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Abstract 

In the present century, ecosystems across the globe will be subject to profound 

changes in climate. Forests are expected to be particularly sensitive to such change as 

the long life span of trees limits the potential for rapid adaptation. In order to 

preserve commercial viability and the essential ecosystem services provided by 

forests, there has been much interest in strategies for managing the adaptation of 

trees to their climatic environment. Climate Matching has emerged as one such 

strategy, whereby climate models are used to identify provenances – tree populations 

at a particular locality - with seed expected to be well adapted to the future 

conditions of a particular planting site. Debate continues about the feasibility and 

merit of this and other approaches, but it has yet to be demonstrated that the 

underlying assumptions of Climate Matching are valid for focal European tree 

species. Furthermore, a potentially major omission thus far has been consideration of 

how the Climate Matching strategy might influence associated organisms. Given the 

widely demonstrated bottom-up effects of foundation species genotype that have 

emerged from the field of community genetics, it is possible that planting seed of 

non-local provenance could effect forest organisms such as insect herbivores. In this 

thesis, I investigate the underlying assumptions of Climate Matching and its 

community level consequences using a model system of cynipid oak galls on 

Quercus petraea. 

Following a general introduction to Climate Matching and the study system, in 

Chapter 2 I use data from a provenance trial of Q. petraea in France to explore a 

central assumption of the Climate Matching strategy: that provenances of focal tree 

species show climate associated variation in adaptive phenotypic traits. In Chapter 3, 

I explore correlations between these phenotypic traits and the abundance, diversity, 

and community composition of an associated guild of specialist gall-inducing 

herbivores. Tree phenological traits in particular showed strong patterns of 

adaptation to climatic gradients, and influenced the abundance and community 

structure of galling species. However, as the response to non-local tree provenances 

was not strongly negative, it was considered unlikely that mixed planting of local and 

Climate Matched provenances would have sever impact on the gallwasp community. 
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Having assessed the bottom-up effects of provenance phenotypic variation on the 

galling community, my ultimate aim is to extend analysis to include associated 

hymenopteran inquilines and parasitoids. However, interpretation of effects at this 

level is hindered by taxonomic uncertainty, with a growing appreciation that 

morpho-taxa may not represent independently evolving lineages (i.e. ‘true’ species). 

In Chapters 4 & 5 I therefore develop approaches for addressing taxonomic 

uncertainty with this ultimate aim in mind. In Chapter 4, I apply a DNA barcoding 

approach to parasitoid and inquiline specimens reared from the provenance trial, and 

compare taxa based on barcodes with those based on morphology to identify points 

of taxonomic uncertainty. I also investigate the extent to which networks based on 

morphological and molecular taxa support contrasting conclusions of network 

properties. In Chapter 5 I explore the potential for molecular based resolution of 

species level taxonomic error in a challenging group of parasitoids: the genus 

Cecidostiba. Beginning with a framework of single locus DNA barcoding, I use data 

from multiple nuclear loci to reveal the existence of cryptic species. 

Finally, in Chapter 6 I explore the practicalities of Climate Matching in light of my 

empirical results, and suggest fruitful avenues for further research.  
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Chapter 1 - Introduction 

As a result of anthropogenic activity the global climate is experiencing a period of 

rapid change, characterised by an increase in global surface temperature. The 

inevitable continuation of this change throughout the 21st century is expected to test 

the resilience of many ecosystems (IPCC 2007), and the maintenance of key 

ecosystem functions may require innovative strategies for intervention and 

management. The development of an appropriate knowledge base on the effects of 

climate change and the effectiveness of potential management strategies represent 

one of the most pressing challenges in modern ecology.  

In this thesis I identify and explore important gaps in our knowledge of Climate 

Matching, a recently proposed strategy for the adaptive management of forests in the 

UK. I begin in this opening chapter by describing the challenges that climate change 

poses for UK forests, the rationale that underlies Climate Matching, and those 

aspects of the strategy for which important knowledge is lacking. I then provide 

details of my chosen study system – the oak gall community associated with Quercus 

petraea – and outline how it is used in subsequent chapters to investigate the 

identified issues.     

1.1. Forests and climate change in the UK 

Forest cover in the UK is estimated at around 2.8 million hectares, constituting 

11.6% of total land surface area (Forestry Commission 2004). Coniferous trees such 

as Sitka spruce (Picea sitchensis) and various species of pine (Pinus spp.) make up 

approximately 60% of the total, with the other 40% consisting of broadleaved species 

- principally oaks (Quercus petraea and Q. robur – 9.4% of total area), birch (Betula 

spp. – 6.7% of total) and ash (Fraxinus excelsior – 5.4% of total area, (Forestry 

Commission 2003). This forest represents a valuable national resource, supplying 

timber, enhancing biodiversity, protecting soil and water quality, and providing 

amenity. The sustainable management of existing forest and the creation of further 

forests is recognised as an important objective, supported by national and European 
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policy (Forestry Commission 2004, DEFRA and Forestry Commission 2005, EC 

2005). 

Climate change in the UK is already apparent, with a detected increase of 1°C in the 

Central England Temperature (CET) since the 1970’s, and most regions experiencing 

increased winter rainfall and decreased summer rainfall (Jenkins et al. 2008). 

Projections based on various carbon emission scenarios indicate that these trends will 

continue throughout the 21st century, with hotter drier summers and milder wetter 

winters expected across the UK and much of Europe (Giorgi and Coppola 2009, 

Jenkins et al. 2009). The magnitude of UK changes will be greatest in the south of 

England where, by the 2080’s, under a medium carbon emissions scenario, 50% 

probability estimates indicate an increase of 4-6 °C in summer mean daily 

temperature, an increase of 2-4 °C in winter mean daily temperature, a decrease of 

20-40% in summer rainfall, an increase of 10-30% in winter rainfall, and a decrease 

by as much as 18% in summer cloud cover (Jenkins et al. 2009).   

These changes may have varied effects on UK forests (Table 1.1). While some 

aspects of change could be beneficial, with for example elevated temperatures and 

CO2 concentrations potentially increasing productivity, the overall impact on forests 

is likely to be negative with increased risk of severe mortality from summer drought, 

fire, and pest, and disease outbreaks (Broadmeadow et al. 2003, Broadmeadow and 

Ray 2005, Broadmeadow et al. 2005). There has consequently been increasing 

interest in management strategies and silvicultural techniques that can promote the 

adaptation and resilience of forests in the face of climate change (Broadmeadow et 

al. 2005, Hubert and Cottrell 2007).  

Options include: the adoption of continuous cover or mixed stand forestry, which 

may provide a greater variety of microclimatic conditions that buffer susceptible 

young trees from climatic extremes (Castro et al. 2004, Barsoum et al. 2009); 

restocking of woodland through regeneration rather than planting, involving much 

higher initial stocking densities with consequently higher selection pressure for well 

adapted genotypes; regular gap creation and restocking (either through planting or 

regeneration), allowing selection to act on fresh material throughout the course of 

climate change; and increasing the connectivity of forests, allowing for increased 
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gene flow between populations and maintains higher levels of genetic diversity upon 

which selection can act (Hubert and Cottrell 2007).     

 

Table 1.1. Summary of how predicted changes in the UK climate may positively and negatively effect 
forests and woodlands (adapted from Table 2 of Broadmeadow et al. 2003).  
 

Change Positive effects Negative effects 
   

Increase in 
atmospheric 
CO2 

• Increase in growth rate 

• Reduced stomatal conductance 
and lower water use per unit leaf 
area 

• Reduction in wood density resulting 
in poorer quality timber and greater 
pest susceptibility 

• Increase in leaf area resulting in 
higher wind resistance and water use 

   

Increase in 
temperature 

• Increase in productivity 

• Longer growing season 

• Lower risk of winter cold 
damage 

• Less snow damage 

 

• Delayed hardening and earlier bud-
burst resulting in increased risk of 
autumn and spring frost damage 

• Longer growing season reducing 
winter soil recharge period 

• Reduced winter mortality of insect 
and mammalian pests 

• Increased fecundity, rapid 
development, and spread of pest 
species 

   

Reduction in 
summer rainfall 
and increase in 
winter rainfall 

• Drier summers resulting in 
reduced intensity of foliar 
herbivores and  pathogens 

• Summer drought-induced mortality 

• Water-stressed trees more susceptible 
to pests and pathogens 

• Increase in frequency of forest fires 

• Winter water-logging limiting access 
for forest operations and resulting in 
fine root death, thus increasing 
susceptibility soil pathogens and 
summer drought 

   

Reduction in 
cloud cover • Increase in productivity 

• Increased diurnal temperature range 
resulting in increased risk of frost 
damage 
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A further potentially more radical strategy is to change the way that seed is selected 

for planting. Based on the rationale that naturally distributed plant populations are 

well adapted to their environments, national guidelines currently advocate the 

planting of seed of local provenance (i.e. from within the same defined seed zone as 

the planting site), ideally sourced from stands with demonstrated high performance 

(Hebert et al. 1999, Samuel 2003, Forestry Commission 2004, Hubert 2005, Hubert 

and Cundall 2006). While this practice is likely to be effective under stable 

environmental conditions, relatively rapid changes in the environment could lead to 

maladaptation of naturally distributed populations, with consequent reduction in the 

suitability of locally sourced seed. The strategy of Climate Matching aims to counter 

this effect by identifying and planting seed from provenances that are well adapted to 

the predicted future climatic conditions of a planting site. 

In the principal study of Climate Matching by Broadmeadow et al. (2005), analyses 

were performed for four UK sites based on the UKCIP02 climate change scenarios 

(Hulme 2002) and interpolated global surface climate data (New et al. 2002). 

Predicted changes in winter (November-April) and summer (May-October) 

conditions, under both low and high CO2 emission scenarios by the 2050’s and 

2080’s, were applied to current conditions at the planting sites to obtain predicted 

monthly values for mean temperature, precipitation, and diurnal temperature range. 

A climatic difference index that matched the predicted climate of planting sites with 

50 kilometer grid squares across Europe by minimising the sum of squared 

differences in the three climate variables was used to identify the best matched 0.2% 

of grid squares for the four prospective planting sites. There was a clear tendency for 

matching with sites from lower latitudes, but the locations of matched sites varied 

considerably between the planting sites and between projection times. For example, 

Kelty in eastern Scotland was matched with areas of Ireland and western Britain by 

the 2050s, and with southern Brittany by 2080s, while Alice Holt in the south of 

England was matched with Brittany by the 2050s, and areas of Italy, Sardinia, and 

Greece by the 2080s (Figure 1.1).  
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Climate Matching is an intuitive concept, and the planting of mixtures of native and 

matched provenances has been suggested as a no-regret option for forest 

management, together with the strategies that promote naturally occurring variation 

and encourage natural migration (Broadmeadow and Ray 2005). However, closer 

consideration of its underlying assumptions in relation to literature from the fields of 

genecology and community genetics indicates that it may not be completely without 

risk of adverse effects. In the following subsections, I identify two important aspects 

of Climate Matching that are in need of further attention, and describe how they 

might be investigated using established forestry trials.  

 

Figure 1.1. Illustration of Climate Matching analysis, showing the best matched 0.2% of 50 km grid-
squares for planting sites at Kelty and Alice Holt, under low and high emission scenarios for the 
2050s, and a high emissions scenario for the 2080s (adapted from Broadmeadow et al. 2005).  
 

1.1.1. Local adaptation to climate 

Through the process of natural selection, genotypes associated with relatively higher 

fitness under particular environmental conditions are expected to increase in 

frequency when and where those conditions arise. In the absence of constraints and 

opposing forces, variation in environmental conditions across the range of a species 
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can lead to differentiation of sub-populations as different genotypes are selected 

under different conditions, in a process that has come to be known as local adaptation 

(Levene 1953, Levins and MacArthur 1966, Hedrick et al. 1976, Kawecki and Ebert 

2004). This process is important for many plant species, occurring in response to 

various abiotic and biotic influences including climate, soil conditions, and parasites 

(Sork et al. 1993, Linhart and Grant 1996, Kawecki and Ebert 2004, Macel et al. 

2007, Wright 2007). However, local adaptation is not universal and its patterns can 

be complex, being constrained by available genetic variation and opposed by various 

ecological factors including high levels of gene-flow, temporal fluctuations in 

selective forces, differences in size and quality of habitats, and adaptive phenotypic 

plasticity (Kawecki and Ebert 2004). Even where a species exhibits strong patterns of 

local adaptation throughout a part of its range, these patterns may break down in 

particular regions, such as range margins, due to strong directional gene-flow 

(Savolainen et al. 2007). 

By matching sites based on particular climate variables, such as the temperature, 

precipitation, and diurnal temperature range variables used by Broadmeadow et al. 

(2005), the effectiveness of Climate Matching hinges on the assumption that 

provenances of focal tree species are locally adapted to these aspects of their climatic 

environment. If this assumption is not met, either because local adaptation has not 

occurred or because it has occurred primarily in response to alternative influences, 

then Climate Matching is not likely to be successful in its objective of improving the 

resilience and adaptation of forests. Furthermore, if matched provenances are 

actually maladapted to their planting sites (e.g. through being less resistant to local 

pathogens), then there is a risk of out-breeding depression where gene-flow from 

maladapted individuals decreases the overall fitness of the local genepool (McKay et 

al. 2005). The question of whether provenances of focal tree species are locally 

adapted to their climatic environments is therefore central to Climate Matching, and 

it is important to establish the answer a priori, to avoid potentially negative 

consequences.  
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1.1.2. Community effects of tree provenance 

Forests are biologically diverse ecosystems, containing multi-guilded communities 

that in addition to trees include a wide phylogenetic range of plants, microbes, and 

animals. The conservation and enhancement of this forest biodiversity is viewed as 

an essential element of sustainable forest management, and is reflected in UK and 

European policy (Forestry Commission 2004, EC 2005). The value of forest 

management strategies such as Climate Matching must therefore be considered not 

only in terms of their effectiveness in promoting forest adaptation and resilience, but 

also by any impacts they may have on associated biodiversity.  

Trees play a key role in forest ecosystems, serving as ‘foundation species’ that 

structure the biotic environment for other forest organisms (Whitham et al. 2006). In 

recent years, research in the field of Community Genetics has widely demonstrated 

that variation in genetically controlled traits within foundation tree species can 

influence the structure of associated communities (Dungey et al. 2000, Wimp et al. 

2005, Bangert et al. 2006), with effects that potentially span several trophic levels 

(Dickson and Whitham 1996, Bailey and Whitham 2003, Johnson 2008). 

Mechanisms for these effects include genetically determined variation in the 

concentration of plant defensive compounds such as tannins (Schweitzer et al. 2004, 

Bailey et al. 2005, LeRoy et al. 2006), plant vigour (Fritz and Price 1988), and plant 

phenology (Mopper and Simberloff 1995, Mopper 2005). 

Given these widely demonstrated community level effects of plant genes, and that 

matched provenances must differ from local provenances in adaptive genetic traits 

for Climate Matching to be effective (as described in section 1.1.1), there is clearly 

the potential for Climate Matching to impact upon associated forest organisms. 

Empirical data are currently lacking, but the nature and extent of such impacts are 

likely to depend on precisely how matched provenances differ from local 

provenances, the relative abundance and spatial arrangement of introduced trees, and 

the ability of the native wildlife to respond to the novel trees (Hubert and Cottrell 

2007). If differences are relatively subtle or associated organisms are plastic in their 

response, then the planting of matched and local provenances together could increase 

habitat heterogeneity and serve to promote biodiversity (Baldi 2008). If however the 
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differences are such that local organisms are less able to utilise introduced 

provenances, then the effect on biodiversity would be negative. Further investigation 

of just how matched provenances might influence associated organisms is of obvious 

relevance if the impacts of Climate Matching are to be accurately predicted and such 

a strategy implemented successfully.  

1.1.3. Provenance research 

As Climate Matching is a recently developed strategy, empirical data on its 

effectiveness and effects are currently not available. Experimental trials of matched 

provenances have been established at two sites in the UK midlands (N. Barosum, 

personal communication), and while these will be a valuable future resource, it will 

be some time before data are available. Fortunately, for almost 200 years foresters 

have been studying differences between tree provenances by establishing trials where 

trees of several provenances are grown together in a common environment and 

monitored for various traits, often with the intention of identifying well adapted 

provenances for commercial growth (Konig 2005). Although not necessarily 

designed for the purpose, these trials can offer a means for investigating both the 

patterns of local adaptation in focal tree species, and the effect of tree provenance on 

associated organisms. 

The phenotype of individual organisms is determined by an interaction between their 

genotype and their environment. For provenance trials with adequate replication and 

blocking, environmental effects are controlled for so that observed variation in 

phenotypes relate directly to genotypic variation (Aitken 2004). The phenotypic 

variation can be analysed to identify the role of genetic differences between 

provenances, and also of provenance characteristics such as the environmental 

conditions at their source sites. Analyses of provenance trial data has traditionally 

involved analysis of variance (ANOVA) and linear regression (Konig 2005), but 

modern computing software for linear mixed-effect models allows for more 

appropriate treatment of nested and crossed experimental blocking effects, and 

unbalanced experimental data (Crawley 2007). Generalised versions of such models 
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allow for analysis of phenotypic traits that have non-normal errors, such as survival 

or count data (Bolker et al. 2009). 

A common approach to investigating local adaptation from provenance trial data has 

been to compare the extent of differentiation between provenances for particular 

quantifiable phenotypic traits, with the variation in allele frequencies between 

provenances for neutral genetic markers. These can be described respectively by the 

statistics Qst (Spitze 1993) and Wrights inbreeding coefficient Fst (Wright 1951, Weir 

and Cockerham 1984), and such comparisons are known as Qst-Fst tests although they 

may in practice involve various statistical relatives of Qst and Fst  (Saether et al. 

2007). Variation in allele frequencies between provenances for neutral markers arises 

through genetic drift, but if estimates of Qst differ substantially from Fst then drift 

alone is not sufficient to explain the differentiation for the quantitative trait. 

Significantly higher values of Qst suggest that the trait is experiencing spatially 

divergent selection and has become locally adapted, while significantly lower values 

of Qst would suggest spatially stabilizing selection (Whitlock 2008). 

While Qst–Fst tests offer a useful means for exploring patterns of trait variation, the 

accurate estimation of both statistics is subject to various sources of bias that may be 

difficult to account for (Whitlock 2008), limiting the confidence in resulting 

inferences. A further potentially complementary approach to investigating spatially 

divergent selection is to relate the variation in particular traits observed within a 

provenance trial to gradients in environmental conditions between the sites of origin 

of the provenances. The detection of strong relationships, known as clines, suggests 

that the environmental factor is involved in driving local adaptation of the trait 

(Huxley 1955, Aitken 2004). In the context of Climate Matching, the identification 

of strong clines in adaptive phenotypic traits along gradients in temperature and 

precipitation would indicate that provenances are locally adapted to these aspects of 

their climatic environments.   

With regards to investigating the community level effects of tree provenance, the 

interactions between trees and other organisms can be considered as an extended 

phenotype of the tree (Whitham et al. 2003), and can be analysed in much the same 

way as direct phenotypic traits such as tree size or phenology. Insect herbivores are a 
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convenient starting point for such investigation, as their interactions with trees can be 

easily established and quantified from field surveys within provenance trials. 

Variation in the abundance of individual species, or in multi-species parameters such 

as species richness or community similarity, can be analysed to assess the importance 

of differences between provenances. Where strong effects of provenance are 

apparent, further analysis in relation to direct phenotypic traits (i.e. tree size or 

phenology) may identify the mechanisms responsible for the effects of provenance. 

Such data on how and why herbivorous communities might vary in relation to tree 

provenance can be used to evaluate the impact that Climate Matching might have on 

associated biodiversity. Once appropriate datasets exist, this approach could be 

extended to consider wider community and ecosystem parameters (Whitham et al. 

2006). 

1.2. Study system 

In order to explore these key issues empirically, I required a study system that: (i) 

centred on a tree species that is a candidate for Climate Matching, (ii) was 

represented in an appropriately scaled provenance trial, and (iii) involved a multi-

trophic community of appropriate diversity that could be practically sampled. The 

combination of Sessile oak (Quercus petraea) and its associated oak gall community 

offered a suitable choice, being both a widespread and economically important 

European tree that is well represented in provenance trials, and a popular model 

system for field studies of community ecology. Here I provide details of the system 

and the selected study site.           

1.2.1. Quercus petraea 

Sessile oak (Quercus petraea) is a widespread European tree with a current natural 

distribution from Spain to Russia and from Scotland to Turkey, between sea level 

and 1600m elevation (Kleinschmit 1993). It is an economically important species 

and together with the closely-related Pedunculate oak (Q. robur), it represents almost 

25% of broadleaved high forest in Great Britain (Forestry Commission 2003). The 

two species show some ecological differentiation, with Q. robur being more tolerant 
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of water-logging and favouring heavier alkaline soils, while Q. petraea occurs more 

commonly on acidic well-drained soils (Hubert 2005). Under recent climate change 

scenarios it has been predicted that oak productivity will increase in the north and 

west of the UK and decrease in the south and east, with increased risk of drought 

mortality (Broadmeadow et al. 2005). Given these predictions, and its economic 

significance, Q. petraea should be considered as a candidate species for Climate 

Matching, particularly in the south of the UK.   

Following the last glacial period in the late Pleistocene era (approximately 10,000 

years ago), Q. petraea is thought to have spread north from refugia in the Iberian 

peninsula, the Italian peninsula, and the Balkans, reaching its current distribution 

approximately 6000 years ago (Brewer et al. 2002, Petit et al. 2002). The genetic 

signature of refugial differentiation is observed in chloroplast genes (Le Corre et al. 

1997, Kremer et al. 2002), but current patterns of nuclear genetic diversity are 

considered to also reflect a combination of the selection pressures acting on 

established populations, and wind mediated pollen flow between refugial lineages 

where they have met in central Europe (Kremer et al. 2002).  

Quercus petraea is well represented in provenance trials, and the results of these 

indicate considerable variation in phenotypic traits between provenances. The 

phenological traits of budburst and leaf senescence have received particular interest 

due to their implications for frost resistance and the length of growing season. There 

is evidence of local adaptation in these traits from comparisons of Fst and Qst (Kremer 

et al. 1997, Jensen and Hansen 2008), and from the identification of clines along 

gradients in latitude and altitude (Deans and Harvey 1995, Ducousso et al. 1996, 

Broadmeadow and Ray 2005, Alberto et al. 2011). Considerable phenotypic 

plasticity in the effect of temperature on budburst and leaf senescence has also been 

identified, with warmer temperatures resulting in earlier phenology for both traits 

(Vitasse et al. 2009, Vitasse et al. 2010). Variation in growth and architectural traits 

between provenances has also been demonstrated (Jensen 2000, Hubert 2005), again 

with evidence of local adaptation from comparisons of Fst and Qst (Kremer et al. 

1997, Jensen and Hansen 2008). However, in the context of Climate Matching it is 

the patterns of local adaptation of these traits along geographical gradients in 
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temperature and precipitation that are particularly relevant, and these have yet to be 

considered. 

1.2.2. Petite Charnie provenance trial 

The oak provenance trial in the forest of Petite Charnie in Sarthe, Northwest France 

(Figure 1.2), is one of four such trials established in France in the early 1990s by the 

French National Institute for Agricultural Research (INRA). They are intended as a 

resource for evaluating the range-wide genetic diversity of Q. petraea, to aid genetic 

conservation and management (Ducousso et al. 1996). The Petite Charnie trial 

contains almost 200,000 individual trees, representing 103 provenances of Q. petraea 

and 9 provenances of Q. robur spanning much of their natural range. For a putatively 

natural stand at each provenance, acorns were collected from at least 50 points with 

30 meter spacing between them during 1986, 1987, 1989, and 1992, and were grown 

in the public nursery of Guemene-Penfao in Brittany, northwest France. At three 

years of age, all trees of a particular cohort were planted into a ‘tranche’ site that had 

been cleared and tilled during the previous year (A, Ducousso, personal 

communication). The trial thus contains four tranches, somewhat esoterically 

numbered 1, 2, 4, & 5, planted in the early months of 1990, 1991, 1993, and 1995 

respectively. Each contains a unique combination of provenances and is further 

subdivided into several soil zones of approximately equal size, based on the soil 

description and associated plant communities prior to planting (Ducousso et al. 

1996). Within each soil zone, provenances are represented by two or three distinct 

‘parcelles’ of 24 trees each, planted in four rows of six trees, with spacing of 1.75 

meters between trees and three meters between rows. Parcelles of 8 different 

randomly selected provenances were aggregated into blocks, with the position of 

blocks randomised within soil zones, to allow efficient statistical separation of 

parcelled, block, soil-zone, and provenance effects.   
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Figure 1.2. Location of the Petite Charnie provenance trials in Northwest France. 
 

Petite Charnie has a mean elevation of 140m, and its climate is typically Atlantic, 

temperate and wet. The geological substratum is composed principally of red 

sandstone, schist and lens of clay (Bacilieri et al. 1995). The trial is surrounded by 

mature oak forest including both Q. petraea and Q. robur, mixed with beech (Fagus 

sylvatica), ash (Fraxinus excelcior) and hornbeam (Carpinus betulus).  

Although Q. petraea is represented within various provenance trials in the UK, the 

trial at Petite Charnie was considered to have several advantages as a focal site for 

this study. Firstly, its scale is epic, both in terms of the number of trees and the 

variety of provenances, spanning a range of more than 2500 miles from Ireland to 

Georgia. Secondly, a wealth of existing data were made available by INRA, 

including measurements of tree phenotypic traits relating to phenology and growth 

taken at various times since establishment of the trial, and genotypic data (i.e. 

microsatellite markers) for a sample of trees from particular provenances. Thirdly the 

surrounding mature oak forest provides a source for populations of herbivores and 

other organisms, from which they may colonise the trial.  

1.2.3. Oak gall communities 

Oaks are important foundation species, supporting particularly rich phytophagous 

communities (Kennedy and Southwood 1984, Csóka 1998). In the Palaearctic region, 

these communities include approximately 200 species of oak gallwasps 
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(Hymenoptera; Cynipidae; Cynipini), the larvae of which induce complex galls 

within which they feed and pupate. The majority of these species have a complex 

cyclically parthenogenetic lifecycle with an alternating sexual generation that 

develops during spring, and an asexual generation that develops during the autumn of 

each year (Stone et al. 2002, Stone et al. 2008). Galls occur on various plant organs 

including buds, leaves, catkins, stems and roots, and may be single or multi-

chambered (Stone et al. 2002, Csóka et al. 2005). Gall morphology and its location 

on the tree are generally diagnostic of a particular generation of a single species, and 

keys to Western Palaearctic species based on gall morphology are available (Buhr 

1965, Ambrus 1974, Redfern and Shirley 2002). The distinctive morphologies and 

sessile nature of oak galls allow for straightforward identification and measurement 

of densities in the field, making them an attractive guild of herbivores for ecological 

study. They are also usually present in appropriate abundance and diversity for 

comparative study at various spatial scales, i.e. between sites (Schönrogge et al. 

1995, Schönrogge et al. 1998, Schönrogge and Crawley 2000), or between individual 

trees within sites (Egan and Ott 2007, Kaartinen and Roslin 2011). 

In addition to the gall-former, Western Palaearctic oak galls are often colonised by 

inquiline cynipids (Hymenoptera; Cynipidae; Synergini), whose phytophagous larvae 

are able to modify the tissue of existing galls but are unable to induce independently, 

and by hymenopteran parasitoids (of several families in the superfamily 

Chalcidoidea) that may feed on the larvae or pupae of the gall-formers, inquilines, or 

other parasitoids. Oak galls therefore encompass multi-trophic networks, with oak 

trees as primary producers, gallwasps and inquiline herbivores as primary 

consumers, and parasitoids and hyper-parasitoids as secondary and tertiary 

consumers (see Figure 1.3). These communities are relatively closed, in that 

individual species of oak gallwasp are specialised parasites of a limited range of 

oaks, and individual species of inquiline and parasitoid are generally specialised 

inhabitants of a limited range of oak galls (Askew 1961a, Askew 1980, Stone et al. 

2002, Csóka et al. 2005). 

Oak galls are a popular multi-trophic model system, and have recently been the focus 

of  studies of biological invasions (Schonrogge et al. 1995, Schönrogge and Crawley 



25 
 

2000), comparative phylogeography (Hayward and Stone 2006), and habitat 

fragmentation (Kaartinen and Roslin 2011). If collected at an appropriately advanced 

phase of development the galls can be reared to establish associations with inquilines 

and parasitoids, and the closed nature of the communities means that populations can 

be studied by just sampling from oak, without the risk of bias from unsampled host 

plants. In the context of Climate matching, the Q. petraea oak gall community offers 

a means for investigating both how tree provenance may influence a guild of 

specialist herbivores, and also how these effects may cascade through a trophic 

association network. 

 

Figure 1.3. Illustration of a multi-trophic oak gall community, with the plant material (i.e. the gall) 
providing the primary resource, herbivorous gallwasp and inquiline larva feeding within chambers 
inside the gall, and parasitoids potentially targeting the gallwasp larva, the inquiline larva, or one 
another.    
 
  
Western Palaearctic oak gall communities have a long history of detailed study 

(Askew 1961a, Askew 1962, 1980, Askew 1984, Schonrogge et al. 1995, 

Schönrogge and Crawley 2000, Csóka et al. 2005, Bailey et al. 2009), and the 

morphological taxonomy of gall inhabitants is well developed relative to other 

herbivorous insect guilds such as leaf-miners or externaly feeding caterpillars. 

However, integrated taxonomic approaches involving molecular techniques have 

recently revealed that all is not as it seems. While the gallwasp taxonomy has 
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remained relatively unchanged, due to the species specific structure of galls that 

provide reliable taxonomic characters (but see Stone et al. 2008 for the exceptional 

case of Andricus burgundus), assessment of the inquilines and parasitoids has 

revealed a high frequency of morphologically cryptic species (i.e. independently 

evolving lineages that are morphologically indistinguishable, Ács et al. 2007, 

Kaartinen et al. 2010, Nicholls et al. 2010). As species level taxa are a fundamental 

unit of ecological study, this potential taxonomic inaccuracy poses problems for 

studying the effect of host tree provenance on the multi-trophic oak gall community. 

Therefore, as an important prerequisite for further study, the later chapters of this 

thesis focus on using molecular techniques (particularly DNA barcoding - described 

in Box 1) to establish an accurate taxonomic framework for oak gall inquilines and 

parasitoids.  
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Box 1. DNA Barcoding as a tool for taxonomic assessment 

The vast majority of known species level taxa have been described on the basis 

of differences in morphological characters, but there is a growing appreciation 

that such taxa may be discordant with modern species concepts that view 

‘existence as a separately evolving meta-population lineage’ as the principal 

property of species (De Queiroz 2005, 2007). DNA barcodes - short sequences 

from a standardised region of DNA - can offer a means for assessing the 

accuracy of established morpho-species boundaries, based on the assumption that 

variation within species is less than and discrete from variation between species 

(Hebert et al. 2003). If a sample of barcode sequences from multiple species are 

grouped into molecular operational taxonomic units (MOTUs) based on their 

degree of sequence similarity (Blaxter et al. 2005), then the assumption that 

variation within species is less than variation between species will be 

characterised by a barcoding gap (Meyer and Paulay 2005, Ács et al. 2010). 

Where such a gap is apparent, MOTUs defined at thresholds within it are likely 

to represent meaningful independent lineages, and these MOTUs can be 

compared with morpho-species classifications to identify potential taxonomic 

error. MOTUs that contain all sequences from two or more distinct morpho-

species are indicative of taxonomic over-splitting, whereas the presence of a 

single morpho-species in multiple MOTUs can be indicative of under-splitting 

(Ács et al. 2010). 

 

An idealised illustration of the barcoding gap - reproduced with permission from Ács et al. 
(2010). (a) A barcode gene-tree where each of four species is monophyletic and the variation 
between species exceeds variation within species. (b) The relationship between the number of 
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1.3. Thesis outline  

This thesis focuses primarily on the forest management strategy of Climate 

Matching, and on two questions that I consider to be important in guiding where and 

how it may be successfully implemented: (i) are provenances of focal tree species 

locally adapted to their climatic environment? And (ii) how might introduced tree 

provenances influence associated organisms? These questions are investigated 

empirically using a model system of oak trees (Quercus petraea) and gall-forming 

herbivores, with data collected from an established provenance at the forest of Petite 

Charnie. Ultimately I aim to extend analysis to include associated communities of 

gall inquilines and parasitoids, but this is currently impeded by taxonomic 

uncertainty. A secondary theme of this thesis is therefore to use molecular taxonomic 

methods to establish an accurate taxonomic framework for oak gall communities. 

The effectiveness of Climate Matching in promoting the adaptation of forests in the 

face of climate change hinges on the assumption that provenances of focal tree 

species are locally adapted to particular aspects of their climatic environment. If this 

assumption is not valid, then Climate Matching is unlikely to be successful and could 

have negative consequences for the fitness of local tree populations. In Chapter 2, 

this assumption is investigated for Q. petraea by assessing whether a sample of 17 

widely geographically separated provenances show evidence of local adaptation to 

the climatic environments of their source sites. Differentiation in various quantified 

phenological and growth traits is measured by a minimum estimate of the statistic Qst 

(Spitze 1993), and is compared with differentiation in neutral genetic markers 

measured by the statistic Rst (Slatkin 1995), to look for evidence of spatially 

divergent selection (as would be suggested where Qst > Rst). For traits showing such 

a pattern, mixed-effect models are used to model trait variation in relation to climatic 

and geographic predictor variables taken from the provenance source sites, including 

the measures of temperature and precipitation that feature in Climate Matching. 

Strong clines along gradients in temperature and precipitation are considered to 

indicate that local adaptation has occurred in response to these influences.  

The enhancement of forest biodiversity is an important aspect of sustainable forest 

management, and strategies such as Climate Matching must be evaluated not only by 
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their effectiveness in promoting forest adaptation and resilience, but also by any 

impacts they may have on associated biodiversity. Chapter 3 focuses on this issue by 

investigating how host-tree provenance and phenotype within the Petite Charnie 

provenance trial influences the abundance, richness, and structure of the associated 

community of herbivorous gallwasps. Generalised linear mixed models are used to 

model field survey data collected over two years of study in relation to host tree 

provenance and various tree phenotypic traits. Particular consideration is given to the 

roles of host-tree vigour, host-tree stress, and phenological synchronisation in 

structuring the herbivore community. Patterns of variation in the herbivore 

community are used to evaluate the expected impacts of Climate Matching.  

Accurate species level identifications are essential for the appropriate interpretation 

of ecological data and analyses of the effects of host-tree provenance on gall 

associated inquilines and parasitoids are currently impeded by taxonomic uncertainty 

in these groups. Chapter 4 focuses on this issue by generating DNA barcodes for all 

gall inquilines and parasitoids reared from one year of study at the Petite Charnie 

provenance trials. The presence of a barcoding gap is investigated, and taxa based on 

barcodes are compared with morphological taxa to identify points of discordance. 

Various properties of ecological networks based on morphological and barcode 

identifications are compared to assess bias if reliant solely on morphological 

identifications.    

While DNA barcodes can be useful for highlighting potential taxonomic error and 

developing taxonomic hypotheses, monophyly at the barcode locus alone is generally 

not considered as sufficient evidence for making taxonomic inferences. However, 

concordant patterns of monophyly at additional molecular markers can provide 

further support for taxonomic distinctiveness (Rosenberg 2007). In Chapter 5, a 

DNA barcoding approach is extended for gall parasitoids from the genus 

Cecidostiba, by incorporating data from 10 nuclear loci. Patterns of monophyly 

across loci are analysed to provide statistical support for taxonomic hypotheses 

drawn from barcode data.   
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In Chapter 6, I conclude by discussing how my empirical results might influence 

future decisions about Climate Matching. Finally, I suggest what I consider to be 

valuable avenues for future research.   
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Chapter 2 - Are provenances of Quercus 

petraea locally adapted to climate? 

2.1. Introduction 

The global climate is warming at a rate that is likely to exceed the natural resilience 

of many ecosystems (IPCC 2007). Forests are expected to be particularly sensitive to 

such climate change as the long life span of trees limits the potential for rapid 

adaptation (Lindner et al. 2010). There has consequently been much interest in 

adaptive management strategies that can preserve the productivity and ecosystem 

services of forests in the face of rapid climate change (Spittlehouse and Stewart 

2003, Broadmeadow et al. 2005, Millar et al. 2007, Aitken et al. 2008, Bower and 

Aitken 2008, Bolte et al. 2009).  

Following the increased availability of sophisticated regional climate models (Hulme 

2002, Jenkins et al. 2009), Climate Matching has emerged as a potential strategy for 

promoting the adaptation of forests to the expected changes in climate. Developed by 

Broadmeadow et al (2005), Climate Matching involves the use of climate models to 

predict the future conditions of a planting site under various climate change 

scenarios, and to identify sites that have recently experienced similar conditions 

(Broadmeadow et al. 2005, Bolte et al. 2009). Based upon the assumption that tree 

populations are locally adapted to their climatic environments, climate matching 

offers a means for guiding the selection of seed that will perform well under future 

climates.  

2.1.1. Local adaptation 

Through the process of natural selection, genotypes that are associated with 

relatively high fitness under particular environmental conditions are expected to 

increase in frequency when and where those conditions arise. In the absence of 

constraints and opposing forces, variation in environmental conditions across the 

range of a species can lead to differentiation of sub-populations, as different 

genotypes are selected under different conditions. This process is known as local 



32 
 

adaptation and is of demonstrated importance for many plant species, occurring in 

response to various abiotic and biotic influences including climate, soil conditions, 

and parasites (Sork et al. 1993, Linhart and Grant 1996, Aitken 2004, Kawecki and 

Ebert 2004, Macel et al. 2007). 

The potential significance of local adaptation for silviculture has long been 

recognised, and is widely studied through the establishment of provenance trials. In 

such trials, trees of various provenances - geographic locations from which tree seed 

or cuttings are collected - are planted together at one or more trial sites, and 

quantifiable traits relating to tree health and productivity are monitored (Aitken 

2004). The intention of these trials has often been to identify provenances that would 

perform well for commercial purposes, but they have also come to be recognised as a 

valuable resource for studying forest genetics and adaptation (Ducousso et al. 1996, 

Konig 2005, Savolainen et al. 2007). Whilst local adaptation has been shown to be a 

widespread and important process for many forest tree species, it is not universal and 

its patterns can be complex. It is constrained by available genetic variation, and is 

opposed by various ecological factors including high levels of gene flow, temporal 

fluctuations in selective forces, differences in size and quality of habitats, and 

adaptive phenotypic plasticity (Kawecki and Ebert 2004). Even where a species 

exhibits strong patterns of local adaptation throughout a part of its range, these 

patterns may break down in particular regions, such as range margins, due to strong 

directional gene flow (Savolainen et al. 2007). Such variation in patterns of local 

adaptation limits the potential for extrapolating the results of provenance trials 

between species (Aitken 2004), or beyond the provenances represented in trials.    

A common approach to investigating local adaptation from provenance trial data has 

been to compare the extent of differentiation between provenances for particular 

quantifiable traits, with the variation in allele frequencies between provenances for 

neutral genetic markers (Whitlock 2008). These can be described respectively by the 

statistics Qst (Spitze 1993) and Wrights inbreeding coefficient Fst (Wright 1951, Weir 

and Cockerham 1984), and such comparisons are known as Qst-Fst tests although they 

may in practice involve various statistical relatives of Qst and Fst  (Saether et al. 

2007). Variation in allele frequencies between provenances for neutral markers arises 
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through genetic drift, but if estimates of Qst differ substantially from Fst then drift 

alone is not sufficient to explain the differentiation for the quantitative trait. 

Significantly higher values of Qst suggest that the trait is experiencing spatially 

divergent selection and has become locally adapted, while significantly lower values 

of Qst suggest spatially stabilizing selection (Whitlock 2008).  

While Qst–Fst tests offer a useful means for exploring patterns of trait variation, the 

accurate estimation of both statistics is subject to various sources of bias that may be 

difficult to account for (Whitlock 2008), limiting the confidence in resulting 

inferences. A further potentially complementary approach to investigating spatially 

divergent selection is to relate the variation in particular traits observed within a 

provenance trial to gradients in environmental conditions between the sites of origin 

of the provenances. The detection of strong relationships, known as clines, can 

identify the environmental factors responsible for driving local adaptation. Where 

details of environmental conditions at provenance sites are lacking, geographical 

variables (i.e. latitude, longitude, and altitude), which are expected to correlate 

broadly with many environmental gradients, can be used as surrogates (Aitken 2004).  

2.1.2. Climate Matching in the UK 

In the UK, there has been an increase of 1°C in the Central England Temperature 

(CET) since the 1970’s, with most regions experiencing an increase in winter rainfall 

and a decrease in summer rainfall (Jenkins et al. 2008). The recently released 

UKCP09 projections, which consider various atmospheric response variables under 

three scenarios of carbon emission by the 2050’s and 2080’s, indicate that further 

temperature increases are expected with hotter, drier summers and milder, wetter 

winters. The magnitude of these predicted changes is greatest in the south of England 

where, by the 2080’s, under a medium carbon emissions scenario, 50% probability 

estimates indicate an increase of 4-6 °C in summer mean daily temperature, an 

increase of 2-4 °C in winter mean daily temperature, a decrease of 20-40% in 

summer rainfall, an increase of 10-30% in winter rainfall, and a decrease by as much 

as 18% in summer cloud cover (Jenkins et al. 2009).   
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In the principal study of Climate Matching by Broadmeadow et al. (2005), analyses 

were performed for four UK sites based on the UKCIP02 climate change scenarios 

(Hulme 2002) and interpolated global surface climate data (New et al. 2002). 

Predicted changes in winter (November-April) and summer conditions, under both 

low and high carbon emission scenarios by the 2050’s and 2080’s, were applied to 

current conditions at the sites to obtain predicted monthly values for mean 

temperature, precipitation and diurnal temperature range. A climatic difference index 

that matched the predicted climate of planting sites with 50 kilometer grid squares 

across Europe by minimising the sum of squared differences in climate variables was 

used to identify the best matched grid squares for the four prospective planting sites. 

There was a clear tendency for matching with sites from lower latitudes, but matched 

locations varied considerably between planting sites and between projection times. 

For example, Kelty in eastern Scotland was matched with areas of Ireland and 

western Britain by the 2050’s, and with southern Brittany by 2080’s, while Alice 

Holt in the south of England was matched with Brittany by the 2050’s, and areas of 

Italy, Sardinia, and Greece by the 2080’s.  

Climate Matching is an intuitive concept, and the planting of mixtures of native and 

matched provenances has been suggested as a ‘no-regret’ option for forest 

management (Broadmeadow and Ray 2005). However, by matching sites based on 

particular climate variables - such as temperature, precipitation, and diurnal 

temperature range - the effectiveness of Climate Matching hinges on the assumption 

that provenances of focal tree species are locally adapted to these aspects of their 

climatic environment. If this assumption is not met, either because local adaptation 

has not occurred or because it has occurred primarily in response to alternative 

influences, then Climate Matching is not likely to be successful in its objective of 

improving the adaptation of forests to future climates. Furthermore, if matched 

provenances are actually maladapted to their planting sites (e.g. through being less 

resistant to local pathogens), then there is a risk of out-breeding depression where 

gene-flow from maladapted individuals decreases the overall fitness of the local 

gene-pool (McKay et al. 2005).  
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The question of whether provenances of focal tree species are locally adapted to their 

climatic environments is therefore central to Climate Matching, and it is important to 

establish the answer a priori, to avoid potentially negative consequences. Existing 

studies can provide some indication of patterns of local adaptation for various traits, 

but empirical data on the role of geographical gradients in temperature and 

precipitation are currently lacking for most European tree species. In this study, I 

make use of an established provenance trial to investigate this issue for Quercus 

petraea – a widespread and commercially important European tree species.   

2.1.3. Quercus petraea 

Sessile oak (Quercus petraea) is a deciduous broadleaved tree with a current natural 

distribution from Spain to Russia and from Scotland to Turkey, between sea level 

and 1600m elevation (Kleinschmit 1993). It is an economically important species 

and together with the closely related Pedunculate oak (Q. robur), it represents almost 

25% of broadleaved high forest in Great Britain (Forestry Commission, 2003). Under 

recent climate change scenarios it was predicted that oak productivity will increase in 

the north and west of the UK and decrease in the south and east, with increased risk 

of drought mortality (Broadmeadow et al. 2005). Given these predictions, and its 

economic significance, Q. petraea should be considered as a candidate species for 

climate matching, particularly in the south of the UK.   

Following the last glacial period in the late Pleistocene era (aproximately 10,000 

years ago), Q. petraea is thought to have spread north from refugia in the Iberian 

peninsula, the Italian peninsula, and the Balkans, reaching its current distribution 

approximately 6000 years ago (Brewer et al. 2002, Petit et al. 2002). The genetic 

signiture of refugial differentiation is observed in chloroplast genes (Le Corre et al. 

1997, Kremer et al. 2002), but current patterns of nuclear genetic diversity are 

considered to also reflect a combination of the selection pressures acting on 

established populations, and wind mediated pollen flow between refugial lineages 

where they have met in central Europe (Kremer et al. 2002).  

Quercus petraea is well represented in provenance trials, and the results of these 

indicate considerable variation in phenotypic traits between provenances 
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(Kleinschmit 1993). The phenological traits of spring growth initiation and autumn 

growth cessation have received particular interest due to their implications for frost 

resistance and the length of growing season. There is evidence of local adaptation in 

these traits from comparisons of Fst and Qst (Kremer et al. 1997, Jensen and Hansen 

2008), and from the identification of clines along gradients in latitude and altitude 

(Deans and Harvey 1995, Ducousso et al. 1996, Broadmeadow and Ray 2005, 

Alberto et al. 2011). Considerable phenotypic plasticity in the effect of temperature 

on budburst and growth cessation has also been identified, with warmer temperatures 

resulting in earlier phenology for both traits (Vitasse et al. 2009, Vitasse et al. 2010). 

Variation in growth and architectural traits between provenances has also been 

demonstrated (Jensen 2000, Hubert 2005), again with evidence of local adaptation 

from comparisons of Fst and Qst (Kremer et al. 1997, Jensen and Hansen 2008). 

However, in the context of Climate Matching it is the patterns of local adaptation of 

these traits along geographical gradients in temperature and precipitation that are 

particularly relevant, and these have yet to be specifically considered. 

2.1.4. Objectives 

Where Climate Matching is based on predicted changes in temperature and 

precipitation, its potential for promoting adaptation of forests to future climates 

hinges on the assumption that tree provenances are locally adapted to the temperature 

and precipitation regimes of their provenance sites. The purpose of this study is to 

explore this issue by assessing patterns of local adaptation in Q. petraea. Specifically 

I investigate: (i) whether various quantifiable phenotypic traits relating to tree 

phenology and growth show evidence of local adaptation; (ii) whether locally 

adapted phenotypic traits show clines across gradients in temperature and 

precipitation; (iii) how such clines compare to other more general environmental 

gradients (i.e. latitude and longitude)? Based on the answers to these questions, the 

practicality of Climate Matching for Q. petraea is discussed.  
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2.2. Materials and methods  

2.2.1. Petite Charnie provenance trial 

The oak provenance trial in the forest of La Petite Charnie in Sarthe, Northwest France, 

was established in the early 1990s by the French National Institute for Agricultural 

Research (INRA) to aid genetic conservation and management of European white oaks 

(Ducousso et al. 1996). The trial contains 103 provenances of Sessile Oak (Q. petraea) 

and 9 provenances of pedunculate oak (Q. robur), planted in four age cohorts (further 

details of the trial design and establishment are provided in Chapter 1). To avoid the 

complication of comparing trees of different ages, a single age cohort (Tranch 4) was 

selected for further study. Tranche 4 is the largest at Petite Charnie, containing 680 

parcelles that represent 57 different provenances (Figure 2.1). A set of 17 

provenances of Q. petraea, for which genotypic data was also available, was selected 

from Tranche 4 to encompass the largest possible range of geographic distances from 

the trial site (Figure 2.2).  
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Figure 2.1. The layout of Tranche 4 at the Petite Charnie provenance trials. Each of the 680 squares represents a parcelle of 24 trees, identified by a soil zone number 
(1-5), a 3 digit provenance code, and a block number (1-85). Provenance codes follow Table 2.1. Parcelles of the studied provenances are shaded grey. The box in top 
left shows the arrangement of individual trees within a parcelle. 
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Figure 2.2. Location of the Petite Charnie provenance trial and the 17 study provenance sites. 
Provenance codes follow Table 2.1    

2.2.2. Provenance source site climate data 

For the selected provenances, data on precipitation and temperature were obtained 

from the WorldClim database (Hijmans et al. 2005), which interpolates to 1-km 

resolution based on weather station records from 1950-2000. Data were available for 

each month of the year based on averages across all available years. In the climate 

matching study of Broadmeadow et al (2005), sites were matched in terms of 

monthly precipitation, mean temperature, and diurnal temperature range, with the 

recent data for planting sites adjusted to incorporate predicted changes in summer 

(May-October) and winter (November-April) climate. In order to reflect the methods 

of Broadmeadow et al. (2005) while at the same time limiting the number of 

variables to be considered (thus avoiding over-parameterisation of models), monthly 

climate data for the study provenances were either summed (for precipitation) or 

averaged (for temperatures) to give the following summary variables: 

• SummerPrec – The total precipitation (in mm) falling between May and October. 
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• WinterPrec – The total precipitation (in mm) falling between November and 

April.  

• SummerTemp – Mean temperature (in C °) between May and October 

• WinterTemp – Mean temperature (in C °) between November and April     

Values of these environmental variables for each provenance are shown in Table 2.1. 

Diurnal temperature range could not be appropriately summarised in this way, and 

was therefore not considered in the analysis.  

2.2.3. Tree phenotypic data 

Measurements of the following phenotypic traits were provided by INRA for all trees 

of the study provenances in Tranche 4:  

• Budburst – a measure of the timing of spring bud-burst, assessed in spring 1995 

following a 6 stage scoring system (see Appendix 2.1.1). A high score represents 

early bud-burst. 

• Retention – a measure of the timing of autumn leaf-fall, assessed autumn 2001 

following 6 stage scoring system (see Appendix 2.1.2). A high score represents 

late leaf-fall.   

• Ht96 – top height in centimetres measured during winter 1996-97 

• Ht2001 – top height in centimetres measured during winter 2001-02 

• DBH – the stem diameter in centimetres at a height of 1.3 m from the ground, 

measured during winter 2001-02. 

• Form – a measure of overall tree shape, assessed during winter 2001-02 

following a 10 stage scoring system (see Appendix 2.1.3). A high score indicates 

a well-formed tree.  

• NoBranches – the number of branches, assessed during winter 2001-02 (see 

Appendix 2.1.4) 

• NoForks – the number of forks in the stem, assessed during winter 2001-02 (see 

Appendix 2.1.5) 

These phenotypic traits relate to various aspects of tree growth and health, and are 

widely used in the silvicultural industry. The phenological traits of Budburst and 
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Retention are considered to be particularly important for temperate and boreal trees, 

as they determine the length of growing season and influence the risk of cold injury, 

often showing strong patterns of local adaptation (Aitken et al. 2008). The traits 

relating to tree size (DBH, Ht96, and Ht2001) and architecture (Form, NoBranches, 

and NoForks) directly influence the value of timber and so are of particular interest 

for commercial forestry. Mean values of these traits for each study provenance are 

shown in Table 2.1.  
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Table 2.1. Summary of provenance source site and trial phenotypic data, showing: (a) the locality, geographic co-ordinates, and climate data for the 17 study 
provenances and the trial site, and (b) mean phenotypic trait values for all trees of each of the study provenances in Tranch 4 of the provenance trials.   
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179 Sycow Poland  17.93 51.18 372 202 14.5 1.87  1.39 2.48 119 315 105 4.76 13.9 0.67 
181 Horbylunde Denmark  9.41 56.13 419 355 12.6 1.81  0.88 3.16 113 280 93.7 4.15 14.5 0.94 
194 Soudrain France  2.38 46.95 377 348 16.2 6.08  1.18 2.69 120 319 111 4.25 13.2 0.99 
201 La Haie Renaut France  4.95 48.67 369 310 15.2 4.79  1.64 1.80 123 325 108 4.18 16.0 0.77 
210 Saint Germain France  2.08 48.90 335 315 15.3 5.57  1.53 2.75 127 322 105 4.02 15.1 0.78 
211 Prémery France  3.60 47.20 402 350 15.7 5.51  1.47 2.58 120 319 102 4.31 14.5 0.82 
217 Bercé France  0.39 47.81 331 378 15.5 5.89  1.70 2.44 115 299 97.9 4.28 13.9 0.74 
225 Still France  7.25 48.58 460 386 13.8 2.72  1.42 2.03 116 294 98.8 4.54 14.5 0.69 
233 Vachères France  5.63 43.98 377 402 16.1 5.46  3.73 1.33 114 310 94.2 4.00 12.1 1.08 
237 Réno Valdieu France  0.67 48.50 332 354 14.9 5.51  1.49 2.75 124 329 114 4.19 14.1 0.82 
245 Etangs France  4.96 46.93 415 353 16.6 5.48  2.33 2.28 124 325 114 4.11 15.8 0.87 
248 Klostermarienberg 

 

Austria  16.57 47.41 424 219 15.7 2.85  3.16 1.65 113 317 106 3.88 13.2 0.94 
249 Bolu Turkey  31.67 40.92 281 470 13.8 2.13  1.63 0.45 104 288 89.6 4.30 13.4 0.82 
250 Cochem Germany  7.05 50.08 373 322 14.2 3.58  1.77 2.35 129 328 114 4.36 14.7 0.89 
252 Johanneskreuz Germany  7.83 49.40 414 363 13.5 2.5  1.06 2.34 127 322 114 4.44 14.5 0.99 

255 Spakensehl Germany  10.6 52.80 367 290 14.0 2.78  0.57 2.68 114 305 101 4.62 15.1 0.72 
257 Wolfgang Germany  9.05 50.15 360 281 15.6 4.17  1.54 2.38 122 301 97.5 3.92 12.4 0.91 

 
                  

 Petite Charnie France  0.17 48.09 329 381 15.5 6.07          
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2.2.4. Tree genotypic data and analysis 

Nuclear genetic data for a sample of trees from 17 provenances were provided by 

INRA. Samples ranged in size from 21 to 29 trees. Data were in the form of 

genotypes for individual trees across 10 co-dominant diploid microsatellite loci, with 

alleles defined by their fragment lengths. These were determined by multiplex PCR 

reactions, conducted by an INRA researcher at the University of Bonn. The 

genotyped trees were selected from the provenance trial at Sillegny in Northeast 

France that was established concurrently with the trial at Petite Charnie. As the trees 

at these two trials (and at a further two trials) were selected randomly from a single 

pooled seed collection from each provenance, the genotyped trees are considered to 

be a representative sample of each provenance.  

Tests for deviations from Hardy-Weinberg equilibrium were conducted for each 

locus in each population, and for all loci combined in each population, using the 

program FSTAT version 2.8.3.2 (Goudet 1995). Tests for linkage disequilibrium for 

each pair of loci in each population were also conducted in the same program. All 

loci have been tested for null alleles through progeny testing by researchers from 

INRA, and their effect in this dataset is considered to be negligible.   

The genetic structure of the provenances was examined by calculating the following 

summary statistics: 

• No. of alleles & mean allelic richness – The total number of alleles present at 

each locus across all populations, and the mean number of alleles per population, 

calculated using FSTAT version 2.9.3.2.  

• Ho & He – The observed and expected levels of heterozygosity respectively, 

averaged across populations, calculated using the program using GenAlEx 

version 6.3 (Peakall and Smouse 2006).   

• Fit , Fst, & Fis - Wrights F-statistics (Wright 1951) estimated for each loci and 

summarised across loci following Weir and Cockerham (1984) using FSTAT 

version 2.9.3.2. Confidence intervals for global estimates were based on 1000 

bootstrap replicates with re-sampling of loci.   
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• Rst – Measure of population subdivision based on microsatellite allele frequencies 

with a stepwise mutation model (Slatkin 1995), estimated for each locus and 

summarised across loci using FSTAT version 2.9.3.2. 

• Dest – Jost’s measure of genetic differentiation between populations (Jost 2008), 

estimated for each locus and summarised as the approximated harmonic mean 

across loci using the program SMOGD version 1.2.5 (Crawford 2010). 

Confidence intervals for each locus were based on 1000 bootstrap replicates, with 

re-sampling of individuals.  

To summarise the relationship between provenances, a matrix of pair-wise Dest for all 

17 provenances was generated using SMOGD version 1.2.5. Principal coordinate 

analysis (PCoA) was performed on this Dest matrix to identify the major axes of 

variation using  GenAlEx version 6.3.  

2.2.5. Phenotypic differentiation between provenances 

The statistic Qst offers a measure of the differentiation between populations for a 

quantitative trait, as described by the equation: 

ܳ௦௧ ൌ  ௣ܸ

௣ܸ ൅  2 ௔ܸ
 2.1 ݊݋݅ݐܽݑݍܧ                                                                      

Where Vp is the population variance for the trait, and Va is the additive genetic 

variance (Spitze 1993, O'Hara and Merila 2005). Qst is most appropriately 

determined from controlled breeding experiments in a common garden or reciprocal 

transplant setting where Vp can be estimated as the variance component of the 

population effect, and Va can be estimated as four times the variance component of 

the half-sibling family effect (O'Hara and Merila 2005, Jensen and Hansen 2008). 

Alternatively Va can be estimated as the narrow sense heritability of the trait (h2), 

multiplied by the within population variance (Vwp, Kremer et al. 1997). As such, Qst 

can only be estimated directly when the design of an experiment involves pedigree 

information, or where the h2 of a particular trait is known for the populations under 

consideration. However, in the absence of such data, an estimate of pseudo-Qst (Pst) 

can be obtained by making certain assumptions (Saether et al. 2007).  If h2 is set to 1, 
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and environmental influences can be accounted for, such as in a common-garden or 

provenance trial setting with adequate blocking, Pst can be described by the equation: 

௦ܲ௧ ൌ  ௣ܸ

௣ܸ ൅  2 ௪ܸ௣
 2.2 ݊݋݅ݐܽݑݍܧ                                                                          

As true values of h2 will in practice always be less than 1, this Pst represents a 

minimum estimate of true Qst. Hence, when compared to a measure of variation in 

allele frequencies it can provide evidence for spatially divergent selection because if 

Pst is greater than Fst, Qst must also be greater than Fst. However, as the extent to 

which Qst is greater than Pst cannot be established, instances where Pst is not 

significantly greater than Fst cannot be considered as evidence for stabilising 

selection (Qst < Fst), or for drift (Qst ≈ Fst). It is also not advisable to compare values 

of Pst between traits, as would be possible for Qst, because the difference between Pst 

and Qst will vary between traits, relative to their values of h2.  

Given the design of the provenance trials, phenotypic measurements from individual 

trees were considered to be subject to the random effects of soil zone, parcelle nested 

within soil zone, and the crossed random effect of provenance. To incorporate this 

random effects structure, modelling was conducted using the program R version 

2.11.1 (R Development Core Team 2011), with the lmer function from the lme4 

package (Bates et al. 2011). As traits were either continuous or ordinal with a 

moderate number of levels, a Gaussian error family was applied. Phenotypic 

measurements from individual trees were modelled separately for each trait using 

restricted maximum likelihood estimation, and values of Vp and Vwp were obtained 

for each trait as the variance component of the random effect of provenance, and the 

variance component of the random effect of parcelle nested within soil zone 

respectively. These were used to obtain estimates of Qst following equation 2.2. 

Models were assessed for heteroscedasticity and normality of errors by plotting 

standardised residuals against fitted values, and ordered residuals against the 

quantiles of the normal distribution (Crawley 2007). Trees that had died by the time a 

trait was measured were excluded from the analysis of that trait.  

The neutral genetic markers available in this study are from microsatellite loci, which 

are expected to follow a stepwise mutation model and to have a higher mutation rate 



46 
 

than other markers such as allozyme loci (Slatkin 1995). Rst was therefore used in 

preference to Fst as the appropriate measure of differentiation of allele frequencies. A 

method for comparing Pst with Rst was adapted from Whitlock & Guillaume (2009), 

requiring the simulation of a distribution for each of Rst, Vp, and Vwp for each trait, 

under the neutral hypothesis that Pst is equal to Rst.  

The mean value of Rst across the 10 neutral microsatellite loci was estimated from 

variance components using the multi-locus method of Weir and Cockerham (1984) 

following the equation: 

ܴ௦௧ ൌ  
∑ ܽ_݃݅ݏ

∑ሺ݃݅ݏ_ܽ ൅ ൅ ܾ_݃݅ݏ ሻܿ_݃݅ݏ  2.3 ݊݋݅ݐܽݑݍܧ                                         

where for each locus, sig_a is the component of variance for Rst among populations, 

sig_b is the component among individuals within populations, and sig_w is the 

component within individuals. The variance components were calculated using 

FSTAT version 2.9.3.2. To simulate random sampling of Rst, equation 2.3 was 

repeated for sets where the marker loci were randomly sampled with replacement 

until the number of loci in the simulated set equalled the number of loci in the real 

data set (i.e. n=10).  Hereafter, the observed value of Rst calculated from the 10 loci 

is referred to as Rst(obs), while simulated values are referred to as R’st. 

The neutral hypothesis assumes that Pst is equal to Rst, and so equation 2.2 can be 

rearranged to give a value of Vp under neutrality as: 

௣ܸሺ௡௘௨௧௥௔௟ሻ ൌ  
2 ܴ௦௧ ௪ܸ௣

ሺ1 െ  ܴ௦௧ሻ  2.4 ݊݋݅ݐܽݑݍܧ                                                   

Estimates of Vp(neutral) were obtained for each trait from the observed values of Rst and 

Vwp following equation 2.4. Vp(neutral) is expected to vary due to stochastic 

heterogeneity of evolutionary history between populations, which can be 

approximated by the Lewontin-Krakauer distribution (Lewontin and Krakauer 1973, 

Whitlock 2008).  Simulations of Vp(neutral) (referred to as V’p(neutral)) were therefore 

calculated by dividing the observed value of Vp(neutral) by the degrees of freedom for 

provenance (the number of provenances minus 1), and multiplying by a number 

drawn at random from a chi-squared distribution with degrees of freedom equal to 
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the degrees of freedom for provenance (Whitlock and Guillaume 2009).  Similarly, 

simulations of Vwp (referred to as V’wp) were calculated by dividing the observed 

values of Vwp by the degrees of freedom for parcelle nested within soil zone (equal to 

the number of provenances), and multiplying by a number drawn at random from a 

chi-squared distribution with degrees of freedom equal to the degrees of freedom for 

parcelle nested within soil zone. Simulated values for neutral Pst (referred to as P’st) 

were then generated as: 

ܲԢ௦௧ ൌ  
ܸԢ௣ሺ௡௘௨௧௥௔௟ሻ

ܸԢ௣ሺ௡௘௨௧௥௔௟ሻ ൅  2 ܸԢ௪௣
 2.5 ݊݋݅ݐܽݑݍܧ                                                          

A distribution of the test statistic of Pst – Rst assuming neutrality was generated by 

calculating 1000 repeats of P’st - R’st. The position of observed Pst minus Rst(obs) 

within this distribution was assessed for each trait, to test for departure from 

neutrality. 

2.2.6. Multi-model inference 

In ecological studies, it is often of interest to examine the relationships between a 

response variable and several potential covariates to determine which, if any, are 

important predictors of variation in the response. Approaches to such questions have 

traditionally involved stepwise comparison of nested models to identify a single 

model that contains only predictor variables deemed to explain a significant amount 

of deviance in the response, as determined by null hypothesis testing (Crawley 

2007). However, such approaches have been criticised on several grounds, including 

the dependency of the identified model on the employed selection algorithm 

(Calcagno and de Mazancourt 2010) and issues of multiple hypothesis testing 

(Whittingham et al. 2006). An alternative that is increasing in popularity is to use 

information criteria (IC) such as the Akaike information criteria (AIC, Akaike 1974) 

to compare the performance of multiple competing models. 

The AIC and related ICs use deviance as a measure of the fit of a particular model to 

a given dataset, with a penalty applied for the number of estimated parameters. The 

AIC is generally used in its corrected form (AICc), to account for potentially small 
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samples. When multiple predictor variables are being considered, models containing 

all possible combinations can be ranked in order of performance by their IC score to 

identify the best approximating model. Various statistical software packages are 

available for automating the calculation of IC scores for potentially large model sets 

(e.g. Calcagno and de Mazancourt 2010, Barton 2011). Additional derived statistics 

such as model weights (the probability that a particular model is the best 

approximating model within a set) and evidence ratios (a measure of how much more 

likely one model is compared to another) can be used to assess model uncertainty 

(full details on the calculation of AIC and related statistics are provided by Symonds 

and Moussalli 2011). In situations where no single model is clearly superior to all 

others (i.e. the model weight of the best approximating model does not approach 1), 

model averaging can be employed to account for model uncertainty and obtain robust 

parameter and error estimates across multiple models, where the contribution of each 

model is weighted by its relative performance (Grueber et al. 2011, Symonds and 

Moussalli 2011). The model averaged parameter estimate for a particular predictor 

can either be based on all models, where it receives a value of zero for models that 

do not contain the predictor (termed ‘full-model averaging’), or can be based only on 

those models that do feature the predictor (termed ‘natural-averaging’, Symonds and 

Moussalli 2011). 

In this study, the relationships between various tree phenotypic traits (response 

variables) and tree provenance, or climatic conditions at provenance source sites 

(predictor variables) were investigated through an IC based approach. Differences in 

AICc scores and evidence ratios were used to compare the performance of models 

and make inferences about the importance of particular predictor variables. Where 

assessing the influence of multiple predictors, these were centred and standardized to 

allow for the interpretation of parameter estimates in models containing interaction 

terms (Gelman 2008, Schielzeth 2010). The effect size and the significance of 

individual predictors were assessed from estimates of their slope parameters and 

confidence intervals, obtained through model averaging. As there was potential for 

co-linearity of predictors, natural averaging rather than full-model averaging was 

applied, to avoid shrinkage towards zero. 
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The use of AICc and related ICs is subject to issues of boundary effects and 

uncertainty in the estimation of degrees of freedom in models that contain random 

effects (Bolker et al. 2009). Such estimation of degrees of freedom for random 

effects is not straightforward, and although there is no clear consensus approach, the 

default method adopted in the packages used here (i.e. using the minimum of 1 d.f 

for each random effect in the model) is potentially dubious (Bolker et al. 2009). 

However, as these issues also apply to alternative methods, such as likelihood ratio 

testing, the AICc approach was still considered to be the most appropriate option for 

the analysis presented here. 

2.2.7. Non-independence of provenances 

A common shortcoming in studies of intraspecies populations is that the populations 

are treated as statistically independent entities. This is unlikely to be true, as 

populations that are genetically similar through gene-flow or phylogeographic 

history, can be expected to co-vary in traits independently of any population-specific 

effects (Stone et al. 2011). Where the effects of non-independence are severe, failure 

to address this statistically will increase error rates in the inference of population-

specific effects.  

Of the various methods that have been developed for addressing this issue (reviewed 

by Stone et al. 2011), a genetic autocorrelation approach was considered to be most 

compatible with the available genotypic data and the multi-model inference methods 

applied in this study. Such approaches attempt to detect and remove those portions of 

trait variation that are explained by genealogical correlation (Edwards and Kot 

1995). To this aim, the primary axis of the principle coordinate analysis of Jost’s Dest 

from analysis of the microsatellite data was adopted as a linear measure of neutral 

genetic distance between provenances. This linear variable – henceforth referred to 

as PCoA – was included as a fixed effect in models of phenotypic trait variation, 

alongside environmental predictor variables whose relationship with the trait was 

being assessed (see section 2.2.8). In this way, the portion of trait variation that 

correlated with PCoA was removed from that which could be attributed to the 

environmental predictors.     
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2.2.8. Environmental clines 

For phenotypic traits that showed evidence of local adaptation, a multi-model 

inference approach was applied to investigate relationships with the environmental 

predictor variables SummerPrec, WinterPrec, SummerTemp, and WinterTemp (see 

section 2.2.2 for details of these variables). Using the lmer function of the lme4 

package in R, a global model was defined for each trait containing fixed effects for 

the four environmental variables, all pair-wise interactions between them, and the 

PCoA variable (see section 2.2.7). The random effects structure again included 

effects for soil zone, parcelle nested within soil zone, and a crossed random effect of 

provenance. As traits were either continuous or ordinal with a moderate number of 

levels, a Gaussian error family was applied. Models were assessed for 

heteroscedasticity and normality of errors by plotting standardised residuals against 

fitted values, and ordered residuals against the quantiles of the normal distribution 

(Crawley 2007). Global models were standardised to allow for model averaging 

using the stdz.model function of the arm R package (Gelman 2008, Gelman et al. 

2011, Grueber et al. 2011). With the constraint that the PCoA variable must be 

included, all possible fixed effect sub-models were tested and ranked by their AICc 

scores using the dredge function of the MuMIn package in R (Barton 2011). Model 

averaged estimates of standardized fixed effect slope parameters with their standard 

errors and confidence intervals were obtained by natural averaging using the 

model.avg function of the MuMIn R package. Predictors were considered to be of 

significance where the 95% confidence intervals of their slope parameter estimate 

did not include zero. Significant relationships were visualised using the 

plotLMER.fnc function of the LanguageR R package (Baayen 2011), as applied to 

un-standardized models containing all significant predictors. 

The identification of significant relationships between phenotypic trait variation and 

the environmental variables would indicate that such environmental factors are 

involved in driving local adaptation. However, there remains the possibility that 

other environmental variables are also involved in this process and to investigate this, 

the analyses were repeated to include the geographical variables Latitude and 

Longitude, which are expected to correlate broadly with many environmental 
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gradients (Aitken 2004). For practicality, two-way interactions were constrained to 

being between the four original variables, and between Latitude and Longitude.  

2.3. Results 

2.3.1. Population genetic structure 

All 17 provenances were polymorphic for all loci, with mean allelic richness ranging 

from 4.29 to 15.31. The number of alleles at the 10 loci ranged from 8 to 28. After 

Bonferroni adjustment for the number of populations and loci, there was no 

significant (P<0.05) evidence of deviations from Hardy-Weinberg equilibrium, or 

linkage disequilibrium. The estimates of divergence (Dest) and differentiation of 

allele frequencies (Fst and Rst) were generally low (<0.2, Table 2.2), although the 

95% confidence intervals for minimum divergence (Dest) were greater than 0 for all 

loci, indicating significant levels of differentiation between provenances within the 

sample.  

In the principal coordinate analysis of Dest, the majority of the variation was 

summarised along a single axes (Figure 2.3, axis1=58.34%, axis2=14.55%, 

axis3=8.93%). While most of provenances were clustered together towards one end 

this axis, provenance 249 (from Bolu, Turkey) appeared relatively distinct. This 

likely reflects its large geographical distance from the other provenances (Figure 

2.2), and the limiting influence that this has had on gene flow.          
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Figure 2.3. The location of provenances along the 1st and 2nd axes of the principal coordinate analysis 
of Dest.
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Table 2.2. Estimates of population genetic parameters for 10 microsatellite loci. All parameters are described in the text (section 2.2.4).   
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2.3. Summary of Pst – Rst comparisons for phenotypic traits, showing the estimates of variance components between provenances (Vp)  and within provenances 

(Vwp), estimates of Pst, the estimate of Rst across loci, and the probability that Pst is equal to Rst. 
 

 Vp Vwp Pst Rst Probability Pst ~ Rst 
Budburst 24.653 18.128 0.405 

0.0138 

0 *** 
Retention 22.587 3.176 0.781 0 *** 
Height 96 1.116 7.851 0.066 0 *** 

Height 2001 0.943 16.172 0.028 0.066 
DBH 1.035 11.946 0.042 0.002 ** 
Form 4.151 3.314 0.385 0 *** 

No. Branches 2.000 10.325 0.088 0 *** 
No. Forks 0.283 9.349 0.015 0.471 

 Confidence level codes: * = 95%, ** = 99%, *** = 99.9% 

Locus No. of 
alleles 

Mean allelic 
richness 

Ho  
  

He 
  

Fit  
 

Fst  
 

Fis  
 

Rst Min Dest 
95% CI  

Dest Max Dest 
95% CI 

C 16 4.93 0.282 0.272 0.031 0.045 -0.014 0.022 0.014 0.018 0.04 
D31 15 8.75 0.766 0.733 -0.009 0.016 -0.025 -0.004 0.069 0.049 0.135 

F 12 8.31 0.818 0.804 0.019 0.015 0.004 0.016 0.11 0.075 0.201 
G 13 6.35 0.712 0.728 0.049 0.014 0.035 0.022 0.06 0.04 0.135 

A15 8 4.29 0.607 0.605 0.045 0.028 0.017 0.018 0.053 0.049 0.109 
A11 11 5.92 0.596 0.577 0.015 0.026 -0.011 0.029 0.042 0.038 0.09 
AB 28 15.31 0.897 0.884 0.023 0.018 0.005 0.009 0.258 0.175 0.358 
S19 23 10.8 0.830 0.805 0.004 0.015 -0.011 0.035 0.119 0.076 0.195 
AK 12 8.09 0.785 0.772 0.027 0.023 0.005 -0.007 0.114 0.088 0.196 
D20 11 6.36 0.667 0.659 0.028 0.026 0.002 0.037 0.062 0.059 0.14 

                        

Across loci - - 0.696 0.684 0.022 0.021 0.002 0.0138 - 0.047 - 
95% CI  - - - - ± 0.010 ± 0.04 ± 0.010 - - - - 
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2.3.2. Phenotypic differentiation between provenances 

Estimates of Pst ranged from 0.015 to 0.781, and were larger than Rst with a very high 

level of confidence for Budburst, Retention, Ht96, Form, NoBranches (p < 0.001), 

and to a lesser extent for DBH (p < 0.01, Table 2.3). Genetic drift is therefore 

insufficient to explain the extent of variation for these traits, with the implication that 

they have experienced spatially divergent selection resulting in local adaptation to 

particular environments. Estimates of Pst were not significantly greater than Rst for 

NoForks or Ht2001 (p > 0.05), and there is therefore no clear evidence of these traits 

having been influenced by local adaptation. However, this should not be considered 

conclusive, as Pst represents a minimum estimate of Qst, and the true value could be 

greater. In the case of Ht2001, the test statistic (P’st minus R’st) was well towards the 

higher end of the neutral distribution, and it is likely that true Qst would be 

significantly greater than Rst. 

2.3.3. Environmental clines 

For the six phenotypic traits where Pst was significantly higher than Rst, modelling 

with combinations of the environmental predictor variables (i.e. SummerPrec, 

WinterPrec, SummerTemp, WinterTemp, and their pair-wise interactions) revealed 

best approximating models that performed better than those without any of the fixed 

effects in all cases except for Ht96 (see Table 2.4). The degree of improvement in 

model performance was very slight for DBH (i.e. the evidence ratio of 1.11 indicated 

that the best approximating model was 1.11 times more likely to be better than the 

model with no environmental predictors), moderate for NoBranches and Budburst 

(i.e. with evidences ratios of 18.3 and 796 respectively), and large for Retention and 

Form (i.e. with evidence ratios of 1.02 x 104 and 8.59 x 104 respectively, Table 2.4).  

Significant relationships between trait variation and the environmental predictors 

were apparent for Budburst, Retention, Form and NoBranches, but not for DBH and 

Ht96, as inferred where the 95% confidence intervals for the slope parameter of a 

predictor did not include zero (Table 2.4). Significant main effects were of most 

interest as these indicated relationships with a substantial and relatively consistent 
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slope. The co-occurrence of a particular variable as a significant main effect and as 

part of an interaction indicated that the slope of the main effect varied depending on 

the level of a second predictor, but that its direction was generally consistent. 

Predictors that featured in significant interactions but not as a significant main effect 

indicated that the slope of its relationship varied substantially depending on the value 

of a second predictor, but that its direction was inconsistent.      

For Budburst, the significant positive main effects of SummerTemp and WinterPrec 

indicated that higher provenance summer temperature and winter precipitation 

corresponded with early bud-burst phenology at the trial site (Figure 2.4 ai and aii). 

The significant negative main effect of WinterTemp indicated that higher provenance 

winter temperature corresponded with later bud-burst phenology (Figure 2.4 aiii). The 

significant interaction between WinterPrec and SummerPrec where only WinterPrec 

also featured as a main effect indicated that the slope of the relationship between 

Budburst and WinterPrec varied in relation to the value of SummerPrec, but was 

generally positive (Figure 2.4 aiv). The significant interaction between SummerTemp 

and WinterTemp where both also featured as main effects indicated that their slopes 

varied in relation to the values of each other, but were consistently positive for 

SummerTemp, and negative for WinterTemp (Figure 2.4 av and avi).      

For Retention the significant negative main effects of SummerTemp and WinterPrec 

indicated that higher provenance summer temperature and winter precipitation 

corresponded with early leaf-fall phenology at the trial site (Figure 2.4 bi and bii). The 

significant positive main effect of WinterTemp indicated that higher provenance 

winter temperature corresponded with later leaf-fall phenology (Figure 2.4 biii). The 

significant interaction between SummerTemp and WinterTemp where both also 

featured as main effects indicated that their slopes varied in relation to the values of 

each other, but were consistently negative for SummerTemp, and generally positive 

for WinterTemp (Figure 2.4 bv and bvi).      

For Form, the significant negative main effect of SummerTemp indicated that higher 

provenance summer temperature corresponded with poorer tree form at the trial site 

(Figure 2.4 ci). The significant positive main effect of WinterTemp indicated that 

higher provenance winter temperature corresponded with better tree form (Figure 2.4 



56 
 

cii). The significant interaction between SummerTemp and WinterPrec where only 

SummerTemp also featured as a main effect indicated that the slope of the 

relationship between Form and SummerTemp varied in relation to the value of 

SummerPrec, but was generally negative (Figure 2.4 ciii). The significant interactions 

between WinterTemp and SummerPrec and between WinterTemp and WinterPrec 

where only WinterTemp also featured as a main effect indicated that the slope of the 

relationship between Form and WinterTemp varied in relation to the values of both 

SummerPrec and WinterTemp, but was generally positive (Figure 2.4 civ and cv). The 

significant interaction between WinterPrec and SummerPrec where neither also 

featured as significant main effects indicated that the slopes of their relationships 

with Form varied substantially depending on the value of each other, but were 

inconsistent in their direction (Figure 2.4 cvi).  

For NoBranches, the significant negative main effects of SummerTemp and 

WinterPrec indicated that higher provenance summer temperature and winter 

precipitation corresponded with fewer branches at the trial site (Figure 2.4 di and dii). 

The significant positive main effects of SummerPrec and WinterTemp indicate that 

higher provenance summer precipitation and winter temperature corresponded with 

more branches (Figure 2.4 diii and div).       
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Table 2.4. Summary results for modelling of tree phenotypic traits in relation to environmental predictor variables, showing the difference in AICc scores (DiffAICc) 
and the evidence ratios (ER) between the best approximating models and those without any fixed effects for environmental predictors. Estimates of slope parameters, 
their standard errors (SE), and confidence intervals, are presented for significant relationships (i.e. where 95% confidence intervals did not include zero). Interaction 
terms are indicated by two predictor names separated by a colon (:).  ‘NS’ indicates that no significant relationships were identified.   
 
 
 

Trait DiffAICc ER Predictor Estimate SE Lower 95% CI Upper 95% CI 
        

Budburst -13.36 796 

SummerTemp 1.76 0.66 0.47 3.05 
WinterPrec 1.25 0.39 0.48 2.02 
WinterTemp -1.99 0.75 -3.45 -0.52 

WinterPrec : SummerPrec -2.55 0.93 -4.38 -0.73 
SummerTemp : WinterTemp -1.49 0.57 -2.60 -0.37 

        

Retention -18.46 1.02 x 104 

SummerTemp -1.43 0.28 -1.97 -0.88 
WinterPrec -1.19 0.23 -1.63 -0.74 
WinterTemp 1.61 0.31 1.00 2.22 

SummerTemp : WinterTemp 1.57 0.36 0.86 2.27 
        

DBH -0.21 1.11 NS     
        

Ht96 0.00 1 NS     
        

Form -22.72 8.59 x 104 

SummerTemp -0.53 0.18 -0.88 -0.18 
WinterTemp 0.45 0.21 0.05 0.86 

SummerPrec : WinterPrec 1.07 0.27 0.54 1.59 
SummerPrec : WinterTemp 0.63 0.26 0.13 1.14 
SummerTemp : WinterPrec -1.11 0.46 -2.02 -0.21 
WinterPrec : WinterTemp 1.28 0.37 0.55 2.00 

        

NoBranches -5.81 18.3 

SummerPrec 1.51 0.66 0.22 2.80 
SummerTemp -3.16 1.22 -5.56 -0.76 
WinterPrec -1.86 0.79 -3.42 -0.31 
WinterTemp 3.57 1.28 1.05 6.09 
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Figure 2.4. Graphical illustration of significant relationships between environmental predictor 
variables and the phenotypic traits (a) Budburst, (b) Retention, (c) Form, and (d) NoBranches (see 
Table 2.4 for parameter estimates). For interaction terms, the relationship between the response 
variable (y axis) and the first predictor variable (x axis) is plotted for 5 values of the second predictor 
variable (values shown to the right of plots), corresponding to the maximum, minimum, and 25 
percentiles from the observed range of the second predictor. Values of the environmental variables for 
the trial site are indicated for the first and second predictors by horizontal and vertical dashed lines 
respectively. Grey shaded areas indicate the expected direction of change in predictor variables under 
general climate change predictions (e.g. increased summer and winter temperatures, increased winter 
precipitation, and decreased summer precipitation).   
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Figure 2.4. Continued from previous page. 
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Although relationships with temperature and precipitation were apparent for several 

phenotypic traits when only these variables were considered, inclusion of the 

geographic variables latitude and longitude substantially altered the inference. 

Slightly better approximating models were identified for Retention, DBH, Ht96, 

Form, and NoBranches, with evidence ratios indicating that the best approximating 

models that could include latitude and longitude were respectively 4.1, 4.63, 5.84, 

1.47, and 4.57 times more likely to be better than the best approximating models with 

just the environmental variables. For Budburst, the difference was much greater, with 

an evidence ratio of 1.32 x 104 in favour of the best approximating model that could 

include latitude and longitude (Table 2.5). Latitude appeared to be the most 

influential of the geographic variables, with significant main effects of latitude 

identified for Budburst, Retention, and Ht96. When the geographical variables were 

included for modelling of Budburst, the significant main effects of WinterPrec and 

WinterTemp remained, but the significant positive main effect of SummerTemp was 

no longer apparent, and an additional significant positive main effect of SummerPrec 

was identified. For Retention, DBH, ht96, and Form, no significant main effects for 

temperature or precipitation remained, although various significant interaction terms 

were apparent. For NoBranches, no significant main effects or interactions remained 

(Table 2.5).     
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Table 2.5. Summary results for modelling of tree phenotypic traits in relation to environmental and geographic predictor variables, showing the difference in AICc 
scores (DiffAICc) and the evidence ratio (ER1) between the best approximating models and those without any fixed effects for environmental or geographic predictors, 
and the evidence ratios (ER2) between the best approximating models that could contain latitude and/or longitude and those that could contain only temperature and 
precipitation variables. Estimates of slope parameters, their standard errors (SE), and confidence intervals, are presented for significant relationships (i.e. where 95% 
confidence intervals did not include zero). ‘NS’ indicates that no significant relationships were identified. The table is continued on the following page.   

 
 
 
 
 

 

 

 

 

 

 

 

 

 

Trait DiffAICc ER1 ER2 Predictor Estimate SE Lower 95% CI Upper 95% CI 
         

Budburst -32.33 1.05 x 107 1.32 x 104 

Latitude -1.80 0.57 -2.91 -0.68 
SummerPrec 1.40 0.39 0.63 2.17 
WinterPrec -2.22 0.83 -3.84 -0.60 
WinterTemp -3.33 1.59 -6.44 -0.21 

SummerPrec : WinterPrec -3.37 0.66 -4.66 -2.08 
SummerPrec : WinterTemp -3.58 0.76 -5.08 -2.09 
SummerTemp : WinterPrec 10.94 1.91 7.20 14.69 
WinterPrec : WinterTemp -2.39 1.05 -4.45 -0.34 

Latitude : Longitude -6.92 2.71 -12.23 -1.61 
         

Retention -21.28 4.18 x 104 4.1 

Latitude 1.10 0.34 0.44 1.77 
SummerPrec : SummerTemp 1.53 0.56 0.42 2.63 
SummerPrec : WinterPrec 1.74 0.50 0.76 2.71 
SummerTemp : WinterPrec -3.41 1.12 -5.61 -1.21 
SummerTemp : WinterTemp 1.04 0.48 0.10 1.98 
WinterPrec : WinterTemp 2.07 0.64 0.82 3.31 
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Table 2.5. Continued. 
 

 

 

 

Trait DiffAICc ER1 ER2 Predictor Estimate SE Lower 95% CI Upper 95% CI 

         
DBH -3.27 5.14 4.63 SummerPrec : SummerTemp 35.37 16.64 2.76 67.98 

         

Ht96 -3.53 5.84 5.84 
Latitude -24.14 11.91 -47.48 -0.80 

SummerPrec : WinterTemp 22.44 10.36 2.13 42.76 
SummerTemp : WinterTemp 33.32 15.66 2.62 64.01 

         

Form -23.49 1.26 x 105 1.47 

SummerPrec : WinterPrec 1.11 0.27 0.58 1.64 
SummerPrec : WinterTemp 0.81 0.32 0.19 1.43 
SummerTemp : WinterPrec -1.38 0.56 -2.48 -0.27 
WinterPrec : WinterTemp 1.50 0.40 0.72 2.28 

         

NoBranches -8.85 83.5 4.57 NS     
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2.4. Discussion 

2.4.1. Evidence for local adaptation 

The phenological traits of Budburst and Retention respectively describe the timing of 

growth initiation in spring and growth cessation in autumn. Local adaptation of such 

phenological traits has been observed for many temperate tree species and is 

considered to relate mainly to geographical variation in temperature, with selection 

for phenologies that minimise frost injury to active tissues while maximising the time 

available for growth (Aitken et al. 2008). The minimum estimates of Qst reported 

here (0.405 and 0.781) are higher than the Qst of analogous traits reported elsewhere 

for Q. petraea (e.g. leaf flushing Qst=0.15 & 0.27, leaf yellowing Qst=0.15 & 0.18, 

Jensen and Hansen 2008), but similar to those for several other species (e.g. needle 

flush in Pinus albicaulis - Qst=0.47, Bower and Aitken (2008), and bud set in Picea 

sitchensis - Qst=0.89, Mimura and Aitken (2007), and in Pinus sylvestris - Qst=0.86, 

Savolainen et al. 2004). This likely reflects the greater environmental range of 

provenances considered here, relative to the study of Jensen and Hansen (2008) that 

featured only provenances from North-west Europe. The Qst-Fst tests presented here 

provided strong evidence for local adaptation of both phenological traits. Significant 

clines along gradients in summer temperature, winter temperature, and winter 

precipitation were identified for both traits, suggesting that these environmental 

factors are involved in the local adaptation of the traits. However, inclusion of the 

geographical variables latitude and longitude substantially improved the modelling of 

variation in bud-burst phenology, and to a lesser extent for leaf-fall phenology, and 

altered which temperature and precipitation clines were considered to be of 

significance. When the geographical variables were included for modelling of bud-

burst phenology, the cline with summer temperature was no longer significant, but 

additional significant clines with latitude and summer precipitation were apparent. 

For modelling of leaf-fall phenology, clines with summer temperature, winter 

temperature, and winter precipitation were no longer significant, but a significant 

cline with latitude was apparent.     
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Architectural traits are of considerable importance for silviculture as they directly 

influence the commercial value of timber crops, with straight un-forked stems 

usually being most desirable and considered to have the best form. While natural 

selection is not necessarily expected to directly improve tree form (Worrell 1992), 

forking, excessive branching, and otherwise poor form, may all result from 

environmentally induced damage to apical shoots, with selection expected for 

phenotypes that minimise such damage. Geographic variation in the environmental 

causes of damage (e.g. frost or wind) may therefore result in patterns of local 

adaptation that are manifested in tree architecture. Morphological traits have received 

less attention in the literature than phenological and growth traits, but reported values 

of Qst are generally low (e.g. <0.3, Savolainen et al 2007). The minimum estimates of 

Qst reported here are within this range for the number of forks, and the number of 

branches (0.015 and 0.088 respectively), but the value for tree form (0.385) is 

relatively high. Qst-Fst tests offered no evidence of local adaptation in the number of 

forks, but strong evidence for both number of branches and tree form. Significant 

clines along gradients in summer temperature and winter temperature were identified 

for both the number of branches and tree form, with further clines with winter and 

summer precipitation also identified for the number of branches, suggesting that 

these environmental factors are involved in the local adaptation of the traits. 

However, inclusion of the geographical variables latitude and longitude slightly 

improved the modelling of variation in both the number of branches and tree form, 

and altered the inference with the result that no clear clines along temperature or 

precipitation gradients remained.   

Tree size is expected to reflect the combined influence of many physiological factors 

such as photosynthetic rate, water use efficiency, growth rate and duration, and root-

shoot biomass allocation, with selective pressure for large trees that compete well for 

light and other resources. Variation in tree size between provenances could be the 

result of local adaptation of any one or more of these factors, and as such, tree size is 

often used as an index of tree health and overall degree of adaptation (Aitken 2004, 

Savolainen et al. 2007). The minimum estimates of Qst reported here for diameter, 

and height at 5 and 11 years of age  (0.042, 0.066, and 0.028) are similar to Qst 

values reported elsewhere for Q. petraea (e.g. height year 1 - Qst=0.06, diameter year 
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1 - Qst=0.01, Jensen and Hansen 2008), but are low compared to those for several 

other species (Savolainen et al. 2007). Qst-Fst tests provided evidence of local 

adaptation for diameter at breast height and height at five years of age, but the 

minimum estimate of Qst for height at 11 years of age was not quite large enough to 

be considered indicative of local adaptation. No clines along temperature and 

precipitation gradients were apparent for either diameter at breast height or height at 

3 years of age, suggesting that these environmental influences are not strongly 

involved in the local adaptation of these traits. Inclusion of the geographical 

variables latitude and longitude slightly improved the modelling of variation in both 

traits, and a significant cline along a gradient in latitude was apparent for height in 

1996.  

In summary, several phenotypic traits relating to phenology, architecture, and size in 

Q. petraea showed signs of having become locally adapted to their environments. 

Geographical variation in temperature and precipitation was implicated in the local 

adaptation of phenological and architectural traits, but not size traits. However, the 

substantial effect of incorporating additional geographic variables suggested that 

geographical variation in temperature and precipitation alone may not offer the most 

appropriate explanation for patterns of local adaptation.   

2.4.3. Predicting the performance of matched provenances 

Due to the predicted direction of climate change in southern Britain and much of 

Western Europe (Giorgi and Coppola 2009, Jenkins et al. 2009), Climate Matching is 

expected to match planting sites in this region with tree provenances that have 

experienced higher recent winter precipitation, lower summer precipitation, and 

higher summer and winter temperatures. By assessing the identified clines with 

temperature and precipitation gradients for various locally adapted phenotypic traits, 

it is possible to assess the relative performance at Petite Charnie of trees from 

provenances with such climates. Although interactions between variables complicate 

their interpretation, trees from provenances with higher winter precipitation and 

lower summer precipitation than Petite Charnie appeared to exhibit early bud-burst 

phenology, early leaf-fall phenology, poor form, and less branching relative to tree of 
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local provenance. Similarly, trees from provenances with higher summer temperature 

than Petite Charnie also exhibit early bud-burst phenology, early leaf-fall phenology, 

poor form, and less branching relative to tree of local provenance. Interpretation of 

the influence of increased winter temperature is complicated as conditions at Petite 

Charnie are towards the upper limit of the observed range. However, the patterns 

appear to contradict those for precipitation and summer temperature, with trees from 

provenances with higher winter temperature than Petite Charnie exhibiting late bud-

burst phenology, late leaf-fall phenology, improved form, and greater branching 

relative to trees of local provenance (Figure 2.4). Differences in tree size could not 

be predicted, due to an absence of clinal relationships between tree size and the 

temperature and precipitation gradients.  

Tree form is a particularly relevant trait in the context of Climate Matching as it can 

be considered to reflect an overall degree of adaptation. Trees possessing traits that 

entail good growth rates and the avoidance of damage in their environment would be 

considered as well adapted, consequently growing tall and straight and thus having 

good form (details of how form is measured are provided in Appendix 2.1.3). Trees 

possessing traits that entail relatively poor growth rates or susceptibility to damage 

(e.g. from frost, wind, pests and pathogens) in their environment would be 

considered as poorly adapted, consequently growing slowly and without apical 

dominance and thus having poor form. As Climate Matching is intended to promote 

adaptation, it is concerning those trees from provenances with warmer summer 

temperature, higher winter precipitation, and lower summer precipitation, exhibited 

poorer form at the Petite Charnie trial relative to trees of local provenance. However, 

this may reflect an important characteristic of climate matching: that matched 

provenances are expected to be well adapted to the future climate of a planting site, 

but not necessarily to the present climate. Thus, the observed relatively poor 

adaptation (as characterised by low form scores) of supposedly matched provenances 

may be due to a temporal lag in adaptation, which will decrease as time passes and 

the climate changes. The extent of such a lag can be expected to depend on the 

difference in present climate between the planting site and the matched site, which is 

in turn determined by the severity of carbon emissions scenario and the timing of the 

projections (i.e. 2050’s or 2080’s) used in the climate matching. Finding a suitable 
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balance between present and future adaptation should be an important part of any 

climate matching decision process, and might be dependent on the planting 

objectives. In a commercial plantation for example, where timber quality is a primary 

concern, a large lag in adaptation could increase the risk of damage to young trees, 

resulting in poor form and low timber value. Climate matching with little or no lag in 

adaptation may therefore be most prudent (e.g. based on a low carbon emissions 

scenario or a short projection time). Alternatively, if the primary concern of a 

plantation is survival and longevity, perhaps for an amenity or conservation forest, 

then a larger lag in adaptation may be more appropriate, reducing the risk of serious 

effects of maladaptation or even mortality in mature trees.    

2.4.2. Climate Matching of Q. petraea 

A principle objective of this study was to explore whether provenances of Q. petraea 

are locally adapted to the temperature and precipitation variables that are used in 

Climate Matching analysis. The results on this issue are somewhat ambiguous. 

Several important phenotypic traits showed signs of being locally adapted to 

provenance environments, and for some of these traits, clines along gradients in 

summer and winter temperatures and precipitation suggested that these variables are 

involved in the adaptation. However, important traits - such as tree diameter and 

height - showed evidence of local adaptation but did not appear to be strongly 

influenced by gradients in these environmental variables. Furthermore, the 

consideration of additional environmental gradients (i.e. longitude and latitude), 

generally improved the modelling of variation in the phenotypic traits. When 

considered together, these results suggest that while gradients in temperature and 

precipitation are likely to be part of the selection regime that drives local adaptation 

of Q. petraea, they are not necessarily the only or even the strongest influences. 

Therefore, if Climate Matching is based solely on these variables, then there is a risk 

that matched provenances will be maladapted to alternate aspects of the environment 

at their planting sites.  

The geographical variables latitude and longitude are often used in studies of 

genecology as surrogates for overall environmental variation (Aitken 2004). They are 
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expected to correlate with various gradients in temperature and moisture but also 

with other environmental gradients. Photoperiod for example is determined by 

latitude and time of year (Forsythe et al. 1995), and while a correlation with 

temperature is expected, photoperiod will not be altered by any changes in climate. 

Photoperiodic cues have been implicated in the local adaptation of bud set phenology 

in trees (Howe et al. 2003), and the matching of sites from different latitudes could 

therefore result in climate matched provenances being maladapted to the photoperiod 

of their planting sites, with consequent sub-optimal growth or increased risk of cold 

injury. The risk of maladaptation to overlooked abiotic factors such as photoperiod 

could potentially be minimised by including geographic variables such as latitude, 

longitude and altitude in the calculation of the climatic difference index used in 

Climate Matching. The effect of each of these could be weighted so that while sites 

would still be matched primarily in terms of temperature and precipitation, sites from 

similar latitude, longitude, and altitude to the planting site would be preferred over 

more distant sites. For example, under a high emissions scenario for climate change 

by the 2080s, Brechfa in Wales was matched with coastal areas of Brittany in France, 

and also with coastal areas of northern Spain (Broadmeadow et al. 2005). If latitude 

and longitude were included in the calculation, then the French sites would clearly be 

preferred as they have very similar longitude to Brechfa, and less than half the 

difference in latitude relative to the Spanish sites.      

Whilst modification of Climate Matching analysis to incorporate more general 

environmental gradients might minimise the risk of maladaptation to abiotic factors, 

it does not address the risk of maladaptation to biotic factors such as soil conditions 

and pathogens. These are potentially important influences, and are widely implicated 

in the local adaptation of plants (Sork et al. 1993, Roy 1998, Wright 2007, Pregitzer 

et al. 2010). The risk of maladaptation to pathogens is spectacularly exemplified at 

the Petite Charnie provenance trials by a provenance of Q. robur from the Southwest 

of France that grows well in its native environment but is highly susceptible to oak 

mildew (Microsphaera alphitoides) at Petite Charnie, sustaining heavy damage with 

consequent poor form and high mortality (A. Duccouso, personal communication). 

Although this is perhaps an extreme case as no other provenance at Petite Charnie 

shows such a degree of susceptibility, there are various literature examples of non-



69 
 

local tree and plant provenances being more susceptible to pests and pathogens  

(Sork et al. 1993, Roy 1998, Kaltz et al. 1999).  

In conclusion, while this study suggests that geographical gradients in temperature 

and precipitation are involved in the local adaptation of Q. petraea and therefore 

provides some justification for Climate Matching, it also highlights the likely 

importance of other abiotic and biotic influences that are potentially overlooked by 

Climate Matching analysis. Further investigation of the patterns of local adaptation 

in focal tree species, and the relative importance of various influences would be 

valuable in guiding if, where, and how Climate Matching can be most successfully 

applied. Such information could come from further studies such as this, that analyse 

empirical data from established provenance trials. 
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Chapter 3 – Effects of tree provenance and 
phenotype on a community of herbivorous 
insects: implications for Climate Matching 

3.1. Introduction 

Considerable changes are expected in the climate of the UK within the current 

century, particularly in southern regions where temperatures and winter precipitation 

are predicted to increase, and summer precipitation is predicted to decrease (Jenkins 

et al. 2009). It is consequently expected that trees locally adapted to the current 

climate will become increasingly maladapted as their environment changes, with 

resulting declines in forest health and productivity (Broadmeadow et al. 2005). The 

adaptive forest management strategy of Climate Matching aims to preserve the 

productivity and ecosystem services of forests by using climate models to predict the 

future climate of a planting site, and then identifying provenances (geographic 

origins) where tree populations are locally adapted to such climates (Broadmeadow 

et al. 2005, Bolte et al. 2009). An initial study of Climate Matching considered four 

UK planting sites based on predicted changes in temperature, precipitation, and 

diurnal temperature range, under low and high carbon emission scenarios. These 

planting sites were generally matched with provenances from lower latitudes, with 

for example Kelty in eastern Scotland being matched with areas of Ireland and 

western Britain by the 2050’s, and with southern Brittany by 2080’s, and Alice Holt 

in the south of England being matched with Brittany by the 2050’s, and areas of 

Italy, Sardinia, and Greece by the 2080’s (Broadmeadow et al. 2005). Based on these 

predictions, trial plantations of several commercially important broadleaved tree 

species have recently been established in the UK (Forest Research et al. 2010). 

Trees play a key role in forest ecosystems, serving as ‘foundation species’ that 

structure the biotic environment for diverse ecological communities of plants, 

microbes, and animals  (Whitham et al. 2006). In recent years, research in the field of 

Community Genetics has widely demonstrated that variation within foundation tree 

species can influence the structure of associated communities (Dungey et al. 2000, 
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Underwood and Rausher 2000, Wimp et al. 2005, Bangert et al. 2006), with effects 

that potentially span several trophic levels (Dickson and Whitham 1996, Bailey and 

Whitham 2003, Johnson 2008, Jones et al. 2011b). Although a primary objective of 

Climate Matching and of adaptive forest management in general will be to optimise 

the commercial productivity of planted forests, the conservation and enhancement of 

forest biodiversity is also viewed as an essential element of sustainable forest 

management, and is reflected in UK and European policy (Forestry Commission 

2004, EC 2005). When implementing Climate Matching, it will therefore be 

important to consider not only the potential for improvements in productivity, but 

also the effect that introduced tree provenances may have on associated ecological 

communities, a question that has yet to be specifically addressed for any European 

tree species. In this study, I make use of a large established provenance trial in 

France to investigate this issue for a commercially important European tree species 

and an associated guild of specialist insect herbivores – Quercus petraea and oak 

gallwasps (Hymenoptera: Cynipidae: Cynipini).    

3.1.1. Study system 

Sessile oak (Quercus petraea) is an abundant and economically important forest tree, 

with a current natural distribution from Spain to Russia and from Scotland to Turkey, 

between sea level and 1600m elevation (Kleinschmit 1993). Together with the 

closely related Pedunculate oak (Q. robur), it represents almost 25% of broadleaved 

high forest in Great Britain (Forestry Commission, 2003). Under recent climate 

change scenarios it was predicted that oak productivity will decrease in the south and 

east of the UK, with increased risk of drought mortality (Broadmeadow et al. 2005), 

and Q. petraea is therefore considered to be a candidate species for Climate 

Matching in these regions. In Chapter 2, analysis of provenance trial data for Q. 

petraea suggested the geographic variation in temperature and precipitation was 

involved in the local adaptation of particular traits, thus providing some justification 

for a Climate Matching approach.  

In the UK, the two native species of Quercus are host to at least 423 species of 

phytophagous invertebrates, considerably more than most tree genera and second 
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only to willows (Kennedy and Southwood 1984). In continental Europe the 

associated diversity is even greater, with over 630 species of herbivorous insect 

recorded on Quercus in Hungary (Csóka 1998). These herbivorous communities 

include numerous species of oak gallwasp, whose larvae induce complex galls within 

which they feed upon nutritive tissue inside specialised chambers. Approximately 

200 species are recognised from the Palaearctic region (Csóka et al. 2005), almost all 

of which have a complex cyclically parthenogenetic lifecycle with alternating sexual 

and asexual generations within each year (Stone et al. 2002, Stone et al. 2008). In 

Western Europe, females of the asexual generation typically emerge early in the year 

to oviposit eggs that induce galls of the sexual generation, developing once buds 

have burst in the early spring. Adults emerge from these galls between May and July, 

and mate before laying eggs of the asexual generation whose galls develop during 

summer and autumn (Askew 1962). Galls occur on various plant organs including 

buds, leaves, catkins, stems and roots, and may be single or multi-chambered (Stone 

et al. 2002, Csóka et al. 2005). Gall morphology and its location on the tree is 

generally diagnostic of a particular generation of a single species, and keys to 

Western Palaearctic species based on gall morphology are available (Buhr 1965, 

Ambrus 1974, Redfern and Shirley 2002). As the galls of the two generations are 

temporally and morphologically distinct, and often differ in their relative abundance 

by several orders of magnitude, they are usually treated as separate ‘gall-types’ in 

ecological studies of gallwasp communities (Schönrogge and Crawley 2000, 

Kaartinen and Roslin 2011).   

Western Palaearctic oak galls are a popular model ecological system, and have 

recently been the focus of studies of biological invasions (Schönrogge et al. 1995, 

Schönrogge and Crawley 2000), comparative phylogeography (Hayward and Stone 

2006), local adaptation (Tack and Roslin 2010), habitat fragmentation (Kaartinen and 

Roslin 2011), and community genetics (Tack et al. 2010). The distinctive 

morphologies and sessile nature of galls makes them easy to identify and establish 

densities during field studies, and they are usually present in appropriate abundance 

and diversity for comparative study at various spatial scales, i.e. between sites 

(Schönrogge et al. 1995, Schönrogge et al. 1998, Schönrogge and Crawley 2000), or 

between individual trees within sites (Kaartinen and Roslin 2011, Egan and Ott 
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2007). They are also relatively easy to rear, potentially allowing for the study of 

multi-trophic interactions involving inquiline gallwasps (Hymenoptera: Cynipidae: 

Synergini) and parasitoids (mainly Hymenoptera: Chalcidoidea) that also inhabit the 

galls (see Chapter 4). These communities are relatively closed, in that individual 

species of oak gallwasp are specialised parasites of a limited range of oaks, and 

individual species of inquiline and parasitoid are generally specialised inhabitants of 

a limited range of oak galls (Askew 1961a, Askew 1980, Stone et al. 2002, Csóka et 

al. 2005). 

3.1.2. How might host tree variation influence gallwasp communities? 

Understanding how herbivorous communities are influenced by ‘bottom-up’ effects 

from their host-plants is a long standing objective of ecological study (Hunter and 

Price 1992, Hunter et al. 1997), and observed correlations between plant phenotypic 

traits and herbivore abundance and diversity have led to the development of various 

hypotheses. Based on the observation that out-breaks of herbivorous pests on 

Eucalyptus in Australia coincided with weather conditions that were unfavourable 

for the trees, White (1969) proposed the plant stress hypothesis whereby herbivores 

are expected to prefer, or to perform better, on plants that are stressed by physical 

damage or unfavourable environmental conditions. This is primarily considered to be 

because such stress results in elevated concentrations of mobilised nitrogen within 

the plants vegetative tissues, presenting a more favourable food resource for 

herbivores (White 1969, 1974, 1984), but has been extended to also reflect that 

stressed plants may allocate fewer resources to the synthesis of defensive compounds 

(Rhoades 1985). Field-studies have provided support for the hypothesis in a variety 

of organisms including a dipteran gall former (Debruyn 1995). However, acceptance 

of its wider relevance has been mixed (Larsson 1989, Koricheva et al. 1998), leading 

White (2009) to clarify that it may apply specifically to senescence-feeders, i.e. those 

that feed primarily on mature plant organs that are in the process of senescence, as 

opposed to flush-feeders that feed on young organs that are still developing. In 

relation to the present study, under the plant stress hypothesis it would be expected 

that variation in gallwasp abundance and species richness would correlate with 

variation in stress, as could be determined by assessment of tree health or growth. It 
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may also be expected that this pattern would be stronger for asexual generation 

gallwasps that develop on mature oak tissues, rather than the sexual generation that 

develop on young tissue.  

In contrast to the stress hypothesis, Price (1991) proposed the plant-vigour 

hypothesis, based on observations that particular herbivores responded positively 

towards plants or plant organs that exhibited high growth rates or achieved large 

ultimate size, relative to the population mean (i.e. those that were most vigorous). 

Various mechanisms for such patterns have been suggested, including the greater 

availability of oviposition sites, greater resource quality (i.e. nutrient content), and 

lower concentrations of defensive compounds exhibited by vigorously growing 

plants (Price 1991, Cornelissen et al. 2008). While the plant-stress hypothesis is 

expected to apply particularly to herbivores that feed on plants during their 

senescence phase (White 2009), the plant-vigour hypothesis is most applicable to 

those that are intimately involved in the processes of plant growth (Price 1991). 

Many gall-formers fall into this latter category as they must redirect normal plant 

development and stimulate plant tissues to form their galls (Price 1991, Harper et al. 

2004), and field-studies have provided support for the hypothesis in a range of 

galling herbivores (Prado and Vieira 1999, Kopelke et al. 2003, and see Cornelissen 

et al. (2008) for meta-analysis across herbivore guilds) including two species of oak 

gallwasps (Ito and Hijii 2001). In relation to the present study, under the plant-vigour 

hypothesis it would be expected that variation in gallwasp abundance and species 

richness between oak provenances would correlate with variation in vigour, as could 

be determined by assessment of tree size. This may apply particularly to sexual 

generation gall-types that develop on young plant tissues following growth initiation 

in spring.   

Further to the potential influences of stress and vigour, synchrony in the timing of 

development between herbivores and their hosts may be important aspect of plant-

herbivore interactions (Yukawa 2000, van Asch and Visser 2007, Singer and 

Parmesan 2010). Experimental study of the oak winter moth Operophtera brumata 

indicates that herbivore fitness is greatest when the timing of egg-hatch coincides 

with the bursting of buds in its host plant, declining sharply if egg-hatch occurs 
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before or after bud-burst (van Asch et al. 2007). Given that the timing of egg-hatch in 

O. brumata is genetically determined, it is expected that populations will evolve so 

that the timing of egg-hatch will match the mean timing of bud-burst in their host 

plant population (van Asch et al. 2007). Where this pattern applies, it can be 

hypothesised that herbivore abundance will be greatest on trees whose phenology 

most closely matches the requirements of the herbivore population, with relatively 

lower abundance on trees that deviate in either direction (henceforth referred to as 

the synchronisation hypothesis). Results from studies that have considered the role of 

host plant phenology in oak-gallwasp interactions are mixed, with demonstrated 

effects in some cases (Askew 1962, Crawley and Akhteruzzaman 1988) but not in 

others (Ito and Hijii 2001). In relation to the present study, under the synchronisation 

hypothesis it is expected that the abundance of individual gallwasp species will 

correlate with host plant phenology, declining to either side of an optimum. If the 

optimum is shared between species, then a similar pattern would be expected for 

gall-type richness.  

3.1.3. Objectives 

The purpose of this study is to begin to explore how Climate Matching of forest tree 

species may influence associated ecological communities, by assessing the effects of 

host tree provenance and phenotype on a community of gallwasps. Specifically I ask: 

(i) does host-tree provenance influence gall-type abundances; (ii) which aspects of 

tree phenotype are implicated and is there support for the plant-stress, plant-vigour, 

and synchronisation hypotheses; (iii) how is the richness and structure of the gall 

community influenced; (iv) how consistent are these patterns? Based on the answers 

to these questions, the expected effects of Climate Matching are then discussed.       

3.2. Materials and methods 

3.2.1. Petite Charnie provenance trial 

The oak provenance trial in the forest of La Petite Charnie in Sarthe, Northwest 

France, was established in the early 1990’s by the French National Institute for 
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Agricultural Research (INRA) to aid genetic conservation and management of 

European white oaks (Ducousso et al. 1996, and see Chapters 1 and 2 for further 

details of the trial design). A set of 20 provenances of a single age cohort was 

selected to encompass the largest possible range of geographic distances from the 

trial site (Figure 3.1 and Table 3.1). This set included the 17 provenances previously 

assessed for evidence of local adaptation in various phenotypic traits (see Chapter 2).    

 

Figure 3.1. Location of La Petite Charnie provenance trials and the 20 selected study provenances. 
Provenance codes follow Table 3.1.    
 
 
 
Measures of spring bud-burst phenology in 1995 (Budburst), autumn leaf-fall 

phenology in 2001 (Retention), tree diameter at a height of 1.3 meters in 2001 

(DBH), and tree shape in 2001 (Form), were provided by INRA for all trees of the 

study provenances (full details of how these traits were measured are provided in 

Appendix 2.1). Patterns of differentiation in each of these traits for a subset of the 

study provenances were indicative of local adaptation to the environment at their 

sites of origin (see Chapter 2). Although not particularly recent, these measurements 

were assumed to provide a representation of relative differences between trees at the 

time of this study (2008 and 2009). Independent studies have reported that while the 
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timing of spring bud-burst and autumn leaf-fall in oaks can vary considerably 

between years, rankings of individual trees are relatively constant (Askew 1962, 

Crawley and Akhteruzzaman 1988). To allow investigation of this assumption, 

measurements of bud-burst phenology were repeated on April 15th 2009 (referred to 

as Budburst2009), following the original scoring system for a subset of the trees from 

8 of the study provenances (all living trees within 2 parcelles of each provenance in 

both soil zones 1 & 2, i.e. a maximum of 768 trees). 

 

Table 3.1. Summary of the 20 studied provenances showing their 3 digit provenance codes, their 
geographic locality (Forest and Country), latitude (Lat), longitude (Lon), altitude (Alt), and the mean 
values across all trees of each provenance for the phenotypic traits Budburst, Retention, DBH, and 
Form.   
 
Code Forest Country Lon 

(DD) 
Lat 

(DD) 
Alt 
(m) 

Mean 
Budburst 

Mean 
Retention 

Mean 
DBH 

Mean 
Form 

179 Sycow Poland 17.93 51.18 210 1.42 2.58 104 4.76 
181 Horbylunde Denmark 9.41 56.13 80 0.88 3.04 89 3.99 
184 Telavi Georgia 45.47 41.88 700 3.79 0.28 77 3.06 
185 Blakeney UK -2.5 51.78 76 1.08 2.20 120 4.24 
194 Soudrain France 2.38 46.95 178 1.24 2.64 110 4.33 
201 La Haie Renaut France 4.95 48.67 180 1.77 1.72 109 4.24 
210 Saint Germain France 2.08 48.9 60 1.71 2.68 113 4.13 
211 Prémery France 3.6 47.2 300 1.55 2.64 106 4.34 
217 Bercé France 0.39 47.81 155 1.59 2.42 98 4.20 
225 Still France 7.25 48.58 688 1.55 2.01 105 4.56 
230 Romersberg France 6.73 48.82 220 1.06 2.81 101 4.17 
233 Vachères France 5.63 43.98 650 3.69 1.50 94 4.15 
237 Réno Valdieu France 0.67 48.5 230 1.65 2.75 116 4.14 
245 Etangs France 4.96 46.93 200 2.40 2.21 113 4.19 
248 Klostermarienberg Austria 16.57 47.41 310 3.23 1.61 103 3.90 
249 Bolu Turkey 31.67 40.92 1200 1.58 0.48 94 4.39 
250 Cochem Germany 7.05 50.08 400 1.86 2.44 112 4.43 
252 Johanneskreuz Germany 7.83 49.4 460 1.03 2.34 116 4.42 
255 Spakensehl Germany 10.6 52.8 115 0.54 2.67 102 4.74 
257 Wolfgang Germany 9.05 50.15 160 1.61 2.46 96 3.92 

 

3.2.2. Gall surveys 

For each of the study provenances, 2 parcelles were selected from within each of the 

5 soil zones in Tranch 4 of the provenance trial, and in Spring 2008, 12 living trees 
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were chosen from within each study parcelle (total=2400 trees). To minimise edge 

effects, trees were preferentially selected from the two internal columns of the 

parcelle, but the nearest alternative was used where an internal tree had died. All 

trees were surveyed once for sexual generation Cynipini galls during spring (May-

June), and once for asexual generation galls during autumn (August-September), in 

both 2008 and 2009 (in autumn 2008 soil zone 5 was not surveyed due to time 

constraints). In the rare instances where a tree had died between surveys, the nearest 

alternative within the parcelle was used for subsequent surveys. At each visit to a 

particular tree, 10 twigs (defined as a module of woody growth over the two previous 

years) were haphazardly selected, and all parts of its most terminal shoot (defined as 

a module of woody growth from the previous year) were inspected for galls.  

3.2.3. Predictor variables 

The selection of appropriate predictor variables for modelling ecological data is a 

subjective process, dependent on the available data and the questions of interest. 

Recent reviews suggest that only predictors, transformations, and interactions with 

strong a priori biological justification should be included (Bolker et al. 2009, 

Grueber et al. 2011). 

Given the plant vigour and stress hypotheses, and the likely importance of 

phenological synchronisation, there are clear a priori biological reasons for including 

predictors relating to tree productivity (i.e. DBH), health (i.e. Form), and phenology 

(i.e. Budburst and Retention) in models of gall abundances and community structure. 

Any effects of health or productivity are expected to be relatively linear (e.g. under 

the vigour hypothesis, herbivore abundance would positively correlate with rate of 

linear growth, Price 1991) and the predictors DBH and Form are therefore 

considered on their natural scale. The effects of the phenological variables however 

might not be constant, with the synchronisation hypothesis predicting a decline in 

herbivore abundance as phenology deviates in either direction from a particular 

optimal value. The Budburst and Retention predictor variables are therefore 

considered on their natural scale, and with a quadratic transformation (i.e. Budburst2 

and Retention2).     
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Interaction terms within a model reflect the possibility that the effect of a particular 

predictor may depend upon the value of one or more additional predictors. While 

such interactions may be of practical interest, their higher-order effects can be 

difficult to interpret, and their inclusion can over-parameterise models resulting in 

poor parameter estimates (i.e. failed convergence). To prevent these issues, only pair-

wise interactions between Budburst, Retention, DBH, and Form in their standard 

states were included here. Furthermore, it was considered that co-linearity between 

predictors would limit the relevance of their pair-wise interaction (i.e. because for a 

given value of one, the probable range of the other would be relatively small), and 

the four standard state predictors were therefore assessed for co-linearity (described 

in section 2.3.7), with subsequent exclusion of the interaction between co-linear 

pairs.     

3.2.4. Mixed effect modelling 

Given the hierarchical structure of the collected data (i.e. shoots nested within trees, 

within parcelles, within soil-zones), traits measured at the various scales were 

considered to be subject to the nested random effects of their higher order groupings, 

and the crossed random effect of provenance. To incorporate this complex random 

effects structure, data were analysed using mixed effects models with the lmer 

function of the lme4 package (Bates et al. 2011) in R version 2.13.0 (R Development 

Core Team 2011). Models were implemented with maximum likelihood estimation 

to allow for comparison of models with differing fixed effect structures (Bolker et al. 

2009).    

Measurements taken at the parcelle level (i.e. for investigation of community 

structure) were modelled with random effects for soil-zone and provenance 

following Format-1 (Table 3.2). Measurements taken at the tree level (i.e. for 

investigation of co-linearity between phenotypic traits) were modelled with random 

effects for soil-zone, parcelle, and provenance, following Format-2 (Table 3.2). With 

the exception of gall-type richness, the response variables at these levels were either 

continuous or ordinal with a moderate number of levels (e.g. for Budburst, Retention 

and Form), and were therefore analysed using linear mixed effect models with a 
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Gaussian error family. Models were assessed for heteroscedasticity and normality of 

errors by plotting standardised residuals against fitted values, and ordered residuals 

against the quantiles of the normal distribution (Crawley 2007).  

Data for gall-type richness per tree and galls per shoot were in the form of counts, 

and were therefore analysed using generalised linear mixed models with a Poisson 

error family (Bolker et al. 2009). In addition to random effects for provenance and 

the various groupings, these Poisson error models also contained a random effect 

with a number of unique factor levels equal to the number of observations (called 

‘observations’ in Table 3.2), to account for over-dispersion. Models for gall-type 

richness therefore followed Format-3, and models of galls per shoot followed 

Format-4 (Table 3.2).   

 

Table 3.2. Description of the different random effect formats used in the modelling. SoilZone, 
Parcelle, Tree, Provenance and Observation are all categorical variables and are described in the text. 
Notation is provided to show how each format is described for the lmer function of the lme4 package 
in R.  
 

 
Random effects  

Description R notation  

Format-1 SoilZone crossed with Provenance (1 | SoilZone) + (1 | Provenance) 

Format-2 Parcelle nested within SoilZone, crossed with 
Provenance (1 | SoilZone / Parcelle) + (1 | Provenance) 

Format-3 Parcelle nested within SoilZone, crossed with 
Provenance, crossed with Observation 

(1 | SoilZone / Parcelle) + (1 | Provenance) 
+ (1 | Observation) 

Format-4 
Tree nested within Parcelle, nested within 

SoilZone, crossed with Provenance, crossed 
with Observation 

(1 | SoilZone / Parcelle / Tree) + 
(1 | Provenance) + (1 | Observation) 

 

3.2.5. Multi-model inference 

In ecological studies, it is often of interest to examine the relationships between a 

response variable and several potential covariates to determine which, if any, are 

important predictors of variation in the response. Approaches to such questions have 

traditionally involved stepwise comparison of nested models to identify a single 
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model that contains only predictors deemed to explain a significant amount of 

deviance in the response, as determined by null hypothesis testing (Crawley 2007). 

However, such approaches have been criticised on several grounds, including the 

dependency of the identified model on the employed selection algorithm (Calcagno 

and de Mazancourt 2010), and issues of multiple hypothesis testing (Whittingham et 

al. 2006). An alternative that is increasing in popularity is to use information criteria 

(IC) such as the Akaike information criteria (AIC, Akaike 1974) to compare the 

performance of multiple competing models.        

The AIC and related ICs use deviance as a measure of the fit of a particular model to 

a given dataset, with a penalty applied for the number of estimated parameters. The 

AIC is generally used in its corrected form (AICc), to account for potentially small 

samples. When multiple predictor variables are being considered, models containing 

all possible combinations can be ranked in order of performance by their IC score to 

identify the best approximating model. Various statistical software packages are 

available for automating the calculation of IC scores for potentially large model sets 

(e.g. Calcagno and de Mazancourt 2010, Barton 2011). Additional derived statistics 

such as model weight (the probability that a particular model is the best 

approximating model within a set) and evidence ratios (a measure of how much more 

likely one model is compared to another) can be used to assess model uncertainty 

(full details on the calculation of AIC and related statistics are provided by Symonds 

and Moussalli 2011). In situations where no single model is clearly superior to all 

others (i.e. the model weight of the best approximating model does not approach 1), 

model averaging can be employed to account for model uncertainty and obtain robust 

parameter and error estimates across multiple models, where the contribution of each 

model is weighted by its relative performance (Grueber et al. 2011, Symonds and 

Moussalli 2011). The model averaged parameter estimate for a particular predictor 

can either be based on all models, where it receives a value of zero for models that 

do not contain the predictor (termed ‘full-model averaging’), or can be based only on 

those models that do feature the predictor (termed ‘natural-averaging’, Symonds and 

Moussalli 2011).      
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In this study, the relationships between various response variables (i.e. counts of gall 

abundance, species richness, and community similarity scores) and predictor 

variables (i.e. tree provenance, or tree phenotypic traits) were investigated through an 

IC based approach. Differences in AICc scores and evidence ratios were used to 

compare the performance of models and make inferences about the importance of 

particular predictor variables. Where assessing the influence of multiple predictors, 

these were centred and standardized to allow for the interpretation of parameter 

estimates in models containing interaction terms (Gelman 2008, Schielzeth 2010). 

The effect and the importance of individual predictors were assessed from estimates 

of their slope parameters (with confidence intervals), obtained through model 

averaging. As there was potential for co-linearity of predictors, natural averaging 

rather than full-model averaging was applied, to avoid shrinkage towards zero.  

The use of AICc and related ICs is subject to issues of boundary effects and 

uncertainty in the estimation of degrees of freedom in models that contain random 

effects (Bolker et al. 2009). Such estimation of degrees of freedom for random 

effects is not straightforward, and although there is no clear consensus approach, the 

default method adopted in the packages used here (i.e. using the minimum of 1 d.f 

for each random effect in the model) is potentially dubious (Bolker et al. 2009). 

However, as these issues also apply to alternative methods, such as likelihood ratio 

testing, the AICc approach was still considered to be the most appropriate option for 

the analysis presented here.  

3.2.6. Non-independence of provenances 

A common shortcoming of studies of intraspecies populations is that the populations 

are treated as statistically independent entities. This is unlikely to be true, as 

populations that are genetically similar through gene-flow or phylogeographic 

history, can be expected to co-vary in traits independently of any population-specific 

effects (Stone et al. 2011). Where the effects of non-independence are severe, failure 

to address this statistically will increase error rates in the inference of population-

specific effects.  
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In Chapter 2, this issue was addressed for a sample of 17 provenances with a genetic 

autocorrelation approach. The primary axis of a principle coordinate analysis of data 

from microsatellite markers was used as a linear measure of genetic distance between 

provenances, and this axis (referred to as PCoA) was included as a fixed effect in 

models of phenotypic traits to remove the portion of trait variation explained by 

genealogical correlation. This approach would also be applicable to the present 

study, but microsatellite data was only available for 17 of the 20 study provenances. 

Therefore, all analysis was initially conducted for the subset of 17 provenances, both 

with and without PCoA as an additional fixed effect. While inclusion of PCoA had a 

small effect on parameter estimates, it resulted in little change in the direction or the 

significance of relationships. As the primary intention of the modelling was to reveal 

the nature of important influences, the effect of non-independence of provenances 

was considered to be negligible, and was not accounted for in the analysis of the full 

set of 20 provenances presented here.  

3.2.7. Co-linearity between tree phenotypic traits 

For all trees of the 20 study provenances, the relationship between all pairings of the 

phenotypic traits Budburst, Retention, DBH and Form were investigated by 

modelling individual tree measurements with the corresponding measurement of 

another trait included as a fixed effect, and random effects following format-2 (Table 

3.2). The significance of the relationship was assessed by two means: firstly by 

examination of 95% confidence intervals for the slope parameter of the fixed effect, 

as derived from a posterior distribution of 50,000 samples generated using Markov 

Chain Monte Carlo methods with the mcmcsamp and pvals.fnc functions from the 

lme4 and LanguageR R packages respectively (Baayen 2011, Bates et al. 2011); and 

secondly by comparison of corrected Akaike information criterion (AICc) scores 

between models with and without the second trait as a fixed effect. 

For trees where measures of spring bud-burst phenology were available from both 

1995 and 2009, the relationship between these measures was investigated by 

modelling Budburst2009 with the corresponding measurements of Budburst included 

as a fixed effect, and random effects following Format-2 (Table 3.2). Again, the 
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significance of the relationship was assessed through the estimation of the fixed 

effect slope parameter and its confidence intervals, and through comparison of AICc 

between models with and without the fixed effect.  

3.2.8. Variation in abundance of individual gall-types 

To assess variation in the abundance of individual gall-types between tree 

provenances, measurements of galls per shoot were modelled with provenance 

included as a fixed effect, and random effects following Format-4 (Table 3.2). This 

was conducted separately for each gall-type for each of the two survey years. Models 

with and without the fixed effect were compared by examination of AICc scores and 

the evidence ratio between them. Where estimation of an additional parameter for 

each provenance (i.e. when provenance was included as a fixed effect) resulted in an 

improved model despite the penalty for additional complexity, provenance was 

considered to explain a substantial amount of the variation in gall abundance. 

For those gall-types that showed a substantial provenance effect in at least one of the 

survey years, the relationship with tree phenotypic traits was investigated through 

multi-model inference by modelling of gall counts with various predictor variables 

included as fixed effects (these predictors included Budburst, Retention, DBH, Form, 

the interactions between non co-linear pairings of these, Budburst2 and Retention2) 

with random effects following Format-4 (Table 3.2). Global models containing all 

the predictors were standardised to allow for model averaging and comparison of 

their relative effects using the stdz.model function of the arm R package (Gelman 

2008, Gelman et al. 2011, Grueber et al. 2011), and all possible sub-models were 

tested and ranked by their AICc scores using the dredge function of the MuMIn 

package in R (Barton 2011). Model averaged estimates of standardized fixed effect 

slope parameters with their standard errors and confidence intervals were obtained by 

natural averaging using the model.avg function of the MuMIn R package. Predictors 

were considered to be of significance where the 95% confidence intervals of their 

slope parameter estimate did not include zero. Significant relationships were 

visualised and effect ranges estimated using the plotLMER.fnc function of the 
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LanguageR R package (Baayen 2011), as applied to un-standardized models 

containing all significant predictors.     

3.2.9. Community level variation 

To assess variation in community richness, a measure was obtained for each tree in 

each survey season as the number of gall-types encountered across all 10 shoots. As 

for the analysis of individual gall-types, variation in richness between provenances 

was assessed by comparing models with and without provenance as a fixed effect, 

with random effects following Format-3 (Table 3.2). Relationships with the selected 

phenotypic predictor variables were also investigated through multi-model inference, 

as described for gall-types but with random effects following Format-3 (Table 3.2). 

Variation in community structure (i.e. species identity and relative abundance) was 

assessed using non-metric multidimensional scaling (NMDS), an ordination 

technique that allows variation in community data to be summarised along one or 

more axes (Whitham et al. 2006). To avoid the difficulty of applying NMDS to units 

(i.e. shoots or trees) where all species were absent, or the bias of completely 

excluding such units, the gall count data were summed for each parcelle in each 

survey season to give values for the total number of galls of each type from 120 

shoots (10 from each of 12 trees). Analysis was performed using the metaMDS 

function of the Vegan R package (Oksanen et al. 2011), with Wisconsin double 

standardization of large values, a Bray-Curtis dissimilarity index, and 50 random 

starts (a method for reducing risk of convergence on local optima), to obtain a single 

axis of variation. This axis is thus a linear representation of community similarity, 

and parcelles that have similar values support similar communities. Variation in 

community structure between provenances was assessed as for species richness and 

gall abundances, by comparing models with and without provenance as a fixed 

effect, with random effects following Format-1 (Table 3.2). The relationship with 

phenotypic predictor variables was investigated by averaging the relevant phenotypic 

traits across study trees within each parcelle, and modelling NMDS scores with 

parcelle averages of the predictor variables included as fixed effects. Multi-model 

inference was conducted as for gall counts and species richness data.    
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3.3. Results 

3.3.1. Co-linearity of phenotypic traits 

Modelling of tree phenotypic traits against one another indicated negative co-

linearity between Budburst and Retention, and positive co-linearity between 

Retention and DBH, and DBH and Form. These relationships were supported by both 

methods of inference (i.e. assessment of confidence intervals for fixed effect slope 

parameters, and comparison of AICc for models with and without one trait as a fixed 

effect) and in both directions of pairing (i.e. when either of a pair was the response 

variable, see Table 3.3). When Form was modelled with Budburst as a fixed effect, 

95% confidence intervals for the slope parameter of Budburst were both less than 

zero, suggesting some negative co-linearity between these traits. Similarly, when 

DBH was modelled with Budburst as a fixed effect, the model had a slightly lower 

AICc score than the model without DBH, indicating some co-linearity. However, as 

these relationships were not supported by the alternate means of inference, or by 

either means when the pairings were reversed (Table 3.3), the co-linearity between 

these pairs of traits was considered to be negligible. There was no indication of co-

linearity between Retention and Form. As co-linearity was considered to limit the 

relevance of pair-wise interaction terms as predictor variables, only interaction terms 

for Budburst and Form, Budburst and DBH, and Retention and Form were included 

as predictors in the modelling of gall abundance and community data.    

For a sample of 582 trees, measurements of spring bud-burst phenology could be 

compared between 2009 and 1995. Modelling of the measurements from 2009 

(Budburst2009) against those from 1995 (Budburst) indicated strong positive co-

linearity, supported by both means of inference (Table 3.3 and Figure 3.2). This 

result indicates a general consistency in relative phenology between 1995 and 2009. 
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Table 3.3. Summary results for modelling of relationships between phenotypic traits, showing the 
pair-wise combinations of response and predictor variables, estimates of the slope parameter for 
predictor variables with 95% confidence intervals, and the difference in AICc score between models 
with and without the predictor variables (DiffAICc). Estimates of Slope or DiffAICc that suggested co-
linearity are highlighted in bold font.  
 
    

Response Predictor Slope lower 
95% CI 

Upper 
95% CI 

DiffAICc 

Budburst Retention -0.0793 -0.1295 -0.042 -4.935 
Retention Budburst -0.0766 -0.1173 -0.0401 -6.846 
Budburst DBH 0.0008 -0.0002 0.00021 13.043 

DBH Budburst 0.9627 1.113 -0.4231 -0.78 
Budburst Form -0.0443 -0.0952 0.0017 4.298 

Form Budburst -0.0416 -0.0762 -0.008 2.746 
Retention DBH 0.0029 0.0019 0.0039 -15.976 

DBH Retention 5.023 3.429 6.545 -38.89 
Retention Form 0.0224 -0.0206 0.0693 6.772 

Form Retention 0.0226 -0.0114 0.0614 6.672 
DBH Form 3.943 2.259 5.851 -18.3 
Form DBH 0.0022 0.0013 0.0031 -5.93 

      
Budburst2009 Budburst 0.1756 0.122 0.2539 -25.331 

 

 

 

Figure 3.2. Illustration of the estimated relationship (solid line) with 95% confidence intervals 
(dashed lines) between spring bud-burst phenology for the same 582 trees in 2009 and 1995. 
Estimates of the slope parameter and its confidence intervals are provided in Table 3.3. Axis units are 
on an ordinal scale from closed buds (0) to fully developed leaves (5 - scoring methodology is 
described in detail in Appendix 2.1).   
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3.3.2. Influence of tree provenance and phenotype on gall abundances 

During the four survey seasons approximately 725,000 galls were recorded, 

including seven sexual generation and 13 asexual generation gall-types, and 

representing 15 different gall-former species (Table 3.4). The total counts of 

individual gall-types varied dramatically, ranging from just 4 galls of the rarest type 

(the asexual generation of Cynips longiventris) to over 330,000 of the most common 

(the asexual generation of Neuroterus anthracinus). The abundance of individual 

gall-types also varied substantially between survey years, with seven types exhibiting 

a greater than 10 fold difference. More than 1000 galls were recorded in at least one 

year for 11 of the gall-types.  

Modelling of the abundance of individual gall-types indicated that provenance 

explained a substantial amount variation in at least one year for 10 of the 20 types (a 

total of 15 cases), as inferred where the inclusion of provenance as a fixed effect 

resulted in an improved model (i.e. with a lower AICc score, see Tables 3.4). The 

range of differences in provenance mean galls per shoot varied considerably between 

these gall-types, from 0.22 for several types, to 20.8 for asexual generation N. 

anthracinus in autumn 2008 (Table 3.5). The most local provenance to the trial site 

(provenance 217) had the highest mean gall abundance for only one of the 15 cases. 

All cases of a substantial provenance effect occurred where more than 1000 galls of a 

particular type were found in a season. The degree of model improvement through 

inclusion of provenance as a fixed effect ranged from being very slight for asexual 

generation N. numismalis in 2009 (i.e. model with fixed effect was 1.2 times more 

likely to be better than the model without), to being very large for sexual generation 

N. quercusbaccarum in 2008 (i.e. model with fixed effect was 1.2 x 1039 times more 

likely to be better than the model without, Table 3.4).  

For the gall-types that showed a substantial provenance effect in at least one year, 

further modelling with combinations of the tree phenotype predictor variables (i.e. 

Budburst, Retention, DBH, Form, Budburst2, Retention2, Budburst:DBH, 

Budburst:Form, Retention:Form) revealed best approximating models that 
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performed better than those without any fixed effects in all cases (see Table 3.6). The 

degree of improvement in model performance ranged from being very slight for 

asexual generation Cynips divisa in autumn 2009 (i.e. best approximating model was 

1.12 times more likely to be better than model without), to being very large for 

sexual generation N. quercusbaccarum in 2008 (i.e. best approximating model was 

1.13 x 1022 times more likely to be better than the model without). Various 

significant relationships between tree phenotypes and the abundance of particular 

gall types were apparent, as inferred where the 95% confidence intervals for the 

slope parameter of a predictor did not include zero. Details of the parameter 

estimates for these significant predictor variables are provided in Table 3.6, and plots 

of the relationships are shown in Figure 3.3. 

Earlier spring bud-burst (i.e. higher Budburst scores) corresponded with increasing 

abundance of the sexual generation gall-types of N. anthracinus in 2008, N. 

numismalis in 2009, and N. quercusbaccarum in both 2008 and 2009, with trees of 

the earliest bud-burst phenology supporting between 15 and 115% more galls per 

shoot than those with the latest phenology (Figure 3.3). An opposite relationship was 

observed for asexual generation gall-types N. anthracinus in 2009 and N. 

quercusbaccarum in 2008 and 2009, with trees of the earliest bud-burst phenology 

supporting between 40 and 65% less galls per shoot than those with the latest 

phenology (Figure 3.3). For the sexual generation galls of N. numismalis in 2009, the 

relationship appeared to involve a positive interaction with Form, with the magnitude 

of the positive correlation between gall abundance and Budburst being greatest 

where the values of Form were high (Figure 3.3b). For the asexual generation galls 

of N. anthracinus, a significant positive parameter estimate for the squared 

transformation of Budburst indicated a curved relationship, with gall abundance 

decreasing towards a minimum at a Budburst score between 3 and 4 (i.e. towards the 

higher end of its range), before increasing again slightly (Figure 3.3d).              

Later autumn leaf-fall (i.e. higher Retention score) corresponded with increasing 

abundance of the asexual generation gall-types of N. albipes in 2008, and N. 

quercusbaccarum in both 2008 and 2009, with trees of the latest leaf-fall phenology 

supporting between 60 and 145% more galls per shoot than those with the earliest 
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phenology (Figure 3.3). A curved relationship with sexual generation N. 

quercusbaccarum in 2008 was also indicated a significant positive parameter 

estimate for the squared transformation of Retention, with gall abundance declining 

slightly to either side of a maximum between a Retention score of between 1 and 2.    

Greater tree diameter (DBH) corresponded with decreasing abundance of the sexual 

generation gall-types of N. anthracinus and N. quercusbaccarum in 2008, and the 

asexual generation gall-type of N. quercusbaccarum in 2008, with trees of the 

greatest diameter supporting between 20 and 65% less galls than those with the 

smallest diameter. The opposite relationship was observed for the sexual generation 

gall-types of N. anthracinus and N. quercusbaccarum in 2008, and the asexual 

generation of N. albipes in 2009 with trees of the greatest diameter supporting 

between 45 and 70% more galls than those of the smallest diameter (Figure 3.3).      
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Table 3.4. Summary results for modelling of gall-type abundances in relation to provenance, showing the difference in AICc scores (DiffAICc) and the evidence ratios 
(ER) between models with and without provenance as a fixed effect, the number of galls (# G) and the mean number of galls per shoot (µ Gps) recorded in each year, 
and the ratios of gall numbers between 2008 and 2009. Values of DiffAICc that indicated a substantial provenances effect are highlighted in bold font.      

 2008  2009   

Gall-type DiffAICc ER # G µ Gps  DiffAICc ER # G µ Gps  Ratio 
G2008 : G2009 

            
Andricus inflator (Sex) 35.17 4.3 x 107 52 2.2 x 10-3  38.05 1.8 x 108 0 0.00  52 : 0 

Andricus testacipes (Sex) 21.10 3.8 x 104 973 0.04  9.98 147 2291 0.10  1 : 2.4 
Biorhiza pallida (Sex) 36.57 8.7 x 107 13 5.4 x 10-4  35.91 6.3 x 107 10 4.2 x 10-4  1.3 : 1 

Neuroterus albipes (Sex) 21.64 5.0 x 104 822 0.03  -6.67 28 5828 0.24  1 : 7.1 
Neuroterus anthracinus (Sex) -20.49 2.8 x 104 14278 0.59  -14.55 1400 7411 0.31  1.9 : 1 
Neuroterus numismalis (Sex) 26.42 5.5 x 105 1154 0.05  -55.90 1.4 x 1012 17486 0.73  1 : 15.1 

Neuroterus quercusbaccarum (Sex) -179.98 1.2 x 1039 5808 0.24  -126.70 3.3 x 1027 7834 0.33  1 : 1.3 
            

Andricus callidoma (Asex) 36.99 1.1 x 108 4 2.1 x 10-4  34.59 3.2 x 107 45 1.9 x 10-3  1 : 11.3 
Andricus fecundatrix (Asex) 25.45 3.3 x 105 334 0.02  -39.75 4.3 x 108 1103 0.05  1 : 3.3 
Andricus glandulae (Asex) 35.45 4.9 x 107 83 4.3 x 10-3  29.01 2.0 x 106 335 0.01  1 : 4 

Andricus inflator (Asex) 33.90 2.3 x 107 44 2.3 x 10-3  36.91 1.0 x 108 3 1.2 x 10-4  14.7 : 1 
Andricus kollari (Asex) 37.32 1.2 x 108 2 1.0 x 10-4  33.84 2.2 x 107 43 1.8 x 10-3  1 : 21.5 

Andricus solatarius (Asex) 20.83 3.3 x 104 528 0.03  15.19 2000 726 0.03  1 : 1.4 
Cynips divisa (Asex) -10.74 215 1901 0.10  28.27 1.4 x 106 184 7.7 x 10-3  10.3 : 1 

Cynips longiventris (Asex) 37.60 1.5 x 108 1 5.2 x 10-5  37.14 1.2 x 108 3 1.3 x 10-4  1 : 3 
Cynips quercusfolii (Asex) 32.70 1.3 x 107 197 0.01  20.98 3.6 x 104 456 0.02  1 : 2.3 
Neuroterus albipes (Asex) -97.41 1.4 x 1021 45771 2.38  -138.98 1.5 x 1030 27531 1.15  1.7 : 1 

Neuroterus anthracinus (Asex) -49.31 5.1 x 1010 313507 16.33  -10.23 170 23820 0.99  13.2 : 1 
Neuroterus numismalis (Asex) 9.99 148 12194 0.64  -0.34 1.2 12124 0.51  1 : 1 

Neuroterus quercusbaccarum (Asex) -114.26 6.5 x 1024 123708 6.44  -134.74 1.8 x 1029 94830 3.95  1.3 : 1 
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Table 3.5. The minimum, median, and maximum values of mean number of galls per shoot (µ Gps) by provenance for gall-types where a substantial provenance effect 
was observed in a least one survey year (i.e. where inclusion of provenance as a fixed effect resulted in a lower model AICc score, see Table 3.4, highlighted here in 
bold font). Provenance codes follow Table 3.1.      

Gall‐type 
2008   2009  

Min         Median    Max 
Range 

  Min    Median    Max 
Range 

Prov  µ Gps Prov µ Gps Prov µ Gps    Prov µ Gps Prov µ Gps Prov µ Gps

Neuroterus albipes 
(Sex) 233 0.01  194 0.04  217 0.07 0.06  255 0.12  248 0.23  217 0.34 0.22 

Neuroterus 
anthracinus (Sex) 249 0.26  257 0.62  245 0.77 0.51  249 0.18  225 0.29  233 0.46 0.28 

Neuroterus 
numismalis (Sex) 255 0.03  230 0.05  201 0.08 0.05  255 0.31  252 0.62  248 1.57 1.21 

Neuroterus 
quercusbaccarum 

(Sex) 
185 0.12  250 0.22  245 0.41 0.29  255 0.21  201 0.31  248 0.57 0.36 

Andricus 
fecundatrix (Asex) 

184, 
248 0.00  211 0.01  185 0.04 0.04  184, 245 

248, 249 0.00  237 0.03  255 0.22 0.22 

Cynips divisa 
(Asex) 249 0.02  217 0.10  185 0.24 0.22  184,233 

248 0.00  245 0.01  185 0.02 0.02 

Neuroterus albipes 
(Asex) 248 0.23  252 2.41  185 4.04 3.81  249 0.22  210 0.99  185 3.40 3.18 

Neuroterus 
anthracinus (Asex) 249 3.03  194 17.60  225 23.83 20.8  249 0.10  179 0.99  185 2.18 2.08 

Neuroterus 
numismalis (Asex) 233 0.01  217 0.40  185 2.01 2.0  233, 248 0.00  211 0.22  252 1.75 1.75 

Neuroterus 
quercusbaccarum 

(Asex) 
233 0.91  211 6.79  255 10.55 9.64  248 0.21  225 4.22  255 8.36 8.15 
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Table 3.6. Summary results for modelling of gall-type abundances in relation to phenotypic predictor variables, showing the difference in AICc scores (DiffAICc) and 
the evidence ratios (ER) between the best approximating models and those without any fixed effects. Estimates of slope parameters, their standard errors (SE), and 
confidence intervals, are presented for significant relationships (i.e. where 95% confidence intervals did not include zero). ‘NS’ indicates that no significant 
relationships were identified. The table is continued on the following page.  
   
 

 

 

 

 

 

 

 

 

 

 

 

Gall-type Year DiffAICc ER Predictor Estimate SE Lower 
95% CI 

Upper 
95% CI 

         

Neuroterus albipes (sex) 
2008 -3.97 7.27 NS     

        

2009 -1.19 1.81 NS     
         

Neuroterus anthracinus (sex) 
2008 -5.48 15.48 Budburst 0.090 0.045 0.001 0.178 

DBH -0.086 0.036 -0.158 -0.015 
        

2009 -12.28 463.35 DBH 0.110 0.037 0.038 0.182 
         

Neuroterus numismalis (sex) 

2008 -2.78 4.01 NS     
        

2009 -53.21 
 Budburst 0.398 0.059 0.283 0.513 

3.58 x 1011 DBH 0.125 0.049 0.028 0.221 
 Budburst : Form 0.196 0.093 0.015 0.378 

         

Neuroterus quercusbaccarum 
(sex) 

2008 -101.55 

 

1.13 x 1022 
Retention2 -0.284 0.130 -0.538 -0.029 
Budburst 0.481 0.080 0.325 0.637 

DBH -0.159 0.064 -0.284 -0.034 
Retention -0.149 0.072 -0.290 -0.007 

        

2009 -40.81 7.26 x 108 Budburst 0.249 0.053 0.145 0.353 
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Table 3.6. Continued. 
 
 
 
 
 
 

Gall-type Year DiffAICc ER Predictor Estimate SE Lower 
95% CI 

Upper 
95% CI 

         

Andricus fecundatrix (asex) 
2008 -2.20 3.00 NS     

        

2009 -24.17 1.77 x 105 NS     
         

Cynips divisa (asex) 
2008 -18.42 1 x 103 NS     

        

2009 -0.22 1.12 NS     
         

Neuroterus albipes (asex) 
2008 -12.59 541.86 Retention 0.228 0.071 0.089 0.367 

        

2009 -11.12 259.82 DBH 0.152 0.062 0.030 0.274 
         

Neuroterus anthracinus 
(asex) 

2008 -10.50 190.57 NS     
        

2009 -18.73 1.17 x 104 Budburst2 0.331 0.130 0.077 0.585 
Budburst -0.413 0.088 -0.586 -0.240 

         

Neuroterus numismalis 
(asex) 

2008 -14.62 1.50 x 103 NS     
        

2009 -14.15 1.18 x 103 NS     
         

Neuroterus quercusbaccarum 
(asex) 

2008 -68.85 8.92 x 1014 
Budburst -0.500 0.109 -0.713 -0.287 

DBH -0.355 0.080 -0.510 -0.199 
Retention 0.492 0.088 0.319 0.664 

       

2009 -69.37 
1.16 x 1015 Budburst -0.551 0.081 -0.709 -0.392 

Retention 0.290 0.070 0.154 0.427 
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Figure 3.3. Graphical illustration of significant relationships between gall abundance per shoot and 
phenotypic predictor variables for (a) Neuroterus albipes, (b) N. anthracinus, (c) N. numismalis, (d) 
N. quercusbaccarum. The estimated range of the response variable (y-axis) across the observed range 
of a predictor variable (x-axis) is provided as a value, and as a percentage of y at the minimum 
observed value of x. Dashed vertical lines indicate the mean predictor value for the provenance most 
local to the trial site (i.e. provenance 217, Bercé). Values on the right axis of a plot involving an 
interaction indicate the values of the second interaction term at which the relationship between the 
first term and the response are plotted.    
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3.3.3. Influence of tree provenance and phenotype on gall community 
structure 

Modelling of the gall-type richness data indicated that provenance explained a 

substantial amount of variation in spring 2008, autumn 2008, and autumn 2009, but 

not in spring 2009, as inferred where the inclusion of provenance as a fixed effect 

resulted in an improved model (i.e. with a lower AICc score). The degree of model 

improvement was slight for spring 2008 (i.e. the model with fixed effect was 2.74 

times more likely to be better than the model without), but was large for both autumn 

2008 and 2009 (i.e. models with the fixed effects were respectively 1.5 x 107 and 2 x 

1010 times more likely to be better than the models without, see Table 3.6). The range 

of differences in provenance mean gall-types per tree were greater in the autumn 

seasons (2.11 and 2.87) than in spring (0.97 and 0.89). The identity of the 

provenance with the lowest and highest mean gall-types per tree was the same in 

both autumn seasons (provenance 248 from Klostermarienberg in Austria, and 

provenance 185 from Blakeney in the UK, Table 3.6).  

Further modelling with combinations of the tree phenotype predictor variables 

revealed models that performed moderately better than those without any fixed 

effects for all four seasons (see Table 3.7). Various significant relationships were 

apparent, as inferred where the 95% confidence intervals for the slope parameter of a 

predictor did not include zero. Details of the parameter estimates for these significant 

predictor variables are provided in Table 3.7, and plots of the relationships are shown 

in Figure 3.4.  

Earlier spring bud-burst (i.e. high Budburst score) corresponded with higher gall-

type richness in spring 2008, with trees of the earliest bud-burst phenology 

supporting 15% more gall-types than trees with the latest phenology (Figure 3.4a). 

This relationship was reversed in autumn 2009, with trees of the earliest bud-burst 

phenology supporting 15% less gall-types than those with the latest phenology 

(3.4d). Later autumn leaf-fall (i.e. high Retention scores) corresponded with 

increasing gall-type richness in autumn 2008, with trees of the latest leaf-fall 

phenology supporting 25% more gall-types than those with the earliest phenology 

(Figure 3.4c). Greater tree diameter (i.e. higher DBH) corresponded with increasing 
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gall-type richness in spring 2009, with trees of the greatest diameter supporting 20% 

more gall-types than those with the smallest diameter (Figure 3.4b).  
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Table 3.6. Summary results for modelling of gall-type richness in relation to provenance for each of the four survey seasons, showing the difference in AICc scores 
(DiffAICc) and the evidence ratios (ER) between models with and without provenance as a fixed effect, the number of gall-types recorded (# GT), and the mean number 
of gall-types per tree (µ GT) across all trees and within the minimum, median, and maximum provenances. Provenance codes follow Table 3.1.  
 
 
 
 
 
 

Season DiffAICc ER # GT µ GT 
Min  Median   Max Range 

µ GT Prov µ GT  Prov µ GT  Prov µ GT 

Spring 2008 -2.01 2.74 7 2.28 184 1.88  194 2.27  245 2.85 0.97 

Spring 2009 11.6 330 6 3.63 249 3.10  211 3.64  210 3.99 0.89 

Autumn 2008 -33.05 1.5 x 107 13 3.66 248 2.25  225 
257 3.79  185 4.36 2.11 

Autumn 2009 -47.43 2.0 x 1010 13 3.09 248 1.27  181 3.30  185 4.14 2.87 
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Table 3.7. Summary results for modelling of gall community response variables in relation to 
phenotypic predictor variables, showing the difference in AICc scores (DiffAICc) and the evidence 
ratios (ER) between the best approximating models and those without any fixed effects. Estimates of 
slope parameters, their standard errors (SE), and confidence intervals, are presented for significant 
relationships. ‘NS’ indicates that no significant relationships with predictor variables were identified.  
 

 
 

 

 

Figure 3.4. Graphical illustration of significant relationships between gall-type richness per tree and 
phenotypic predictor variables in each of the four survey seasons (a-d). The estimated range of the 
response variable (y-axis) across the observed range of a predictor variable (x-axis) is provided as a 
value, and as a percentage of y at the minimum observed value of x. Dashed vertical lines indicate the 
mean predictor value for the provenance most local to the trial site (i.e. provenance 217, Bercé).  
 

Response 
variable Season DiffAICc ER Predictor Estimate SE Lower  

95% CI 
Upper   

95% CI 
         

Gall-type 
richness 

Spring 
2008 -7.87 51.2 Budburst 0.128 0.040 0.049 0.207 

        
Spring 
2009 -3.76 6.57 DBH 0.054 0.024 0.007 0.101 

        
Autumn 

2008 -14.6 1450 Retention 0.107 0.030 0.048 0.165 

        
Autumn 

2009 -11.6 323 Budburst -0.097 0.032 -0.160 -0.035 

         

NMDS 
score 

Spring 
2008 -8.89 85.3 

DBH 0.077 0.039 0.000 0.155 
Retention 0.088 0.037 0.016 0.161 

        
Spring 
2009 -0.45 1.25 NS     

        
Autumn 

2008 -15.5 2310 
Budburst 0.115 0.051 0.016 0.215 

Form -0.091 0.045 -0.179 -0.003 
        

Autumn 
2009 -24.0 1.59 

x 105 
Budburst 0.239 0.065 0.112 0.367 

DBH 0.139 0.054 0.033 0.245 
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The parcelle NMDS scores are a measure of how similar – in terms of species 

composition and relative abundance – a particular parcelle is to others within the 

sample. As such, it is the difference in scores between parcelles rather than the scores 

themselves that are of interest. Significant trends in relation to predictors such as 

provenance or mean tree phenotype indicate that parcelles with similar predictor 

values support gall communities that are similar in their species composition and 

relative abundance.   

Modelling of parcelle NMDS scores indicated that provenance explained a 

substantial amount of variation in autumn 2008, as inferred where the inclusion of 

provenance as a fixed effect resulted in an improved model (i.e. with a lower AICc 

score, Figure 3.5d). The inclusion of provenance as a fixed effect did not improve 

models for spring 2008, spring 2009, or autumn 2008 (Figure 3.5a-c). Further 

modelling with combinations of the tree phenotype predictor variables did however 

reveal models that performed better than those without any fixed effects for all four 

seasons (see Table 3.7). Significant relationships with NMDS scores were apparent 

for: leaf-fall phenology and tree diameter in spring 2008; bud-burst phenology and 

tree shape in autumn 2008; and bud-burst phenology and tree diameter in autumn 

2009; as inferred where the 95% confidence intervals for the slope parameter of a 

predictor did not include zero. Details of the parameter estimates for these significant 

predictor variables are provided in Table 3.7, and plots of the relationships are shown 

in Figure 3.5.  
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Figure 3.5. Graphical illustration of the relationships between parcelle NMDS score and tree 
provenance (box and whisker plots), and significant relationships with phenotypic predictor variables 
in each of the four survey seasons (a-d). The difference in AICc score (DiffAICc) between models of 
NMDS scores with and without provenance as a fixed effect are shown in the box and whisker plots, 
and provenances are ranked in ascending order of mean NMDS score. Provenance codes follow Table 
3.1.    
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3.4. Discussion 

Does host-tree provenance influence gall-type abundance? 

The abundance of twenty gall-types was assessed in each of two years, and 

provenance explained a substantial amount of the variation in abundance in 15 of 

these 40 cases. If only the more abundant cases are considered (i.e. where more than 

1000 galls of a particular type were recorded within a season), then provenance 

explained a substantial amount of the variation in 15 out of 18 cases. These results 

suggest that host-tree provenance has an important influence on gall-type abundance.  

Which aspects of tree phenotype are involved and is there support for the plant-

stress, plant-vigour, and synchronisation hypotheses? 

Various significant relationships with tree phenotypic traits were apparent, 

potentially indicating the mechanisms that may underlay the effect of provenance. 

Spring bud-burst phenology appeared to be particularly influential, correlating with 

gall abundance in 7 of the 15 cases where provenance had an effect. Tree diameter 

also appeared to be influential, correlating with abundance in 6 cases. Autumn leaf-

fall phenology correlated with abundance in 4 cases. The Form trait that was 

considered to reflect the degree of tree damage did not appear to be influential, 

correlating with gall-type abundance in only one case as part of an interaction with 

spring bud-burst phenology.  

These significant relationships with various tree phenotypic traits provide mixed 

support for the hypotheses outlined in section 3.1.2. The positive relationships 

between tree diameter and the abundance of sexual generation N. anthracinus in 

2009, sexual N. numismalis in 2009, and asexual N. albipes in 2009, are consistent 

with the expectation from the plant-vigour hypothesis that gallwasps should prefer or 

perform better on trees that are growing most vigorously. However, the negative 

relationships between tree diameter and the abundance of sexual generation N. 

anthracinus in 2008, and with both sexual and asexual generations of N. 

quercusbaccarum in 2008 are inconsistent with the vigour hypothesis. Furthermore, 

the observation of both positive and negative relationships for sexual and asexual 

generation gall-types is inconsistent with the expectation that the vigour hypothesis 
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should apply in particular to flush-feeding sexual generation gall-types. Perhaps 

unsurprisingly given their contrasting expectations, support for the plant-stress 

hypothesis was also mixed. The three cases of negative relationships with tree 

diameter were consistent with expectation that gallwasps should prefer or perform 

better on trees that are most stressed, while the three cases of positive relationships 

were inconsistent with this expectation. Again, the mixed relationships within both 

sexual and asexual gall-types are inconsistent with the further expectation that the 

stress hypothesis should apply in particular to senescence-feeding asexual generation 

gallwasps. 

Despite the numerous relationships involving spring bud-burst and autumn leaf-fall 

phenology, there was poor support for the synchronisation hypothesis and its 

expectation that gallwasps should prefer or perform better on trees with a particular 

optimum phenology. Only for the sexual generation of N. quercusbaccarum in 2008 

was an optimal relationship with autumn leaf-fall phenology suggested, and even 

then a non-optimal relationship with spring bud-burst phenology was also apparent. 

The remaining significant relationships were generally constant, with no apparent 

optimum within the studied range of the phenological trait. Later leaf-fall phenology 

corresponded with increasing abundance of asexual generation N. albipes in 2008, 

and asexual N. quercusbaccarum in both 2008 and 2009. Relationships with bud-

burst phenology contrasted between sexual and asexual generations, with earlier bud-

burst corresponding with higher abundance of sexual generation N. anthracinus in 

2008, sexual N. numismalis in 2009, and sexual N. quercusbaccarum in both 2008 

and 2009, but with lower abundance of asexual N. anthracinus in 2009 and asexual 

N. quercusbaccarum in both 2008 and 2009.  

How are the richness and structure of gall communities also influenced? 

Provenance explained a substantial amount of variation in gall-type richness in three 

of the four survey seasons, and community similarity in one of the four seasons, 

indicating that provenance can have an important influence on these community 

parameters. Spring bud-burst phenology again appeared to be the most influential 

phenotypic trait, having significant relationships with gall-type richness in two of the 

three cases of a substantial provenance effect, and with community similarity in the 
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one case. Tree diameter was involved in a significant relationship with gall-type 

richness in one of the three cases, and with community similarity in the one case. 

Autumn leaf-fall phenology was involved in a significant relationship with gall-type 

richness in one of the three cases. 

The significant relationships between gall-type richness and the phenological traits 

again appeared to be linear rather than curved, with no indication of an optimum 

within the observed phenological range, and therefore did not support the 

synchronisation hypothesis. The direction of relationships were the same as for gall 

abundances, with earlier spring bud-burst phenology corresponding with higher 

richness of sexual generation gall-types but lower richness of asexual generation 

gall-types, and later leaf-fall phenology corresponding with higher richness of 

asexual generation gall-types. Although not influential in the seasons when an effect 

of provenance was detected, a significant positive relationship between sexual 

generation richness and tree diameter was identified in one season. The direction of 

this relationship is consistent with the expectation of the plant vigour hypothesis, that 

flush-feeding sexual generation gallwasps will be most abundant on vigorous trees.   

How consistent are these patterns? 

Although numerous relationships with tree provenance and phenotype were detected 

at certain times, these relationships were not particularly consistent between years. 

The abundance of only 5 gall-types – sexual generation N. anthracinus and N. 

quercusbaccarum, and asexual generation N. albipes, N. anthracinus, and N. 

quercusbaccarum - varied substantially between provenances in both survey years, 

and only for 3 of these – sexual generation N. anthracinus, and both sexual and 

asexual N. quercusbaccarum - were significant relationships with the same 

phenotypic trait detected in both years. Similarly, variation in gall gall-type richness 

and community similarity between provenances was considered to be substantial in 

spring 2008 and autumn 2009 respectively, but not in spring 2009 and autumn 2008. 

There are several possible explanations for this lack of consistency: (1) the observed 

relationships are false positives (i.e. type I errors) and the corresponding null 

observations represent the true pattern; (2) the relationships are consistent between 

years but are not always detected due to a lack of statistical power (i.e. type II error); 
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or (3) that the relationships are temporally variable, applying within certain years but 

not others. Although it is possible that some of the less well supported relationships 

were type I errors, many were so strongly supported that this is an unlikely 

explanation (i.e. evidence ratios indicated that certain approximating models were 

several orders of magnitude more likely to perform better than null models). The 

second scenario is perhaps more likely, as although sampling effort was consistent, 

the number of galls sampled varied dramatically, with 7 of the 20 gall-types showing 

more than a ten-fold difference in overall abundance between years. Given the well 

know relationship between sample size and type II error (Crawley 2007), this would 

lead to disparity in the size of effect that would be considered as significant in 

different years. Where relationships were only significant in one year, parameter 

estimates for the same relationships in the alternate year were generally of the same 

sign, as would be expected under scenario (2). However, there was a notable 

exception to this where abundance of sexual generation N. anthracinus showed a 

significant positive relationship with tree diameter in spring 2008, but a significant 

negative relationship in spring 2009. If neither of these results is erroneous, then this 

represents an extreme case of scenario (3), although it is difficult to conceive the 

mechanism that would explain such a pattern.   

3.4.1. How might Climate Matching affect gallwasp communities? 

Recent projections of climate change within the 21st century indicate that much of the 

UK and Western Europe will experience an increase in temperature and winter 

precipitation, and a decrease in summer precipitation (Giorgi and Coppola 2009, 

Jenkins et al. 2009). Consequently, Climate Matching within this region can be 

expected to involve the introduction of trees from provenances that have experienced 

warmer temperatures, higher winter rainfall and lower summer rainfall, relative to 

trees of local provenance. Given the patterns of local adaptation in relation to 

temperature identified for Q. petraea in Chapter 2, such introduced provenances will 

likely exhibit inherently earlier bud-burst and leaf-fall phenologies. Furthermore, as 

the introduced provenances are expected to be relatively better adapted to the 

forthcoming climate than trees of local provenance, they are likely to exhibit 

relatively higher growth rates and achieve a relatively greater ultimate size (i.e. will 
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be more vigorous). As Climate Matching is a recently developed strategy, the scale at 

which it will be implemented is still to be decided, but it is likely to constitute only 

part of any forest management plan, with introduced provenances being planted 

along side trees of local provenance (Broadmeadow and Ray 2005, Hubert and 

Cottrell 2007). In this context, how might the expected differences in phenology and 

growth between local and introduced provenances affect gallwasp communities?   

From the relationships with bud-burst and leaf-fall phenology observed in this study, 

sexual generation gallwasps generally appear to respond positively to trees with the 

earliest phenology, and would therefore be predicted to favour trees of introduced 

provenances. Conversely, the asexual generations appear to respond negatively 

towards trees with earlier phenology, and would therefore be predicted to favour 

trees of local provenance. It is less straightforward to make predictions with regards 

to tree growth as the relationships with tree diameter identified in this study were 

mixed. Under the plant-stress and plant-vigour hypothesis, a pattern similar to that 

for phenology might be expected, with the flush-feeding sexual generation gallwasps 

favouring the more vigorous trees of introduced provenances, and the senescence-

feeding asexual generations favouring the more stressed trees of local provenance. 

However, support for both of these hypotheses was ambiguous, and while variation 

in growth is considered to be a potentially important influence, the effects of 

differences in growth between introduced and local tree provenances remain unclear. 

If adult female gallwasps are free to disperse between trees of different provenance, 

then Climate Matching may improve the phenological conditions for sexual 

generation gallwasps while maintaining typical conditions for asexual generations, 

potentially resulting in greater overall species abundances and community richness. 

Alternatively, if dispersal is limited (i.e. towards the centre of large single 

provenance stands, and / or where provenances are spatial isolated from one 

another), then gallwasps colonising the introduced provenances may be subject to 

improved phenological conditions for sexual generations but poorer phenological 

conditions for asexual generations, in which case their persistence may depend on 

whether the asexual generations can tolerate these less favourable conditions. Current 

recommendations for the application of Climate Matching advocate mixed planting 
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of matched and local provenances (Broadmeadow and Ray 2005, Hubert and Cottrell 

2007), and if practiced in this way, it is considered unlikely to have a severely 

negative impact on gallwasp communities.              

Further to any effects on gallwasp abundance and diversity, there is the possibility 

that differences in phenotype between local and introduced provenances may 

influence the genetic structure of gallwasp populations. Differentiation within 

species of insect herbivores between patchy resources has been demonstrated at 

various scales, including between host-plant species (Via 1991), between 

neighbouring patches of a single host species (McCauley and Eanes 1987), and 

between individual host trees (reviewed in Mopper 2005). Gallwasps possess several 

traits expected to favour fine-scale differentiation, including sedentary feeding mode, 

and a partially parthenogenetic lifecycle (Mopper 2005), and two recent studies have 

found evidence for local adaptation of gallwasps to individual trees (Egan and Ott 

2007, Tack and Roslin 2010). Climate Matching might therefore be expected to 

increase the genetic structuring of gallwasp populations, with the formation of 

differentiated demes on local and introduced provenances. As migration between 

demes can limit or prevent differentiation (Tack and Roslin 2010), the effect of 

Climate Matching on population structure may depend on the spatial arrangement of 

the trees and might be greatest where introduced provenances are spatially isolated 

from trees of local provenances, i.e. where they are planted in monocultures, rather 

than being intermixed  

3.4.2. Wider relevance 

This study represents the first exploration of how Climate Matching of a forest tree 

species may influence an associated ecological community – a potentially important 

consideration if the strategy, or any other that significantly alters the genetic, 

physical, or spatial structure of tree populations, is to be widely implemented. The 

results presented here, and in the wider literature, lead to the following inferences: (i) 

host-tree provenance can affect the abundance, richness, and community structure of 

gallwasps; (ii) variation in phenology and growth traits are of importance, 

particularly the timing of spring bud-burst; (iii) Climate Matching may differentially 
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effect sexual and asexual gallwasp generations but the overall impact on abundance 

and diversity is unlikely to be severely negative; (iv) phenotypic differences between 

trees of introduced and matched provenances may lead to increased genetic 

structuring of gallwasp populations. What are the wider implications and relevance 

of these results? 

Insect herbivores are often embedded within complex ecological networks, serving 

as hosts to a diversity of parasitoids, predators, and pathogens. Bottom-up influences 

may pass through these networks, with the potential for both direct and indirect 

effects on abundance and diversity of species at higher trophic levels (Price et al. 

1980, Dickson and Whitham 1996, Ode 2006, Bukovinszky et al. 2008, Johnson 

2008, Bukovinszky et al. 2009, Jones et al. 2011b). Oak galls are host to a variety of 

inquiline gallwasps and hymenopteran parasitoids that attack the gall inhabitants, and 

were selected for this study in part because they represent a convenient system for 

investigating multi-trophic interactions (Schönrogge and Crawley 2000, Stone et al. 

2002, and see Chapter 4). Although the effects of Climate Matching on gallwasp 

communities are predicted to be subtle (i.e. not severely negative), they could 

potentially be more severe at higher trophic levels, especially if ecological cues or 

requirements differ. For example, gallwasp species in this study occurred across trees 

with a range of phenologies, and were often most abundant on trees that differed 

substantially from those which they would usually encounter (i.e. the trees of local 

provenance). If inquilines and parasitoids have more specific phenological niches 

than gallwasps, they may be unable to target the galls on introduced provenances, 

and hence would be more negatively influenced by Climate Matching. Data that will 

allow the investigation of such multi-trophic effects of tree provenance on the oak 

gall community have been collected (see Chapter 4), and will be analysed in the near 

future.             

The broad phenological tolerance demonstrated here for gallwasps is in sharp 

contrast to patterns observed for particular free-feeders whose fitness is strongly 

linked to phenological synchrony with host-plants (van Asch et al. 2007, van Asch 

and Visser 2007). This is possibly due to the particularly intricate relationship 

between gall-forming herbivores and their host plants, with gallwasp larvae having 
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the ability regulate their resources and microclimate (Schönrogge et al. 2000a, Stone 

and Schönrogge 2003, Harper et al. 2004), which may increase their tolerance of 

host-plant variation. If so, then the extrapolation of results from gall communities 

could be misleading. Extension of the provenance trial survey approach to include 

additional herbivorous guilds would allow for more thorough evaluation of the 

community level consequences of Climate Matching, and would also further 

understanding of how such communities may vary in their resilience to 

environmental change. 

.       
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Chapter 4 – Assessing the taxonomy of an oak 
gall community with DNA barcodes 

4.1. Introduction 

Interaction networks involving insect parasitoids and their hosts are popular systems 

for investigating the ecological and evolutionary forces that structure complex 

communities. In recent years their use has led to fresh insight into the structuring 

properties of indirect interactions (Morris et al. 2004, Tack et al. 2011), the 

community level consequences of biological invasions (Schönrogge and Crawley 

2000, Henneman and Memmott 2001) and the hidden functional effects of habitat 

modification (Tylianakis et al. 2007). Species level taxa are usually the fundamental 

unit of these networks, and their quality is thus dependent on accurate species level 

identification. Unfortunately, obtaining species level accuracy may be a far from 

trivial task as insect parasitoids suffer particularly from the taxonomic impediment in 

terms of both the quantity and quality of existing species descriptions. As few as 1% 

of global parasitoid species have so far been described (Godfray 1994), and the 

inaccuracy of parasitoid species taxa based on morphology have been estimated at 

approximately 25% (Smith et al. 2008, Smith et al. 2011). If unresolved, taxonomic 

error could be a major hindrance to the study of host-parasitoid networks. 

The vast majority of recognised species level taxa were described on the basis of 

differences in morphological characters (henceforth termed ‘morpho-species’), but 

there is a growing appreciation that such taxa may be discordant with modern species 

concepts that view ‘existence as a separately evolving meta-population lineage’ as 

the principal property of species (De Queiroz 2005, 2007). Integrated taxonomic 

approaches, principally involving molecular tools, continue to reveal examples of 

species level taxonomic error including instances of over-splitting, in which variants 

of a single species are classified as two or more, and under-splitting (or ‘lumping’), 

in which two or more distinct species are classified together. Over-splitting may 

result from phenotypic plasticity where intraspecific morphological variation, 

potentially relating to differences between generations or between individuals from 
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different hosts, is incorrectly interpreted as being characteristic of distinct species 

(Stone et al. 2008, Ács et al. 2010, Nicholls et al. 2010). Conversely, lumping may 

result from a lack of distinguishing morphological characters between distinct 

species, or the difficulty in confidently defining such characters, resulting in 

complexes of morphologically cryptic species (see Bickford et al. 2007, and 

Pfenninger and Schwenk 2007 for reviews).       

Taxonomic error may pose various problems for the interpretation of host-parasitoid 

networks. Analysis and comparison of networks often involves the estimation of one 

or more metrics that summarise diversity (e.g. the number and proportions of taxa at 

various trophic levels, Martinez and Lawton 1995), and the distribution of links 

between taxa (e.g. the proportion of realised links (known as connectance), the mean 

number of links per taxon (linkage-density), and the mean number of taxa linked to 

each host taxon (vulnerability) or parasitoid taxon (generality). Many of these 

metrics are available in both qualitative and quantitative forms, although the 

quantitative versions that account for interaction frequencies are generally preferred 

as being less sensitive to sampling effort, and capable of demonstrating structural 

differences that would otherwise be missed (Bersier et al. 2002, Tylianakis et al. 

2007). Taxonomic error within a network would obviously bias the estimation of 

these metrics, with the direction and extent of such bias being dependent on the type 

of error (i.e. splitting or lumping), and on how the trophic links of ‘true’ species 

differs from those of morpho-species. If for example a single true parasitoid species 

is over-split into distinct taxa that differ from one another in their host use, then 

estimates of the number of taxa and the proportion or parasitoid taxa would be 

positively biased, while generality would be negatively biased. Alternatively, if two 

or more host-specialised but morphologically cryptic species are lumped together 

(e.g. Smith et al. 2006), then the opposite bias would apply. Instances where cryptic 

or over-split species are trophically redundant (i.e. not ecologically different from 

their morpho-species) may have less of an effect on network properties, but could 

still impede interpretation of important factors such as population sizes and migration 

rates. Further issues arise when species or networks are compared between sites, as 

erroneous classifications may result in miss-interpretation of species turn-over and 

the ecological role of particular taxa. 
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Molecular techniques have great potential for identifying separately evolving 

lineages (i.e. true species) and are increasingly being used to augment 

morphological-based taxonomy (Sites and Marshall 2003, Tautz et al. 2003, Vogler 

and Monaghan 2007). In particular, DNA barcoding (Hebert et al. 2003) has been 

highly influential in the identification and resolution of species level taxonomic error 

in a range of taxa including insect parasitoids (Smith et al. 2006, Smith et al. 2007, 

Smith et al. 2008, Kaartinen et al. 2010). DNA barcodes are short sequences from a 

standardised region of DNA, such as the approximately 650 base pair (bp) Folmer 

region of the mitochondrial cytochrome c oxidase subunit I gene commonly used for 

Metazoa. Based on the assumption that species level taxa are monophyletic at the 

barcode locus and that variation within species is less than variation between species 

(Hebert et al. 2003), the primary application of DNA barcoding is as a means of 

assigning query specimens to existing taxa if they differ from voucher sequences by 

less than a specified threshold (Hebert et al. 2003, Ratnasingham and Hebert 2007). 

However, under these same assumptions, DNA barcodes can also offer a basis for 

assessing the accuracy of established morpho-species boundaries. If a sample of 

barcode sequences from multiple species is grouped into molecular operational 

taxonomic units (MOTUs) across a range of sequence similarity thresholds (Blaxter 

et al. 2005), then the assumption that variation within species is less than and discrete 

from variation between species will be characterised by a barcoding gap where the 

number of MOTUs defined from the data is constant across a range of threshold 

values (Meyer and Paulay 2005, Ács et al. 2010, see Figure 4.1). If such a gap is 

apparent for a particular dataset then it is likely that the MOTUs defined at 

thresholds within the gap represent meaningful independent lineages, and these 

MOTUs can be compared with morpho-species classifications to identify potential 

taxonomic error. MOTUs that contain all sequences from two or more distinct 

morpho-species are indicative of over-splitting, whereas the presence of a single 

morpho-species in multiple MOTUs can be indicative of lumping (Ács et al. 2010). 

While MOTUs based on barcodes are a useful unit for developing and assessing 

taxonomic hypotheses, and ‘flagging’ potential instances of taxonomic error, there 

are important limitations to their use. Species monophyly of the barcode locus arises 

through the loss of shared ancestral polymorphism between lineages through genetic 
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drift, in a process known as lineage sorting (Funk and Omland 2003). In young 

species with moderate effective population size, complete lineage sorting of any 

particular locus may take many thousands of generations, during which time the 

assumption of species monophyly will be violated and inferences based on barcodes 

are likely to be discordant with ‘true’ patterns of speciation (Hudson and Coyne 

2002, Meyer and Paulay 2005, Hickerson et al. 2006, Wiemers and Fiedler 2007). 

Even where lineage sorting is complete, variable levels of intraspecific diversity 

relating to demographic history may preclude any clear barcoding gap and make it 

difficult to determine species boundaries (Meyer and Paulay 2005, Bazin et al. 2006, 

Lohse 2009, Lukhtanov et al. 2009). Furthermore, several studies have revealed 

discordance between relationships based on barcodes and those supported by nuclear 

sequence markers, attributable to introgression (Rokas et al. 2003b, Hurst and Jiggins 

2005), that could also lead to error if identification were based solely on single locus 

barcode data. Consequently, barcode MOTUs are considered to represent a 

taxonomic ‘stepping stone’ whose link with ‘true species’ cannot confidently be 

made without congruent support from additional taxonomic characters (Vieites et al. 

2009, Padial et al. 2010, Goldstein and DeSalle 2011).  

Despite their widely advocated and demonstrated potential, DNA barcoding and 

alternative molecular markers have only rarely been applied to assess the taxonomy 

of host-parasitoid networks. In a pioneering study, van Veen et al. (2003) used 

sequence data from a region of ribosomal DNA to confirm the taxonomic 

distinctiveness of four parasitoid species within their aphid-parasitoid study system, 

adding confidence to earlier interpretation of the potential for apparent competition 

(Müller et al. 1999). More recently, Kaartinen et al (2010) barcoded a sub-sample of 

adult parasitoids and inquilines reared from gall-inducing and leaf-mining hosts on 

Quercus robur over two years of study in southern Finland, and Smith et al (2011) 

barcoded a sub-sample of primary and secondary parasitoids reared from caterpillars 

of the spruce budworm Choristoneura fumiferana and related Lepidoptera from 10 

years of study in eastern Canada. Both of these studies revealed cryptic species that 

were supported by additional molecular markers within 11% (Kaartinen et al. 2010) 

and 24% (Smith et al. 2011) of established parasitoid morpho-species, having a small 

but appreciable effect on the interpretation of network properties. In the present 
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study, a further contribution to this small body of literature is made by presenting the 

first ‘fully’ barcoded web (in which every adult individual has been barcoded) for a 

host-parasitoid community where ecological study continues to be hindered by 

taxonomic uncertainty – the hymenopteran inquilines and parasitoids reared from 

gall-inducing hosts on Quercus petraea.   

 

Figure 4.1. An idealised illustration of the barcoding gap, reproduced with permission from Ács et al. 
(2010). (a) A barcode gene-tree where each of four species is monophyletic and the variation between 
species considerably exceeds variation within species. (b) The relationship between the number of 
MOTUs and the defining percentage sequence divergence for the same sample, where the barcoding 
gap is characterised by a plateau of MOTU richness between 3 and 5% divergence.      

4.1.1. Study system 

This study focuses on the various inhabitants of cynipid galls on Sessile oak 

(Quercus petraea), an abundant and economically important forest tree that occurs 

naturally throughout the Western Palaearctic. These galls are induced by species 

belonging to the Cynipini tribe (Hymenoptera: Cynipidae), whose phytophagous 

larvae develop and pupate within specialised chambers inside the gall. In the Western 

Palaearctic, the gall-inducers are typically bivoltine with a sexual generation that 

develops during spring and an asexual generation that develops in late summer and 

autumn. Galls occur on various plant organs including buds, leaves, catkins, stems 

and roots, and may be single or multi-chambered (Stone et al. 2002, Csóka et al. 

2005). The morphology of Cynipini galls is often complex, representing an extended 

phenotype of the gallwasp larva (Stone and Cook 1998, Schönrogge et al. 2000a, 

Bailey et al. 2009). Gall morphology and its location on the tree are generally 

diagnostic of a particular generation of a single species, and keys to Western 
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Palaearctic species based on gall morphology are available (Buhr 1965, Ambrus 

1974, Redfern and Shirley 2002). DNA based studies have largely complemented the 

established morphological taxonomy, facilitating synonymization where alternate 

generations had been described as separate species (Rokas et al. 2003b, Stone et al. 

2008), and confirming the species level status of moderately distinct gall morpho-

types (Challis et al. 2007). Notable exceptions include the paraphyly of 

mitochondrial genes in several species when considered against morphological 

characters, attributable to hybridization and subsequent introgression within glacial 

refugia (Rokas et al. 2003b), and the case of Andricus burgundus, a small aggregated 

sexual generation gall on the catkins of Quercus cerris, that through DNA based 

methods was revealed to be a complex of the sexual generations of at least 6 other 

species (Stone et al. 2008). Based on yet unpublished barcode data from across the 

geographic range of many Western Palaearctic species, further taxonomic error 

within Cynipini from Western Europe is considered unlikely (G. Stone, personal 

communication).    

Cynipini galls are frequently colonised by inquilines belonging to the closely related 

Synergini tribe (Hymenoptera: Cynipidae), whose larvae are able to modify the 

tissue of existing galls but are unable to induce their own. These inquiline larvae are 

completely phytophagous but some species cause the death of the gall-inducers by 

entering their chambers and smothering young larvae. Inquiline species may be 

univoltine or bivoltine, and multiple individuals and species may coexist within 

individual galls, even those that initially contained a single gall inducing larva 

(Csóka et al. 2005). Inquiline taxonomy is problematic and a recent study of a 

comprehensive sample of Western Palaearctic species using multiple molecular 

markers (including DNA barcodes) revealed severe flaws in the established 

morphological taxonomy (Ács et al. 2010). At the species level, several 

morphological species shared very similar barcode sequences and were considered to 

have been over-split, while others were revealed to contain cryptic species. At a 

higher level, two long established sections within the widespread and species rich 

genus Synergus were found not to represent natural groupings, and monophyly of the 

genus Saphonecrus was not supported. A comprehensive revision of the tribe is 

clearly required, but in the interim, the MOTUs established by Ács et al (2010) 
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provide useful proximal species level taxa for further study. This was illustrated in 

the barcoded network study of Kaartinen et al (2010), who found poor concordance 

between morphological and molecular based inquiline taxa, but could relate several 

MOTUs to those identified by Ács et al (2010). 

Cynipid galls are also host to a diversity of parasitoids that target the gall-inducer, 

inquilines, or other parasitoids present within the gall. These include members of the 

hymenopteran families Eulophidae, Eupelmidae, Eurytomidae, Ormyridae, 

Pteromalidae, and Torymidae. They are generally solitary ectoparasitoids of larvae or 

pupae, although species of both solitary (e.g. Sycophila biguttata and Pediobius 

lysis) and gregarious (e.g. Baryscapus berhidanus) endoparasitoids are known 

(Schönrogge et al. 1995, Csóka et al. 2005). In the western Palaearctic, Cynipini gall 

parasitoids have been studied in some detail (Askew 1961c, Askew 1961a, Askew 

1961b, Nieves-Aldrey and Askew 1988, Schönrogge et al. 1995, Stone et al. 1995, 

Schönrogge et al. 1996, Schönrogge and Crawley 2000), and their taxonomy is 

accessible through a comprehensive morphological key (Askew and Thúroczy, 

unpublished). While DNA based studies have generally supported the monophyly of 

established parasitoid taxa, they have in several instances revealed the presence of 

morphologically cryptic species (Kaartinen et al. 2010, Nicholls et al. 2010, see 

Chapter 5). 

Western Palaearctic Cynipini gall communities are a popular model system for 

community ecology, and have recently been the focus of studies of biological 

invasions (Schönrogge et al. 1995, Schönrogge and Crawley 2000), comparative 

phylogeography (Hayward and Stone 2006), Stone et al. In prep.), local adaptation 

(Tack and Roslin 2010), habitat fragmentation (Kaartinen and Roslin 2011), and 

community genetics (Tack et al. 2010, see Chapter 3). The sessile nature of galls and 

their often conspicuous morphology means it is usually straightforward to establish 

densities in the field, and if collected at an appropriately advanced phase of 

development then many gall inhabitants suffer from low rearing mortality relative to 

other herbivorous guilds such as free feeders. The morphological taxonomy of gall 

inhabitants is also relatively well developed (although see earlier discussion of 

inquilines), with taxonomic keys that are accessible to non-specialists. Furthermore, 
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the communities are relatively closed in that gall formers use a limited range of oak 

host plants, and associated inquilines and parasitoids occur almost exclusively within 

Cynipini galls (Stone et al. 2002, Bailey et al. 2009). Therefore, populations at the 

higher trophic levels can be studied by sampling only the oaks present at a site, 

without the risk of bias due to unsampled hosts. To achieve this for communities 

associated with other host guilds, such as leaf-miners, it may be necessary to sample 

a much wider range of plant taxa (van Veen et al. 2006). There are however 

important limitations to the use of Cynipini gall communities for studying 

community ecology. The most convenient means of study is to collect and rear 

mature galls, and to interpret the abundance and identity of emerging adult insects, 

but as galls are often microcosms of trophic activity with dissection studies revealing 

frequent secondary parasitism and cannibalism (Askew 1961a, Schönrogge et al. 

1995), the identity of the host of emerging parasitoids cannot be confidently 

established. Networks based on emerging adults are therefore association rather than 

trophic networks, and network properties such as connectivity (a measure of the 

proportion of realised links) and the potential for indirect interactions should be 

treated with caution as they are likely to be under and over-estimated respectively 

(Schonrogge and Crawley 2000). This lack of trophic resolution also limits the ways 

in which gall based networks can be compared or combined with more fully resolved 

networks, such as those based on leaf-mining or free-feeding insects.              

A further complication involves the role of the Synergini inquilines within the 

community. Strictly, the term inquiline is reserved for organisms that do not have a 

deleterious effect on the host species, and while this may be true for some Synergini, 

such as members of the Synergus genus within the asexual generation galls of 

Andricus quercuscalicis (Schönrogge et al. 1995), it is clearly violated in other 

instances where inquilines can be a major cause of gall-inducer mortality (Csóka et 

al. 2005). In previous studies of gall communities based on dissections, a clear 

distinction was made between the role of inquilines and the role of parasitoids 

(Askew 1961a, Schönrogge et al. 1995). In studies based upon rearings however, 

inquilines and parasitoids were considered as equivalents by Schönrogge and 

Crawley (2000) in the estimation of indirect interactions between gall species, and by 

Kaartinen et al (2010 & 2011) in the estimation of a range of network properties. In 
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this present study, inquilines and parasitoids were not considered as equivalents, in 

reflection of their fundamental life-history differences, and also the difference in 

taxonomic resolution (i.e. meaningful morphological identifications can be obtained 

for the parasitoids but not for the inquilines).   

4.1.2. Objectives 

The primary objective of this study is to investigate the taxonomy within a 

community of Cynipini gallwasps and associated inquilines and parasitoids at the 

study site, and to accurately establish specimen identities that could be used in 

further ecological analysis. In approaching this objective, consideration is also given 

to how reliable ecological data for individual species may be compiled, and how not 

revealing taxonomic error may bias the estimation of network properties. Specifically 

I ask: (i) within my sample, do gall inquilines and parasitoids show signs of a 

barcoding gap that would support the use of MOTUs for detecting meaningful 

taxonomic units; (ii) can the parasitoid and inquiline MOTUs identified here be 

linked with those from other studies to add confidence to their status and compile 

reliable ecological data; (iii) in a guild where morphological taxonomy is well 

established (i.e. gall parasitoids), is there discordance between taxa based on 

morphology and MOTUs; (iv) if so how does this influence the estimation of various 

network properties?   

4.2. Methods 

4.2.1. Gall collection and rearing 

During 2009, quantitative surveys of gall abundance were conducted at a provenance 

trial of Quercus petraea in the forest of Petite Charnie, Sarthe, France (see Chapter 

3). Sexual generation galls were surveyed in spring (May-June) and asexual 

generation galls in autumn (August-October). During these surveys, galls were 

collected from within 32 ‘parcelles’ (each parcelle being a block of 24 trees of a 

single provenance, although provenance is not considered further here). As the galls 

of alternate generations of individual gall-inducing species often differ dramatically 
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in their morphology, abundance, and associated parasitoid communities (Bailey et al. 

2009), they are treated here as distinct ‘gall-types’. The number of collected galls of 

each type approximated its relative abundance in the gall surveys. Most galls were 

collected directly from the trees, transferred to small ventilated containers, and reared 

in an outside insectary at the Centre for Ecology and Hydrology in Wallingford, 

Oxfordshire, UK. However, for asexual generation galls of members of the genus 

Neuroterus that are prone to desiccation, galls were collected from the ground at the 

centre of parcelles in mid-October 2009, and were refrigerated at 4 ˚C in sealed bags 

of moist sphagnum moss until February 2010 when they were transferred to 

ventilated containers in the insectary. Containers were checked regularly until 

November 2010, and emerging adult insects were preserved in 99% ethanol. Adult 

parasitoids were identified following a morphological key to Western Palaearctic oak 

gall parasitoid species (Askew, R.  and Thúroczy, C. unpublished).       

4.2.2. DNA extraction and sequencing 

DNA was extracted for all adult parasitoids and inquilines from a single leg 

(abdomens were used for some small male specimens) following a chelex and 

proteinase K protocol. For all parasitoid individuals a fragment of the mitochondrial 

coxI gene was amplified using the forward primer COI_pf1; 5’ AGG RGY YCC 

WGA TAT AGC WTT YCC 3’ (designed by J. Nicholls), and the reverse primer 

COI_2437d: 5’ –GCT ART CAT CTA AAW AYT TTA ATW CCW-3’ (modified 

from (Simon et al. 1994)’s C1-J-2441 primer by J. Nicholls). This fragment, 

henceforth referred to as COI, overlaps with the standard ‘Folmer’ DNA-barcode 

region by approximately 370 bp. Although this is less than the 500 bp required for 

formal barcode status (Ratnasingham and Hebert 2007), the COI fragment was used 

in preference as a poly-T series within the Folmer region has been found to reduce 

sequence quality in several families of chalcid parasitoids (see Chapter 5). For all 

inquiline individuals, a fragment of the Folmer region was amplified using the 

forward primer LCO1490: 5’ GGT CAA CAA ATC ATA AAG ATA TTG G  3’ 

(Folmer et al. 1994), and the reverse primer HCOd: 5’ TAW ACY TCD GGR TGI 

CCA AAA AAY CA-3’ (modified from Folmer et al’s (1994) HCO2198 by J. 

Nicholls). Each 20 µl PCR mix consisted of 1 µl of DNA template, 0.1 µl of Taq 
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polymerase (5 U/µl, Bioline), 0.25 µl of each primer (20 µM), 1 µl of dNTP’s (25 

mM each), 0.8 µl of MgCl2 (50 mM), 2 µl of 10 x Bioline PCR buffer, 2 µl of bovine 

serum albumin (10 mg/mL), and 12.6 µl of milipure H2O. Cycling conditions were 

94 °C for 2 minutes, followed by 4 cycles of 94 °C for 30 seconds, 45 °C for 1 

minute, and 72 °C for 1 minute, then 34 cycles of 94 °C for 30 seconds, 50 °C for 1 

minute, 72 °C for 1 minute, with a final step of 72 °C for 5 minutes.  

Excess dNTPs were removed from PCR products by adding a solution of shrimp 

alkaline phosphatase (SAP) and exonuclease, incubating at 37°C on a PCR block for 

40 minutes, then heating to 94°C for 15 minutes. Clean PCR product for each 

individual was sequenced in the forward direction using ABI BigDye chemistry 

(Perkin Elmer Biosystems Waltham MA) on ABI 3700 and 3730 sequencers at the 

GenePool, Edinburgh. Chromatograms were checked by eye, and trimmed to a 

standardised length of 610 bp for COI fragments and 620 bp for Folmer fragments 

using Sequencher version 4.9 (Gene Codes Corporation 2009). All sequences were 

checked for an open reading frame, a lack of which would indicate base calling error 

or amplification of a nuclear pseudogene (Rokas et al. 2003a). Alignments of all 

unique haplotypes were compiled separately for COI and Folmer fragments (i.e. for 

parasitoids and inquilines).  

4.2.3. MOTUs and their discordance with morphological taxa  

Alignments of parasitoid and inquiline haplotypes were analysed with jMOTU 

version 1.0.8 (Jones et al. 2011a), which clusters sequences into MOTUs based on 

threshold base-pair differences using a combination of BLAST and the Needleman-

Wunch exact global alignment algorithm. To assess for a barcoding gap, the number 

of defined MOTUs was calculated across a threshold range from 0 to 90 base pairs 

(bp) for each alignment (corresponding to 0 and approximately 15% of the fragment 

length). The existence of a barcoding gap is characterised by a plateau of MOTU 

richness across a range of threshold values, bounded at either end by a relatively 

steep decline (see Figure 4.1). Although there is no formal means of defining a 

barcode gap, its ‘divisive’ and ‘inclusive’ limits can be estimated from a MOTU 

richness plot (Ács et al. 2010). Based on the assumption of species monophyly and 
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greater variation between than within species, it is expected that MOTUs defined at 

thresholds within the barcoding gap represent meaningful independently evolving 

lineages, but there is likely to be a gradient from increased risk of over-splitting 

meaningful taxa at the divisive limit, towards lumping of taxa at the inclusive limit.   

To facilitate comparison of taxa between this and other studies, all COI and Folmer 

fragment sequences published by Kaartinen et al. (2010) and Ács et al. (2010) were 

obtained from GenBank, trimmed to matching length, and added to the parasitoid or 

inquiline alignments. Clustering into MOTUs was repeated and MOTU composition 

examined at the divisive threshold base pair difference (selected from assessment of 

barcoding gap for sequences generated in this study). Where individual MOTUs 

contained sequences from this and one or both of the alternate studies, host 

associations and geographic locations were extracted.     

The relationships between barcode haplotypes were visualised in neighbour-joining 

trees of each parasitoid family, and of the inquilines. Trees were constructed with 

MEGA version 4 (Tamura et al. 2007) using p-distances. For each parasitoid tree, 

groupings based on morphology and the inclusive and divisive limits of the 

barcoding gap were illustrated and assessed for discordance.        

4.2.4. Network structure 

The influence of discordance between MOTUs and morpho-species on network 

properties was investigated by constructing a series of networks using the Bipartite 

package version 1.16 (Dormann et al. 2008) in R version 2.13.0 (R Development 

Core Team 2011). Each emerging adult insect constituted 1 link with its host gall 

type, and the sexual and asexual generation galls of single gall-inducing species were 

treated as distinct taxa. Individual bipartite networks were constructed where taxon 

membership in the higher level was based on parasitoid morphological ID’s, and 

parasitoid MOTUs at thresholds from 0 to 90 bp (hence a total of 1 + 91 = 92 

networks). For each network, the following metrics were calculated using the 

networklevel function of Bipartite: quantitative generality (Gq, the weighted mean 

number of host species per parasitoid species, Tylianakis et al. 2007), quantitative 

vulnerability (Vq, the weighted mean number of parasitoid species per host species, 
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Tylianakis et al. 2007), quantitative linkage density (L.Dq, the mean number of links 

per species assuming equal biomass of all species and weighted by relative inflows 

and outflows, Bersier et al. 2002), and weighted connectance (Cw, a weighted 

proportion of realised links, Tylianakis et al. 2007). The calculation of these metrics 

for bipartite host-parasitoid networks is described in the supplementary methods of 

Tylianakis et al. (2007). 

4.3. Results 

4.3.1. Specimens and sequences 

A total of 16,644 galls of 17 types were collected for rearing. From these, 2556 adult 

insects emerged, of which 98 were gall-inducers, 1053 were inquilines, and 1405 

were parasitoids. The parasitoids were identified into 23 morpho-species. Sequence 

data were generated for all parasitoids and inquilines with the exception of 19 and 13 

individuals respectively. In these cases, either the PCR failed to amplify a fragment 

or the sequence trace file was indecipherable, despite repeated attempts on fresh 

extractions. This is presumably due to degradation of specimen DNA, or mutations 

within the priming sites. These individuals (1.3% of the total) were excluded from all 

further analysis. Details of gall-inducers are shown in Table 4.1, and inquilines and 

parasitoids in Table 4.2.   
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Table 4.1. List of the 17 gall-types encountered in this study, with details of the number of galls 
reared, and the numbers of emerging adult gall-inducers (GI), inquilines (Inq), and parasitoids (Para). 
Codes shown here are used to label Figures 4.3, 4.4, and 4.6.  
   
Species Generation Code No. 

Reared 
No. 
GI 

No. 
Inq 

No. 
Para 

Andricus callidoma (Hartig, 1841) Asexual AcallAsex 11 0 3 1 
Andricus curvator (Hartig, 1840) Sexual AcurvSex 43 6 5 7 
Andricus fecundator (Hartig, 1840) Asexual AfecAsex 338 0 49 10 
Andricus glandulae (Hartig, 1840) Asexual AglanAsex 161 0 2 5 
Andricus kollari (Hartig, 1843) Asexual AkollAsex 66 0 138 13 
Andricus solitarius (Fonscolombe, 
1832) 

Asexual AsolAsex 294 5 3 98 

Biorhiza pallida (Olivier, 1791). Sexual BpalSex 2 23 0 10 
Cynips divisa (Hartig, 1840) Asexual CdivAsex 117 8 5 15 
Cynips quercusfolii (Hartig, 1840) Asexual CqfAsex 124 18 12 28 
Neuroterus albipes (Schenck, 1863) Asexual NalbAsex 4187 5 7 352 
Neuroterus albipes (Schenck, 1863) Sexual NalbSex 759 1 6 79 
Neuroterus anthracinus (Curtis, 1838) Asexual NantAsex 2048 0 34 3 
Neuroterus anthracinus (Curtis, 1838) Sexual NantSex 1111 7 4 266 
Neuroterus numismalis (Geoffroy 1785) Asexual NnAsex 1115 9 0 89 
Neuroterus numismalis (Geoffroy 1785) Sexual NnSex 1492 3 207 123 
Neuroterus quercusbaccarum 
(Linnaeus, 1758) Asexual NqbAsex 3554 2 0 2 

Neuroterus quercusbaccarum 
(Linnaeus, 1758) Sexual NqbSex 1222 11 565 285 
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Table 4.2. List of parasitoid morpho-species, and inquiline and parasitoid MOTUs as defined at the divisive thresholds (11 and 13 bp respectively), with details of the 
numbers of individuals sequenced (No. S) and not sequenced (No. NS, provided for morphological taxa only). Codes shown here are used to label Figures 4.3, 4.4, and 
4.6. Where MOTUs were matched with other studies, the recorded locations are indicated by two letter country codes following those provided by the International 
Organization for Standardization. Records labelled as 1 are from Kaartinen et al. (2010), and 2 are from Ács et al (2010). Table is continued on the following page.   
 

Taxa Family Code No. S No. NS Matching records 

Aprostocetus aethiops (Zetterstedt, 1838) Eulophidae Aaet 18 0  
  Aprostocetus aethiops MOTU 1 “ Aaet_1 16   
  Aprostocetus aethiops MOTU 2 “ Aaet_2 2  FI1 
Aprostocetus cerricola (Erdös, 1954) Eulophidae Acer 1 0 HU1 
Aulogymnus arsames (Walker, 1838) Eulophidae Aars 24 0 FI1, HU1 
Aulogymnus skianeuros (Ratzeburg, 1844) Eulophidae Aski 4 0  
Cirrospilus diallus (Walker, 1838) Eulophidae Cdia 1 0 FI1 
Pediobius lysis (Walker, 1839) Eulophidae Plys 171 1  
  Pediobius lysis MOTU 1 “ Plys_1 25   
  Pediobius lysis MOTU 2 “ Plys_2 146   
Eupelmus annulatus (Nees, 1834) Eupelmidae Eann 1 0 ES1 
Eupelmus urozonus (Dalman, 1820) Eupelmidae Euro 58 0  
  Eupelmus urozonus MOTU 1 “ Euro_1 57  PT1, ES1, FI1, HU1 
  Eupelmus urozonus MOTU 2 “ Euro_2 1   
Eupelmus splendens (Giraud, 1872) Eupelmidae Espl 3 0  
Eurytoma brunniventris (Ratzeburg, 1852) Eurytomidae Ebru 111 4  
  Eurytoma brunniventris MOTU 1 “ Ebru_1 100   
  Eurytoma brunniventris MOTU 2 “ Ebru_2 10   
  Eurytoma brunniventris MOTU 3 “ Ebru_3 1   
Sycophila variegata (Curtis, 1831) Eurytomidae Svar 6 0  
Ormyrus nitidulus (Fabricius, 1804) Ormyridae Onit 6 0 ES1, FR1 
Ormyrus pomaceus (Geoffroy, 1785) Ormyridae Opom 157 4  
  Ormyrus pomaceus MOTU 1 “ Opom_1 41   
  Ormyrus pomaceus MOTU 2 “ Opom_2 96   
  Ormyrus pomaceus MOTU 3 “ Opom_3 18  FI1, HU1 
  Ormyrus pomaceus MOTU 4 “ Opom_4 1   
  Ormyrus pomaceus MOTU 5 “ Opom_5 1   
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Table 4.2. Continued 
 

Taxa Family Code No. S No. NS Matching records 

Mesopolobus dubius (Walker, 1834) Pteromalidae Mdub 3 0 GB1 
Mesopolobus fasciiventris (Westwood, 1833) Pteromalidae Mfas 171 4 FI1, HU1, ES1 
Mesopolobus fuscipes (Walker, 1834) Pteromalidae Mfus 4 0 GB1, HU1 
Mesopolobus mediterraneus (Mayr, 1903) Pteromalidae Mmed 4 0 GB1 
Mesopolobus tibialis (Westwood, 1833) Pteromalidae Mtib 346 2 FI1, HU1 
Ormocerus vernalis (Walker, 1834) Pteromalidae Over 56 3  
  Ormocerus vernalis MOTU 1 “ Over_1 3   
  Ormocerus vernalis MOTU 2 “ Over_2 53   
Megastigmus dorsalis (Fabricius, 1798) Torymidae Mdor 23 0  
  Megastigmus dorsalis MOTU 1 “ Mdor_1 6   
  Megastigmus dorsalis MOTU 2 “ Mdor_2 17   
Torymus auratus (Müller, 1764) Torymidae Taur 38 1 ES1, HU1 
Torymus flavipes (Walker, 1833) Torymidae Tfla 163 0  
  Torymus flavipes MOTU 1 “ Tfla_1 136  FI1, HU1 
  Torymus flavipes MOTU 2 “ Tfla_2 27  FI1 
Torymus geranii (Walker, 1833) Torymidae Tger 17 0 FI1, HU1 
            

Inquilines Cynipidae   1040 13  
  Inquiline MOTU 1 “ Inq_1 93  FI1 
  Inquiline MOTU 2 “ Inq_2 10  FI1 
  Inquiline MOTU 3 “ Inq_3 9   
  Inquiline MOTU 4 “ Inq_4 194  FI1, ES2 
  Inquiline MOTU 5 “ Inq_5 238   
  Inquiline MOTU 6 “ Inq_6 312  FI1, HU2 
  Inquiline MOTU 7 “ Inq_7 138   
  Inquiline MOTU 8 “ Inq_8 42   
  Inquiline MOTU 9 “ Inq_9 2   
  Inquiline MOTU 10 “ Inq_10 2  HU2 
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4.3.2. The barcoding gap 

The relationship between the number of MOTUs and the defining threshold base pair 

difference for the parasitoid and inquiline alignments is shown in Figure 4.2. A 

plateau of MOTU richness was apparent in both cases, characteristic of a barcoding 

gap. From the plotted relationship, the divisive and inclusive limits of the barcoding 

gap were considered to be 11 and 55 bp for the inquilines (corresponding to 1.8 – 

8.9% of the fragment length), and 13 and 55 bp for the parasitoids (corresponding to 

2.1 - 9.0% of the fragment length). At the divisive thresholds, 35 parasitoid and 10 

inquiline MOTUs were defined, reducing to 26 and 6 by the inclusive threshold (a 

decrease of 25.7 and 40% respectively).   

 

Figure 4.2. Relationship between number of MOTUs and defining threshold base pair difference for 
parasitoid and inquiline sequences. Parasitoid MOTU richness was 539 at the 0 bp threshold and for 
ease of visualisation is only shown between 4 and 90 bp. Arrows indicate the selected boundaries of 
the barcoding gap for parasitoids (A-B) and inquilines (C-D). 
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4.3.3. MOTUs  

Gene trees of COI sequences for each of the six parasitoid families and the inquilines 

are shown in Figure 4.3. All parasitoid morpho-species were monophyletic except for 

Aprostocetus aethiops that was paraphyletic with respect to A. cerricola (fig 4.3a). 

Of the 35 parasitoid MOTUs defined at the divisive threshold, 15 corresponded 

exactly with individual morpho-species. There was no indication that any morpho-

species had been over-split, but eight of the 23 contained multiple MOTUs, 

suggesting the presence of morphologically cryptic species. At the inclusive 

threshold, the morpho-species A. aethiops and A. cerricola formed a single MOTU, 

and four morpho-species still contained multiple MOTUs. This grouping together of 

the two morpho-species is potentially indicative of taxonomic over-splitting, 

although it did not occur until the relatively large threshold base pair difference of 36 

bp (corresponding to 5.9% of fragment length), approximately in the middle of the 

barcoding gap.  

Of the total 45 MOTUs defined at the divisive thresholds, 17 of the parasitoids and 5 

of the inquilines were matched with those from other studies (Table 4.2). For the 

parasitoids, these included 12 of the 15 MOTUs that corresponded exactly with a 

single morpho-species, and 5 of the 20 MOTUs that did not. Both of the MOTUs 

from within the morpho-species Torymus flavipes could be matched, but at least one 

MOTU from within the other 7 morpho-species were not.        
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Figure 4.3. Neighbour-joining trees based on p-distances for COI haplotypes of six parasitoid families 
(a-f), and Folmer haplotypes of Synergini inquilines (g). Taxa labels follow the codes in Tables 4.1 
and 4.2. Haplotypes generated in this study are shown in blue, and for ease of visualisation multiple 
similar haplotypes are in places represented by a blue filled triangle. Numbers within brackets indicate 
the individuals of a particular haplotype or group of haplotypes. Sequences shown in red or maroon 
are from the studies of Ács et al. (2010) and Kaartinen et al. (2010) respectively, and are coded by 
their GenBank accession number. Vertical bars to the right indicate membership of MOTUs at the 
divisive threshold (13bp for parasitoids, 11 bp for inquilines, shown in green), MOTUs at the 
inclusive threshold (55bp, in maroon), and morpho-species (in black). Taxon codes in black refer to 
morpho-species and codes in green refer to MOTUs at the inclusive threshold. Scale bars indicate a p-
distance of 0.01. The Figure is continued on the following page.  
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Figure 4.3. Continued 
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4.3.4. Networks 

An illustration of bipartite host-parasitoid and host-inquiline networks based on taxa 

at the devisive limit of the barcoding gaps is shown in Figure 4.4, and the source host 

association data for these networks are provided in Appendix 4.1. At this devisive 

threshold, the values of Gq and Cq for the parasitoid network were lower then if 

parasitoid identity is based on morpho-species classifications, and the values of Vq, 

and L.Dq were higher (see Figure 4.5). If considered as a percentage of the morpho-

species based value, these differences are slight for Gq (- 3.0%), and moderate for Cw 

(- 12.8%), L.Dq (+ 13.3%), and Vq (+ 25.2%). Differences decrease as the threshold 

increases within the barcoding gap, and all are within 5% of the morpho-species 

based values at the inclusive threshold of 55 bp (see Figure 4.5). 
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Figure 4.4. Bipartite networks of quantitative host associations for parasitoid (top) and inquiline 
(bottom) MOTUs at the divisive thresholds. Taxon labels follow the codes in Tables 4.1 and 4.2. Bar-
widths for parasitoids and inquilines represent the number of individuals belonging to each taxon, and 
the basal width of grey triangles represents the number of individuals emerging from a particular host. 
Parasitoid MOTUs that were discordant with morpho-species are coloured. Bar-widths for the hosts 
represent the number of emerging adult insects, with the proportion of parasitoids highlighted in red, 
inquilines in blue, and gall-inducers in green. The values of various metrics are provided for each 
network (definitions given in text, section 4.2.4). 
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Figure 4.4. Variation in 4 network metrics (a-d) when parasitoid taxon membership is defined across 
a range of MOTU thresholds. Horizontal black lines indicate the value of metrics when parasitoids 
were identified from morphology. Grey shaded area indicates the location of the barcoding gap on the 
x-axis.  
 

 

4.4. Discussion 

4.4.1. The utility of DNA barcodes for studying oak gall communities 

The utility of DNA barcoding as a means of both associating query specimens with 

established taxa and assessing species level taxonomy is dependent on the extent to 

which the assumptions of species monophyly and large relative distances between 

species are met for the taxa under consideration. A previous study of Western 

Palaearctic oak gall inquilines supported these assumptions, identifying a barcoding 

gap within which MOTUs based on barcodes and a nuclear gene were highly 

concordant. Similarly, for oak gall parasitoids, a barcoding gap has been observed for 



133 
 

some species within the genus Cecidostiba (see Chapter 5), and two studies have 

reported that divergence at mitochondrial loci was concordant with ‘true’ species 

limits, as inferred from additional nuclear markers (Kaartinen et al. 2010, Nicholls et 

al. 2010). Within the inquilines and parasitoids of oak galls, there have to date been 

no reported examples of paraphyly at mitochondrial genes in relation to ‘trusted’ 

species level classifications, as might arise through introgression or incomplete 

lineage sorting (‘trusted’ species are those based on multiple molecular markers, 

potentially in combination with morphological characters, rather than on morphology 

alone). In the present study, the assumptions of barcoding were further supported by 

the observation of a barcoding gap for both inquilines and parasitoids. Given this 

accumulated support, it is considered that DNA barcoding is a valid and valuable 

tool for investigating the morphological taxonomy and obtaining accurate 

identifications of oak gall inquilines and parasitoids.       

4.4.2. Taxonomy of the studied community 

DNA barcoding supported the taxonomic distinctiveness of 15 out of the 23 

parasitoid morpho-species encountered in this study. There was little suggestion of 

taxonomic over-splitting, as the grouping of multiple morpho-species into a single 

MOTU only occurred above what was considered to be an unusually high level of 

intraspecific barcode variation. However, 8 parasitoid morpho-species each 

contained two or more MOTUs at the proposed divisive limit of the barcoding gap, 

which was considered to be indicative of taxonomic lumping. For Torymus flavipes, 

both of the MOTUs encountered here could be matched with those identified by 

Kaartinen et al. (2010), who proposed them to be distinct species based on 

concordant patterns of divergence for a nuclear marker (i.e. following the 

terminology of Vieites et al. 2009, they each represent a confirmed candidate 

species). For the other 7 cases, at least one of the MOTUs could not be matched with 

published data, and following the terminology of Vieites et al. (2009) I propose that 

these should presently be considered as unconfirmed candidate species (i.e. deep 

genealogical lineages of unknown status).  
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As previously described, the morphological taxonomy of Western Palaearctic 

Synergini inquilines is highly discordant with patterns of differentiation at 

mitochondrial and nuclear genes, and the validity of many named species is 

questionable, particularly within the large genus Synergus (Ács et al. 2010). In light 

of this, it was not considered worthwhile to attempt morphological identification of 

inquilines, but to instead rely on DNA barcoding for establishing identities. Of the 10 

barcode MOTUs identified here, 5 could be matched with those from the studies of 

Ács et al. (2010), or Kaartinen et al (2010). One of these matches was with Ceroptres 

clavicornis, a species where morphological and molecular data have so far been 

concordant (Ács et al. 2010), suggesting that its existing classification is valid. The 

other 4 matches were with MOTUs from within the genus Synergus, and as these 

have been shown to be concordant for both mitochondrial and nuclear markers, but 

do not correspond to established Linnaean species names, I propose that they be 

considered as confirmed candidate species (i.e. again following Vieites et al. 2009). 

The remaining 5 inquiline MOTUs identified here did not match published records, 

and I propose that these represent unconfirmed candidate species. 

In summary, the 2426 parasitoid and inquiline individuals that were barcoded in this 

study are currently considered to represent 45 taxa, of which 16 are recognised 

Linnaean species, 6 are confirmed candidate species, and 23 are unconfirmed 

candidate species. While the Linnaean and confirmed candidate species represent 

appropriate species level taxa for ecological analysis of this community, further 

taxonomic investigation is required to establish whether the unconfirmed candidate 

species actually represent independently evolving lineages. It is therefore intended 

that a sample of individuals from each unconfirmed candidate species be sequenced 

for several additional nuclear loci, to allow for quantitative assessment of their 

taxonomic status (see Chapter 5 for illustration of taxonomic analysis for multi-locus 

data).  

4.4.3. Compiling accurate ecological data 

Western Palaearctic oak gall communities have a long history of detailed study (e.g. 

(Askew 1961a, Schonrogge et al. 1995, Pujade-Villar et al. 2003), resulting in 
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extensive collections of specimens and catalogues of geographic distributions and 

host associations for established taxa (Schönrogge et al. in prep, Stone et al. in prep). 

These have been a valuable resource for evaluating the phylogeography of individual 

species (Hayward and Stone 2006, Stone et al. 2009), comparing ecological roles 

across sites (Schönrogge et al. 2007), and investigating character state evolution 

(Cook et al. 2002, Stone et al. 2009). Unfortunately, when species level 

classifications are modified, the value of existing ecological data for the taxa 

concerned is greatly reduced as records can no longer be confidently linked to a 

single species. In such situations, the compilation of species level data must either 

begin again from scratch, or specimens must be reassessed to establish taxon 

membership under the new classification. Providing the assumptions of DNA 

barcoding are satisfied, barcodes can offer a valuable tool for confidently 

establishing taxon membership and thus for re-compiling accurate ecological data. 

This may be particularly useful if newly defined species are morphologically cryptic, 

and morphological reassessment of specimens is therefore not an option. 

Additionally, even if classifications are subsequently revised further, the linking of 

ecological data to a barcode makes it relatively straightforward to re-associate 

ecological data with the appropriate species level taxa, without the need to revisit 

specimens.     

The present study identifies potential taxonomic error within 8 parasitoid morpho-

species, and if confirmed, existing ecological data for these species should be 

interpreted with caution. For Torymus flavipes where the two MOTUs defined here 

could be matched with those previously identified by Kaartinen et al. (2010), the host 

association data from these studies can be compiled to gain a better understanding of 

the ecology of these morphologically cryptic species. From their sample, Kaartinen 

et al. (2010) suggested that the two species may have specialised phenologies, with 

one species (species B, that matched with T. flavipes MOTU 2 in this study) 

targeting only asexual generation galls, and the other (species A, that matched with 

T. flavipes MOTU 1) predominantly targeting sexual generation galls. While this 

specialisation of species B is further supported by the data presented here, with all 27 

individuals emerging from asexual generation galls of Neuroterus albipes, more than 

half of the 136 individuals of species A also emerged from N. albipes asexual galls, 
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indicating that these species are less discrete in their host associations than was 

initially believed.        

For the Synergini inquilines where the validity of many morpho-species is currently 

dubious, perhaps the only reliable existing ecological data is that linked to the 

MOTUs identified by Ács et al. (2010) and Kaartinen et al (2010). Five of the 10 

inquiline MOTUs identified here could be matched with one or both of these studies, 

and thus ecological data can begin to be re-compiled. For example, inquiline MOTU 

6 that had 8 host gall types in this study is also associated with one of these types in 

Hungary (Ács et al. 2010), and with one of these and one further type in Finland 

(Kaartinen et al. 2010), giving it a total of 9 host gall associations. Full details of 

compiled geographic and host association data are provided in Appendix 4.2.       

4.4.4. The extent of bias due to taxonomic error 

A principal reason for assessing the taxonomy of this oak gall community is that 

undetected taxonomic error could bias the investigation of ecological communities, 

potentially resulting in incorrect interpretation of ecological processes. The analysis 

of MOTUs presented here indicates taxonomic lumping within the parasitoid 

community that would be undetected if identification were based on current 

morphological classifications. If the inferences based on MOTUs are assumed to be 

correct then 35% of encountered parasitoid morpho-species contained cryptic 

species. The number of parasitoid species increased by 65%, affecting the identity of 

54% of all parasitoid individuals. This high encounter rate for cryptic species is 

comparable to the approximately 25% reported by Smith et al. (2008, 2011), and is 

consistent with their assertion that cryptic diversity of parasitoid insects is a real 

phenomenon that is not restricted to tropical communities. However, these 

percentages are much greater than those encountered in a similar study system by 

Kaartinen et al. (2010), illustrating that it may not be possible to make a priori 

generalisations about the frequency and impact of taxonomic error within a system.      

In addition to the obvious influence on the estimation of species diversity within a 

community, undetected taxonomic error may also bias the estimation of network 

metrics that are commonly used to investigate and compare community structure 
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(Kaartinen et al. 2010). Again if it assumed that the taxonomic inferences based on 

MOTUs are correct for this study, then estimates of quantitative generality (Gq) and 

weighted connectance (Cw) for the bipartite parasitoid network would have been 

positively biased if based on morpho-species, while quantitative vulnerability (Vq) 

and quantitative linkage density (L.Dq) would have been negatively biased (Figure 

4.5). The magnitude of bias varied between metrics, but was greatest for Vq where 

the estimate based on MOTU species was 25% greater than that based on morpho-

species.  

These results suggest that if undetected, taxonomic error would severely bias the 

estimation of various ecological parameters of this parasitoid community, and the 

assessment of morpho-species classifications using molecular based taxonomic 

techniques is therefore considered to be an important pre-requisite for accurate 

ecological investigation. Given the widespread reports of species level error in 

parasitoid morpho-species classifications, predominantly involving the lumping 

together of morphologically cryptic species (Smith et al. 2008, Smith et al. 2011), it 

is likely that this statement applies to many other host-parasitoid systems centred on 

various guilds of insect herbivores. However, the direction and magnitude of bias is 

likely to vary between communities depending on the type of taxonomic error (i.e. 

lumping or over-splitting) and on the particular trophic association patterns of the 

species involved, precluding generalisation beyond the few communities that have 

been studied in appropriate detail. Further study comparing bias across communities 

is required if the true extent of this issue is to be understood and addressed.    
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Chapter 5 – Cryptic species of oak gall 
parasitoid revealed through DNA barcoding and 

observations of monophyly across ten intron 
loci 

5.1. Introduction 

The number of recognised eukaryotic species level taxa is thought to be 

approximately 1.9 million (Hamilton et al. 2010), the vast majority of which have 

been described solely on the basis of morphological characters (henceforth referred 

to as morpho-species). While this system of delimitation has been of undoubted 

value in the epic task of classifying biological diversity, there is a growing 

appreciation that such taxa may be discordant with modern species concepts that 

view ‘existence as a separately evolving metapopulation lineage’ as the principal 

property of species (De Queiroz 2005, 2007). Integrated taxonomic approaches, 

usually involving molecular tools, continue to reveal examples of species level 

taxonomic error including instances of over-splitting, in which variants of a single 

species are classified as two or more, and more frequently under-splitting (or 

‘lumping’), in which two or more distinct species are classified together (Bickford et 

al. 2007).  

If undetected, such taxonomic error can be a major hindrance to ecological research, 

potentially biasing estimates and comparisons of diversity and community structure 

(discussed in Chapter 4). The nature and extent of such bias is likely to be variable 

and difficult to predict, being dependent on the ecology and distributions of the taxa 

involved. Cases where cryptic or over-split taxa are sympatric may bias estimates of 

alpha diversity and the structure of interacting communities (Kaartinen et al. 2010, 

Smith et al. 2011), whereas those involving allopatric species could affect 

interpretation of beta diversity, and potentially the conservation status of the species 

involved (Roca et al. 2001). Cases where trophic interactions differ substantially 

between cryptic or over-split taxa may be of particular concern, potentially biasing 
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metrics such as generality that are used to characterise species or networks (Hassell 

and May 1986). Where correct taxonomy is integral to the objectives of ecological 

research, such as in systems of conservation priority or those that are models for 

investigating community structure and dynamics, there is a pressing need for 

reassessment of taxa that were established solely on morphological characters.    

As described in Chapter 4, DNA barcodes – short sequences from a standardised 

region of DNA - can be a useful tool for investigating morpho-species accuracy. 

Where the assumption that barcode variation within species is less than and discrete 

from variation between species is supported by the observation of a barcoding gap 

(Meyer and Paulay 2005, Ács et al. 2010), molecular taxonomic units (MOTUs, 

Blaxter et al. 2005) defined at a sequence similarity thresholds within the barcoding 

gap can be compared with morpho-species classifications to identify points of 

discordance. However, while MOTUs based on barcodes are a useful unit for 

highlighting potential taxonomic error and developing alternate taxonomic 

hypotheses, they are potentially inconsistent with true patterns of speciation due to 

stochastic coalescent variation, incomplete lineage sorting, or introgression (Hudson 

and Coyne 2002, Rokas et al. 2003b, Meyer and Paulay 2005, Hickerson et al. 2006, 

Lohse 2009). Therefore, taxonomic hypotheses based on barcodes, or any single 

locus, can only be considered as unconfirmed candidate species (i.e. deep 

genealogical lineages of unknown status, Vieites et al. 2009), unless their taxonomic 

distinctiveness is supported by further independent taxonomic characters (Padial et 

al. 2010).  

When a population of organisms diverges into two separate species, it is expected 

that genetic variation will initially be paraphyletic, i.e. an allele sampled from either 

species will as likely coalescence first with homologous alleles from the other 

species, as than within its own species (Baum and Shaw 1995). With the passage of 

generations, lineages will be lost within each species through drift, and both will 

eventually become monophyletic i.e. alleles will coalescence within species. This 

process, known as lineage sorting, is central to DNA barcoding as it is through 

lineage sorting that barcode sequence variation within species becomes discrete from 

variation among species (Hebert et al. 2003). As lineage sorting of unlinked 
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molecular markers is independent, patterns of monophyly at loci unlinked to the 

barcode locus can provide further taxonomic information.  

The potential of using observed monophyly for taxonomic inference has long been 

recognised under the genealogical species concept (Baum and Shaw 1995), and has 

frequently been applied to qualitatively support taxonomic inferences (Monaghan et 

al. 2005, Smith et al. 2007, Kaartinen et al. 2010, Nicholls et al. 2010). Tests have 

been developed for assessing the probability of taxonomic distinctiveness from 

observations of monophyly against a null hypothesis of a single panmictic population 

under widely applied phylogenetic and population genetic models (Rosenberg 2006, 

2007, Zhu et al. 2011). Where data can be obtained for an appropriate sample of 

additional molecular markers, these tests offer a means of explicitly assessing 

taxonomic hypotheses drawn from barcode data. In the present study, a DNA 

barcoding approach is supplemented with analysis of monophyly at additional 

markers to assess the validity of morpho-species taxa in a group where accurate 

taxonomy is of importance for ecological study – oak gall parasitoids in the genus 

Cecidostiba.    

5.1.1. Study system  

The Cynipini gallwasps (Hymenoptera; Cynipidae) are an intriguing group of insects 

whose larva induce complex galls on trees of the Fagacaea family. In the Western 

Palaearctic, these galls support multi-trophic communities that may include inquiline 

gallwasps (Hymenoptera; Cynipidae; Synergini) and hymenopteran parasitoids (of 

various families in the Chalcidoidea superfamily). These communities are a popular 

model system for community ecology, and have recently been the focus of studies of 

biological invasions (Schonrogge et al. 1995, Schönrogge and Crawley 2000), 

comparative phylogeography (Hayward and Stone 2006), local adaptation (Tack and 

Roslin 2010), habitat fragmentation (Kaartinen and Roslin 2011), and community 

genetics (Tack et al. 2010, see Chapter 3). Species within the community have for the 

most part been described and identified from morphology, but recent molecular 

approaches have revealed widespread error in the species level taxonomy of the 

inquilines and parasitoids (Ács et al. 2010, Kaartinen et al. 2010, Nicholls et al. 
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2010, see Chapter 4). This is a serious concern, potentially impeding further 

ecological study (see Chapter 4), and raising doubts about the validity of existing 

ecological records and inferences. Further assessment of established morpho-species 

and the development of an accurate taxonomic framework for the various 

components of the community will be of value if it is to continue as a model 

ecological system. 

Members of the genus Cecidostiba (Hymenoptera: Pteromalidae) are ectoparasitoids 

of hymenopteran larvae and pupae within cynipid galls in the Palaearctic region. 

Eight morpho-species species are currently recognised, and the most commonly 

encountered are C. fungosa and C. semifascia, having been recorded from 67 and 13 

species of host gall respectively, across much of the western Palaearctic (R.R. 

Askew, J.-L. Nieves Aldrey, G. Stone, K. Schönrogge, unpublished data). These are 

distinguishable from each other, and from other members of the genus, by a 

combination of morphological characters (see Figure 5.1). The remaining six 

formally recognised species have smaller geographic and host ranges and are rarely 

encountered in ecological studies of Western Palaearctic oak galls (see Table 5.1). 

Recently, an undescribed morphological candidate species of Cecidostiba has been 

reared from galls of several species in Iran. This candidate species (hereafter referred 

to as Cecidostiba species A) closely resembles C. fungosa, but is distinguishable by 

its paler legs, antenna, and wing venation (R. R. Askew, personal communication).  

 

Figure 5.1. Illustration of morphological characters for distinguishing between Cecidostiba species. 
C. fungosa has an enlarged forewing stigma and a median incision on the anterior margin of the 
clypeus, while C. semifascia lacks a medial incision and has a narrow stigma, often with a dark band 
beneath it. Images modified and reproduced with permission from unpublished key by R,R. Askew & 
C. Thúroczy.   
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Table 5.1. Details of the eight formal - and one candidate - Cecidostiba morpho-species, including 
summarised host records and geographic range. Two letter country codes follow those provided by the 
International Organization for Standardization, and are presented in approximate geographic order 
from west to east. Records are largely taken from an unpublished catalogue of Western Palaearctic 
Cynipini gall parasitoids compiled by R.R. Askew, J.L. Nieves-Aldrey, J. Pujade-Villar, S.E. Sadeghi, 
K. Schönrogge, G. Melika and C.Thuróczy, with additional records from outside the Western 
Palaearctic and from alternate host gall tribes taken from Kamijo (1981) and Askew et al. (2006).  
 
 

Species 
Recorded 
host gall 

tribe 

Number of 
recorded host 

gall species 
Geographic distribution 

Cecidostiba atra Cynipini 3 ES 

Cecidostiba docimus Pediaspini 1 ES, FR, DE, IT, HU 

Cecidostiba fungosa Cynipini 67 
ES, AD, GB, FR, BE, NL, CH, DK, DE, 
IT, SE, AT, HR, SK, CZ, HU, GR, RO, 

BG, HA, UA, IL, JO, TR, IR 

Cecidostiba fushica Cynipini 2 JP 

Cecidostiba geganius Cynipini, 
Diplolepini 3 ES, FR, NL, DE 

Cecidostiba iliciana Cynipini 4 ES, AD 

Cecidostiba saportai Cynipini 3 ES, AN, GB, FR, 

Cecidostiba semifascia Cynipini 13 ES, AD, GB, FR, CH, DE, SE, AT, HR, 
SK, HU, HA, IR 

Cecidostiba species A Cynipini 4 IR 

 
 

5.1.2. Objectives 

The primary objective of this study is to assess the validity of morpho-species 

classifications for Cecidostiba fungosa, C. semifascia, and C. species A, proposing 

corrections where necessary and facilitating accurate species level identifications in 

future studies. The approach utilises DNA barcoding of individuals from across the 

geographic range of each morpho-species to develop taxonomic hypotheses that are 
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then tested by analysing observations of monophyly across 10 additional loci. 

Specifically I ask: (i) beginning with barcode MOTUs defined at a divisive sequence 

similarity threshold, do observations of monophyly across additional loci support the 

taxonomic distinctiveness of barcode MOTUs? (ii) If novel taxa are inferred, how do 

they differ from the original morpho-species in their geographic and host ranges? 

The implications of the resulting taxonomic inferences, and the utility of this 

approach are then discussed.  

5.2. Methods 

5.2.1. Sample selection 

A set of 171 parasitoid individuals were selected from the collections of the Stone 

laboratory at the University of Edinburgh. Parasitoids in the collections are stored in 

99% ethanol and have been identified into nominal species using morphological keys 

in collaboration with taxonomic experts including Dr Richard Askew, Dr George 

Melika, and Dr Csaba Thuróczy. The set included 134 individuals of Cecidostiba 

fungosa (the most common of the Cecidostiba species), 26 individuals of 

Cecidostiba semifascia, and 10 individuals of the undescribed candidate species 

(Cecidostiba species A). To maximise intra-species diversity, individuals of each 

species were sampled across the available range of host gall species and geographic 

localities (see Appendix 5.1 for collection and rearing details). One individual of 

Caenacis lauta (Pteromalidae) - a gall parasitoid from a closely related genus - was 

included as an out-group for phylogenetic analyses.  

Following the definition of barcode MOTUs (described in section 5.2.4), a subset of 

individuals was selected for further sequencing. Based on the power analysis of 

Rosenberg (2007), a sample size of three individuals per MOTU was considered to 

offer an appropriate compromise between effort and resolution. This set therefore 

included three individuals from each of the eight barcode MOTUs that had at least 

three members, the one individual from both MOTUs that contained only a single 

individual, and the one individual of Caenacis lauta for use as an out-group. 

Individuals that had already been sequenced by Lohse et al. (2010) were 
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preferentially selected. Obtaining accurate DNA sequence is potentially problematic 

in diploid or polyploid organisms as allelic heterozygosity can result in dual peaks 

within sequencing chromatograms, and a time consuming cloning process may be 

required (Lohse et al. 2011). It was attempted to avoid these issues by preferentially 

selecting male specimens, which are haploid in hymenoptera, but as several MOTUs 

contained less than three males it was necessary to include five females.  

5.2.2. Molecular methods 

DNA was extracted for all individuals from a single leg (abdomens were used for 

some small male specimens) using a solution of chelex and proteinase K (Nicholls et 

al. 2010).  For the full set of 176 individuals, a 652bp ‘barcode’ fragment of the 

mitochondrial coxI gene was amplified using the forward primer LCO1490 (Folmer 

et al. 1994), and the reverse primer HCOd: 5’-TAW ACY TCD GGR TGI CCA 

AAA AAY CA-3’ (modified from Folmer et al’s (1994) HCO2198 by J. Nicholls). 

Each 20 µl PCR mix consisted of 1 µl of DNA template, 0.1 µl of Taq polymerase (5 

U/µl, Bioline), 0.25 µl of each primer (20 µM), 1 µl of dNTP’s (25 mM each), 0.8 µl 

of MgCl2 (50 mM), 2 µl of 10 x Bioline PCR buffer, 2 µl of bovine serum albumin 

(10 mg/mL), and 12.6 µl of milipure H2O. Cycling conditions were 94 °C for 2 

minutes, followed by 4 cycles of 94 °C for 30 seconds, 45 °C for 1 minute, and 72 °C 

for 1 minute, then 34 cycles of 94 °C for 30 seconds, 50 °C for 1 minute, 72 °C for 1 

minute, with a final step of 72 °C for 5 minutes.  

For the subset of 27 individuals, sequences of 10 nuclear exon-primed intron 

crossing (EPIC) loci were obtained from GenBank for 5 individuals of C. fungosa 

and one individual of C. lauta that were previously analysed by Lohse et al. (2010). 

These loci are known to amplify well in C. fungosa and are expected to contain 

sufficient sequence polymorphism to differentiate between closely related species 

(Lohse et al. 2011). They include 7 ribosomal protein genes (RpS4, RpS8, RpS18, 

RpS23, RpL15, RpL37, and RpL37a) and 3 regulatory genes (AntSesB, Ran, 

Sansfille). For the remaining 21 individuals, these 10 loci were amplified using 

established primers and PCR conditions (Lohse et al. 2011, full details provided in 

Appendix 5.2).  
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Excess dNTPs were removed from PCR products by adding a solution of shrimp 

alkaline phosphatase (SAP) and exonuclease, incubating at 37°C on a PCR block for 

40 minutes, then heating to 94°C for 15 minutes. Clean PCR product from all loci 

was sequenced in both directions using ABI BigDye chemistry (Perkin Elmer 

Biosystems Waltham MA) on ABI 3700 and 3730 sequencers at the GenePool, 

Edinburgh.  

5.2.3. Sequence alignment 

For each locus, complementary forward and reverse sequences were aligned, 

checked by eye, and trimmed to exclude primer sequence using Sequence Navigator 

version 1.0.1 (for barcodes), and Sequencher version 4.9 (for EPIC loci). Additional 

trimming from the ends was occasionally required for EPIC loci where 

chromatograms could not be reliably interpreted. Alignment of sequences was 

carried out by eye for barcodes, and with MAFFT online version 6 (Katoh and Toh 

2008) using the default settings for each EPIC locus. Exonic regions of the EPIC loci 

were identified by comparison with annotated sequences provided by Lohse et al. 

(2010), and all exons were checked for on open reading frame, a lack of which would 

indicate base calling error or amplification of a pseudogene. Indels were retained in 

the alignments and were treated as missing data in the analyses. Within the final 

alignments, the number of polymorphic sites was assessed using the program PAUP 

version 4.0 BETA (Swofford 2003), across all taxa and within each nominal 

Cecidostiba species.  

The modelling of sequence evolution and the estimation of gene trees for the EPIC 

loci described below assume that allelic lineages have evolved without 

recombination. Each multiple sequence alignment was therefore checked for 

recombination with the program RDP3 version 3.44 (Martin et al. 2010), that 

collectively utilizes the following ‘scanning window’ methods to identify individual 

recombination events (Salminen and Martin 2009):  RDP (Memmott et al. 2000), 

GENECONV (Padidam et al. 1999), MaxChi (Maynard Smith 1992), BootScan 

(Martin et al. 2005), and SiScan (Gibbs et al. 2000). One locus (RpL37) showed 

evidence of recombination within a 111 bp region (P-value = 0.026 with RDP 
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method, 0.032 with GENECONV method), and this region was consequently 

removed from the alignment prior to analysis.  

5.2.4. MOTUs 

The objective here was to define a series of molecular operational taxonomic units 

(MOTUs) based on barcode sequence similarity, whose taxonomic distinctiveness 

could then be assessed by analysing patterns of monophyly at the EPIC loci. 

Barcodes were analysed with jMOTU version 1.0.8 (Jones et al. 2011a), which 

clusters sequences into MOTUs based on a specified threshold of base-pair 

differences using a combination of BLAST and the Needleman-Wunch exact global 

alignment algorithm. To assess for a barcoding gap, the number of defined MOTUs 

was calculated across a threshold range from 0 to 60 base pairs (corresponding to 0 

and ~ 9.2% of the fragment length). The existence of a barcoding gap is characterised 

by a plateau of MOTU richness across a range of threshold values, bounded at either 

end by a relatively steep decline (see Chapter 4, Figure 4.1). Although there is no 

formal means of defining a barcode gap, its ‘divisive’ and ‘inclusive’ limits can be 

estimated from a MOTU richness plot (Ács et al. 2010). Based on the assumption of 

species monophyly and greater variation between than within species, it is expected 

that MOTUs defined at thresholds within a barcoding gap represent meaningful 

independently evolving lineages, but there is likely to be a gradient from increased 

risk of over-splitting meaningful taxa at the divisive limit, towards lumping of taxa at 

the inclusive limit. To minimise the risk of lumping meaningful taxa within a single 

MOTU, a threshold was selected from immediately prior to the barcoding gap (i.e. 

before the plateau of MOTU richness). Each MOTU defined at the selected threshold 

was considered to represent a hypothesised species level taxa, and a sub-sample of 

individuals from each was selected for further sequencing of EPIC loci (see section 

5.2.1)    

The relationships between barcode haplotypes for all Cecidostiba individuals were 

visualised in a neighbour-joining tree, constructed with MEGA version 4 (Tamura et 

al. 2007) using p-distances. Groupings based on morphology and MOTUs at the 

selected threshold were illustrated in the tree and assessed for discordance.        
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5.2.5. Model selection and EPIC gene tree estimation 

To allow for interpretation of patterns of monophyly, phylogenetic relationships 

between the sequences for each EPIC loci were estimated using Bayesian MC3 

sampling, implemented in the program MrBayes version 3.1.2 (Ronquist and 

Huelsenbeck 2003). All analyses initially used 2 runs of 2 million generations, with 4 

chains per run and a hot chain temperature factor of 0.01. In most cases this allowed 

for adequate mixing between chains and convergence of the tree topology parameter 

between runs, as assessed using Tracer version 1.5 (Rambaut and Drummond 2007). 

Runs where convergence was not considered to be adequate (i.e. where the average 

standard deviation of split frequencies remained above 0.01) were repeated with a 

run length of 3 million generations. Parameters and trees were sampled every 1000 

generations with a burn-in of 1000 samples.   

As rates of sequence evolution are expected to vary between coding and non-coding 

DNA, all alignments were partitioned by intron and exon, with variable substitution 

rates allowed between partitions. A generalised time reversible (GTR) substitution 

model was applied where a partition contained all base substitution types, and a 

Hasegawa, Kishino and Yano (HKY) model where some types were absent. For 

evolutionary models with these substitution settings, models containing various 

additional parameters were compared using log Bayes factors (lnBFs), estimated as 

the natural log of twice the difference in harmonic mean likelihood between pairs of 

models (Kass and Raftery 1995, Ronquist et al. 2009). Such lnBFs represent a 

summary of the evidence for one model as opposed to another, and following Kass 

and Rafferty (1995), lnBFs of greater than 10 were considered to indicate a decisive 

difference in support between models. Beginning with models that included 

parameters for a proportion of invariable sites (I) and gamma distributed rate 

variation amongst sites (G) for each partition, models with unconstrained and clock 

constrained branch lengths were compared. For parsimony, the simpler 

unconstrained branch length models were accepted where the comparison of lnBFs 

did not indicate a decisive reduction in model performance. For the most appropriate 

branch length model, the posterior distributions of the estimated rate parameters were 

visualised using the program Tracer version 1.5 (Rambaut and Drummond 2007) and 
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simplifications (i.e. the removal of I or G) were attempted where posterior 

distributions failed to converge towards a single parameter value. Again, 

simplifications were accepted where comparison of lnBFs did not indicate a decisive 

reduction in model performance. For the resulting ‘best’ model for each locus (i.e. 

the most parsimonius yet adequate model), samples from the final 1 million 

generations were used as posterior distributions for tree topology and node support, 

to generate majority-rule consensus trees (i.e. containing all nodes that were present 

in more than 50% of sampled tree topologies). 

5.2.6. Assessment of monophyly 

In each of the estimated consensus gene trees, a particular grouping of individuals 

was considered monophyletic if all members descended from a node that did not also 

descend to members of any other group. Under the null hypothesis that a group of c 

individuals represents a single taxonomic entity, the probability of monophyly (PA(a, 

b)) for a particular group A, consisting of a individuals, can be given by the equation: 
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where b is the number of individuals from outside of group A, and a + b = c  (the 

term ܽ ൅ ܾ
ܽ  is a binomial coefficient, Rosenberg 2007 eq.1). The corresponding 

probability of non-monophyly for a particular group A can be calculated as 1 – PA(a, 

b).  

Where the status of A is observed across multiple loci (L), the compound probability 

for a particular set of observations (P(obs)) is given by the equation: 
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where A is monophyletic at k loci, and PA(obs)i is the probability of the observed 

status of A at locus i (adapted from Rosenberg 2007 eq.6 to allow for a and b to 

differ between loci). Following equation 5.1, if A is monophyletic for a particular 
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locus then PA(obs) = PA(a, b), and if A is not monophyletic then PA(obs) = 1 - PA(a, 

b).  

When applying Equations 5.1 and 5.2 to assess the taxonomic distinctiveness of a 

particular grouping A, the value of a is simply the number of individuals considered 

to belong to A, but the value of b is more subjective and requires some consideration. 

One option is to set the value of b to include all other individuals in the sample, 

whereby the alternative to the null hypothesis would effectively be that group A is 

not part of a single taxonomic entity that includes all sampled individuals (e.g. as the 

sample in this study included 27 individuals, if a = 3, then b = 24). However, 

rejection of the null hypothesis in this case would imply that group A is 

taxonomically distinct from some, but not necessarily from all taxa within the 

sample. To avoid this issue, I considered that the most appropriate approach was to 

always set b = 1, whereby the alternative to the null hypothesis is that group A is a 

distinct taxon that does not also contain any other single individual from within the 

sample. Therefore, the status (monophyletic or not monophyletic) of each barcode 

MOTU at each locus was observed, and the probability of each observation was 

calculated following Equation 5.1 with b set to 1, and a set to the number of 

sequenced individuals within the MOTU. At loci where a particular MOTU was 

represented by less than two individuals, its monophyletic status could not be 

interpreted and the locus was excluded from analysis of that grouping. The 

probability of the observed status of each barcode MOTU across all informative loci 

was calculated following equation 5.2. Where the observed patterns were not 

sufficiently unlikely (i.e. P(obs) > 0.05) to reject the null hypothesis for two or more 

‘sister’ barcode MOTUs (i.e. those that descended from an otherwise exclusive node 

of the barcode tree), these were combined and patterns were reassessed.  

The majority-rule consensus trees produced in Mr Bayes contain all nodes that were 

present in more than 50% of sampled tree topologies, and offer the proportional 

occurrence of each of these nodes as a measure of node support. Where a particular 

grouping is monophyletic in a consensus tree, the proportion of sampled tree 

topologies where that grouping was not monophyletic can be inferred as 1 – NsA, 

where NsA is the support (expressed as a proportion) for the node that determines the 
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monophyly of group A. In the analysis described above it is assumed that the 

topology of the estimated consensus tree is accurate, but the measures of node 

support for monophyletic groups offer a means of incorporating gene tree uncertainty 

into the assessment of monophyly, thus minimising the effect of type I error (i.e. 

false positive inferences of monophyly).  A corrected probability of monophyly for a 

group A (CPA(a, b)) was calculated using the equation: 

ܥ  ஺ܲ ሺܽ, ܾሻ ൌ ஺ܲ ሺܽ, ܾሻ ൅ ሺ1 െ ஺ሻሺ1ݏܰ  െ  ஺ܲ ሺܽ, ܾሻሻ                     5.3 ݊݋݅ݐܽݑݍܧ 

Where a grouping is not monophyletic in the consensus tree, it is not straightforward 

to infer the proportion of sampled tree topologies in which it was monophyletic 

without recovering the excluded tree topologies. The corresponding probability for a 

lack of monophyly of A therefore remains as 1 - (PA(a, b)). As this approach 

considers false-positive observations of monophyly, but not false negatives, it offers 

a more conservative estimation of the probabilities associated with particular patterns 

of monophyly. The analysis was repeated using equation 5.3 to calculate the 

probability for the observed pattern of monophyly for each grouping at each locus, 

and these were combined across loci following equation 5.2 to give a corrected 

compound probability for each set of observations (CP(obs)).  

5.3. Results 

5.3.1. Barcodes and MOTUs 

A 652 bp barcode fragment was obtained from all 171 individuals. The alignment of 

these sequences contained 223 polymorphic sites (see Table 5.1), with an open 

reading frame in the forward direction from the 2nd base, and no evidence of 

insertions, deletions, or recombination. When read in the forward direction, all 

sequences contained a series of 11 consecutive thymine bases beginning from the 

150th base pair. This ‘poly-T’ region appeared to cause slippage of the taq 

polymerase during the extension phase of the PCR reaction, resulting in sequence 

chromatograms that contained dual peaks downstream of the poly-t region. However, 

as the fragment was sequenced in both directions for all individuals, at least one 

sequence was always interpretable, and by carefully editing by eye it was possible to 
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obtain accurate sequence data for the full fragment. This issue has also been 

encountered in parasitoids from various other chalcid families (J. Nicholls, personal 

communication), but could be avoided in future by using alternate primers that do 

not span the poly-t region (e.g. the pF1 and 2437d primers described in Chapter 4).        

The relationship between the number of barcode MOTUs and the threshold base pair 

difference is shown in Figure 5.1. A plateau of MOTU richness - characteristic of a 

barcoding gap - was apparent between thresholds of approximately 8 and 47 bp 

(corresponding to 1.2 – 7.2% of the fragment length). To minimise the risk of 

lumping multiple independent lineages, a threshold of 6 bp (0.9%) was selected for 

defining a series of MOTUs for further investigation. At this threshold, 10 

Cecidostiba barcode MOTUs were defined containing between 1 and 103 

individuals.  

 
 
 
Figure 5.1. Relationship between the number of barcode MOTUs and defining threshold base pair 
difference between 0 and 60 base pairs. Arrow indicates the selected divisive threshold of 6 bp.  
.    
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A neighbour-joining tree of all Cecidostiba barcode haplotypes is shown in Figure 

5.2. Each of the three morpho-species was monophyletic within this tree, and none of 

the 10 MOTUs contained members of more than one morpho-species. One MOTU 

corresponded exactly with Cecidostiba species A, while C. fungosa contained 4 

MOTUs and C. semifascia contained 5. 

 

Figure 5.2. Neighbour-joining tree based on p-distances for Cecidostiba barcode haplotypes. 
Haplotype labels consist of a 4 letter morpho-species code and a 4-5 digit haplotype code, with 
numbers in brackets indicting how many parasitoid individuals shared a haplotype (Cfun = C. 
fungosa, Csem = C. semifascia, CspA = C. species A). Coloured circles to the right of haplotype 
codes indicate the countries from which individuals were sampled. Vertical bars to the right indicate 
membership of morpho-species (in black), and MOTUs as defined at the 6 bp threshold (in green). 
Scale bar indicates a p-distance of 0.01 
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5.3.2. Nuclear loci  

A single allele from each of 21 selected individuals was successfully sequenced for 

the 10 EPIC loci in all but nine instances (i.e. 201 sequences were obtained from a 

maximum of 210). When combined with the sequences of six individuals from Lohse 

et al (2010), five sequences were missing at the AntSesB locus, two at the RpS4 

locus, and one at the RpL15 and RpS18 loci. These missing sequences could not be 

obtained due to a repeated lack of amplification during the PCR reaction, presumably 

due to polymorphism at sites within the priming regions that inhibited primer 

binding. Although 5 of the selected individuals were female, and therefore diploid, 

there were no obvious ambiguities at any of the sequence trace files for these 

individuals, suggesting that they were homozygous at the sampled loci.         

The alignments of each of the 10 loci contained polymorphic sites (see Table 5.1), 

ranging from 34 in the shortest alignment (RpL37a, 14% of sites) to 131 in the 

longest (RpL37, 25% of sites). Polymorphic sites were present within the nominal 

species C. fungosa and C. semifascia for all 10 loci, which is consistent with these 

loci being suitable for intraspecific investigation of these nominal species.  

The models of sequence evolution selected for gene tree estimation had clock 

constrained branch lengths and a GTR + I model applied to the intron partition for all 

10 loci. For the exon partition, a GTR + I model was applied for three loci (AntSesB, 

RpL15, and RpS4), and a HKY + I model for the remaining seven. Gene trees for all 

EPIC loci are shown as cladograms in Figure 5.3.      
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Table 5.1. Summary of multiple sequence alignments used in analysis, including the number of 
sequences (# Seq), lengths (including indels), number of introns (# Intron), and the number of 
polymorphic sites within the full alignment (# S) and within each nominal Cecidostiba species.  
  

  Length (bp)      

Locus # Seq Exon Intron Total # Intron # S # SCfun # SCsem # SCspA 

AntSesB 22 435 192 627 2 101 7 49 3 

Ran 27 297 212 509 1 75 9 21 0 

RpL15 26 215 452 667 2 102 21 23 0 

RpL37 27 108 745 853 1 213 73 36 9 

RpL37a 27 141 102 243 1 34 4 9 0 

RpS4 25 369 436 805 2 129 24 47 12 

RpS8 27 230 261 491 1 69 17 24 0 

RpS18 26 257 587 844 2 148 51 59 2 

RpS23 27 189 87 276 1 39 12 10 2 

Sansfille 27 362 87 449 1 49 15 16 6 

          

coxI 176 652 - 652 0 223 63 80 0 
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Figure 5.3. Bayesian majority consensus rectangular cladograms for 10 EPIC loci, rooted by out-
group (Clau32). The code names of individuals are coloured by the barcode MOTUs from which they 
were selected. Numbers to the left of nodes indicate posterior probability node support, and are 
coloured at nodes that support the monophyly of a particular barcode MOTU.    
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5.3.3. Assessment of monophyly across EPIC loci 

Cecidostiba species A 

The single MOTU from Cecidostiba species A (CspA MOTU 1) was monophyletic 

at all 10 EPIC loci, and the compound probability of observations across loci (P(obs)) 

was sufficiently low to reject the null hypothesis that it was part of a larger 

taxonomic entity within the sample with a very high degree of confidence (p<0.001, 

see Table 5.2a). Support for the nodes that determined the monophyly of the CspA 

MOTU 1 was generally very high, and correcting the probabilities to incorporate 

uncertainty in gene tree estimation (CP(obs)) resulted in only a slightly larger p-value 

that did not change the inference with regards to the null hypothesis. Thus, the status 

of this grouping as an independent lineage (i.e. a ‘true’ species) is very strongly 

supported. 

Cecidostiba semifascia 

Within the C. semifascia morpho-species, one of the barcode MOTUs (Csem MOTU 

1) was monophyletic at all 10 loci, with a sufficiently low compound probability to 

reject the null hypothesis with a very high degree of confidence (p<0.001, see Table 

5.2a). Correcting for gene tree uncertainty did not alter this inference, and its status 

as an independent lineage is therefore very strongly supported.  

A limitation of using observations of monophyly to test for taxonomic distinctiveness 

is that monophyly can only be assessed for groups with at least two members. Two 

of the barcode MOTUs (Csem MOTUs 2 & 3) contained only a single individual and 

their monophyly could not therefore be assessed at any of the loci. However, 

evaluation of the sequence data revealed that the individuals of Csem MOTUs 2 & 3 

shared identical haplotypes with members of at least one other MOTU at 4 and 5 of 

the 10 loci respectively, and so even if further members were available, the MOTUs 

could not have been monophyletic for these loci. It was therefore considered unlikely 

that the null hypothesis would have been rejected for these barcode MOTUs.        

Neither of the remaining two C. semifascia barcode MOTUs (Csem MOTUs 4 & 5) 

were monophyletic at any of the loci, and the null hypothesis that they were part of a 
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larger taxonomic entity could not be rejected (p>0.05, Table 5.2a). Successive 

combinations of sister groupings were therefore attempted (i.e. those that shared a 

common but otherwise exclusive node in the barcode gene tree), and patterns of 

monophyly were reassessed (Table 5.2b). For the groupings of Csem MOTUs 4 and 

5, and Csem MOTUs 3, 4 and 5, the compound probabilities were still not 

sufficiently low to reject the null hypothesis. However, the grouping of Csem 

MOTUs 2, 3, 4 and 5 was monophyletic at all 10 loci, and the compound probability 

for observations across loci was sufficiently low to reject the null hypothesis with a 

very high degree of confidence (p<0.001). The implication is therefore that these 

four barcode MOTUs represent a single taxonomic entity. The succession of barcode 

MOTU combinations is illustrated in Figure 5.4.  

Cecidostiba fungosa 

Within the C. fungosa morpho-species, one barcode MOTU (Cfun MOTU 4) was 

monophyletic at all 10 loci with a sufficiently low compound probability to reject the 

null hypothesis with a very high degree of confidence (p<0.001, see Table 5.2a). 

Correcting for gene tree uncertainty did not alter this inference, and its status as an 

independent lineage is therefore very strongly supported. 

For each of the remaining three barcode MOTUs (Cfun MOTUs 1, 2, and 3) the null 

hypothesis of a larger taxonomic entity could not be rejected (p>0.05), and 

successive combinations of sister groupings were therefore attempted. The null 

hypothesis was not rejected for the grouping of Cfun MOTUs 2 & 3, but was rejected 

with a very high degree of confidence (p<0.001) for the grouping of Cfun MOTUs 1, 

2, and 3 (Table 5.2b). The implication is therefore that these three barcode MOTUs 

represent a single taxonomic entity. The succession of barcode MOTU combinations 

is illustrated in Figure 5.4.  
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Figure 5.4. Illustration of how barcode MOTUs were assessed for monophyly and successively 
combined. Rejection of the null hypothesis that a particular grouping was part of a larger taxonomic 
entity based on the compound probability of observations across loci is indicated by a green tick with 
asterisks to show the confidence level (* = p<0.05, ** = p<0.01, *** = p<0.001). A red cross indicates 
that the null hypothesis was not rejected for a particular grouping (p>0.05), and black arrows from left 
to right indicate the order that combinations of multiple barcode MOTUs were attempted.  
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5.4. Discussion 

5.4.1. Taxonomic inference 

The presented DNA barcode data and analysis of observations of monophyly across 

EPIC loci strongly supported the status of Cecidostiba species A as a distinct 

taxonomic entity within the sample. Following the terminology of Vieites et al. 

(2009) and Padial et al. (2010), I therefore propose that it currently represents a 

confirmed candidate species. As distinguishable morphological characters have been 

identified (e.g. relating to the colouration of wing veins, legs and antenna, R. R. 

Askew, personal communication), it shall be formally described and included in 

appropriate taxonomic keys.  

For the Cecidostiba semifascia morpho-species, the combination of DNA barcodes 

and analysis of observations of monophyly indicated the presence of two distinct 

taxonomic entities (i.e. independently evolving lineages). As these are supported by 

multiple independent lines of evidence (i.e. observations of distinctiveness at the 

barcode locus and multiple additional loci), I propose that they currently represent 

confirmed candidate species. Following the nomenclature recommended by Padial et 

al. (2010), the 3 individuals from Csem MOTU 1 shall henceforth be considered as 

Cecidostiba semifascia [Ca1], and the 23 individuals from Csem MOTUs 2, 3, 4, and 

5, as Cecidostiba semifascia [Ca2]. Following the molecular analyses, 

representatives of these two taxa were sent for evaluation by Dr Richard Askew, a 

globally leading taxonomist of chalcid parasitoids, particularly those associated with 

cynipid galls. Initial indications are that although both fall under the morphological 

concept of C. semifascia and are currently morphologically cryptic, characters for 

distinguishing between them do exist. It is therefore possible that the morphological 

criteria of C. semifascia can be revised to allow for the description of C. semifascia 

[Ca1] and C. semifascia [Ca2] as distinct morphological species, which could then be 

included in morphological keys of the genus. Such a process of molecular assessment 

leading to morphological revision illustrates the reciprocally enlightened nature of 
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modern taxonomy, with DNA barcoding and other molecular approaches 

comfortably complementing more traditional morphological based taxonomy.   

For the Cecidostiba fungosa morpho-species, the combination of DNA barcodes and 

analysis of observations of monophyly again indicated the presence of two distinct 

taxonomic entities (i.e. independently evolving lineages). As these are again 

supported by multiple independent lines of evidence, I propose that they currently 

represent confirmed candidate species. The 126 individuals from Cfun MOTUs 1, 2 

and 3 shall henceforth be considered as Cecidostiba fungosa [Ca1], and the 8 

individuals from Cfun MOTU 4 as Cecidostiba fungosa [Ca2]. Representatives of 

these two taxa were sent for evaluation by Dr Richard Askew, but initial indications 

are that they are truly morphologically cryptic species, with no reliable 

morphological characters for distinguishing between them.   

5.4.2. Distributions and host records 

The 10 individuals of Cecidostiba species A included in this study were reared from 

sexual generation galls of Neuroterus saliens and 3 unidentified gall types on oaks in 

the section Cerris (black oaks), at several sites in Iran (Figure 5.5, see Appendix 5.1 

for collection details). There are presently no records of this morpho-species species 

from outside of Iran, although as it closely resembles C. fungosa and has yet to be 

included in morphological keys of the genus, it is possible that it has been recorded 

elsewhere as C. fungosa.   

The new parasitoid species C. semifascia [Ca1] was widespread, with the 23 

individuals included in this study having been reared from sexual generation galls of 

Biorhiza pallida (22 individuals) on oaks of the section Quercus sensu stricto (white 

oaks), and sexual generation galls of Andricus quercuscalicis (1) on a black oak, 

from six countries across the western Palaearctic from the UK to Iran. The species C. 

semifascia [Ca2] appears to have a more limited distribution, with the 3 included 

individuals having been reared from sexual generation galls of Andricus cecconii (1) 

and Pseudoneuroterus macropterus (2), on black oaks at sites in Iran (Figure 5.5).  
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The new parasitoid species C. fungosa [Ca1] appears to be a widespread bivoltine 

host generalist, with the 126 individuals included here having been reared from galls 

of 30 species including both sexual and asexual generations on both black and white 

oaks, collected in 10 countries spanning much of the western Palaearctic from the 

UK to Iran (Figure 5.5). Although much less numerous, C. fungosa [Ca2] was also 

widespread, with eight individuals reared from sexual generation galls of three 

species on white oaks, collected in five countries including Spain, Hungary, and the 

UK (Figure 5.5). The recorded geographical and host range of C. fungosa [Ca2] was 

completely over-laid by that of C. fungosa [Ca1], and at particular sites in Spain and 

France, both were reared from the same species and generation of gall.  

 

Figure 5.5. Maps of the Western Palaearctic showing the collection localities of the five Cecidostiba 
species recognised in this study (a-e).  
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The two pairs of cryptic species appeared to be sympatric, with C. semifascia [Ca1] 

and [Ca2] both present in western Iran, and C. fungosa [Ca1] and [Ca2] co-occurring 

at several sites in central and western Europe. The observation of genealogical 

distinctiveness within the pairs despite their sympatry, supports the inference that 

they are species level taxa rather than strongly structured populations within species 

(De Queiroz 2007).  

Under the principle of competitive exclusion (Hardin 1960), it is expected that 

species persisting in sympatry will occupy distinct ecological niches. Consistent with 

this principle, there is a general trend for cryptic species to be more specialised in 

their host use than their parent morpho-species (Bickford et al. 2007). In extreme 

cases, supposedly generalist morpho-species of hymenopteran and dipteran 

parasitoids have been revealed as complexes of up to 32 cryptic species, each with a 

very limited and often non-overlapping host range (Smith et al. 2006, Smith et al. 

2007, Smith et al. 2008). However, this trend has not been apparent in oak gall 

parasitoids with most pairs of cryptic species found to have at least partially 

overlapping host-gall ranges (Nicholls et al. 2010, Kaartinen and Roslin 2011, see 

Chapter 4). This is continued in the present study with the observation that C. 

fungosa [Ca1] and [Ca2] share several host gall-types at the same sites. The host gall 

ranges of C. semifascia [Ca1] and [Ca2] did not overlap, but the sampling is much 

too limited to infer that these species have distinct host-ranges. Further sampling 

would be required to establish the true extent of the host range for each cryptic 

species, but in the absence of host gall differentiation it would be expected that they 

differ in another aspect of their ecology, e.g. they may target different hosts within 

the same galls, may occupy different temporal niches, or may differ in their 

generation times (i.e. univoltine vs. bivoltine).  

5.4.3. Implications for ecological study  

Undetected taxonomic error is a potentially important source of bias in ecological 

studies (Kaartinen et al. 2010), see Chapter 4), and a principal objective of this study 

was to assess the accuracy of the established Cecidostiba morpho-species 

classifications so that the bias in existing ecological data might be considered, and 
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avoided in future studies of Palaearctic oak gall communities. The result that both the 

C. semifascia and C. fungosa morpho-species contain cryptic species means that 

existing ecological records for these species should be treated with caution, and that 

future studies should take measures to ensure accurate identification.  

Although the morpho-species C. semifascia is known from 13 host gall species 

across much of the Western Palaearctic, it has rarely been included in comparative 

ecological studies. The one notable case is the study of Schönrogge and Crawley 

(2000), where it was recorded from asexual generation galls of Cynips divisa on a 

species of white oak at a single site in Scotland. Given that the cryptic species C. 

semifascia [Ca2] established in this study is so far only known from galls on black 

oaks in Iran, it seems probable that the individuals sampled by Schönrogge and 

Crawley (2000) all belonged to C. semifascia [Ca2], whose presence in the UK is 

confirmed. It is therefore unlikely that their inferences were at all biased by treating 

C. semifascia as a single taxon. However, the study also included the morpho-species 

C. fungosa, as have various others investigating the parasitoid communities of 

naturally invading oak gallwasps in western Europe (Schönrogge et al. 1995, Stone 

et al. 1995, Schönrogge et al. 1996, Schönrogge et al. 1999, Schönrogge and Crawley 

2000, Schönrogge et al. 2000b, Schönrogge et al. 2007, Schönrogge et al. 2011). As 

the two new cryptic species C. fungosa [Ca1] and [Ca2] are both present in central 

and western Europe with overlapping host-gall ranges, it is not unlikely that they 

were both included in these studies under a single classification, leading to potential 

bias in the presented community parameters. Measures such as the diversity of 

parasitoid communities, and the number of parasitoid species per host (i.e. 

vulnerability) are potentially negatively biased, whereas the number of hosts per 

parasitoid species (i.e. generality) is potentially positively biased.   

One of the benefits of the Western Palaearctic oak gall community as a model system 

for ecologically study is that the morphological taxonomy of the gall parasitoids is 

well developed, and a comprehensive morpho-species key is available (R. Askew 

and C. Thúroczy, unpublished). However, the discovery of cryptic species within the 

community, both here and in other studies (Kaartinen et al. 2010, Nicholls et al. 

2010, see Chapter 4), undermines the ability of this key to return accurate species 
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level identifications. While it is intended that the key be modified to include 

Cecidostiba species A, and to distinguish between C. semifascia [Ca1] and [Ca2], 

this is not possible for the truly morphologically cryptic C. fungosa [Ca1] and [Ca2], 

and future studies that encounter the C. fungosa morpho-species may need to 

implement molecular methods to ensure correct identification.  

It has already been described how DNA barcoding can be used to assess the accuracy 

of morpho-species classifications (see also Chapter 4), but its primary application is 

as a means of associating query individuals with established voucher taxa, based on 

sequence similarity criteria (Hebert et al. 2003, Ratnasingham and Hebert 2007). The 

accuracy of this approach is dependent on the assumptions that species level taxa are 

monophyletic at the barcode locus, and that inter-specific variation exceeds intra-

specific variation. As these assumptions are supported by the data presented here for 

C. fungosa [Ca1] and [Ca2], and for the further 3 Cecidostiba species, DNA 

barcoding could be used in future studies to obtain accurate identifications for these 

species. To facilitate this, the 170 Cecidostiba barcode sequences generated here 

have been uploaded as vouchers to the Barcode Of Life Data Systems  

(http://www.boldsystems.org), an online database that returns an identification for a 

query barcode sequence if it differs by less than 1% from an established voucher 

(Ratnasingham and Hebert 2007). The p-distances in the barcode tree (Figure 5.2) 

indicate that this threshold difference of 1% is appropriate for distinguishing between 

the 5 Cecidostiba species (i.e. it is less than the inter-specific distance between all 

species pairs). 

The cost of sequencing short specific fragments of DNA has fallen considerably in 

previous decades, but has recently stabilized at approximately US$ 5 for reagents and 

machine use but exclusive of labour (Cameron et al. 2006). While this may be easily 

affordable for small or moderate samples, it is likely to inhibit barcoding as a 

standard means of identification for larger ecological datasets that can contain 

thousands of individuals. In such cases an option could be to employ ‘integrative 

identification’, where specimens are initially identified based on their morphology, 

and only members of those morph-species known or suspected to contain cryptic 

species are then selected for DNA barcoding. To use the example of the Cecidostiba 
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species studied here, query specimens morphologically identified as Cecidostiba 

species A would be accepted as this is considered to contain no cryptic species, but 

any query specimens of C. fungosa would need to be barcoded to distinguish 

between the pair of cryptic species. As this approach is only practicable in systems 

where there has been detailed assessment of morphological taxonomy using 

molecular methods, further studies such as this will serve to increase the value of 

Western Palaearctic oak gall community as a model ecological system.  

5.4.4. The utility of multi-locus monophyly for defining species 

DNA barcodes offer a useful means for assessing and developing taxonomic 

hypotheses, but support from further independent lines of evidence is generally 

considered necessary to validate taxonomic inferences (Padial et al. 2010, Goldstein 

and DeSalle 2011). In this study, I opted to use statistical tests for taxonomic 

distinctiveness from observations of monophyly at further DNA loci to assess the 

support for hypotheses based on barcode data, resulting in the proposal of several 

confirmed candidate species. This approach is well grounded in population genetic 

theory (Baum and Shaw 1995, Hudson and Coyne 2002, Rosenberg 2007), and I 

consider it to be valid. There are however several important requirements and 

potential limitations to the approach that should be considered.  

Firstly, it is not unlikely that an individual gene tree will show a conflicting topology 

with the underlying population or species tree (Pamilo and Nei 1988, Maddison 

1997). Selection acting on a loci or at linked regions of the genome can 

systematically influence its rate of lineage sorting with divergent selection increasing 

the rate and balancing selection decreasing it, potentially to the extent where even 

anciently diverged species can remain paraphyletic for certain loci (Ayala and 

Escalante 1996). Lineage sorting may also be disrupted by introgression, where 

genes from one species are introduced into the gene pool of another through 

hybridisation (Funk and Omland 2003). Mitochondrial DNA in arthropods may be 

particularly affected by selective sweeps and introgression due to the influence of 

maternally inherited symbionts, potentially increasing error rates in identifications 

and inferences based on DNA barcodes (Hurst and Jiggins 2005). Further to the 
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systematic influences of selection and introgression, contrasting tree topologies will 

frequently occur simply due to the high stochastic variance of genetic processes, 

particularly where taxon or population divergence is relatively recent (Knowles and 

Carstens 2007). Consequently, taxonomic inferences drawn from observations of 

monophyly will be most reliable when considered across multiple independent loci, 

preferably ones that are selectively neutral. Such loci should also have sufficient 

information content to clearly differentiate between closely related species and allow 

for robust recovery of gene-trees (Funk and Omland 2003), criteria that may exclude 

many widely used exonic loci whose slow rate of sequence evolution limits their 

differentiation. An appropriate option is to use exon-primed intron-crossing (EPIC) 

loci, such as those in this study, that contain considerable intraspecific variation but 

are amplifiable across a range of taxa. Although not widely used, the development of 

primers for such loci from existing genomic and expressed sequence tag (EST) data 

is relatively straightforward (Lohse et al. 2011), and they are becoming increasingly 

available for non-model taxa (Bierne et al. 2000, Garrick et al. 2008, Tay et al. 2008, 

Li et al. 2010, Lohse et al. 2011).  

Secondly, the time to monophyly for a sample of genes is sensitive to population 

demography, and expectations based on population genetic theory suggest that this 

time will often be substantial. For example, for a single neutral nuclear loci in 

species with an effective population size (Ne) of 100,000, assuming one generation a 

year, it would take an expected 730,000 years for there to be a high probability 

(95%) of observing monophyly (Hudson and Coyne 2002). Taxonomic inference 

based on observations of monophyly are therefore likely to be conservative (Knowles 

and Carstens 2007, Padial et al. 2010), and while this may be desirable for 

minimising type I errors, it does mean that valid but relatively young species could 

be overlooked (type II error). Consequently, the decision of whether to employ 

observation of monophyly for taxonomic inference will be case specific, and should 

take into account any prior knowledge of the taxa under consideration. In cases 

involving long standing morpho-species with no a priori evidence for recent 

speciation, such as in this study, the minimal type I error offered by observation of 

monophyly may be appropriately prudent.   



168 
 

Finally, strong population structure within the species under consideration may cause 

various problems. The statistical tests developed by Rosenberg (2007) and applied in 

this study are based on the null hypothesis of a single panmictic population, and 

where the probability of observed patterns of monophyly for a priori groupings are 

sufficiently low, it is inferred that the null hypothesis does not hold because the 

sampled individuals are drawn from multiple distinct groups (Rosenberg 2007). If 

there truly is complete mixing within all species present, then these groups represent 

distinct taxa at or above the species level. However, if mixing is incomplete (i.e. a 

species is strongly structured) then the multiple distinct groups may be populations 

within a species. Although under the modern unified concept of species there is some 

uncertainty about what degree of differentiation is necessary for recognising species 

(De Queiroz 2007), it will usually be taxonomically imprudent to recognise 

geographically structured populations as distinct species when isolation is the only 

mechanism limiting gene-flow. Fortunately, the conservative nature of taxonomic 

inference from observations of monophyly that make it unsuitable for distinguishing 

between young species, also make it resilient to the issues of structured populations. 

As demonstrated in the earlier example, the time taken for an individual marker to 

become monophyletic following lineage separation will often be large (i.e. 730,000 

years with a generation time of one year and Ne of 100,000), and this time would 

increase with the number of loci that were considered (Hudson and Coyne 2002). 

Such a degree of structure (i.e. isolation without gene-flow) is not plausible for 

species with even a moderate effective population size, although this time would fall 

to 7300 years for an isolated population with an Ne of 1000, or even to 730 years if 

Ne was 100. The risk of making inappropriate inferences due to population structure 

can be minimised by appropriate geographic sampling (i.e. the geographic range of a 

sample should be maximised), both during initial sampling, and for any sub-sampling 

within candidate taxa. Where one or more candidate taxa are allopatric, it may be 

useful to employ additional taxonomic characters to avoid type I error.  

In summary, I consider that the combination of DNA barcoding with observation of 

monophyly at additional molecular markers, supported by statistical tests for 

taxonomic distinctiveness, offers a practical and effective means for identifying and 

correcting species level taxonomic error. For optimality, the approach should 
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incorporate multiple markers with substantial information content, and EPIC loci 

appear to be an appropriate option. Although unlikely to be inhibitive, the risks of 

failing to diagnose young species, or of inappropriately diagnosing structured 

populations, should be considered when making taxonomic inferences.  
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Chapter 6 – Concluding remarks 

In this thesis I have presented a series of analytical studies that adress aspects of the 

Climate Matching strategy and develop an accurate taxonomic framework for further 

ecological investigation. Each of these studies includes a comprehensive discussion, 

but I conclude in this final chapter with a brief discussion of how Climate Matching 

might be practiced in light of these results.  Finally, I suggest what I consider to be 

valuable avenues for future research.   

6.1. How to match or not to match?   

The use of Climate Matching to guide the selection of non-local provenances for 

planting has been advocated as a ‘no-regret’ option for promoting the adaptation of 

UK forests to expected changes in climate (Broadmeadow and Ray 2005). However, 

in the opening chapter of this thesis I identified two points that could limit the 

practical value of Climate Matching: firstly, that if tree provenances are not locally 

adapted to the climatic factors used to match sites then Climate Matching would be 

ineffective in promoting adaptation and could reduce population fitness; and 

secondly, that introduced provenances may influence associated organisms 

potentially impacting on forest biodiversity. In Chapters 2 and 3 I explored these 

issues empirically, using a model system of Quercus petraea and its associated 

community of herbivorous gallwasps. In light of the results of these studies, what can 

be said about how Climate Matching should or should not be practiced?   

The results presented in Chapter 2 for Q. petraea suggest that the climatic factors 

used in Climate Matching analysis (i.e. temperature and precipitation) are involved in 

the local adaptation of particular phenotypic traits. Matched provenances are 

therefore likely to possess traits that would be of adaptive advantage under future 

climatic conditions, providing some justification for Climate Matching of this 

species. However, the study also highlighted that additional factors are likely to be 

involved in adaptation, and that while matched provenances may be well adapted to 

future climates at a planting site, they will not necessarily be adapted to the present 

climate. These present potentially major obstacles for Climate Matching, as there is 
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little to be gained from planting trees that are perfectly suited to the climate of the 

2080s, but that die or perform poorly before that time due to maladaptation to earlier 

climates or to alternate factors such as pathogens or soil properties.  

As discussed in Chapter 2, a possible mitigation strategy would be to adjust the 

Climate Matching analysis to also consider more geographical gradients associated 

with environmental variation such as latitude, longitude and altitude. Minimising the 

differences in these variables between planting sites and matched provenance sites 

could reduce the level of maladaptation to alternative aspects of the plantation 

environment. A possible further strategy would be to buffer seedling of matched 

provenances from unfavourable initial conditions by planting alongside shrubs or 

widely spaced mature trees that act as nurse plants (Castro et al. 2004). Alternatively, 

matched seed or seedlings could be planted at very high initial stocking density, 

allowing for high mortality and promoting selection for genotypes that are most 

adapted (or least maladapted) to the range of biotic and abiotic influences presented 

at the planting site. This latter strategy is also proposed for promoting the adaptation 

of native populations (Hubert and Cottrell 2007, Savolainen er al. 2007).   

While these strategies may improve its effectiveness, it seems unlikely that Climate 

Matching will directly provide the ‘holy grail’ of adaptive forest management – i.e. a 

tree population that performs well at a planting site throughout its long lifetime and 

is resilient to any changes in climate. Such a population would presumably need to 

combine aspects of the native population such as adaptation to local photoperiod, 

soils, pests, and pathogens, with aspects of climate matched populations such as 

tolerance to summer drought and winter water logging. An alternative to planting 

Climate Matched seed or seedlings might therefore be to introduce Climate Matched 

pollen for crossing with trees of local provenance. At least some of the resulting 

offspring would hopefully exhibit traits well suited to both present and future 

environments at the planting site. Subsequent natural crossing and regeneration from 

these individuals, perhaps encouraged by regular gap creation and natural 

regeneration (Hubert and Cottrell 2007), could promote the spread of adaptive non-

native traits (e.g. for improved tolerance of drought or water logging) in the local 

gene-pool.     
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In relation to the issue of associated biodiversity, the results presented in Chapter 3 

suggest that while tree provenance can strongly influence the abundance and 

structure of an oak gallwasp community, Climate Matching is unlikely to have a 

severely negative impact. Tree phenological traits such as the timing of spring bud-

burst appeared to be particularly influential in tree-gallwasp interactions, but 

gallwasps did not seem to be tightly synchronised with trees of local provenance and 

were generally found in greatest abundance on trees with non-local phenology. 

However, the dynamics of associations were potentially complex, with alternate 

generations of single species appearing in greater abundance on trees with different 

phenologies. The risk of negative impacts on this community could be minimised by 

ensuring that trees of matched provenance are well mixed with trees of local 

provenance, allowing for migration of alternate generations of gallwasps between 

trees of different provenance and phenotypes. Such mixed planting would also be 

likely to minimise the risk of more general biodiversity loss, ensuring that habitat 

remained available for those species less well able to interact with trees of non-local 

provenance.   

The observation that gallwasps were able to interact with trees with non-local 

phenologies bodes well for Climate Matching and for sustainable forest management 

in general, suggesting that some components of local forest biodiversity will be 

resilient to the effects of introduced tree provenances, and to any phenological shifts 

in local tree populations. However, gallwasps are a very small and perhaps 

unrepresentative component of forest biodiversity, having a particularly intricate 

relationship with their hosts and being capable of manipulating host resources 

(Schönrogge et al. 2000a, Harper et al. 2004). It is yet unclear whether other forest 

organisms will be as resilient to Climate Matching, and precautionary steps to 

minimise the risk of biodiversity loss should be taken (e.g. mixed planting of local 

and matched provenances).   

In summary, I propose the following recommendations for Climate Matching 

practitioners: (i) Climate Matching should only be applied to tree species with 

established evidence for local adaptation to temperature or precipitation gradients. 

(ii) The risk of maladaptation and consequent poor establishment of matched 
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provenances at planting sites should be considered and potentially mitigated by 

including additional environmental gradients in the Climate Matching analysis, 

exposing matched seedlings to high selection pressure at the planting site, or 

buffering young seedlings from initial environmental conditions. (iii) The option of 

introducing Climate Matched pollen rather than seed should be explored. (iv) The 

potential for negative impacts on associated biodiversity should be considered and 

the risks minimised by ensuring that trees of matched provenance are well mixed 

with trees of local provenance.  

6.2. Future research 

6.2.1. Population response functions 

This thesis has focused on a single trial containing a wide variety of provenances. 

While analysis of single trial data can be informative about patterns of adaptation, it 

is not well suited to investigating the potentially complex genotype-by-environment 

interactions that determine how tree populations will perform across a range of 

environments. Such investigation requires data from reciprocal transplant or 

treatment experiments, where the same provenances are monitored at various 

planting sites or are subject to various experimental treatment conditions (Aitken 

2004). In North America where provenance research has been extensive, analyses of 

multi-trial or multi-treatment data have been used to model the performance of 

individual populations across broad climatic and geographical ranges (Rehfeldt et al. 

1999, Rehfeldt et al. 2002, St Clair et al. 2005, Wang et al. 2006, Bower and Aitken 

2008). When combined with climate change projections, these models allow for 

quantified prediction of the degree of maladaptation of populations in their current 

location, and can guide the identification of populations that will perform well under 

future climates (Wang et al. 2006, St Clair and Howe 2007, Aitken et al. 2008, Wang 

et al. 2010).  

In Europe, broad studies of population response functions are largely lacking, despite 

the availability of well reciprocated provenance trials (but see Matyas 1994). Their 

development from analysis of multi-trial data would be a valuable avenue for further 
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research, potentially illustrating the relative importance of various aspects of climate 

and allowing for better prediction of the effects of climate change on tree health and 

productivity.  

6.2.2. Effects of host-tree provenance on multi-trophic communities and 
alternate herbivore guilds  

The results presented in Chapter 3 suggest that gallwasp communities are unlikely to 

be severely negatively effected by Climate Matching. However, it remains to be seen 

whether other components of forest biodiversity will be similarly resilient. Oak 

gallwasps are nested within closed multi-trophic communities that include inquiline 

Cynipids and hymenopteran parasitoids. In Chapter 4, a taxonomic framework for 

these communities was developed based on DNA barcodes, but further investigation 

with multiple additional molecular markers is still required to determine the status of 

particular taxa. Following the completion of this taxonomic investigation, analysis of 

this data will reveal how the effects of Climate Matching under today’s climates may 

apply throughout a trophically linked community. Further to this, empirical study at 

the Petite Charnie trial could be extended to additional components of diversity such 

as other herbivore guilds, entophytic fungi, and soil microbes. Such research would 

be of value, not only in terms of differentialting the implications of Climate 

Matching for different feeding guilds, but also in furthering a general understanding 

of how variation within foundation tree species may structure forest ecosystems.      

6.2.3. Provenance deme formation 

The adaptive deme hypothesis predicts that short-lived herbivores with long lived 

hosts may become locally adapted to the phenotypes of individual host plants 

(Edmunds and Alstad 1978). The hypothesis is supported by experimental evidence 

from various plant-herbivore systems  (reviewed in van Zandt and Mopper 1998, 

Mopper 2005), including leaf-mining, leaf-folding, and gall-forming herbivores on 

oaks (Mopper et al. 2000, Egan and Ott 2007, Tack and Roslin 2010). Such fine scale 

adaptation may be an important force for maintaining adaptive genetic diversity 
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within herbivore populations, increasing their ability to withstand disturbance 

(Mopper 1996).    

Although the adaptive deme hypothesis is usually considered in terms of adaptation 

to individual trees, it may extend to sub-sets of trees within a population that 

consistently exhibit particular phenotypes. Therefore, as discussed in Chapter 3, a 

possible result of Climate Matching is that adaptive demes will form within 

herbivore populations in response to the consistently differing phenotypes exhibited 

by trees of matched and local provenance. This prediction could be experimentally 

investigated at the Petite Charnie provenance trials by introducing seedlings of 

known provenance into established parcelles (i.e. blocks of 24 trees of a particular 

provenance that have been in place for approximately 20 years). If adaptive 

provenance demes have formed, it would be expected that herbivore abundance 

would be greater when seedlings of a particular provenance are introduced to 

parcelles of the same provenance, relative to when introduced to parcelles of 

different provenance. As gene-flow between herbivores from different host plants is 

expected to be a major factor in determining if and where deme formation will occur 

(Tack and Roslin 2010), it may also be of interest to apply this approach in trials 

where provenances have been planted in blocks of various sizes, so that spatial 

influences can be considered. Such research would not only further understanding of 

the implications of Climate Matching, but would be of general value in assessing the 

scale at which local adaptation may apply in field situations. 
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Appendix 2.1. Procedures for measuring tree 
phenotypic traits 

A2.1.1 Spring bud-burst phenology 

The bud-burst phase of each tree in tranch 4 of the Petite Charnie provenance trials 

was assessed by INRA researchers on a single day in spring 1995, with the following 

6 stage scoring system. The scoring ranges from late flushing trees still with dormant 

buds (stage 0), to early flushing trees with open leaflets that hung separately (stage 

5).  
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A2.1.2. Autumn leaf-fall phenology 

The degree of leaf retention for each tree in tranch 4 of the Petite Charnie provenance 

trials was assessed by INRA researchers on a single day in late autumn 2001, with 

the following 6 stage scoring system. The scoring ranges The scoring ranges from 

all/most leaves shed (stage 0), to all/most leaves retained (stage 5).  

Note 0 : aucune feuille

Note 1 : quelques feuilles

Note 2 : feuilles uniquement 
sur la partie centrale de l Õarbre

Note 3 : des feuilles prˇsentent
des feuilles en densitˇ moyenne
sur sur une grande partie 
de  l Õarbre 

Note 4 : absence de feuille 
uniquement sur l Õextr�mitˇ
des rameau ou la densitˇ est faible
, le reste est tr¸s dense

Note 5 : toutes les feuilles
prˇsentes

NOTATION MARCESCENCE : ch�ne sessile
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A2.1.4. Number of branches 

The number of branches for each tree in the Petite Chanie provenance trial was 

assessed by INRA researchers during winter 2001-02. Branches were defined as 

limbs originating from the trunk that protruded to at least 1/3 of the radius of the tree 

crown, as illustrated in the following diagram.   

COMPTAGE DU NOMBRE DE BRANCHES

- Evaluer la largeur mˇdiane du houppier
- Estimer le 1/3 de la largeur du houppier
- Partir du leader et descendre jusqu'au pied de l'arbre en comptant toutes les

branches dˇpassant le 1/3 de la largeur du houppier

a - Largeur du houppier

b - 1/3 Largeur du houppier

c - Comptage des branches

1
2

3

4

5
6

7
8

9

10
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A2.1.5 Number of forks 

The number of forks for each tree in the Petite Charnie provenance trials was 

assessed by INRA researchers during winter 2001-02. Forks were defined as limbs 

protruding from the main axis at an acute angle, that were at least 1/3 the diameter of 

the main axis, and whose terminal bud reached to approximately the same height as 

the main axis, as illustrated in the following diagram. 

COMPTAGE DU NOMBRE DE FOURCHES

1. Une fourche forme un angle aigu avec l'axe principal de l'arbre
2. Le bourgeon terminal de la fourche est proche du niveau du leader
3. Le diam¸tre de la fourche doit �tre > au 1/3 du diam¸tre de l'axe principal
4. Cas particiliers :

- les fourches de l'annˇe ne sont pas prises en compte

Angle trop ouvert

Branche dont le bourgeon terminal
se trouve � une hauteur inf̌ rieure au
2/3 du point d'insertion  

Branches prises en compte comme fourche

Fourche formˇe au cours de la saison de vˇgˇtation
př č dente
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Appendix 4.1. Host association data 

 

The following tables contain the source data used to construct the bipartite host 

association networks presented in Chapter 4.  
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Table A4.1.1. Table showing the number if individuals of each of 23 parasitoid morpho-species (columns) reared from each of 17 host gall-types (rows). Taxon codes 
follow Tables 4.1 and 4.2 
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AcallAsex 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
AcurvSex 0 0 0 0 0 0 0 0 1 0 0 1 0 0 4 0 0 0 0 0 0 1 0 
AfecAsex 0 0 0 0 0 0 2 0 0 7 0 0 0 0 0 1 0 0 0 0 0 0 0 

AglanAsex 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 
AkollAsex 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 1 
AsolAsex 0 0 0 0 0 0 82 0 10 0 0 0 0 0 0 5 0 0 0 1 0 0 0 
BpalSex 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 8 0 

CdivAsex 0 0 0 0 0 0 5 0 0 0 0 5 0 0 0 0 0 0 0 0 1 0 4 
CqfAsex 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0 0 
NalbAsex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 154 0 80 0 0 118 0 
NalbSex 11 1 1 0 0 0 0 0 0 0 0 1 0 0 49 0 0 12 0 0 0 4 0 

NantAsex 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 
NantSex 3 1 0 0 0 1 0 3 13 9 1 1 4 2 179 0 0 43 0 2 0 4 0 
NnAsex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 89 0 0 0 0 
NnSex 3 8 0 0 1 0 2 0 4 0 1 50 0 0 52 0 0 0 0 0 0 2 0 

NqbAsex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 
NqbSex 1 14 0 4 0 0 12 0 30 5 1 112 0 2 62 0 1 1 0 3 0 26 11 
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Table A4.1.2. Table showing the number if individuals of each of 35 parasitoid MOTUs (as defined at the decisive limit (13 bp) of the barcoding gap, columns) reared 
from each of 17 host gall-types (rows). Taxon codes follow Tables 4.1 and 4.2. Table is continued on the following page. 
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AcallAsex 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
AcurvSex 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 4 
AfecAsex 0 0 0 0 0 0 0 0 1 1 0 0 0 6 1 0 0 0 0 0 

AglanAsex 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 
AkollAsex 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 
AsolAsex 0 0 0 0 0 0 1 75 7 0 0 8 1 0 0 0 0 0 0 0 
BpalSex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 

CdivAsex 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 5 0 0 0 
CqfAsex 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
NalbAsex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
NalbSex 11 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 49 

NantAsex 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 
NantSex 2 1 1 0 0 0 0 0 0 0 3 14 0 0 9 1 1 4 2 179 
NnAsex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
NnSex 3 0 8 0 0 1 0 2 0 0 0 4 0 0 0 1 50 0 0 52 

NqbAsex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
NqbSex 0 1 14 0 4 0 0 11 1 0 0 30 0 0 5 1 112 0 2 62 
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Table A4.1.2. Continued 
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AcallAsex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
AcurvSex 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
AfecAsex 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
AglanAsex 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 
AkollAsex 0 0 0 0 0 0 0 0 0 0 0 10 0 0 1 
AsolAsex 5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
BpalSex 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 
CdivAsex 0 0 0 0 0 0 0 0 0 0 0 1 0 0 4 
CqfAsex 0 0 0 0 0 0 0 0 0 0 0 27 0 0 0 
NalbAsex 0 40 96 16 1 1 0 0 25 55 0 0 91 27 0 
NalbSex 0 0 0 0 0 0 3 9 0 0 0 0 4 0 0 
NantAsex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
NantSex 0 0 0 0 0 0 0 43 0 0 2 0 4 0 0 
NnAsex 0 0 0 0 0 0 0 0 0 89 0 0 0 0 0 
NnSex 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 
NqbAsex 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 
NqbSex 0 0 0 1 0 0 0 1 0 0 3 0 26 0 11 

 

Table A4.1.3. Table showing the number if individuals of each of 10 inquiline MOTUs (as defined at 
the decisive limit (11 bp threshold) of the barcoding gap, columns) reared from each of 17 host gall-
types (rows). Taxon codes follow Tables 4.1 and 4.2.  
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NalbSex 0 0 0 0 5 1 0 0 0 0 
NantSex 1 0 0 1 0 2 0 0 0 0 
NnSex 46 0 0 0 154 7 0 0 0 0 

NqbSex 40 0 1 161 78 285 0 0 0 0 
AcurvSex 0 0 0 1 0 4 0 0 0 0 
BpalSex 0 0 0 0 0 0 0 0 0 0 

NalbAsex 6 0 0 0 1 0 0 0 0 0 
NantAsex 0 0 0 26 0 8 0 0 0 0 
NnAsex 0 0 0 0 0 0 0 0 0 0 

NqbAsex 0 0 0 0 0 0 0 0 0 0 
AcallAsex 0 0 0 3 0 0 0 0 0 0 
AfecAsex 0 0 7 0 0 0 0 42 0 0 

AglanAsex 0 0 0 0 0 0 0 0 2 0 
AkollAsex 0 0 0 0 0 0 138 0 0 0 
AsolAsex 0 0 1 0 0 0 0 0 0 2 
CdivAsex 0 0 0 2 0 3 0 0 0 0 
CqfAsex 0 10 0 0 0 2 0 0 0 0 
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Appendix 4.2. Complied host association data 

The following table details the compiled host association data for the parasitoid and 

inquiline MOTUs (as defined at the decisive thresholds of 13 and 11 bp respectively) 

that were matched with the studies of Ács et al. (2010) and Kaartinen et al. (2010) in 

Chapter 4.  

 
Table A4.2.1. Summary of the compiled host association data for parasitoid and inquiline MOTUs 
that could be matched with sequences published by Ács et al. (2010), and Kaartinen et al. (2010), 
including morpho-species names, any alternative names applied to these taxa, the countries where 
they were recorded, and their host gall-types. Taxon codes follow Table 4.2. Two letter country codes 
follow those provided by the International Organization for Standardization, and are presented in 
approximate geographic order from west to east. Records from France (FR) are from this study, 
records labelled as 1 are from Kaartinen et al. (2010), and 2 are from Ács et al (2010). Numbers within 
brackets indicate the individuals from a particular host species recorded within a particular country. 
The table is continued on following pages.  

Taxon 
code 

Morpho-
species 

Other 
names Distribution Host gall-type 

    
Parasitoids 
    

Aaet_2 Aprostocetus 
aethiops 

 FI1 (13) Andricus callidoma (Sex) 
 FI1 (2) Andricus glandulae (Sex) 
 FR (1) Neuroterus anthracinus (Sex) 
 FR (1) Neuroterus quercusbaccarum (Sex) 

     

Acer Aprostocetus 
cerricola  

FR (1) Neuroterus albipes (Sex) 
HU1 (1) Neuroterus numismalis (Sex) 

     

Aars Aulogymnus 
arsames 

 FI1 (11) Andricus curvator (Sex) 
 HU1 (1) Andricus multiplicatus (Sex) 
 FR (1) Neuroterus albipes (Sex) 
 FR (1) Neuroterus anthracinus (Sex) 
 FR (8) Neuroterus numismalis (Sex) 
 FR (14), FI1 (10) Neuroterus quercusbaccarum (Sex) 
 HU1 (1) Unknown bud gall (Sex) 

     

Cdia Cirrospilus 
diallus 

 FI1 (2) Ectoedemia albifasciella 
 FR (1) Neuroterus numismalis (Sex) 
 FI1 (2) Phyllonorycter sp. 

     

Eann Eupelmus 
annulatus 

 FR (1) Andricus solitarius (Asex) 
 ES1 (1) Cynips quercus (Asex) 
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Table A4.2.1. Continued 
    

Taxon 
code 

Morpho-
species 

Other 
names Distribution Host gall-type 

Euro_1 Eupelmus  
urozonus 

Eupelmus 
urozonus 

A1 

ES1 (1), HU1 (1) Andricus burgundus (Sex) 
FI1 (1) Andricus callidoma (Asex) 

HU1 (1) Andricus caputmedusae (Asex) 
FR (1), FI1 (10) Andricus curvator (Sex) 

PT1 (1) Andricus kollari (Asex) 
HU1 (1) Andricus lucidus (Asex) 

HU1 (1) Andricus multiplicatus (Asex) 

ES1 (2) Andricus quercustozae (Asex) 
FR (8) Andricus solitarius (Asex) 
ES1 (4) Cynips quercus (Asex) 
ES1 (1) Diplolepis mayri (Sex) 
FR (14) Neuroterus anthracinus (Sex) 
FR (4) Neuroterus numismalis (Sex) 

FR (30), FI1 (2) Neuroterus quercusbaccarum (Sex) 
HU1 (1) Unknown bud gall (Sex) 

     

Onit Ormyrus 
nitidulus  

ES1 (1) Andricus grosulariae (Sex) 
ES1 (1) Andricus grosulariae (Asex) 
FR (1) Andricus feccundator (Asex) 
FR (5) Andricus solitarius (Asex) 
FR1 (1) Biorhiza pallida (Sex) 

     

Opom_
3 

Ormyrus 
pomaceus 

 HU1 (1) Andricus crispator (Sex) 
 HU1 (2) Andricus multiplicatus (Sex) 
 FI1 (8) Cynips longiventris (Asex) 
 HU1 (1) Chilaspis nitida (Asex) 
 FR (16) Neuroterus albipes (Asex) 
 FR (1) Neuroterus quercusbaccarum (Sex) 

     

Mdub Mesopolobus 
dubius 

 UK1 (2) Andicus quercuscalicis (Sex) 
 FR (1) Neuroterus anthracinus (Sex) 
 FR (1) Neuroterus numismalis (Sex) 
 FR (1) Neuroterus quercusbaccarum (Sex) 
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Table A4.2.1. Continued 
    

Taxon 
code 

Morpho-
species 

Other 
names Distribution Host gall-type 

     

Mfas Mesopolobus 
fasciventris 

 FI1 (1) Andricus callidoma (Sex) 
 FR (1) Andricus curvator (Sex) 
 HU1 (1) Andricus kollari (Asex) 
 FI1 (1) Andricus paradoxus (Sex) 
 ES1 (1) Andricus quercustozae (Asex) 
 HU1 (1) Aphelonyx cerricola (Sex) 
 FR (5) Cynips divisa (Asex) 
 FI1 (19) Cynips longiventris (Asex) 
 HU1 (1) Chilaspis nitida (Asex) 
 ES1 (1) Cynips quercus (Asex) 
 FR (1) Neuroterus albipes (Sex) 
 FR (1) Neuroterus anthracinus (Sex) 
 FR (1) Neuroterus anthracinus 
 FR (50) Neuroterus numismalis (Sex) 
 FR (120) Neuroterus quercusbaccarum (Sex) 

     

Mfus Mesopolobus 
fuscipes 

 HU1 (1) Andricus multiplicatus (Sex) 
 UK1 (2) Andricus quercuscalisis (Sex) 
 FR (4) Neuroterus anthracinus (Sex) 

     

Mmed Mesopolobus 
mediterraneus 

 UK1 (1) Andicus quercuscalicis (Sex) 
 FR (2) Neuroterus anthracinus (Sex) 
 FR (2) Neuroterus quercusbaccarum (Sex) 

     

Mtib Mesopolobus 
tibialis 

 FI1 (4) Andricus callidoma (Sex) 
 HU1 (2) Andricus crispator (Sex) 

 FR (4), FI1 (2), 
HU1 (2)  Andricus curvator (Sex) 

 FI1 (4) Andricus glandulae (Sex) 
 FI1 (5) Andricus quadrilineatus (Asex) 
 HU1 (1) Andricus schroeckingeri (Sex) 
 HU1 (1) Andricus singularis (Sex) 
 HU1 (1) Cynips divisa (Sex) 
 FR (49) Neuroterus albipes (Sex) 
 FR (179) Neuroterus anthracinus (Sex) 
 FR (52), HU1 (1)  Neuroterus numismalis (Sex) 
 FR (52) Neuroterus quercusbaccarum (Sex) 
 HU1 (1) Unknown Cynips sp. (Sex) 
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Table A4.2.1. Continued 
    

Taxon 
code 

Morpho-
species 

Other 
names Distribution Host gall-type 

     

Taur Torymus 
auratus 

 FR (10) Andricus kollari (Asex) 
 ES1 (1), HU1 (1)  Biorhiza pallida (Sex) 
 ES1 (1) Cynips quercus (Asex) 
 FR (27), HU1 (1)  Cynips quercusfolii (Asex) 

     

Tfla_1 Torymus 
flavipes 

Torymus 
flavipes A 

FI1 (2) Andricus callidoma (Sex) 
FR (1), FI1 (10), 

HU1 (2) Andricus curvator (Sex) 

FI1 (2) Andricus glandulae (Sex) 
FI1 (12) Andricus pseudoinflator (Sex) 
FI1 (14) Andricus quadrilineatus (Asex) 
HU1 (3) Andricus quercusramuli (Sex) 

FR (8), FI1 (4)  Biorhiza pallida (Sex) 
FR (91) Neuroterus albipes (Asex) 
FR (4) Neuroterus anthracinus (Sex) 

FR (26), FI1 (5), 
HU1 (3) Neuroterus quercusbaccarum (Sex) 

FI1 (2) Neuroterus quercusbaccarum (Asex) 
     

Tfla_2 Torymus 
flavipes 

Torymus 
flavipes B 

FI1 (1) Andricus pseudoinflator (Sex) 
FR (27) Neuroterus albipes (Asex) 
FI1 (5) Neuroterus quercusbaccarum (Asex) 

     

Tger Torymus 
geranii 

 FI1 (2) Andricus curvator (Sex) 
 HU1 (1) Biorhiza pallida (Sex) 
 HU1 (1) Cynips divisa (Asex) 
 FI1 (5), HU1 (1) Cynips longiventris (Asex) 
 HU1 (1) Cynips quercusfolii (Asex) 
 FI1 (1) Neuroterus quercusbaccarum (Sex) 

     
Inquilines 

    

Inq_1 

 

MOTU 41 

FR (6) Neuroterus albipes (Asex) 
 FR (1) Neuroterus anthracinus (Sex) 
 FR (46) Neuroterus numismalis (Sex) 
 FR (40) Neuroterus quercusbaccarum (Sex) 
 FI1 (8) Neuroterus quercusbaccarum (Asex) 

     

Inq_2  MOTU 31 FI1 (3) Cynips longiventris (Asex) 
 FR (10) Cynips quercusfolii (Asex) 

 
 
 

    



209 
 

  
 

 

 

 

 

 

 

 

 

Table A4.2.1. Continued 
    

Taxon 
code 

Morpho-
species 

Other 
names Distribution Host gall-type 

     

Inq_4 

 

MOTU 21 

FR (3), FI1 (5)  Andricus callidoma (Asex) 
 FI1 (7) Andricus curvator (Sex) 
 FI1 (4) Andricus nudus (Asex) 
 ES2 (2), FI1 (27)  Andricus quadrilineatus (Sex) 
 FI1 (2) Andricus quercusramuli (Asex) 
 FR (1) Neuroterus anthracinus (Sex) 
 FR (26), FI1 (2)  Neuroterus anthracinus (Asex) 
 FR (161), FI1 (11) Neuroterus quercusbaccarum (Sex) 
 FR (2) Cynips divisa (Asex) 

     

Inq_6 

 

Synergus 
sp. 32 

FR (4), FI1 (1)  Andricus curvator (Sex) 
 FR (3) Cynips divisa (Asex) 
 FI1 (12) Cynips longiventris (Asex) 
 FR (2) Cynips quercusfolii (Asex) 
 FR (1) Neuroterus albipes (Sex) 
 FR (2) Neuroterus anthracinus (Sex) 
 FR (8), HU2 (1)  Neuroterus anthracinus (Asex) 
 FR (7) Neuroterus numismalis (Sex) 
 FR (285) Neuroterus quercusbaccarum (Sex) 

     

Inq_10 Ceroptres 
clavicornis  

HU1 (1) Andricus conglomerates (Asex) 
HU1 (1) Andricus lignicolus (Asex) 
FR (2) Andricus solitarius (Asex) 
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Appendix 5.1. Cecidostiba specimen details 

The following table provides collection details for the 171 parasitoid specimens 

analysed in Chapter 5.  
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Table A5.1. Summary of collection details for 171 parasitoid specimens, including morpho-species classifications, inferred species identities following the analyses, 
sex (m = male, f = female), host gall species and generation, the country, locality and year of collection, and host oak species. Unknown data are indicated as ‘?’. Code 
numbers follow the Stone laboratory parasitoid database. Table is continued on the following pages. 
     

Morpho-Species Inferred 
species Code number Sex Host gall species Host gall 

generation 
Locality 
country Locality site Collection 

year 
Host tree 
species 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0001 f Biorhiza pallida Sexual UK Bovey Tracey 2006 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca2] Cfun0003 f Biorhiza pallida Sexual UK Puttenham 2007 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0004 f Andricus 

quercuscalicis Asexual UK Silwood 2006 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0005 f Biorhiza pallida Sexual UK Silwood 2007 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0006 f Andricus 

quercuscalicis Asexual UK Puttenham 2006 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0007 f Biorhiza pallida Sexual UK Hainhault 

Forest 2006 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0008 f Andricus 

quercuscalicis Asexual UK Hainhault 
Forest 2006 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0009 f Andricus 

quercuscalicis Asexual UK Rufford 2006 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0010 f Andricus 

quercuscalicis Asexual UK Lancaster 2006 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0011 f Andricus grossulariae Sexual UK Puttenham 2006 Quercus cerris 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0012 f Andricus grossulariae Sexual UK Silwood 2006 Quercus cerris 
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Table A5.1. 
Continued          

Morpho-Species Inferred 
species Code number Sex Host gall species Host gall 

generation 
Locality 
country Locality site Collection 

year 
Host tree 
species 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0013 m Andricus grossulariae Sexual UK Maidenhead 2006 Quercus cerris 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0014 f Andricus grossulariae Sexual UK Farnham Park 2006 Quercus cerris 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0015 f Andricus grossulariae Sexual UK Farnham Park 2006 Quercus cerris 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0018 m Andricus grossulariae Sexual UK Puttenham 2007 Quercus cerris 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0019 f Andricus grossulariae Sexual UK Silwood 2007 Quercus cerris 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0020 f Andricus 

quercuscalicis Asexual France Arboretum 
Nogent 2005 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0021 f Andricus 

quercuscalicis Asexual France Arboretum 
Nogent 2005 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0022 f Andricus 

quercuscalicis Asexual France Arboretum 
Nogent 2005 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0023 f Andricus 

quercuscalicis Asexual France Arboretum 
Nogent 2005 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0024 f Andricus 

quercuscalicis Asexual France Arboretum 
Nogent 2005 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0025 f Andricus 

quercuscalicis Asexual France Arboretum 
Nogent 2005 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0026 f Andricus 

quercuscalicis Asexual France Arboretum 
Nogent 2005 Quercus robur 
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Table A5.1. 
Continued          

Morpho-Species Inferred 
species Code number Sex Host gall species Host gall 

generation 
Locality 
country Locality site Collection 

year 
Host tree 
species 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0028 f Andricus 

quercuscalicis Asexual France Arboretum 
Nogent 2005 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0039 f Biorhiza pallida Sexual Austria Unterlois 2006 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0043 m Biorhiza pallida Sexual Austria Ober Pullendorf 2006 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0044 f Biorhiza pallida Sexual Austria Ober Pullendorf 2006 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0045 f Andricus grossulariae Sexual Austria Unterlois 2006 Quercus cerris 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0046 f Biorhiza pallida Sexual Germany Ludwigsburg 2006 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0047 f Andricus 

quercuscalicis Asexual Germany Ludwigsburg 2005 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0048 f Andricus 

quercuscalicis Asexual Germany Ludwigsburg 2005 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0049 f Andricus 

quercuscalicis Asexual Germany Ludwigsburg 2005 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0050 f Andricus 

quercuscalicis Asexual Germany Ludwigsburg 2005 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0051 f Andricus 

quercuscalicis Asexual Germany Ludwigsburg 2005 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0052 f Andricus lignicolus Asexual Germany Ludwigsburg 2005 Quercus robur 
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Table A5.1. 
Continued          

Morpho-Species Inferred 
species Code number Sex Host gall species Host gall 

generation 
Locality 
country Locality site Collection 

year 
Host tree 
species 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0053 f Andricus 

quercuscalicis Asexual Germany Munich 2005 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0054 f Andricus 

quercuscalicis Asexual Germany Munich 2005 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0055 m Andricus 

quercuscalicis Asexual Germany Munich 2005 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0056 f Biorhiza pallida Sexual Germany Ludwigsburg 2006 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0058 f Biorhiza pallida Sexual Germany Ludwigsburg 2006 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0059 f Biorhiza pallida Sexual Germany Ludwigsburg 2006 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0060 f Biorhiza pallida Sexual Germany Ludwigsburg 2006 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0061 f Biorhiza pallida Sexual Germany Ludwigsburg 2006 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0062 f Biorhiza pallida Sexual Germany Ludwigsburg 2006 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0063 f Biorhiza pallida Sexual Germany Ludwigsburg 2006 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0064 f Biorhiza pallida Sexual Germany Ludwigsburg 2006 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0065 f Callirhytis glandium Sexual Hungary Szentkut ? Quercus cerris 
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Table A5.1. 
Continued          

Morpho-Species Inferred 
species Code number Sex Host gall species Host gall 

generation 
Locality 
country Locality site Collection 

year 
Host tree 
species 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0066 f Andricus 

gallaetinctoriae Sexual Hungary Godollo 2002 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0067 f Andricus grossulariae Sexual Hungary Godollo 2002 Quercus cerris 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0068 f Andricus lucidus Sexual Hungary Szentkut 2002 Quercus 

pubescens 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0069 f Neuroterus saliens Sexual Hungary Godollo 2001 Quercus cerris 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0070 m Callirhytis glandium Sexual Hungary Szentkut 2002 Quercus cerris 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0071 m Andricus 

caputmedusae Sexual Hungary Matrafured 2002 Quercus 
pubescens 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0072 f Andricus hungaricus Asexual Hungary Godollo 2002 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca2] Cfun0073 m Biorhiza pallida Sexual Hungary Szentkut 2001 Quercus 

pubescens 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0074 f Andricus crispator Sexual Hungary Matrafured 2001 Quercus cerris 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0075 m Biorhiza pallida Sexual Hungary Matrafured 2001 Quercus petrea 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0076 m Andricus coriarius Asexual Hungary Matrafured 2000 Quercus petrea 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0077 m Neuroterus saliens Sexual Hungary Matrafured 2001 Quercus cerris 
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Table A5.1. 
Continued          

Morpho-Species Inferred 
species Code number Sex Host gall species Host gall 

generation 
Locality 
country Locality site Collection 

year 
Host tree 
species 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0078 m Andricus grossulariae Sexual Hungary Godollo 2001 Quercus cerris 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0079 f Andricus burgundus Sexual Hungary Godollo 2001 Quercus cerris 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0081 f Andricus 

quercuscalicis Asexual Hungary Godollo 2001 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0083 m Andricus 

quercuscalicis Asexual Hungary Sopron 2001 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0084 f Biorhiza pallida Asexual Hungary Szentkut 2001 Quercus 

pubescens 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0086 m Andricus megalucidus ? Iran ? ? Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0087 m Chilaspis israeli ? Iran ? ? Quercus cerris 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0088 m Andricus lucidus ? Iran ? ? Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0092 f Neuroterus saliens Asexual Iran ? ? Quercus cerris 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0097 f Andricus grossulariae ? Iran Piran Shahr ? Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0098 f Aphelonyx persica ? Iran Phars province ? Quercus cerris 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0099 f Andricus lucidus ? Turkey Aglasun ? Quercus sp 
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Table A5.1. 
Continued          

Morpho-Species Inferred 
species Code number Sex Host gall species Host gall 

generation 
Locality 
country Locality site Collection 

year 
Host tree 
species 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0112 f Andricus coriarius Asexual Turkey Gezende ? Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0113 f Andricus seckendorffi Asexual Turkey Madenli ? Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0115 f Andricus grossulariae Asexual Turkey Egirdir ? Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0116 m Andricus grossulariae Asexual Turkey Aglasun ? Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0117 f Andricus coriarius Asexual Turkey North of 

Antalya ? Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0119 m Andricus dentimitratus Asexual Turkey Beybesli ? Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0121 f Andricus lucidus Asexual Italy Massa Maritima 1998 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0122 f Andricus dentimitratus Sexual Italy Capalbio Cane 2005 Quercus 

pubescens 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0123 m Biorhiza pallida Sexual Italy Volterra 1999 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0125 m Andricus coriarius Asexual Italy Piedimonte ? Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0126 f Andricus dentimitratus ? Italy Capulbro 

Campolae ? Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0127 f Andricus dentimitratus Sexual Italy Capalbio Cane 2005 Quercus 

pubescens 
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Table A5.1. 
Continued          

Morpho-Species Inferred 
species Code number Sex Host gall species Host gall 

generation 
Locality 
country Locality site Collection 

year 
Host tree 
species 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0128 m Andricus coriarius Asexual Italy Lame (Gazzo) 1998 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0129 f Andricus coronatus Asexual Italy Monte 

Sant'Angelo 2000 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0130 f Andricus lucidus Asexual Italy Monte 

Sant'Angelo 2000 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0131 f Andricus coronatus Asexual Italy Gildone 2000 Quercus robur 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0132 f Andricus quercustozae Sexual Spain Puerto de 

Villatoro 2002 Quercus 
pyrenaica 

Cecidostiba fungosa C. fungosa 
[Ca2] Cfun0133 f Biorhiza pallida Sexual Spain La Caňada 2002 Quercus 

pyrenaica 

Cecidostiba fungosa C. fungosa 
[Ca2] Cfun0134 f Andricus quercustozae Sexual Spain Fresnedoso 2002 Quercus 

pyrenaica 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0135 m Andricus quercustozae Sexual Spain Puerto de 

Villatoro 2002 Quercus 
pyrenaica 

Cecidostiba fungosa C. fungosa 
[Ca2] Cfun0137 m Biorhiza pallida Sexual Spain El Escorial 2002 Quercus 

pyrenaica 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0139 m Andricus quercustozae Sexual Spain Puerto de 

Villatoro 2002 Quercus 
pyrenaica 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0140 f Andricus quercustozae Sexual Spain Puerto de 

Villatoro 2002 Quercus 
pyrenaica 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0141 f Andricus quercustozae Sexual Spain Puerto de 

Villatoro 2002 Quercus 
pyrenaica 
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Table A5.1. 
Continued          

Morpho-Species Inferred 
species Code number Sex Host gall species Host gall 

generation 
Locality 
country Locality site Collection 

year 
Host tree 
species 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0142 m Andricus quercustozae Sexual Spain El Escorial 2002 Quercus 

pyrenaica 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0143 m Andricus quercustozae Sexual Spain Fresnedoso 2002 Quercus 

pyrenaica 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0144 f Andricus quercustozae Sexual Spain Puerto de 

Villatoro 2002 Quercus 
pyrenaica 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0146 f Andricus tomentosus Asexual Greece Arnissa 2000 Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0147 f Andricus tomentosus Sexual Greece Edessa 2001 Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0148 m Andricus coronatus Asexual Greece Edessa 2000 Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0149 f Andricus tomentosus Asexual Greece Florina 2000 Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0150 f Unknown Asexual Greece Arnissa 2000 Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun0151 f Andricus coriarius ? Greece Pisoderi ? Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun2897 m Aphelonyx persica Asexual Iran Piran Shahr 2002 Quercus brantii 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun2900 m Andricus tomentosus Asexual Iran Ghelaie ? Quercus 

infectoria 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun2923 f Neuroterus 

lanuginosus Asexual Iran ? ? Quercus brantii 
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Table A5.1. 
Continued          

Morpho-Species Inferred 
species Code number Sex Host gall species Host gall 

generation 
Locality 
country Locality site Collection 

year 
Host tree 
species 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun2931 f Aphelonyx persica ? Iran ? ? Quercus brantii 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun2955 f Andricus 

caputmedusae ? Iran Bane ? Quercus 
infectoria 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun2961 f Synophrus syriacus ? Iran Bane ? Quercus libani 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun2967 f Andricus megalucidus ? Iran Ghelaie ? Quercus 

infectoria 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun2968 f Aphelonyx persica ? Iran Javanrod ? Quercus brantii 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun2969 f Unknown ? Iran ? ? Quercus 

macranthera 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun3018 f Neuroterus 

lanuginosus ? Iran Khalkalsharaf ? Quercus brantii 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun3026 f Andricus askewi ? Iran Piran Shahr 2004 Quercus 

infectoria 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun3027 f Andricus grossulariae Asexual Iran Ghelaie ? Quercus 

infectoria 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun3052 f Andricus 

caputmedusae Asexual Turkey Kirazoglu 2000 Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun3054 f Andricus seckendorffi Asexual Turkey Madenli 1998 Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun3055 m Andricus grossulariae Asexual Turkey Aglasun 1998 Quercus sp 
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Table A5.1. 
Continued          

Morpho-Species Inferred 
species Code number Sex Host gall species Host gall 

generation 
Locality 
country Locality site Collection 

year 
Host tree 
species 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun3059 f Andricus dentimitratus Asexual Turkey Beybesli 2000 Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun3510 m Andricus polycerus ? Iran Marivan ? Quercus 

infectoria 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun3511 m Andricus insana ? Iran Marivan ? Quercus 

infectoria 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun3519 m Aphelonyx cerricola ? Hungary Márkó 2007 Quercus cerris 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun3520 m Andricus multiplicatus ? Iran Ghelaie ? Quercus brantii 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun3521 m Chilaspis nitida Sexual Hungary Magyarkeszi 2008 Quercus cerris 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun3522 m Chilaspis nitida Sexual Hungary Kópháza 2008 Quercus cerris 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun3523 m young acorn Sexual Hungary Márkó 2008 Quercus cerris 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun3524 f Unknown ? Iran Zagross 

Mountains ? Quercus brantii 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun3525 m Pseudoneuroterus 

macropterus ? Iran ? ? Quercus brantii 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun3526 f Pseudoneuroterus 

macropterus ? Iran Taff ? Quercus brantii 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun3527 m Unknown ? Spain ? ? Quercus sp 
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Table A5.1. 
Continued          

Morpho-Species Inferred 
species Code number Sex Host gall species Host gall 

generation 
Locality 
country Locality site Collection 

year 
Host tree 
species 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun3528 m Unknown ? Spain ? ? Quercus sp 

Cecidostiba fungosa C. fungosa 
[Ca1] Cfun3529 m Unknown acorn gall ? Hungary Gyula 2008 Quercus cerris 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem001 f Biorhiza pallida Sexual UK Silwood Park 2007 Quercus robur 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem003 f Biorhiza pallida Sexual UK Silwood Park 2007 Quercus robur 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem007 f Biorhiza pallida Sexual UK Silwood Park 2007 Quercus robur 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem008 f Biorhiza pallida Sexual UK Puttenham 2007 Quercus robur 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem009 f Biorhiza pallida Sexual UK Puttenham 2007 Quercus robur 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem010 f Biorhiza pallida Sexual UK Puttenham 2007 Quercus robur 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem011 f Biorhiza pallida Sexual UK Puttenham 2007 Quercus robur 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem014 f Biorhiza pallida Sexual UK Puttenham 2007 Quercus robur 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem016 f Biorhiza pallida Sexual Austria Ober Pullendorf 2006 Quercus sp 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem040 m Biorhiza pallida Sexual Iran Marivan ? Quercus 

infectoria 
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Table A5.1. 
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Morpho-Species Inferred 
species Code number Sex Host gall species Host gall 

generation 
Locality 
country Locality site Collection 

year 
Host tree 
species 

Cecidostiba semifascia C. semifascia 
[Ca2] Csem044 f Andricus cecconii Sexual Iran Ghelaie ? Quercus brantii 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem050 m Biorhiza pallida Sexual Spain El Escorial 2002 Quercus 

pyrenaica 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem051 m Andricus 

quercuscalicis Sexual UK Puttenham 2006 Quercus cerris 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem052 f Biorhiza pallida Sexual France Reims 2006 Quercus robur 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem053 m Biorhiza pallida Sexual France Reims 2006 Quercus robur 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem054 m Biorhiza pallida Sexual France Reims 2006 Quercus robur 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem055 f Biorhiza pallida Sexual France Reims 2006 Quercus robur 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem056 f Biorhiza pallida Sexual France Reims 2006 Quercus robur 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem057 f Biorhiza pallida Sexual France Reims 2006 Quercus robur 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem058 f Biorhiza pallida Sexual France Reims 2006 Quercus robur 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem059 m Biorhiza pallida Sexual France Reims 2006 Quercus robur 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem060 m Biorhiza pallida Sexual Hungary Godollo 2001 Quercus robur 
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Morpho-Species Inferred 
species Code number Sex Host gall species Host gall 

generation 
Locality 
country Locality site Collection 

year 
Host tree 
species 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem061 f Biorhiza pallida Sexual France Reims 2006 Quercus robur 

Cecidostiba semifascia C. semifascia 
[Ca1] Csem062 m Biorhiza pallida Sexual Austria Unterlois 2006 Quercus robur 

Cecidostiba semifascia C. semifascia 
[Ca2] Csem073 m Pseudoneuroterus 

macropterus Sexual Iran Shurab ? Quercus brantii 

Cecidostiba semifascia C. semifascia 
[Ca2] Csem075 f Pseudoneuroterus 

macropterus Sexual Iran Ghelaie ? Quercus brantii 

Cecidostiba species A C. species A CspA003 f Unknown small leaf 
gall Sexual Iran Ghelaie ? Quercus brantii 

Cecidostiba species A C. species A CspA004 f Unknown small leaf 
gall Sexual Iran Ghelaie ? Quercus brantii 

Cecidostiba species A C. species A CspA005 f Unknown small leaf 
gall Sexual Iran Ghelaie ? Quercus brantii 

Cecidostiba species A C. species A CspA007 m Unknown small leaf 
gall Sexual Iran Ghelaie ? Quercus brantii 

Cecidostiba species A C. species A CspA008 m Unknown small leaf 
gall Sexual Iran Ghelaie ? Quercus brantii 

Cecidostiba species A C. species A CspA010 f Unknown ? Iran ? ? Quercus 
infectoria 

Cecidostiba species A C. species A CspA012 f Unknown ? Iran Bane ? Quercus libani 

Cecidostiba species A C. species A CspA015 f Neuroterus saliens ? Iran Ghelaie ? Quercus brantii 

Cecidostiba species A C. species A CspA020 m Unknown small leaf 
gall Sexual Iran Ghelaie ? Quercus brantii 
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Morpho-Species Inferred 
species Code number Sex Host gall species Host gall 

generation 
Locality 
country Locality site Collection 

year 
Host tree 
species 

Cecidostiba species A C. species A CspA022 m Neuroterus saliens ? Iran Ghelaie ? Quercus brantii 

Caenacis lauta  Clau32 m Andricus coriarius Asexual Hungary Matrafured ? Quercus 
petraea 
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Appendix 5.2. EPIC loci PCR details 

 

Details of the PCR recipes, conditions, and primers used for amplification of the 10 

EPIC loci in Chapter 5 are provided below. These methods follow Lohse et al. 

(2011).  

 

Recipe for 20 µl reaction: 

2.0 µl 10· Bioline PCR buffer 

2.0 µl bovine serum albumin (10 mg/mL) 

0.8 µl MgCl2 (50 mM) 

0.16 µl dNTPs (25 mM each) 

0.1 µl Taq Polymerase (5 U/µL, Bioline) 

0.3 µl of each primer (20 µM) 

1.0 µl of DNA template 

13.34 µl milipure H2O 

 
PCR conditions:  

A generic touchdown PCR protocol was used for all loci with an initial step of 94 °C 

for 3 minutes, followed by 10 cycles of 94 °C for 30 seconds, an annealing step of 40 

seconds, and 72 °C for 1 minute, where the annealing temperature started at 65 °C 

and decreased by 1 °C each cycle, then a further 30 cycles with an annealing temp of 

55 °C, and a final step of 72 °C for 10 minutes.  

 

 

 

 

 



227 
 

 

 

Table A5.2.1. Forward and reverse PCR primer sequences, used for the amplification of 10 EPIC loci 
following Lohse et al. (2011).  
 
Locus Primers Forward Reverse 

AntSesB 40Fb/Rb GCCAAYGTYATCMGDTACTTC TACKGTRTCRAAKGGATAGGA 

Ran 32F/R TAYATTCARGGMCARTGYGC GGRTCCATTGTRACTTCTGG 

RpL15 2F/R GGGTGCNACTTAYGGHAARC GCGMAGYTCACGRTGYTTDTG 

RpL37 27F/R GAARGGTACNTCVAGYTTTGG GACCRGTDCCRGTRGTCTTCCT 

RpL37a 36F/R CGHACVAAGAAGGTTGGAATCAC GTYCTYTTGCAYCGYTTGC 

RpS4 11F/R BAARGCATGGATGTTRGACA GGTCWGGRTADCGRATRGT 

RpS8 5F/R GAAGAGGAAGTWYGARTTRGGWC TTCRTACCAYTGBCTGAADGG 

RpS18 22F/R GTYATGTTYGCYATGACNGC KRAGRCCCCAGTARTGWCG 

RpS23 21F/R ACVMGVTGGAAGGCYAATCC ATGACCYTTACGHCCRAATCC 

Sansfille 35F/R CHWTVAAAATGCGTGGWCAAG CDGGGAAYTGATTRAACARCAT 

 


