.4.2. Semi-field survey - adult parasitism: 

Both H. axyridis and C. septempunctata were collected from field sites in Crowmarsh Gifford, South 

Oxfordshire, in late September 2011. Native ladybirds at this time of year in Britain are still active but 

begin to move to overwintering sites.  Harmonia axyridis has been observed to be active much later 

than native species in Britain and larval stages have been recorded in November (and exceptionally 

early December).   As these individuals had been exposed to the possibility of parasitism in the field, 

they were monitored for parasitoid eclosion for a week in the laboratory, within a controlled 

environment (18°C, 16:8 L:D), before being placed outside in overwintering conditions.  During the 

time spent within the laboratory the ladybirds were fed artificial diet, to ensure hydration, every other 

day (see Roy, Brown, Comont et al., 2013 for details) and supplied with pea aphids (Acyrthosiphon 

pisum Harris) ad libitum.  

 

Mesocosms were placed outdoors underneath Lombardy poplar trees (Populus nigra L. var. ‘Italica’) 

from the beginning of October 2011 (the usual time to begin overwintering) until mid-January 2012 

(before the end of the winter dormancy period). Each individual mesocosm consisted of a black 14-litre 

bucket, with three holes drilled in the base to allow rainwater to drain. Mesocosms were filled with 2.5l 

of compost (John Innes No. 10), pressed down firmly and covered by 6.5l of fresh uncompressed leaf 

litter, collected from the area surrounding the mesocosms and frozen at -20°C for five days between 

collection and use in the mesocosms to kill any animals present. A 300x18x18mm L-shaped section of 

wood was placed on the leaf litter leaning against the side of the bucket.  The top of the bucket was 

covered with dark green netting, with a mesh size (approximately 2 mm) small enough to prevent the 

ladybirds escaping, but large enough to allow D. coccinellae to enter. 

 

The field-collected ladybirds were placed in the mesocosms so that each contained 40 adult ladybirds, 

either all H. axyridis, all C. septempunctata, or 20 of each of the two species. Twenty-four mesocosms 

(eight of each treatment) were located in Crowmarsh Gifford, Oxfordshire (10 km square SU68 in the 

UK Ordnance Survey grid system where the first H. axyridis was recorded in 2007), and a further 15 (5 

of each treatment) were located at the Leeds University Farm, Tadcaster, West Yorkshire (10 km 

square SE44 in the UK Ordnance Survey grid system where the first H. axyridis was recorded in 
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2009). An additional fifty individuals of each species were kept individually in the laboratory and 

monitored for the duration of the experiment as a control, to test for pre-trial parasitism rates. 

 

The mesocosms were collected in from the field in mid-January and the individual ladybirds were 

recovered.  The number of individual ladybirds which had been parasitised by D. coccinellae was 

recorded at time of collection.  All remaining ladybirds were monitored for D. coccinellae emergence 

over a period of six weeks. Owing to time constraints the individuals from which nothing emerged were 

not dissected. 

4.4.3. Analysis: 

Analysis was restricted to pupae from which either a ladybird or a parasitoid emerged. Parasitism rate 

was the proportion of these pupae which were parasitised. 

 

For both datasets, the relationship between parasitism rate, host species, and years with H. axyridis 

presence was analysed using binomial General Linear Models (McCullagh & Nelder, 1989) in R 

version 2.15.2 (R Development Core Team, 2011), with full subsets model selection using Akaike’s 

Information Criterion (AIC) values (Burnham & Anderson, 2002, Akaike, 1974).The model with the 

lowest AIC was chosen unless a model with fewer parameters was within 2 AIC units of this model, in 

which case the simpler model was preferred. The discriminatory ability of the models was evaluated 

using the Area Under the Receiver Operating Curve (AUC) (Fawcett, 2006). 

 

For the pupal parasitism dataset, Generalized Linear Mixed Models (GLMMs) were constructed using 

the R package LME4 (Bates, Maechler & Bolker, 2011) and used to evaluate the relationship between 

parasitism rate and host species (C. septempunctata or H. axyridis), years of H. axyridis presence (1-6 

years, mean 4.17 ± 1.19) and the interaction between host species and years of H. axyridis presence. 

The 10 km sq of collection was included as a random effect to take account of site-level effects not 

explained by the years of H. axyridis presence. 

 

For the adult parasitism dataset, Generalized Linear Models (GLMs) were used to evaluate the per-

mesocosm relationship between parasitism rate and host species (C. septempunctata or H. axyridis), 

treatment type (40 C. septempunctata, 40 H. axyridis, or a mixture of 20 C. septempunctata and 20 H. 
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axyridis), and site (Oxfordshire or Yorkshire). Site was included as a fixed effect in this analysis, to test 

whether H. axyridis is parasitised at a lower rate in Yorkshire, where it had invaded more recently, 

than in Oxfordshire, having standardised the mesocosm environment as far as possible. 

4.5. Results: 

4.5.1. Field survey: pupal parasitism: 

Overall, H. axyridis was parasitised at a much lower rate than C. septempunctata. Of the 4,595 live 

pupae collected (Table 4.1), 219 were parasitised (67/3868 H. axyridis (1.73%), 152/727 C. 

septempunctata (20.91%); see Table 4.2). Gregarious wasps (O. scaposus) emerged from one H. 

axyridis pupa and 21 of the C. septempunctata pupae, resulting in 423 individual wasps: 18 from the 

H. axyridis pupa and a mean 19.29 ± 7,79 (range 10-42) per C. septempunctata pupa.  

 

Table 4.1. Number of pupae of the native ladybird Coccinella septempunctata and the invasive alien species Harmonia axyridis 

collected from sites given as 10km squares (10 x 10 km grid squares of the Ordinance Survey British National Grid) across 

England (Cambridge, Cambridgeshire; London, Middlesex; Loughborough, Leicestershire; various locations in south 

Oxfordshire; and Plymouth, Devon) between 2008 and 2011. Numbers in brackets indicate living pupae which produced either 

an adult ladybird or a parasitoid. 0 indicates no pupae found while – indicates population not monitored. 

Site 10km 
square 

H. axyridis 
arrival 

Coccinella septempunctata Harmonia axyridis 

2008 2009 2010 2011 2008 2009 2010 2011 

Cambridge TL36 2005 - - - 72 (72) - - 0 94 (94) 

London TQ27 2004 - - 0 - - - 227 (212) - 

TQ28 2005 - - 0 0 - - 342 (316) 311 (297) 

TQ39 2004 - - 0 - - - 164 (141) - 

Loughborough SK51 2007 0 97 (92) 0 58 (58) 35 (35) 62 (58) 28 (28) 272(272) 

SK52 2007 0 31 (30) 0 73 (73) 63 (61) 191 (191) 230 (230) 581 (581) 

Oxfordshire SP30 2007 - - 19 (18) - - - 21 (21) - 

SP50 2006 - - - 0 - - - 9 (9) 

SU58 2009 - - 14 (14) - - - 279 (270) - 

SU59 2007 - - 0 3 (3) - - 165 (147) 331 (265) 

SU68 2007 - - 38 (37) 171 (148) - - 197 (190) 446 (388) 

SU69 2008 - - 189 (182) - - - 3 (2) - 

Plymouth SX45 2007 - - - 0 - - - 60 (60) 
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Table 4.2. Summary of the observations on emergence of H. axyridis and C. septempunctata pupae.  Of the 4111 H. axyridis 

and 766 C. septempunctata pupae collected 3868 and 727 respectively produced either an adult ladybird or parasites.  The 

number and percentage of adult ladybirds emerging is given along with the pupae successfully parasitised is provided.  The 

parasites were identified as O.scaposus and Phoridae.  The number and percentage of the hosts from which these parasites 

emerged is documented.   The data is summarised across all collection sites and dates (2008-2011: Cambridge, 

Cambridgeshire; London, Middlesex; Loughborough, Leicestershire; various locations in south Oxfordshire; and Plymouth, 

Devon). Live pupae are those from which either a ladybird or a parasitoid emerged. 

Ladybird species Harmonia axyridis Coccinella septempunctata 

 Number % of live pupae Number % of live pupae 

Adult ladybirds emerged 3801 98.27 575 79.09 

Pupae successfully parasitised 67 1.73 152 20.91 

Pupae parasitised by Oomyzus scaposus 1 0.03 21 2.89 

Pupae parasitised by flies of the family Phoridae 66 1.71 131 18.02 

 

Gregarious flies of the family Phoridae (“phorids”) parasitised both H. axyridis (66 pupae parasitised, 

mean 3.44 ± 2.72 parasitoids per brood (range 1-15)) and C. septempunctata (131 pupae parasitised, 

mean 5.38 ± 3.15 parasitoids per brood (range 1-15)), producing 932 individual parasitoids. All 241 

individuals (66 broods) examined from C. septempunctata were P. fasciata, as were 114 individuals 

(28 broods) from H. axyridis, while a further 10 individuals (4 broods) from H. axyridis were P. 

berolinensis. There was no evidence of hyperparasitism or cross-species multiparasitism in either host 

species. 

 

Overall pupal parasitism rate was significantly lower in the IAS H. axyridis than in the native C. 

septempunctata (slope from C. septempunctata to H. axyridis -2.67 ± 0.18, z = -15.23, p < 0.001, AUC 

= 0.86). There was no significant effect on parasitism rate of the years of H. axyridis presence, or of 

the interaction between host species and years of H. axyridis presence (Table 4.3). 

 

Table 4.3. Comparison of the GLMMs for the field survey of pupal parasitism by Phalacrotophora fasciata, Phalacrotophora. 

berolinensis & Oomyzus scaposus on the IAS H. axyridis and native C. septempunctata. Δ AIC is calculated as the AIC of each 

model in turn minus that of the null model; lower AIC values indicate better-fitting models. The best model is highlighted in bold. 

Explanatory variables within the 
model 

AUC AIC Deviance 
Model comparisons (to best model) 

Δ AIC Δ Deviance p-value 

Species 0.85 1319.7 1313.67 - - <0.001 

Species + years H. axyridis present 0.86 1321.2 1313.25 1.5 -0.42 <0.001 

Species + years H. axyridis present + 
species*years H. axyridis present 

0.86 1323.2 1313.25 2.5 -0.42 <0.001 

Null (intercept-only) 0.78 1577.7 1573.71 258 260.04 1 

Years H. axyridis present 0.77 1578.0 1572.03 258.3 258.36 0.20 
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4.5.2. Semi-field survey: adult parasitism 

Of the 1560 ladybirds originally placed in the mesocosms (780 of each species), 1475 were recovered 

(Table 4.4: 759 C. septempunctata, 716 H. axyridis) and the remaining 85 individuals were missing 

(presumably dead and decomposing, indeed elytra were found within the leaf litter). No successful 

parasitism was found in H. axyridis, but 43 (5.67%) C. septempunctata were successfully parasitised 

by D. coccinellae. There were no deaths from parasitism in the control samples, so the pre-experiment 

background parasitism rate was taken to be zero.  

 

The best model to explain parasitism by D. coccinellae contained species and region (Table 4.5). 

Ladybirds were significantly more likely to be parasitised in Yorkshire than in Oxfordshire (Table 4.6: -

2.63 ± 0.45, z=-5.859, p <0.001), and the native C. septempunctata was more likely to be parasitised 

than the IAS H. axyridis.  Although not significant in the model (Table 4.6), inclusion of species as an 

explanatory variable improved overall model performance considerably (Table 4.5), and the model 

containing only ‘species’ was the best of the univariate models (Table 4.5), and was significant under 

the Kruskal-Wallis test (Χ
2
1= 17.11, p = <0.001). Parasitism rate did not differ significantly between the 

single- and mixed-species treatments for either ladybird species (Table 4.5). 

 

Table 4.4. Number and percentage of C. septempunctata or H. axyridis parasitized by D. coccinellae from mesocosms, situated 

in Oxfordshire (Crowmarsh Gifford) or Yorkshire (Leeds), in which overwintering aggregations of single species (either 40 C. 

septempunctata or 40 H. axyridis) or both species (20 C. septempunctata and 20 H. axyridis) had been placed.  n = total 

number of individuals recovered whereby in Oxfordshire there were a total of 320 individuals per treatment (80 mesocosms) and 

in Yorkshire there was a total of 160 individuals per treatment (40 mesocosms).  The number of individuals recovered is lower 

than the total number of individuals originally placed in the mesocosms because a small proportion of individuals were not 

retrieved.    

Region 

Single species Both species 

C. septempunctata 
(Oxfordshire n=317; 
Yorkshire n = 184) 

H. axyridis 
(Oxfordshire n=310; 
Yorkshire n = 179) 

C. septempunctata 
(Oxfordshire n=160; 
Yorkshire n = 100) 

H. axyridis 
(Oxfordshire n=145; 
Yorkshire n = 179) 

No. of D. 
coccinellae 

% 
parasitism 

No. of D. 
coccinellae 

% 
parasitism 

No. of D. 
coccinellae 

% 
parasitism 

No. of D. 
coccinellae 

% 
parasitism 

Oxfordshire 2 0.63 0 0 4 2.50 0 0 

Yorkshire 28 15.22 0 0 9 9.18 0 0 
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Table 4.5. Comparison table for GLMs of the semi-field survey of parasitism by D. coccinellae on overwintering aggregations of 

adult ladybirds (the native C. septempunctata and the IAS H. axyridis).  Δ AIC is calculated as the AIC of each model in turn 

minus that of the null model; lower AIC values indicate better-fitting models. The best model is highlighted in bold. 

Explanatory variables within the 
model 

AUC AIC Deviance 
Model comparisons (to best model) 

ΔAIC Δ deviance p-value 

Species, region 0.52 78.1 37.53 - - <0.001 

Species, region, treatment 0.52 81.3 36.63 3.2 -0.9 <0.001 

Region, treatment 0.52 94.4 51.75 16.3 14.22 <0.001 

Species 0.51 128.9 90.30 50.8 52.77 <0.001 

Region 0.53 130.0 91.36 51.9 53.83 <0.001 

Species, treatment 0.52 132.5 89.91 54.4 52.38 <0.001 

Treatment 0.52 143.6 102.99 65.5 65.46 <0.001 

Null (intercept-only) 0.53 173.7 137.03 95.6 99.5 1 

 

Table 4.6. Coefficients for each explanatory variable retained within the best model (species (C. septempunctata or H. axyridis) 

and region (Leeds, Yorkshire or Crowmarsh Gifford, Oxfordshire)), with their individual significance levels. 

Explanatory variable Coefficient (± SE) z-value p-value 

Intercept -1.56 (±0.18) -8.623 <0.001 

Species -19.77 (±1856.92) -0.011 0.992 

Region -2.63 (±0.45) -5.859 <0.001 

 

4.6. Discussion: 

Harmonia axyridis in its introduced range is parasitised at a considerably lower rate than either H. 

axyridis in its native range, or populations of C. septempunctata native to the introduced range of H. 

axyridis. Pupae of the invasive alien ladybird H. axyridis were parasitised at an exceptionally low level 

across Britain (1.73%) and adults were not found to be parasitized at all in our study.  This is in 

contrast to the co-occurring native species C. septempunctata, which experienced reasonably high 

parasitism (20.91% pupae, 5.67% adults). This is consistent with the predictions of the ERH that 

enhanced performance of an IAS in the introduced range may result from a reduction or absence of 

natural enemies (Elton, 1958, Torchin, Lafferty & Kuris, 2001).  The aposematic colouration and 

chemical defences of ladybirds causes them to suffer low rates of attack by non-specialist natural 

enemies (Roy et al., 2013), and consequently this discrepancy in the rate of parasitism by specialist 

parasitoids is likely to represent an advantage for H. axyridis.  However, further research is required to 

explore the population-level effects of this difference in parasitism rates.   
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Less than two percent of the H. axyridis pupae succumbed to parasitism by phorids in our study 

whereas C. septempunctata experienced high phorid parasitism rates (18 percent) at the same sites. It 

is also notable that parasitism of H. axyridis by phorids in Japan is much higher than in Britain; indeed 

nearly 15 percent of H. axyridis were parasitized by the native phorid P. philaxyridis found in Japan by 

Osawa (1992). However, phorid parasitism rates are known to vary considerably, for example phorid 

parasitism of H. axyridis across the native range was between 2% and 67% (Disney, 1997, Osawa, 

1992, Park, Park, Hong et al., 1996, Maeta, 1969). The absence of H. axyridis parasitism by D. 

coccinellae was notable in the studied overwintering aggregations particularly when considering that 

nearly six percent of the C. septempunctata were parasitized.  It should be noted that the mesocosms 

did not represent ideal overwintering conditions particularly for H. axyridis which often overwinters in 

buildings or at elevated positions (Roy et al., 2013, Nalepa, Kidd & Ahlstrom, 1996).  However the high 

proportion of H. axyridis and C. septempunctata retrieved from the mesocosm is encouraging.    

 

Pupal H. axyridis were found to be successfully parasitised by three species of parasitoid, one more 

than was recovered from C. septempunctata. Although the additional species, P. berolinensis, is 

known to parasitise C. septempunctata (Disney, Majerus & Walpole, 1994, Hodek et al., 2012), in the 

study area it was only recovered from H. axyridis and two conifer-specialist ladybird species, 

Aphidecta obliterata L. and Anatis ocellata L. (R. Comont, unpublished data). This suggests that H. 

axyridis is susceptible to the suite of parasitoids in the system.  The lack of evidence for increased 

rates of parasitism on H. axyridis over time from colonisation suggests that there is little or no 

adaptation of parasitoids to the arrival of H. axyridis so far.  Despite the potential resource presented 

by the presence of high numbers of this large ladybird species, it is perhaps unsurprising that the 

parasitism rate is low given the short period of time since arrival of this IAS. 

 

This limited adaptation to the presence of an IAS is consistent with results from other range-expanding 

or invasive taxa (Girardoz, Kenis & Quicke, 2006, Cornell & Hawkins, 1993, Menéndez, Gonzalez-

Megias, Lewis et al., 2008), including parasitism and inquilinism (in which an animal characteristically 

lives commensally in the nest, burrow, or dwelling place of an animal of another species) in the alien 

gall-wasp Andricus quercuscalicis (Burgsdorf), which has been monitored in Britain since its arrival in 

the late 1950s (Schönrogge, Stone & Crawley, 1996). Very low levels of parasitism/inquilinism (one 
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species, <0.01 inquilines per gall) were recorded up to 30 years after establishment at sites in 

southern England, but after an additional five years, another 12 species were recorded from the gall 

and the wasp larva, and the mean number of inquilines per gall had risen to 0.26 (Schönrogge et al., 

1996). Even after around 55 years in the invaded range, however, parasitism of the wasp remained 

low (<10%) (Schönrogge et al., 1996, Schönrogge, Stone & Crawley, 1995).  

 

By contrast, rapid responses of natural enemies to invaders of some taxa have been observed. For 

instance, parasitism of the moth Phyllonorycter leucographella (Zeller) reached similar levels in the 

introduced range (Britain) compared to the native range (Turkey) approximately 20 years after 

establishment (Gröbler & Lewis, 2008). The ladybird Olla v-nigrum (Mulsant) was assimilated even 

more quickly into a native ecosystem. A native of North America and Oceania (Gordon, 1985), the 

species was introduced to New Caledonia in early 1987, quickly becoming widespread and abundant 

(Chazeau, Bouyé & Bonnet de Larbogne, 1991). Parasitism by the native phorid fly Phalacrotophora 

quadrimaculata Schmitz was first recorded in the wild in 1988, and by March 1989, two years after 

introduction, parasitism rates of 79% were reported from some populations (15-79%, mean 39%) 

(Disney & Chazeau, 1990). 

 

Previous studies (Koyama et al., 2008, Hoogendoorn et al., 2002, Berkvens et al., 2010) found that D. 

coccinellae showed no oviposition preferences between H. axyridis and C. septempunctata but 

successfully eclosed significantly less often from the IAS, suggesting the species might act as a sink 

for the parasitoid (Berkvens et al., 2010, Hoogendoorn et al., 2002). Other studies have found that H. 

axyridis produces chemicals that attract D. coccinellae (Durieux, Fischer, Brostaux et al., 2012, 

Richerson & DeLoach, 1972, Al Abassi, Birkett, Pettersson et al., 2001). We found no evidence that 

the presence of H. axyridis affected the rate of parasitism of C. septempunctata by D. coccinellae, and 

hence no support for a role for apparent competition. We did find a strong site effect for parasitism of 

adult ladybirds by D. coccinellae and it is possible that high rates of parasitism of native species may 

lead to parasitoid spillover into H. axyridis populations, if the resulting large numbers of parasitoids are 

unable to find many native hosts after depleting the populations.  We only compared parasitism 

between H. axyridis and C. septempunctata and did not assess population-level effects on either host 

species. However, the low levels of parasitism found to date in H. axyridis populations suggests that 
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the impacts of H. axyridis presence found by Roy et al (2012a) on common native ladybird species 

across Europe are likely to result entirely from direct interactions (predation and competition), rather 

than indirect interactions mediated by shared parasitoids.   

 

Harmonia axyridis has aposematic colouration, strong morphological defences (spines) in the larval 

stage, and alkaloid-rich chemical defences at all life stages. Despite occasional observations of 

predation by birds, e.g. Delichon urbicum L. (R. Comont, personal observation) and mammals, e.g. 

Rhinolophus ferrumequinum (Shreber) (R. Comont, personal observation) and Ursus arctos horribilis 

Ord (Wang, Zhang & Zhang, 2007), predation is unlikely to have a regulatory effect on H. axyridis 

populations. Consequently, parasitism, which can reach 95% in populations of some species (Hodek 

et al., 2012), is likely to be the dominant top-down factor regulating populations, and is effectively 

missing from H. axyridis populations in the introduced range at this early stage of invasion. The 

presence of several species of native parasitoid parasitising H. axyridis less than a decade after 

invasion does, however, suggest that the future recruitment of natural enemies to this abundant, albeit 

well-defended species is possible, particularly in the light of the documented time lags for recruitment 

of parasitoids to many invasive alien taxa (Cornell et al., 1993, Schönrogge et al., 1996, Schönrogge 

et al., 1995, Girardoz et al., 2006). Future research should focus on both the rate of parasitism and 

possible effects on the population dynamics of different species of ladybird.  Indeed continued 

monitoring of H. axyridis, native species of ladybird and the parasites associated with them is essential 

to unravelling the web of interactions around this invasive alien species. 
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Chapter 5.  Assessing the relative importance of interspecific 

competition and intraguild interactions on invasion by the alien 

ladybird beetle Harmonia axyridis.  

5.1. Abstract 
Invasive alien species (IAS) are a major driver of biodiversity losses and environmental change. There 

is some evidence, however, that diverse native communities may be able to withstand or slow down 

invasion through impacts of competition, predation and parasitism, a phenomenon known as biotic 

resistance (the theory that community invasibility should increase as biodiversity decreases).  The 

Asian harlequin ladybird Harmonia axyridis is a highly-successful IAS in Britain, and is thought to have 

detrimental effects on several native species. 

 

We used a Generalised Linear Mixed Model approach to investigate the H. axyridis invasion for two 

years in 16 habitat patches (eight Tilia x europaea and eight Urtica dioica) across Oxfordshire, 

southern Britain.  We examined the effect of resource abundance, habitat type, abiotic factors, and the 

abundance and species richness of the ladybird community on abundance of the IAS, and we also 

explored the abundance of native species with respect to resource abundance, habitat type, abiotic 

factors, and the abundance of H. axyridis. 

 

We found no evidence of biotic resistance: neither abundance nor diversity of the native ladybird 

community had any effect on abundance of H. axyridis.  The IAS was more abundant in areas with 

high aphid numbers, but this relationship was not found for native species, suggesting that H. axyridis 

may be more likely to track aphid abundance across the landscape.  We found a negative relationship 

between abundances of H. axyridis and the native Subcoccinella vigintiquattuorpunctata, but no other 

evidence of a detrimental effect of H. axyridis on native species. This may have been a result of 

sampling areas of high resource availability where native species and the IAS can coexist. Overall, 

however, the abundance of the native Adalia bipunctata, suggested to be worst-affected by H. 

axyridis, was strikingly low throughout the study period. 

 

Harmonia axyridis is an opportunistic aphid predator which is not constrained by the biotic resistance 

offered by the community of native ladybirds.  At least at a site level in the resource-rich systems we 

assessed, native ladybird species and the IAS co-occur. 
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5.2. Keywords: biotic resistance, Coccinellidae, Coleoptera, community, invasive species  

5.3. Introduction  
Invasive Alien Species (IAS) are a major cause of environmental change (Diamond, 1984; Millennium 

Ecosystem Assessment, 2005; Salafsky et al., 2008; UK National Ecosystem Assessment, 2011), and 

are thought to drive significant losses in the biological diversity and function of invaded ecosystems 

(Wittenberg & Cock, 2001; Hulme et al., 2009).  Only a small proportion of the species introduced to 

an area establish, and only a subset of these become invasive (Williamson & Fitter, 1996; Jeschke, 

2008; Jeschke et al., 2012), that is, adversely affect biodiversity, society or the economy. 

Consequently, much effort has been expended on determining the traits of a species which convey 

invasiveness: the characteristics that allow a species to arrive, exploit a new environment sufficiently 

well to first establish and then spread (Jeschke & Strayer, 2008; Blackburn & Jeschke, 2009; Jeschke 

et al., 2012). More recently, focus has shifted to the traits of invaded communities (invasibility) and the 

differential susceptibility of different functional groups of species to invasion by a new species 

(Stachowicz et al., 1999; Xu et al., 2004; MacDougall & Turkington, 2005; King & Tschinkel, 2008). 

 

Invasibility has been defined as ‘the susceptibility of an environment to the colonisation and 

establishment of individuals from species not currently part of the resident community’ in Davis et al 

(2005), and it has been suggested that the invasibility of an area may be as important as traits of the 

IAS in determining the success of invasions (Drake et al., 1989; Thebaud et al., 1996; Lonsdale, 1999; 

Davis et al., 2000).  The theory of biotic resistance states that invasibility should increase as 

community biodiversity decreases, as reduced diversity and abundance of resident native species 

lowers the impacts of competition and predation on an invader (Elton, 1958; MacArthur, 1972).  

However, empirical studies indicate both positive and negative associations between the diversity of a 

community and the probability of it being invaded (Byers & Noonburg, 2003).  There is also evidence 

to suggest that different aspects of community diversity (for example species richness, relative 

abundance, and which key competitor, predator,  parasite,  or host species are present) may have 

varying influences on invasion success (Crawley et al., 1999; Stachowicz & Byrnes, 2006; Allington et 

al., 2013).   
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Consequently, emphasis has shifted to stress the importance of productivity (Davis et al., 2000; 

Levine, 2000; Byers & Noonburg, 2003) and the availability of empty niches (niche opportunity) (Shea 

& Chesson, 2002) on the invasibility of an area or habitat.  For example, native ants in New Caledonia 

underutilise both food and habitat resources, leaving an ecological niche opportunity which is exploited 

by the alien lesser fire ant Wasmannia auropunctata (Roger), allowing it to invade, establish and 

spread successfully (Breton et al., 2005).  

 

The Harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is a highly successful 

IAS (Roy et al., 2006) native to temperate Asia but now established across Europe, Africa, and both 

North and South America after several introductions as a biocontrol agent of aphids (Brown et al., 

2011b).  The species established wild populations in Britain in 2004 (Majerus et al., 2006b), quickly 

becoming the dominant ladybird species across much of Britain (Brown et al., 2008; Brown et al., 

2011a),  invading 38% of the 10km grid cells in mainland Britain in the first six years of invasion (2004-

2009).  Availability of suitable habitat and climate are significant predictors of the likelihood of invasion 

of given locations by H. axyridis at national scales (Poutsma et al., 2008; Brown et al., 2011b; Kessel, 

2012). 

 

The invasiveness of H. axyridis is thought to be facilitated by several ecological traits (Roy et al., 

2012). Harmonia axyridis is multivoltine in Britain, in contrast to the usually-univoltine native species 

(Brown et al., 2008) possibly allowing this species to better exploit seasonally available resources 

such as aphids. This, along with high individual fecundity (Wang et al., 2009), is also thought to have 

played a major role in the rate with which H. axyridis became the dominant species in Britain (Brown et 

al., 2008).  The species is well-defended, with large larval spines and strong chemical defences (Ware 

& Majerus, 2008; Sloggett et al., 2011).  It has good dispersal capabilities, both natural and 

anthropogenically-assisted, uses a broad range of habitats, climates, and diets, and, although the 

species primarily feeds on aphids, it can act as an intraguild predator within the aphidophagous guild 

(Ware et al., 2005; Majerus et al., 2006b; Roy & Wajnberg, 2008; Berkvens et al., 2009; Brown et al., 

2011b).  In Britain, H. axyridis may also be better able to utilise disturbed habitats than other ladybird 

species, being particularly abundant in urban and suburban areas, where adults frequently overwinter 

in houses (Roy et al., 2011). 
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In this study we aim to better understand the role of native biodiversity and the mechanisms of 

intraguild predation (IGP) versus competition for aphid prey in governing H. axyridis invasion success 

and impacts by quantifying local scale patterns in ladybirds and aphid communities in a region of 

Britain very recently invaded by H. axyridis. The arrival and spread of this large predatory ladybird has 

had detectable effects on native species.  Harmonia axyridis has been linked to national declines in 

several native ladybird species (Brown et al., 2011a; Roy et al., 2012; Comont et al., in press (Chapter 

3)). The exact mechanism of impact is unclear, but H. axyridis is known to prey upon native ladybird 

species both in laboratory tests (Kajita et al., 2006; Ware & Majerus, 2008; Ware et al., 2009) and in 

the wild (Hautier et al., 2008; Thomas et al., 2013), but may also affect native species indirectly by 

outcompeting them for shared prey (Brown & Miller, 1998; Brown, 2003; Takizawa & Snyder, 2012).  

 

By examining the community context that favours establishment of this IAS at a local scale, we may be 

able to unpick the role of direct intraguild predation versus competition with native species for aphid 

prey in governing H. axyridis invasion success and impacts. For example, if intraguild predation is key 

to invasion success, we predict that population abundance of H. axyridis will be positively affected by 

the diversity or abundance of all native ladybirds and the abundance of poorly defended native 

ladybirds would be negatively impacted by H. axyridis, with both effects being more pronounced when 

aphid abundance is low. If competition for aphid prey is a key constraint on invasion success, we 

would predict that H. axyridis abundance will have a strong positive association with aphid abundance 

and a negative association with either the total abundance of aphidophagous species or with the 

abundance of individual voracious aphidophagous species that represents a key competitor. If H. 

axyridis is constrained neither by competition for aphid prey or availability of ladybird prey for intra-

guild predation, then we would expect only a positive association with aphid abundance. 
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Here we examine reciprocal relationships between abundance of native ladybirds and H. axyridis in 

sites with differing aphid availability and abiotic factors (sub-optimal herb layer versus optimal arboreal 

habitat, elevation). We aim to test the following hypotheses: 

(1) Harmonia axyridis abundance is not affected by the diversity of the resident ladybird 

community but is determined by the availability of aphids and favourable abiotic factors. 

(2) Harmonia axyridis abundance is affected to a greater extent by the abundance of 

species within the aphidophagous guild (suggesting competition for aphid prey) rather than the 

overall abundance of all native ladybird species (suggesting IGP as an important factor). 

(3) Impacts of H. axyridis are more pronounced on species within the aphidophagous 

guild than on species from other guilds (suggesting competition for aphid prey). 

5.4. Methods  

 

5.4.1. Ladybird and aphid sampling 

Sixteen field sites (eight patches of nettles, Urtica dioica L and eight patches of lime trees, Tilia x 

europaea) were surveyed in an area in the south of Britain measuring 16 km E-W and 22 km N-S, 

bounded by Marston, Oxford (SP529073), in the northwest and Nettlebed, Oxfordshire (SU677877), in 

the southeast.  Elevation ranged from 44 to 209 metres above sea level.  Field sites were visited 

between the 13
th
 and 48

th
 weeks of the year (the first week of April to the first week of December) in 

both 2010 and 2011.  Eight sites (four T. x europaea, four U. dioica) were visited each week and the 

remaining eight sites (also four T. x europaea, four U. dioica) were visited the week after, so that each 

individual site was visited once every two weeks, 19 times per year.  Elevation data was taken from 

the 1:50,000 Ordnance Survey map (sheets 164, 165, 174, 175). 

 

At each site, adult ladybirds were sampled for 15 minutes either using a sweep-net (at U. dioica sites) 

or a beating tray (T. x europaea sites).  Time spent identifying and recording the catch, which varied 

depending on the abundance and diversity of ladybirds at each site, was additional to the 15 minute 

survey time.  The number of aphids present on 100 leaves was also recorded on each site visit, from 

branches and areas not surveyed for ladybirds, but in close proximity to them in the same patch of 

habitat. 
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Native ladybirds were aggregated into feeding guilds: primarily aphid-feeding (aphidophagous) 

species, primarily mildew-feeding (mycophagous), and the single phytophagous, Subcoccinella 

vigintiquattuorpunctata (L).  For each site and year combination, mean weekly abundance was 

calculated for these guilds and for seven individual native ladybird species (C. septempunctata, S. 

vigintiquattuorpunctata, Propylea quattuordecimpunctata (L), Adalia decempunctata (L), Calvia 

quatuordecimguttata (L), Halyzia sedecimguttata (L), and Psyllobora vigintiduopunctata (L)) as well as 

H. axyridis and total aphids.  

 

5.4.2. Analysis 

Local-scale abundance models for each native ladybird species and guild and for H. axyridis were 

formulated as Generalised Linear Mixed Models (GLMMs) with a Poisson error distribution and a site 

random effect.  Models were fitted using the statistical language R version 2.15.2 (R Development 

Core Team, 2012) and the LME4 package (Bates et al., 2011). For each native species or guild, per-

site counts were related to five predictors: year, elevation and habitat type (U. dioica or T. x europaea), 

(logged) aphid abundance and the abundance of H. axyridis.  These models were compared to 

equivalent models with an added interaction between habitat type and aphid abundance, but these 

interaction models possessed less explanatory power so the non-interaction models were retained 

(data not shown). 

 

For H. axyridis, five models were fitted each containing a different measure of native ladybird 

biodiversity, in addition to year, elevation, habitat type and aphid abundance. These measures were 

mean abundance of native ladybirds, mean abundance of aphidophagous native ladybirds, species 

richness of native ladybirds, species richness of aphidophagous native ladybirds, and mean 

abundance of the commonest native ladybird, Coccinella septempunctata (L).  More complex 

measures of community diversity (Simpson’s diversity index, 1-D) possessed less explanatory power 

than did the equivalent species richness models. 

 

The five models including native biodiversity terms were compared to a four-predictor model without 

such a term. The most parsimonious models amongst these six models was selected using an Akaike 

information criterion (AIC) approach (Akaike, 1974) where a drop in AIC of at least 2 was required to 
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retain a native biodiversity term in the final model.  Each of these models was also compared to an 

equivalent model with an added interaction between habitat type and aphid abundance, but the 

addition of this interaction term did not improve model fit. 

 

The conformity of the models to the data was examined using adjusted deviance (Pierce & Schafer, 

1986).   Variance explained was calculated as the marginal R
2
 (R2GLMM(m)) of Nakagawa and 

Schielzeth (2013). Spatial autocorrelation in the model residuals was examined in neighbourhoods 

ranging from 0.1 km to 25 km using the Moran’s I test from the spdep package (Bivand et al., 2013) 

and the correlog function from the ncf package (Bjornstad, 2012). 

5.5. Results  
There was considerable cross-site variation in the abundance of native ladybird species (Fig. 5.1) and 

ladybird guilds (Fig. 5.2).  The mean number of ladybird individuals recorded per site in 2010 was 227 

(range 47-612), of six species (3-9): in 2011, the figures were 305 (107-761) individuals of eight (5-10) 

species.  In total 8503 ladybirds were found: of these, the most abundant species was the 

aphidophagous native C. septempunctata (3619 individuals, mean 113 individuals per site per year). It 

was one of only two species recorded at every site: the other was the IAS H. axyridis (2645 

individuals, mean 83 species per site per year).   

 

No effect of native ladybird biodiversity on H. axyridis abundance was detected. All models containing 

a measure of native ladybird biodiversity had higher AIC values than the models containing abiotic 

predictors and aphid abundance.  The variance explained by the best model (environment-only, 1. in 

Table 5.1) was 0.793 (Table 5.1).  The best performing measure of native ladybird diversity, the 

abundance of aphidophagous species, was not significantly related to abundance of H. axyridis, 

whereas site elevation, habitat type, and aphid abundance all were (Table 5.2). Urtica dioica sites 

contained fewer H. axyridis than did T. x europaea sites, and higher sites contained fewer H. axyridis 

than did lower sites, while aphid abundance was positively correlated with H. axyridis abundance 

(Table 5.2).   
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Fig. 5.1. Boxplots of the variation in logged mean weekly abundance for the years 2010 and  2011 for each ladybird 

species (Harmonia axyridis, Halyzia sedecimguttata, Propylea quattuordecimpunctata, Psyllobora vigintiduopunctata, 

Subcoccinella vigintiquattuorpunctata, Adalia bipunctata, Adalia decempunctata, Calvia quatuordecimguttata, Coccinella 

septempunctata), and for aphid abundance (aphids). Plotted whiskers extend to the minimum and maximum values, the box to 

the 25
th
 and 75

th
 percentiles, and the star is the median value. 

 

 

 

 

Fig. 5.2. Boxplots of the variation in logged mean weekly abundance for the years 2010 and 2011 for aphid abundance 

and the two multi-species ladybird guilds (aphidophagous and mycophagous) guild.  Plotted whiskers extend to the 

minimum and maximum values, the box to the 25
th
 and 75

th
 percentiles, and the star is the median value. 
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Fig. 5.3. Boxplots of the logged values across sites of aphid abundance and the modelled measures of the biodiversity 

of the native ladybird community (total abundance and species richness of aphidophagous and all native ladybirds, and 

abundance of C. septempunctata), used as potential explanatory variables for the abundance of H. axyridis.  Plotted whiskers 

extend to the minimum and maximum values, the box to the 25
th
 and 75

th
 percentiles, and the star is the median value. 

 

 

Table 5.1.  Goodness of fit of Harmonia axyridis abundance modelled against abiotic and biotic factors at 16 sites 

across Oxfordshire. Model 1 (M1) contains elevation, habitat type, aphid abundance and year, while the bottom five models 

each contain one of five separate measures of the biodiversity of the native ladybird community (total abundance and species 

richness of aphidophagous and all native ladybirds, and abundance of C. septempunctata). Delta AIC values indicate the 

difference from AIC of the best model when the explanatory variable in question is dropped from it.   

Predictors in the model AIC ΔAIC from best 
model 

Deviance Variance 
explained 

Moran’s I p-value of 
Moran test 

M1. Elevation, habitat type, aphid abundance, 
year 

51.4 - 37.41 0.793 -0.0057  0.314 

M1. + Total abundance of native 
aphidophagous ladybird species 

51.7 0.33 35.74 0.787 -0.0036 0.276 

M1. + Total abundance of native ladybirds 52.1 0.66 36.07 0.790 -0.0025 0.257 

M1. + Native ladybird species richness 52.9 1.51 36.92 0.793 -0.0055 0.390 

M1. + Coccinella septempunctata abundance 53.0 1.57 36.98 0.788 -0.0054 0.307 

M1 + Species richness of native 
aphidophagous ladybirds 

53.2 1.77 37.18 0.792 -0.0056 0.312 

 

 

A close correspondence between observed and predicted abundance patterns from models was 

obtained for three native species (P. quattuordecimpunctata, A. decempunctata, and S. 

vigintiquattuorpunctata), and for the aphidophagous guild.  The model for C. septempunctata was 

significantly better than the equivalent null model, but variance explained was low (0.268), and there 

was no significant impact of habitat type, site elevation or aphid abundance, only of year (Table 5.3). 
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Abundance of S. vigintiquattuorpunctata (the only phytophagous species found) was negatively 

associated with abundance of H. axyridis, while abundance of both A. decempunctata 

(aphidophagous) and the guild of native aphidophagous ladybirds was positively associated with H. 

axyridis abundance (Tables 5.4 and 5.5). No significant impacts of habitat type, site elevation or aphid 

abundance on the abundance of native ladybird species, or feeding guilds could be detected, although 

there was a significant positive effect of year for C. septempunctata, P. quattuordecimpunctata (both 

aphidophagous) (Table 5.4), and the aphidophagous ladybird guild (Table 5.4). 

 

Table 5.2. The effects of biotic (aphid abundance and habitat) and abiotic (year and elevation) explanatory variables on 

Harmonia axyridis abundance at 16 sites across Oxfordshire. (a) Coefficients for the best model of H. axyridis ladybird 

abundance containing  year, site elevation, habitat type, aphid abundance versus (b) coefficients for the second best model, 

containing all the variables of the best model plus the abundance of native aphidophagous ladybird species. Delta AIC values 

indicate the difference from AIC of the best model when the explanatory variable in question is dropped from it.  

Explanatory variables (a) Coefficients Z value Δ AIC p-value (b) Coefficients Z value Δ AIC p-value 

(intercept) 672.76 ± 391.94 1.716 - 0.086 977.90 ± 462.95 2.112 - 0.035 

Aphid abundance 0.44 ± 0.10 4.247 17.23 <0.0001 0.43 ± 0.10 4.185 17.30 <0.0001 

Habitat (U. dioica 
compared to T. x europaea) 

-1.42 ± 0.31 -4.632 12.55 <0.0001 -1.30 ± 0.32 -4.059 8.98 <0.0001 

Year -0.33 ± 0.20 -1.713 0.95 0.087 -0.49  ± 0.23 -2.109 2.51 0.035 

Elevation -0.013 ± 0.0058 -2.194 4.77 0.028 -0.012 ± 0.0059 -1.971 3.12 0.049 

Total abundance of native 
aphidophagous ladybirds  

- - - - 0.024 ± 0.019 1.301 -0.30 0.1933 

 

 

Table 5.3. Native ladybird species abundances modelled against year, site elevation, habitat type, aphid abundance, 

and abundance of H. axyridis, at 16 sites across Oxfordshire, monitored every two weeks for two years.  Only models better 

than the equivalent null model are shown and variance explained is calculated as the marginal R2 (R2GLMM(m)) of Nakagawa 

and Schielzeth, 2013. 

Species/group AIC 
ΔAIC from 
null model 

Deviance 
Variance 
explained 

Moran’s I 
p-value of 

Moran’s test 

Coccinella septempunctata 67.81 3.45 51.81 0.268 -0.00020 0.221 

Propylea quattuordecimpunctata 29.13 15.53 13.13 0.644 0.034 0.011 

Adalia decempunctata 18.93 20.24 2.93 0.990 -0.0088 0.363 

Subcoccinella 
vigintiquattuorpunctata 
(phytophagous guild) 

34.35 12.55 18.35 0.988 -0.025 0.769 

Aphidophagous guild (native 
species only) 

57.94 16.96 41.94 0.449 -0.011 0.424 
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Table 5.4.  Importance of individual explanatory variables for native ladybird species and guild abundances, modelled against 

year, site elevation, habitat type, aphid abundance, and abundance of H. axyridis, at 16 sites across Oxfordshire monitored 

every two weeks for two years. Delta AIC values indicate the difference from AIC of the best model when the explanatory 

variable in question is dropped from it.  Rows in bold are significant at the 0.05 level. Only models better than the equivalent null 

model are shown.  

Species Explanatory variables Coefficients Δ AIC p-value 

Coccinella septempunctata 

(intercept) -1437.24 ± 416.86 - 0.00057 

Aphid abundance -0.11 ± 0.09 -0.28 0.19   

Harmonia axyridis 0.073 ± 0.05 0.35 0.12 

Habitat (U. dioica) 0.43 ± 0.38  0.26     

Elevation -0.0031 ± 0.0035 -1.23 0.38     

Year 0.72 ± 0.21 7.55 0.00056 

Propylea quattuorpunctata 

(intercept) -2920.18 ± 1052.078 - 0.0055 

Aphid abundance 0.19 ± 0.20 -1.09 0.34    

Harmonia axyridis 0.076 ± 0.066 -0.65 0.25    

Habitat (U. dioica) -0.19 ± 0.57 -1.89 0.74    

Elevation 0.0042 ± 0.0048 -1.26 0.39 

Year 1.45 ± 0.52 7.44 0.0055 

Adalia decempunctata 

(intercept) -409.033 ± 934.019 - 0.66   

Aphid abundance 0.23 ± 0.52 -1.8 0.66   

Harmonia axyridis 0.12 ± 0.054 2.98 0.023 

Habitat (U. dioica) -22.01 ± 15537.085 11.07 0.99   

Elevation -0.019 ± 0.023 -0.54 0.40 

Year 0.20 ± 0.46 -1.81 0.66 

Subcoccinella 
vigintiquattuorpunctata 
(phytophagous guild) 
 

(intercept) 1250.55 ± 35463.50 - 0.97 

Aphid abundance 0.77 ± 0.42 1.04 0.068 

Harmonia axyridis -0.59 ± 0.24 3.26 0.016 

Habitat (U. dioica) 22.72 ± 35399.62 5.3 0.99   

Elevation -0.0060 ± 0.0092 -1.54 0.51   

Year -0.63 ± 1.059 -1.65 0.55 

Aphidophagous guild (native 
species only) 

(intercept) -1220.98 ± 339.71 - 0.00033 

Aphid abundance -0.021 ± 0.074 -1.92 0.78 

Harmonia axyridis 0.081 ± 0.035 3.03 0.023 

Habitat (U. dioica) 0.099 ± 0.30 -1.89 0.74     

Elevation -0.0025 ± 0.0029 -1.24 0.38 

Year 0.61 ± 0.17 10.14 0.00032 

 

Abundance patterns of H. sedecimguttata, C. quattuordecimguttata, P. vigintiduopunctata, and the 

mycophagous guild were unrelated to any of explanatory variables, and so these models are not 

discussed further.  There was no significant spatial autocorrelation between sites or in model 

residuals.   
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5.6. Discussion:  
The abundance of H. axyridis at a site appears to be driven by both habitat type and aphid 

abundance, rather than by the abundance or diversity of the native ladybird community. Harmonia 

axyridis was more abundant in trees (T. x europaea) than in low vegetation (U. dioica), at lower 

elevations, and at sites with high aphid abundance than at sites with fewer aphids present.  Our study 

showed no evidence of a link between the abundance of H. axyridis and the native ladybird 

community, whether measured as abundance or richness of all native ladybirds present, just the 

aphidophagous species, or the abundance of an ecologically-equivalent competitor (C. 

septempunctata).  Abundance of the aphidophagous guild, C. septempunctata and P. 

quattuordecimpunctata all had a significant relationship with year.  This is likely to be the result of 

year-to-year variation in the wider environment, and to reflect the effect of an unmeasured abiotic 

variable, potentially climatic, as changes in the wider environment will affect both diversity and 

abundance of the local species pool. 

 

We focused on two habitats which are favourable for several ladybird species, particularly H. axyridis, 

and which harbour high abundance of aphids.  Resource-rich habitats have been suggested to favour 

invasion even in the continuing presence of a diverse native community (Byers & Noonburg, 2003).  

This is thought to be due to either competition between native species for resources indirectly 

facilitating the IAS (Levine, 1976; Levine & D’Antonio, 1999), or increased resource availability leading 

to under-exploitation by native species (McCann et al., 1998; Breton et al., 2005).  There is some 

suggestion that aphid colonies may often not be regulated by top-down pressures such as predation 

for at least the growth phase of their existence (Kindlmann & Dixon, 1999; Kindlmann & Dixon, 2001) 

(but see Rutledge et al., 2004; Ragsdale et al., 2011), so may be under-exploited by native ladybirds, 

leaving a niche at least partially vacant for H. axyridis to exploit upon arrival. 

 

In contrast to H. axyridis, the abundance of native species or guilds of ladybirds was not associated 

with aphid abundance.  This indicates that H. axyridis is more likely than natives to be found in large 

numbers where aphids are abundant, suggesting that the species may be more opportunistic than 

natives, and possibly more likely than native species to track aphid abundance across the landscape.  
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The IAS is a habitat generalist species, and so is not restricted to the aphids present in any one 

habitat type (Majerus et al., 2006a).  This enhanced foraging behaviour may explain how the IAS is 

able to be regularly multivoltine in areas where native species are usually univoltine, as by tracking 

aphid abundance H. axyridis may be able to maximise its feeding rate, so taking in more energy more 

quickly than would be possible if not remaining in areas with high aphid abundance.  This extra energy 

can then be used for reproduction. 

 

There is considerable evidence that H. axyridis has negative effects on native ladybird species, both at 

a national (Roy et al., 2012) and local (Brown et al., 2011a) scales.  Additionally, a similar study of 

ladybirds in arboreal habitats in Cambridgeshire recorded the impact of the arrival of H. axyridis as it 

increased from 0.1% of the ladybirds encountered to 40%, and native aphidophagous ladybirds 

decreased from a mean 19.7 individuals per survey in 2006 to 10.2 individuals per survey in 2008 

(Brown et al., 2011a).  The IAS is known to be a strong intra-guild predator of most other ladybird 

species at the larval stage (Ware & Majerus, 2008; Thomas et al., 2013).  As the beneficiary of 

unidirectional intra-guild predation (IGP) (Ware & Majerus, 2008), it is possible that the presence of 

native ladybird species represents potential prey items, rather than competitors for H. axyridis. In our 

study system we were unable to detect an overall relationship between H. axyridis abundance and the 

abundance of native species, and only one species, S. vigintiquattuorpunctata, was found to be 

negatively associated with H. axyridis abundance.  This is a small phytophagous ladybird species 

which does not compete for food with the IAS.  It is probable that the negative relationship between 

abundance of the two species has arisen through niche separation caused by their different habitat 

and dietary requirements.  Subcoccinella vigintoquattuorpunctata is largely a grassland species which 

feeds on grasses and clovers, whereas H. axyridis is a habitat and dietary generalist species, with 

preferences for arboreal habitats and aphid prey (Roy et al., 2011; Hodek et al., 2012).  There are no 

records of predation between the two species in the literature, although it is entirely possible that this 

predation is occurring but has been overlooked, as S. vigintiquattuorpunctata is a very small species 

(Roy et al., 2011). 

 

One species which is known to be detrimentally affected by the presence of H. axyridis is Adalia 

bipunctata (L) (Roy et al., 2012; Thomas et al., 2013), and the low abundance of this species during 
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the study period was also striking.  Formerly one of the most widespread and abundant ladybirds in 

Britain (Roy et al., 2011), it is possible that a decline in this species due to H. axyridis has preceded 

the study period.  Adalia bipunctata has a high niche overlap with H. axyridis (77% on the plant use 

similarity index of Adriaens et al (2008)), and chemical and morphological defences which are 

ineffective against the IAS (Kajita et al., 2006; Ware & Majerus, 2008; Ware et al., 2009).  Several 

previous studies, both in laboratory conditions (Ware & Majerus, 2008; Ware et al., 2009) and in the 

field at the H. axyridis invasion front (Brown et al., 2011a; Roy et al., 2012) found the negative effects 

of H. axyridis were particularly pronounced on A. bipunctata, and the species has declined massively 

in terms of both abundance and distribution since the arrival of H. axyridis (Roy et al., 2012).  In our 

study it was only the 7
th
 most abundant species, with just 140 individuals encountered (1.6% of the 

total) during 61 of the 560 site visits and 140 hours of sampling.  By contrast, the two other common 

generalist native aphidophagous species, C. septempunctata and P. quattuordecimpunctata, were 

encountered during 370 site visits (3619 individuals, 42.6%) and 200 site visits (702 individuals, 8.3%), 

respectively. 

 

The abundances of the aphidophagous ladybird A. decempunctata, and indeed the guild of 

aphidophagous native ladybirds as a whole, were positively correlated with H. axyridis abundance.  

This is probably a consequence of aphidophagous species aggregating within favourable areas 

(suitable habitat with high aphid abundance). Ladybirds have previously been shown to avoid 

potentially harmful areas for themselves and their offspring, such as leaves with high numbers of 

conspecific tracks (Agarwala & Dixon, 1992) or soil, leaves and cadavers with high levels of the 

pathogenic fungus Beauvaria bassiana (Balsamo) Vuillemin (Ormond et al., 2011), but we found no 

evidence of avoidance of H. axyridis by aphidophagous native ladybirds.   

 

Clearly, competing species (and those which prey on each other) can and do live alongside each 

other, and our findings show that native species do co-exist with H. axyridis.  This may be because, in 

the resource-rich, favourable habitats we studied, aphid abundance is generally high enough to 

support several species, even with minimal niche separation.  It would be interesting to examine 

whether this holds true in less resource-rich areas, and whether H. axyridis would be able to become a 
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dominant species, perhaps via competitive exclusion.  Alternatively, suboptimal areas might act as 

refugia for native species, as has been found in the USA (Evans, 2004).   

 

Ladybirds in Britain occupy a wide range of habitat types with differing degrees of habitat 

specialisation, from species resident only on shingle riverbanks to habitat generalists found almost 

anywhere (Roy et al., 2011).  Consequently, we could only study the dynamics of a limited subset of 

the British ladybird fauna.  This study was not carried out across the full range of available habitat 

types, and we did not examine occupancy of H. axyridis: we were only concerned with relative 

abundance of the different ladybird species in patches of two types of favourable habitat. It would be 

interesting to explore the effects of native ladybird community composition on invasion success by 

comparing sites within the invasion zone in which H. axyridis has and has not established populations 

some years after initial invasion.  There are also many non-ladybird members of the aphidophagous 

guild, including syrphid (hover-fly) and neuropteran (lacewing) larvae, which may also influence biotic 

resistance to the H. axyridis invasion (Lucas et al., 1998), and it would be desirable to assess these in 

future surveys.  It would also be of interest to manipulate aphid abundance within the studied habitats 

in order to evaluate the role of resource richness in structuring the ladybird community. 

 

In summary, H. axyridis is an opportunistic aphid predator which is not constrained by the biotic 

resistance offered by the community of native ladybirds, whether aphidophagous species, all species 

present, or the most ecologically-similar native species.  At least at a site level and in the resource-rich 

systems we assessed, native ladybird species and the IAS co-occur, which may lay the foundations 

for the large-scale declines in native species found by Roy et al (2012). 
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Chapter 6.  General discussion. 

6.1. Introduction 
Invasive alien species (IAS) have long been recognised as a significant component of environmental 

change worldwide, and their arrival has often been followed by a significant loss in the biological 

diversity and function of invaded ecosystems (Wittenberg & Cock, 2001; Millennium Ecosystem 

Assessment, 2005; Hulme et al., 2009; UK National Ecosystem Assessment, 2011).  The likelihood of 

establishment, rate of spread and magnitude of any effects of the IAS are partly mediated by the 

composition of the native communities affected, however, through processes including predation, 

parasitism, competition and biotic resistance (Stohlgren et al., 1999; Davis et al., 2000; Levine, 2000; 

Fridley et al., 2007).   

 

Therefore, a greater understanding of the community interactions between native species and IAS is 

important, particularly as rates of introduction of alien species are increasing rapidly (Pyšek et al., 

2009; Roy et al., 2011a).  Increased understanding of these processes enables better prediction of the 

species likely to establish and become invasive in different ecosystem contexts, and more accurate 

forecasting of the effects of IAS, feeding back into introduction risk assessments and watch-lists such 

as those maintained by the Great Britain Non-Native Species Information Portal (GB-NNSIP, 

www.nonnativespecies.org) and the European and Mediterranean Plant Protection Organisation 

(EPPO, www.eppo.int) (van Lenteren, 2006; van Lenteren et al., 2006; Pyšek et al., 2011).   

6.2. Recent arrivals of new ladybird species in Britain 
The British ladybird fauna has changed considerably over the last twenty years (Roy et al., 2011b; Roy 

et al., 2013).  Five species have significantly increased in distribution, eleven have decreased 

significantly, and several species have become established (Roy et al., 2011b).  These include the 

herbivorous Mediterranean ladybird Henosepilachna argus (Geoffroy) (Menzies & Spooner, 2000) and 

two small, closely-related coccidophagous species, Rhyzobius chrysomeloides (Herbst) (Hawkins, 

2000) and R. lophanthae (Blaisdell) (Booth, 2000).  Most recently, the thirteen-spot ladybird, 

Hippodamia tredecimpunctata L. has possibly re-colonised the south coast (Comont & Willerton, 

2012).  By far the best-known arrival, however, is that of the harlequin ladybird Harmonia axyridis 

(Pallas). This species has become invasive across Europe, Africa and both North and South America 

http://www.eppo.int/
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since establishing in the southern USA in 1988 (Gordon & Vandenberg, 1991; Brown et al., 2011).  It 

became established in Britain during 2004, and spread rapidly across the country (Brown et al., 2008).   

 

Harmonia axyridis was documented as having detrimental effects on native species in North America 

(Snyder et al., 2004), and this, coupled with the invasive traits of the species, meant its arrival within 

Britain was met with concern (Majerus et al., 2006a).  However, the establishment and spread of this 

species was also seen as a unique opportunity to track the spread of an IAS whilst also monitoring 

impacts on native ladybird species. Therefore, two on-line surveys were launched as part of the 

Biological Records Centre Coccinellidae Recording Scheme: the Harlequin Ladybird Survey, 

www.harlequin-survey.org, and the UK Ladybird Survey, www.ladybird-survey.org) (Brown et al., 

2008; Brown et al., 2010).  The tens of thousands of records submitted to these surveys from people 

across Britain have enabled the research within this thesis.  This was to examine the responses of 

native UK ladybirds to the arrival of this IAS, to establish the effect of H. axyridis on native ladybird 

species when compared to other environmental drivers, and to investigate the possible facilitation of 

the H. axyridis invasion by natural enemy release. 

6.3. Predicting ladybird distribution patterns from traits 
Exploring the ecological traits of all species of ladybird in Britain, alongside the distribution patterns of 

these species, revealed a number of significant correlations (Chapter 2: Comont et al., 2012).  It was 

found that, in general, as largely predatory taxa, ladybird range size and fill are better-correlated with 

diet breadth than with measures such as habitat specificity (Chapter 2: Comont et al., 2012). This has 

also been found in other taxa, e.g. Sphingidae (Lepidoptera) (Quinn et al., 1997; Beck & Kitching, 

2007; Garcia-Barros & Benito, 2010), suggesting that diet breadth may be a key niche-breadth 

determinant.  This is particularly likely for predatory groups, where prey availability is a major 

determinant of patch suitability (chapter 2: Comont et al., 2012). 

 

Predatory ladybirds exploit a range of prey species (Mills, 1981; Hodek et al., 2012). A distinction can 

be drawn between essential food sources, which are those on which the ladybird can feed solely while 

retaining the ability to mature and reproduce, and alternative food sources, which are those on which 

the ladybird can survive, but without reproducing (Hodek & Honek, 1996).  In general, however, dietary 

generalists such as H. axyridis are likely to be able to persist for longer in less favourable areas than 

http://www.harlequin-survey.org/
http://www.ladybird-survey.org/
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diet specialists, and so fill a larger range more completely (chapter 2). Climate envelope modelling 

also suggests that H. axyridis is unlikely to be majorly climatically-restricted in Britain, with the possible 

exception of the Scottish highlands (Poutsma et al., 2008), so it seems likely that the IAS will continue 

to spread nationwide.  It is worth noting, that even habitat- and dietary-generalist species such as H. 

axyridis are affected by many factors other than climate (for instance LaMana and Miller (1996) found 

the species to be abundant in arboreal habitats but infrequent in alfalfa, clover and peppermint in close 

proximity).  This means that pure climate-envelope models should be taken as an estimate of the 

extent of the fundamental climatic niche rather than the eventual realised niche, which will depend on 

many other biotic and abiotic factors.  The relatively slow spread of H. axyridis in Britain after 2006 

when compared to the 2004-6 rate of spread (UK Ladybird Survey, unpublished data) may suggest 

that the species is nearing the full extent of its realisable niche in mainland Britain. 

6.4. Effects of Harmonia axyridis on other species 
Harmonia axyridis became established in south-eastern England in late 2004 and spread rapidly, 

reaching Cornwall and Wales in the west and Yorkshire in the north by 2006, a rate of 144.5 km/yr 

westwards and 58 km/yr northwards.  This spread is likely to have detrimental effects on native 

species.  Laboratory experiments have found larvae of many native ladybird species to be susceptible 

to intraguild predation (IGP) by larvae of H. axyridis (Kajita et al., 2006; Ware & Majerus, 2008), and 

in-field predation of at least two native species (Adalia bipunctata (L.) and A. decempunctata (L.)) by 

H. axyridis has been confirmed (Thomas et al., 2013).  

 

At a landscape scale, H. axyridis has been strongly linked to declines in both abundance and 

distribution (at a 1-km
2
 grid-square level) of several of the commonest native species (Roy et al., 

2012). Chapter 3 expands this approach to consider local-scale (1-km
2
 grid square) extinctions of 

native species in the context of habitat and climate factors, species-level traits, and spatial, temporal 

and niche overlap with H. axyridis.  Dietary niche overlap with H. axyridis was one of two major 

correlates of local extinction in native species (the other was urbanisation), and so H. axyridis 

constitutes a key biotic environmental pressure on native ladybirds, with species-specific impacts 

dependent on overlap of resource use of individual species with the IAS (Chapter 3).  However, the 

only environmental factor that both increased the likelihood of local extinction and reduced that of 

colonisation was the percentage of urban land cover.  Despite the detrimental effects of H. axyridis on 
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native species, and although gardens and parks in urban areas often seem to be favourable for some 

individual ladybird species (Roy et al., 2011b), habitat destruction seems to be playing a major role in 

the decline of native ladybird species.  This is particularly concerning in light of predictions by the 

Department for the Environment, Food & Rural Affairs (Defra) that, in England alone, there will be a 

net 171,600 hectares converted from rural use to urban between 1991 and 2016, 2% of the land area 

of the country (Anon., 2006). 

 

One species which is known to be detrimentally affected by the presence of H. axyridis is A. 

bipunctata (Roy et al., 2012; Thomas et al., 2013).  Formerly one of the most widespread and 

abundant ladybirds in Britain (Roy et al., 2011b), the proportion of 1 km
2
 grid squares this species has 

been recorded from in Britain has declined by 44% since the arrival of H. axyridis (Roy et al., 2012).  In 

systematic surveys, the numbers of individuals of A. bipunctata has declined by 47% in Britain since 

the arrival of H. axyridis (Roy et al 2012). Perhaps unsurprisingly, this species was strikingly low in 

abundance during the field surveys described in Chapter 4.  Adalia bipunctata has a high niche 

overlap with H. axyridis (77% on the plant use similarity index of Adriaens et al (2008)), and the 

chemical and morphological defences of A. bipunctata appear to be ineffective against the IAS (Kajita 

et al., 2006; Ware & Majerus, 2008; Ware et al., 2009).  During the study period A. bipunctata was 

only the 7
th
 most abundant species, with just 140 individuals recorded (1.6% of the total) during 61 of 

560 site visits and 140 hours of sampling.  By contrast, the two other common generalist native 

aphidophagous species, Coccinella septempunctata (L.) and Propylea quattuordecimpunctata (L.), 

were noted during 370 site visits (3619 individuals, 42.6%) and 200 site visits (702 individuals, 8.3%), 

respectively.  This is in line with equivalent studies which found declines in abundance of A. bipunctata 

of 47.2% (eastern England), 57.1% (Switzerland), and 87.7% (Belgium) after the arrival of H. axyridis 

(Roy et al., 2012). 

 

The importance of dietary niche overlap with H. axyridis, particularly compared to habitat niche 

overlap, suggests that competition for food could be the most important mechanism by which H. 

axyridis causes declines in native ladybird species.  Intra-guild predation may also play an important 

role, however, as within a given habitat, species exploiting the same food resource as H. axyridis are 



 140 
 

likely to come into contact with the invader more frequently, and so be at risk of predation, which 

correlates positively with encounter rate (Raak-van den Berg et al., 2012).   

6.5. Examining the effect of native communities on invasion by Harmonia 

axyridis 
Harmonia axyridis, as a habitat generalist, is capable of surviving in the same habitat as many, if not 

all, native ladybird species (Adriaens et al., 2008; Roy et al., 2012).  IAS are sometimes prevented 

from establishing in a particular area or habitat type by the species already resident, a process termed 

biotic resistance (Elton, 1958; MacArthur, 1972).  However, in Chapter 4 the abundance of H. axyridis 

at a site was shown to be driven by habitat type and aphid abundance, rather than by the diversity or 

abundance of the existing community of native ladybirds.  This remained the case whether the native 

ladybird community was modelled as all species present, just the aphidophagous species, or only the 

most ecologically-similar native species.  The two habitats included in the field survey (lime trees, Tilia 

x europaea L., and nettles, Urtica dioica L.) harbour high abundance of aphids and are considered to 

be favourable for several ladybird species, particularly H. axyridis.  Resource-rich habitats such as 

these have been suggested to favour invasion even in the continuing presence of a diverse native 

community (Byers & Noonburg, 2003).  This is thought to be due to either competition between native 

species for resources indirectly facilitating the IAS (Levine, 1976; Levine & D’Antonio, 1999), or 

increased resource availability leading to under-exploitation by native species (McCann et al., 1998; 

Breton et al., 2005), leaving a niche at least partially vacant for H. axyridis to exploit. 

 

The IAS H. axyridis is an opportunistic aphid predator with a broad dietary and habitat range, which 

perhaps enables it to track aphid abundance more effectively across the landscape than do native 

species.  As the beneficiary of unidirectional IGP (Ware & Majerus, 2008), it is possible that the 

presence of native ladybird species represents potential prey items, rather than, or in addition to, 

competitors, for H. axyridis.  At least at a per-site level, and in the resource-rich systems assessed in 

Chapter 5, there was no overall relationship between H. axyridis abundance and the abundance of 

native species.  In North America, the invasion of C. septempunctata were found to have largely 

confined native species to native-habitat refugia rather than crop habitats (Evans, 2004), and it may be 

that the habitats sampled in Chapter 5 are the British equivalents of these refugia. 
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One native ladybird species, Subcoccinella vigintiquattuorpunctata (L.), was found to be negatively 

associated with H. axyridis abundance.  This is a small phytophagous ladybird species which does not 

compete for food with the IAS, and it is probable that the negative relationship between abundance of 

the two species has arisen through niche separation caused by their different habitat and dietary 

requirements.  Subcoccinella vigintiquattuorpunctata is largely a grassland species which feeds on 

grasses and clovers, whereas H. axyridis is a habitat and dietary generalist species, with preferences 

for arboreal habitats and aphid prey (Roy et al., 2011b; Hodek et al., 2012).  The predatory 

relationship between the two species has not been formally assessed, but there are no casual records 

of predation between the two species in the literature, and it is probable that the negative relationship 

between abundance of the two species has arisen through niche separation caused by different 

habitat and dietary requirements (Roy et al., 2011b).  It is, however, entirely possible that this 

predation is occurring but has been overlooked, as S. vigintiquattuorpunctata is a very small species 

(Roy et al., 2011b). 

 

It would be interesting to examine whether the co-existence between H. axyridis and native ladybird 

species also occurs in less resource-rich areas and at different times post-invasion, by investigating 

different habitat types and by manipulating aphid abundance within favourable habitats.  This would 

allow evaluation of the role of resource-richness in structuring the ladybird community, particularly 

whether H. axyridis would be able to become a dominant species, perhaps via competitive exclusion.  

Alternatively, suboptimal areas might act as refugia for native species, as has been found in the USA 

(Evans, 2004).  There are also many non-ladybird members of the aphidophagous guild, including 

syrphid (hoverfly) and neuropteran (lacewing) larvae, which may also influence biotic resistance to the 

H. axyridis invasion (Lucas et al., 1998), and it would be desirable to assess these in future surveys.  

Additionally, the effects of native ladybird community composition on invasion success could be further 

examined by comparing sites within the invasion zone in which H. axyridis has and has not 

established populations some years after initial invasion.   

6.6. Parasitoids and the enemy release hypothesis 
Biotic resistance is not the only way that a native community may resist the spread of an IAS, 

however.  The enemy release hypothesis (ERH) states that IAS become invasive at least partially 

because alien species are released from the burden of co-evolved natural enemies such as 
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parasitoids, and so are attacked less than either are populations of the IAS in their native ranges, or 

similar species native to the invaded range of the IAS (Elton, 1958; Torchin et al., 2003). Britain has a 

range of parasitoid species which attack native ladybird species (Roy et al., 2013), and Chapter 4 

examined how these native parasitoids (particularly phorid flies, Phalacrotophora fasciata (Fallén) and 

P. berolinensis Schmitz, and the braconid wasp Dinocampus coccinellae (Schrank)) were adapting to 

the arrival of H. axyridis, compared to the ecologically-similar native species C. septempunctata.  

 

Both pupae and adults (in overwintering aggregations) of H. axyridis were parasitised at a 

considerably lower rate than were British populations of C. septempunctata.  Pupae of the IAS were 

parasitised at an exceptionally low level across Britain (1.7%) and adults were not found to be 

parasitised at all in our study.  In contrast, C. septempunctata experienced reasonably high parasitism 

(20.9% pupae, 5.7% adults) when collected from the same areas at the same time.  The aposematic 

colouration and chemical defences of ladybirds causes them to suffer low rates of attack by non-

specialist natural enemies (Roy et al., 2013), and consequently this discrepancy in the rate of 

parasitism by specialist parasitoids is likely to represent an advantage for H. axyridis, and may partly 

explain why the species is such a successful IAS.   Previous studies of parasitism of H. axyridis in its 

native range found pupal parasitism of H. axyridis to be much higher in Japan than in Britain: 

approximately 15% of H. axyridis pupae were parasitised by the Japanese-native phorid 

Phalacrotophora philaxyridis Disney (Osawa, 1992).  This is consistent with the predictions of the ERH 

that enhanced performance of an IAS in the introduced range may result from a reduction or absence 

of natural enemies (Elton, 1958; Torchin et al., 2001).   

 

Future research should focus on both the rate of parasitism and possible effects on the population 

dynamics of different species of ladybird.  Indeed continued monitoring of H. axyridis, native species of 

ladybird and the parasites associated with them is essential to unravelling the web of interactions 

around this IAS.  Within the invaded range, it may be possible to use molecular data to examine the 

population structure of H. axyridis and the parasitoid taxa found attacking it, along a gradient of time of 

arrival in the invasive range, as in Nicholls et al. (2010).  It would also be fascinating to examine the 

interactions between H. axyridis, C. septempunctata and D. coccinellae within Britain, Japan, and the 

USA.  The parasitoid is thought to be native to all three countries, H. axyridis is native to Japan but 
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invasive in the USA (first established 1988) (Gordon & Vandenberg, 1991) and Britain (first 

established 2004) (Majerus et al., 2006b), while C. septempunctata is native to Britain and Japan, but 

invasive in the USA (first established 1973) (Angelet & Jacques, 1975; Gordon, 1985).  This would 

allow quantification of the rate of predation on both ladybird species by co-evolved populations of the 

parasitoid in areas where both host and parasitoid are native, and thus also evaluation of the degree 

to which the ERH explains a lack of predation on the same species in their invasive ranges, expressed 

as a drop-off in parasitism rate between regions. 

 

It is possible that the extreme polymorphism of H. axyridis may play a role in the species’ invasional 

success, but limited work to date has focused on this. Studies on other taxa, e.g. Orthoptera, have 

found links between colour form, size and habitat selection (Ahnesjo & Forsman, 2003, 2006).  Both 

Chorthippus parallelus (Zetterstedt) and Tetrix undulata (Sowerby), for example, have several different 

colour morphs which have been found to preferentially inhabit different habitat types, and which vary in 

fecundity (Ahnesjo & Forsman, 2003, 2006; Unsicker et al., 2008).  It may therefore be the case that 

the phenotypic variation of H. axyridis allows the species a wider niche than monomorphic species, 

thus allowing the IAS to colonise a wider range of areas and habitats.  Additionally, the different colour 

forms may differ in the extent of their chemical defences, either because some colour forms require a 

greater energetic input (e.g. to produce the extra melanin needed for melanic forms), or because some 

colour forms are attacked more frequently, potentially because of greater conspicuousness to 

predators (Sloggett et al., 2011).  This in turn may have effects on invasional success: better-defended 

colour forms may be better able to resist attack by native natural enemies, so invade areas more 

successfully, or less-defended colour forms are able to devote more resources to reproduction and 

dispersal, and so they invade areas more successfully (Sloggett et al., 2011). 

6.7. The value of “citizen science” 
What has been brought sharply into focus from this study of H. axyridis as an IAS is the value of long-

term, large-scale datasets, and of citizen science data.  Volunteer-recorded occurrence data are not 

perfect. There are potential data-quality issues, particularly with cryptic taxa, and recording-intensity 

issues associated with casual records rather than focused, intensive sampling: more apparent species 

are recorded more often, and records may be biased towards the distribution of recorders rather than 

the species in question (Dickinson et al., 2010).  Using volunteer-recorded data, however, allows much 
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larger areas to be sampled than is possible using surveys by taxonomic experts, assuming equal time 

and costs.  Recording-intensity issues can be minimised using statistical techniques and sub-setting of 

the data, e.g. Chapter 3 and Roy et al  (2012), while data-quality issues have been found to be 

minimal in many citizen science schemes (Crall et al., 2011; Gardiner et al., 2012).  More complex 

methods have also been developed to use citizen science data, for example extracting distribution 

patterns of liverworts and hornworts (Preston et al., 2011), measuring relative change in range size 

(Telfer et al., 2002), and interpreting atlas data in the absence of known recording effort (Hill, 2012). 

 

Long-term citizen-science data have been used to produce distribution atlases for more than 11,000 

species in Britain, from algae and bryophytes to mammals and birds (Preston et al., 2012). The data 

have been used to monitor the spread of species, both native and alien, e.g. Cameraria ohridella 

Deschka & Dimić (Pocock et al., 2011), to identify the traits of species changing distributions or 

abundances, e.g. in plant communities (Braithwaite et al., 2006), and to evaluate the role of possible 

drivers of change and compare their effects between species groups such as birds, plants and 

butterflies (Thomas et al., 2004; Wilson et al., 2004).   

 

Without data from volunteer recorders, there would at best be only a biased and incomplete record of 

the spread of the H. axyridis in Britain: with them, we have thousands of records of multiple species 

across the country, before and after the establishment and spread of H. axyridis.  This allows 

evaluation of the impact of environmental changes such as the arrival of IAS, particularly through 

methods designed to use these data and which take their specific strengths and weaknesses into 

account.  These include modelling approaches such as those used in Chapters 2, 3 and 5, a valuable 

approach as it can evaluate the comparative role of, and interactions between, biotic and abiotic 

drivers of distribution or population dynamics within the same framework, rather than independently.   

6.8. Overall conclusions 
Overall, H. axyridis is an extremely successful IAS.  It is likely to continue spreading throughout the 

British Isles, and the detrimental effects that the species has on native species are likely to continue.  

The wide diet breadth of the IAS is likely to have played a critical role in the species’ rapid spread, as 

species’ diet breadth was the life-history or resource-use trait best correlated with range size: species 

predatory on a wide range of prey families had larger range sizes than those which ate fewer prey 
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types (Chapter 2).  Both urbanisation and the degree of dietary niche overlap between H. axyridis and 

native species show a strong positive correlation with the decline in recorded distribution of native 

species (Chapter 3).  This indicates that the IAS is playing an important role in the declines of native 

species, but that habitat destruction is also playing a major part (Chapter 3). 

 

There appears to be very little prospect that its spread will be slowed by biotic resistance of the native 

community (Chapter 4), or by top-down regulation from natural enemies native to the British Isles 

(Chapter 5), at least in the near future.  This highlights the importance of the preventative principle with 

regards to the introduction of new species into the environment.  The most effective way to prevent 

species becoming invasive is to prevent their initial establishment (Blackburn et al., 2011).  Horizon-

scanning and risk assessments allow potential new arrivals such as Vespa velutina nigrithorax de 

Buysson to be evaluated pre-arrival, informed by examples such as H. axyridis (van Lenteren et al., 

2008).  In turn, appropriate monitoring and control measures can be put in place to attempt to reduce 

the incidence and magnitude of future invasions. 

 

The invasion of H. axyridis, particularly in Britain, has had an unusually high public profile, and has 

been possibly better-studied than any other invasive insect.  It is to be hoped that this well-

documented disaster for native wildlife will act as a warning to help prevent or control future invasions.   

The thousands of volunteer biological recorders in Britain who give up their spare time to monitor their 

local wildlife provide us with by far the best-studied flora and fauna anywhere in the world, an 

unrivalled opportunity to carry out in-depth ecological studies, and an observation network with the 

capability to pick up the earliest signs of invasion. 
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 Does niche overlap with Harmonia axyridis correlate with population declines in the British 

ladybird fauna?  Second meeting of the IOBC/WPRS working group ‘Benefits and risks of 

exotic biocontrol agents’, Hluboka, Czech Republic, 31/10/2011 
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