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Abstract 

 

Since industrialisation global CO2 emissions have increased, and as a 

consequence oceanic pH is predicted to drop by 0.3-0.4 units before the end of 

the century - a process coined ‘ocean acidification’ (OA). There is significant 

interest therefore in how pH changes will affect the oceans’ biota and integral 

processes. This thesis investigates microbial community organisation and 

functioning in response to predicted end of century CO2 concentrations using an 

elevated CO2 (~750ppm), large volume (11,000 L) contained seawater 

mesocosm. This thesis utilises RNA stable isotope probing (SIP) technologies, 

in conjunction with quantitative reverse transcriptase PCR (RT-qPCR), to 

investigate the response of microbial communities to elevated CO2. This thesis 

finds little evidence of changes occurring in bacterial abundance or community 

composition with elevated CO2, under both phytoplankton pre-bloom/bloom and 

post-bloom conditions. It is proposed that they represent a community resistant 

to the changes imposed. In contrast, significant differences were observed 

between treatments for a number of key eukaryote community members. These 

findings were investigated in the context of functional change, using the uptake 

of two key substrates (bicarbonate and glucose) as analogues for 

photosynthesis and respiration respectively.  Unlike community abundance, 

distinct changes in carbon assimilation were detected in dominant members of 

the picoplankton. In conclusion the data presented suggest that although 

current microbial communities hold the capacity to respond to elevated CO2, 

future responses will likely be taxa specific and controlled by wider community 

dynamics.  
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Chapter 1. Introduction: Ocean Acidification and 

Picoplanktonic Communities 

 

1.1 The Marine Ecosystem 

Water covers more than two thirds of the Earth’s surface and supports all life on 

Earth. Key to the Earth’s aquatic resources is the marine ecosystem which 

provides an invaluable component of global geochemical cycles and provides 

socioeconomic functions, such as food production for millions of people.  Marine 

ecosystem services have been valued at $49.7 x1012 per year, a value far 

surpassing terrestrial ecosystems (Costanza et al., 2014) yet, over a third (41%) 

of the world’s oceans are severely impacted by anthropogenic activities, the 

most dominant factor being climate change (Halpern et al., 2008). Changes in 

marine biodiversity can be directly linked to habitat destruction, pollution, 

exploitation and indirectly through climate change and linked perturbations in 

oceanic geochemistry (Jackson et al., 2001; Pandolfi et al., 2003; Worm et al., 

2005; Worm et al., 2009). Convincing evidence from terrestrial and marine 

studies suggest that a diverse biota is essential to ecosystem service 

sustainability (Griffiths et al., 2001; Sala and Knowlton, 2006; Worm et al., 2006; 

Butler et al., 2007; Palumbi et al., 2008), therefore both conservation and 

restoration of marine communities should be a priority. In this chapter I aim to 

introduce the importance of microorganisms to marine processes and the 

potential ramifications of climate change, in particular elevated CO2. 

1.2 The Ocean’s Biogeochemistry and Biological Processes 

The study of marine ecosystems investigates the role of ocean, estuarine, 

lagoon, coral reef, deep-sea and sea floor communities upon the Earth. Marine 

ecosystems are integral to the Earth’s biosphere and play a vital role in the 

cycling of both essential - e.g. oxygen (O), carbon (C), hydrogen (H), nitrogen 

(N), calcium (Ca), phosphorous (P) and potassium (K) - and trace elements - 

e.g. iron (Fe) and zinc (Zn) (Gehlen et al., 2011).  
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Figure 1.1: Simplified diagram of the biological pump. The biological pump 
can be split into the soft tissue carbon pump and the carbonate pump. The 
soft-tissue pump refers to the process by which autotrophically fixed carbon 
is exported to depth through gravitational settling of particles. Here it is 
respired through microbiological breakdown, incorporated into sediments or 
remineralized. In contrast, the calcium carbonate pump is driven by the use 
of CaCO3 (calcium carbonate) and subsequent precipitation by marine 
organisms. Dissolution of CaCO3 is driven by levels of saturation state (e.g. 
undersaturation, leads to increased dissolution to compensate), 
consequentially leading to CO2 export. Figure drawn from processes 
described in Weinbauer et al. (2011).  

1.2.1 The carbon cycle 

Dissolved oceanic inorganic carbon is estimated to equal around 38400 Gt a 

value 50 times higher than that found in the atmosphere, essentially allowing 

the oceans to drive atmospheric carbon concentration through photosynthetic 

activities undertaken by phytoplankton (Falkowski et al., 2000). Plankton can be 

defined as “the small marine or freshwater photosynthetic organisms 

(phytoplankton) and animals (zooplankton) drifting with the surrounding water” 

(Lawrence, 2000). This definition should be extended to include marine bacteria 

(bacterioplankton) and viruses (virioplankton). Despite accounting for only 0.2% 

of global primary producer biomass, planktonic microorganisms contribute the 

majority of the oceans primary production, which accounts for half of global 

primary production (Field et al., 1998). This autotrophically fixed carbon is 

accessed/released by consumers (inc. heterotrophic eukaryotes and 

prokaryotes), respiration or decomposition. The oceans and atmosphere 
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interact across large timescales ranging from hours (daily biological production) 

to millennia (marine sediment interactions). Crucial to this interaction is that 

surface waters are substantially depleted in dissolved inorganic carbon, when 

compared to the deep ocean. As a consequence, compensation processes 

transferring carbon from near surface waters to depth are required, in order to 

retain this downward carbon gradient, (Gehlen et al., 2011). These pumps are 

the solubility pump (referring to the physio-chemical processes governing CO2 

uptake and transport), carbonate pump (driven by CaCO3 precipitation, settling, 

solubility and sedimentation) and the soft tissue carbon pump 

(photosynthetically produced organic carbon, export and remineralisation). The 

latter two are referred to collectively as the biological pump (see figure 1.1 and 

for reviews see Raven and Falkowski, 1999; Gehlen  al., 2011). 

1.2.2 The marine food web 

Original marine food webs were considered simple and based upon metazoans 

(such as fish), grazing on phytoplankton and zooplankton, and zooplankton 

were considered to graze phytoplankton (Azam, 1998). However, they did not 

account for the role of bacteria within the oceans. Pioneering studies in the late 

1970’s and early 1980’s demonstrated the integral role of microorganisms in 

marine food webs and biogeochemistry (Pomeroy, 1974; Azam et al., 1983). 

Microbes are integral in the utilisation of dissolved organic matter (DOM) 

released from phytoplankton and zooplankton. Subsequent grazing and decay 

of these bacteria reprocesses this carbon back to the food web - termed the 

Microbial loop (Azam, 1998; Pomeroy et al., 2007). In surface marine waters 

20-40% of bacterial mortaility can be attributed viruses, suggesting viral induced 

mortailty is nearly equal to that of grazing (Suttle, 1994, Fuhrman and Noble, 

1995). Viruses play an integral role in the marine food web through infection, 

lysis and the subsequent release of nutrients and DOM, which in turn is 

accessed by prokaryotes and protists (reviewed in Rohwer, 2009, Zhang, 2011, 

Weitz and Wilhelm, 2012). This viral mediated oceanic cycling is referred to as 

the ‘viral loop/shunt’ (Suttle, 2007). DOM can coalesce to form transparent 

expolymeric particles (TEP) which in turn are accessible to prokaryotes, protists 

and zooplankton. It’s also important to consider that grazing is an important 
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pressure in recycling nutrients, by both bacteria and protists. This information is 

summarised in figure 1.2 (adapted from Weinbauer et al., 2011). 

  

Over half of autotrophically fixed oceanic CO2 is reprocessed or turned over by 

heterotrophic bacteria and archaea through processes such as the microbial 

loop and biological pump (Azam, 1998; Jiao et al., 2010). Therefore it can be 

asserted that microbes are essential to the oceans, and indeed, the Earth’s 

biogeochemical processes (Falkowski et al., 1998; Falkowski et al., 2008). 

Before introducing how these biogeochemical processes and mediators may be 

affected by ocean acidification (OA), it is important to recognise the immense 

biodiversity present in the ocean.  

 

Figure 1.2: Simplified diagram of the pelagic food web. Four major 
pathways are illustrated, the classical food web (green), the microbial loop 
(red), the viral shunt (purple) and the abiotic loop (blue). Nutrient pathways 
are shown (pink). This figure and legend are adapted from Weinbauer et al. 
(2011).  
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1.3 Oceanic Microorganisms: The Picoplankton 

1.3.1 Capturing marine diversity 

Marine diversity ranges from the largest animal on Earth (the blue whale) to the 

smallest microbes, and hold some of the most diverse (such as coral reefs) and 

inhospitable ecosystems (such as deep hypersaline anoxic basins) on Earth.  

Although microorganisms are integral to all of these ecosystems, this study 

concentrates on the free-living microbial plankton (more specifically the 

picoplankton). Since marine planktonic organisms are small and scattered 

throughout the water column, this has meant that methodological approaches 

(such as filtration through varying filter sizes) are required to study them. 

 Therefore, oceanic microorganisms are often defined according to cell 

diameter, see figure 1.3, adapted from Sieburth et al. (1978) and Sherr and 

Sherr (2008). Although by no means exclusive, examples of size groupings are 

as follows: mesoplankton (0.2-20mm), includes small metazoans (such as 

copepods); microplankton (20-200µm), large protists and most phytoplankton; 

nanoplankton (2.0-20µm), would include small eukaryotic protists, ciliates and 

flagellates (thought to be highly important as grazers of picoplankon); 

picoplankton (0.2-2.0µm), bacteria, archaea and very small eukaryotes and 

lastly femtoplankton (0.02-0.2µm) would include the virioplankton. It should be 

noted that such classifications are arbitrary and many taxonomic groupings 

span size classes: however, sized based approaches have enabled the 

isolation and comparison of specific groups when studying life history and food 

web interactions (Worden and Not, 2008). Furthermore, it is also important to 

note here that trophic strategy is equally as widespread, with autotrophy, 

heterotrophy and mixotrophy evident in many of the size classes (Zubkov and 

Tarran, 2008; Zubkov, 2009). 

Historically picoplankton was thought to contain only prokaryotic organisms. 

Here we use the term prokaryote to refer to bacteria and archaea,  although this 

is not taxonomically correct; archaea are thought to be more closely related to 

eukaryotes, yet the term prokaryotes is still used in a non-phylogenetic context 
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Figure   1.3: Distribution of planktonic taxonomic and trophic compartments, 
in differing size classes. Filled boxes represent heterotrophs and open 
represent autotrophs. Adapted from Sieburth et al. (1978) and Sherr and 
Sherr (2008). 

(Whitman, 2009).  However, ‘pico’ sized eukaryotes are routinely detected by 

cultivation, epiflourescence microscopy and flow cytometry (Knight-Jones and 

Walne, 1951; Johnson and Sieburth, 1982; Olson et al., 1985). 

Like terrestrial ecosystems, studies of marine microbial diversity were 

traditionally limited to cultivable organisms. However, only a small fraction of 

microbial cells can be isolated (the ‘great plate count anomaly’, Staley and 

Konopka, 1985).  Environmental DNA sequencing projects have reshaped our 

understanding of the extent and importance of marine microbial diversity, both 

prokaryotic (Giovannoni et al., 1990; Britschgi and Giovannoni, 1991; Schmidt 

et al., 1991; Fuhrman et al., 1992; Fuhrman et al., 1993; Rappe et al., 2000; 

Rusch et al., 2007) and picoeukaryotic (Diez et al., 2001; Lopez-Garcia et al., 

2001; Moon-van der Staay et al., 2001; Romari and Vaulot, 2004; Piganeau et 

al., 2008; Not et al., 2009). Such studies have allowed us to glimpse “the 

uncultured microbial majority” (Rappe and Giovannoni, 2003) and, with the 

growing application of high throughput sequencing technologies the 

understanding of this previously untapped diversity is likely to increase 

exponentially. However, linking phylogenetic diversity to individual functional 

roles within a community is problematic at best. Although phylogenetic 

association to cultured representatives can hint at function, a number of 
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molecular techniques (outlined in section 1.5) have (and are) being developed 

to begin to address these questions. 

Unlike larger multicellular organisms, members of the picoplankton show little 

morphological differences. Additionally, their small size and inability to culture 

the vast majority makes them difficult to name and identify by traditional 

taxonomic techniques. Traditional taxonomic definitions rarely apply to such 

organisms, most molecular microbiologists favouring a species concept based 

upon molecular similarity to delineate taxonomic groups, or operational 

taxonomic units (OTUs) (Blaxter et al., 2005; Staley, 2006). More recently, the 

concept of ‘ecotype’ has emerged wherein organisms can be “genetically very 

similar, but physiologically distinct” (Rocap et al., 2002). For example, the 

marine bacterial group SAR 11 has distinct sub-clades which are thought to 

have adapted to specific temporal and depth ranges (Vergin et al., 2013). 

Additionally, cultured members of the marine picoeukaryote genus Mamiellales 

are thought to show high and low light adapted strains (Rodríguez et al., 2005). 

However, this has been shown to be more complex in the environment, where 

similar strains are found in specific niches driven by temperature and nutrient 

availability (Demir-Hilton et al., 2011). 

Picoplanktonic diversity is taxonomically vast, trophically and functionally 

complex. Although all three domains of life (Woese and Fox, 1977) are common 

in the ocean, this thesis concentrates on the picoeukaryotes and bacteria as 

they numerically dominated the study system. 

1.3.2 Eukaryotic diversity within picoplankton 

In addition to dramatic changes in both taxonomic resolution and tree structure, 

the widespread application of molecular techniques has lead to a seemingly 

endless plethora of newly discovered members of the eukaryotic tree of life. 

Many are identified solely by molecular signatures, further compounding the 

problems faced by modern eukaryotic taxonomists (Epstein and López-García, 

2008). Much of this newly discovered diversity has been found as a result of a 

better understanding of ‘pico’ sized eukaryotes. As early as 1951 typical 

picoeukaryotes such as Micromonas pusilla were described as “abundant and 



8 

 

can only have escaped description earlier because of its minute size” (Knight-

Jones and Walne, 1951) yet, the true diversity of picoeukaryotes has only been 

revealed by studying the molecular diversity of environmental 18S small subunit 

ribosomal RNA (18S SSU rRNA) ribotypes. Seminal studies found vast 

numbers of novel 18S signatures from a ‘pico’ sized filtered water in a range of 

environments (Diez et al., 2001; Lopez-Garcia et al., 2001; Moon-van der Staay 

et al., 2001). The inclusion of these novel groups has meant that eukaryotic 

microbiology is in a period of change. Traditional taxonomic classifications 

based largely upon light microscopic observations, are constantly being revised 

and rewritten with the inclusion of molecular phylogenetic data. Traditional 

demarkations such as kingdom Protista (Haeckel, 1866), have been completely 

overturned in favour of the emerging super group concept wherein 5 or more 

taxonomic super-groups are proposed (Cavalier-Smith, 1993; Baldauf et al., 

2000; Simpson and Roger, 2002; Adl et al., 2005; Keeling et al., 2005). Even 

so, this itself is under constant reconsideration and amendment, with the 

potential inclusion of ‘mega-groups’ (see table 1.1) (Burki et al., 2007; Burki et 

al., 2008; Roger and Simpson, 2009; Adl et al., 2012). 

1.3.3 Key lineages of planktonic picoeukaryotes 

Originally Stramenopiles, Alveolata and Rhizaria were thought to belong to two 

separate supergroups: Chromalveolata (Alveolata and Stramenopiles) and 

Rhizaria, however phylogenetic support for this grouping is low (Adl et al., 2005; 

Keeling et al., 2005; Parfrey et al., 2006).  Not to be confused with the prefix 

SAR given to novel bacterioplankton 16S rRNA phylotypes from the Sargasso 

Sea (Giovannoni et al., 1990), the grouping of Stramenopiles, Alveolata and 

Rhizaria (SAR) was first proposed by Burki et al. (2007). Based upon strong 

phylogenetic evidence, this supergroup cluster contains a large diversity of 

planktonic eukaryotes, and is supported by modern taxonomic revisions (Adl et 

al., 2012). One of the first observations from environmental PCR studies was 

the prevalence within these libraries of previously unknown marine 

Stramenopiles (MAST) phylotypes (Massana et al., 2004). Massana et al. 

(2004) found 12 distinct clusters of Novel Stramenopiles which formed 

monophyletic groups. These MAST taxa were spread across the Stramenopile 
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Table 1.1: Summary of the taxonomic placement of some key eukaryote 
taxa focusing on picoeukaryotes. Taxonomy follows that of - Adl et al. 
(2012) and Worden and Not (2008), with the addition of notable members 
and their linked references Marin and Melkonian (2010) ◊, del Campo et al. 
(2013) †,Massana et al. (2004); Massana et al. (2006) ‡ and Groisillier et al. 
(2006)*. The inclusion of mega-group Diaphoretickes and super-group SAR 
(Stramenopiles, Alveolata and Rhizaria) follows recent revisions of 
eukaryotic taxonomy (Burki et al., 2007; Burki et al., 2008; Adl et al., 2012). 

linage forming sister groups to both, phototrophic and heterotrophic/mixotrophic 

lineages. Further, Lin et al. (2012) were able to clearly demonstrate the 

ingestion of a fluorescently labelled cyanobacterium (Synechococcus) by 

MAST-4 cells supporting the idea that at least one MAST lineage is able to 

graze bacteria. 

 Adl and colleagues (2005) split the Alveolata into three highly abundant and 

important groups; the Apicomplexa, Ciliophora and Dinozoa. Until the 

application of molecular phylogenetic techniques, the phylum/infrakingdom 

Alveolata was not recognised, yet it now forms a well supported monophyletic 

group of primarily singled celled organisms which are notable for not only a 

wide phylogenetic diversity, but also for the adoption of a diverse range of 

trophic strategies: including phototrophy, phagotrophy and intracellular 

parasitism (Cavalier-Smith, 1993; Baldauf et al., 2000; Simpson and Roger, 

2002; Keeling et al., 2005; Burki et al., 2007; Gould et al., 2008). Alveolates can 
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be characterised by the presence of “alveoli”- a series of flattened sacs 

underneath the plasma membrane (Wolters, 1991) and Alveolin proteins (Gould 

et al., 2008). Like the Stramenopiles, environmental sequencing projects have 

shown (amongst many novel phylotypes) two key novel pico-sized alveolate 

groups (NAI and NAII). The position of the novel alveolate groups is 

contentious, NAI was originally believed to be a distinct sister group to the 

dinoflagellates but is now (like NAII) thought to cluster within the dinoflagellate 

order Syndiniales, a taxa containing parasitic members such as Amoebophyra 

(Groisillier et al., 2006; Guillou et al., 2008). This would hint that at least some 

of these novel organisms may be parasitic. 

First presented by Adl and colleagues (2005) Archaeplastida encompasses the 

Glaucophyta, Rhodophyceae (red algae), and Chloroplastida (green algae and 

plants). Some of the most abundant and ecologically important photosynthetic 

picoeukaryotes fall within the Chloroplastida class Mamiellophyceae (Marin and 

Melkonian, 2010). Largely picoeukaryotic the Mamiellales contains some of the 

smallest known free-living eukaryotes such as Ostreococcus tauri, Micromonas 

pusilla and Bathycoccus prasinos, found globally and highly abundant in coastal 

areas. Because this group can be distinguished by their small size (1-2µm 

diameter), genome (13-22 Mbp) and reduced cellular organisation (one 

mitochondrion and one chloroplast), they’re often used as a model for the most 

simplified functional eukaryotic cell (Moreau et al., 2012). Genomes published 

for Ostreococcus (Derelle et al., 2006; Palenik et al., 2007), Micromonas 

(Worden et al., 2009) and Bathycoccus (Moreau et al., 2012), suggest that they 

are able to use the C4 photosynthetic pathway (a method which is believed to 

be more costly but more efficient than C3 fixation) and gives indirect evidence 

for sexual reproduction amongst this lineage (Piganeau et al., 2011). 

Micromonas alone has been found to account for around 45% of 

picoeukaryotes in the English Channel, clearly demonstrating the importance of 

this group (Not et al., 2004). 

 

The only described ‘pico’ sized Haptophytes are that of Imantonia rotunda and 

Phaecocystis cordata (Reynolds, 1974; Zingone et al., 1999; Worden and Not, 

2008). However the Haptophytes should be mentioned here due to their 
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prevalence in bloom forming communities. Of around 300 known haptophyte 

species in the oceans, around 200 are coccolithophores (Jordan and 

Chamberlain, 1997). Coccolithophores can be characterised by calcium 

carbonate shell like structures known as ‘coccoliths’. These structures are 

thought to be both protective and to serve as a carbon storage mechanism 

(Sikes et al., 1980).  The well known coccolithophorid Emiliania huxleyi, form 

blooms so large that they’re visible from space (Jordan and Chamberlain, 

1997). These organisms are particularly important to carbon cycling as 

autotrophic carbon sinks and sources of carbon (through decay and sinking, 

serving as a mechanism of depositing calcium carbonate to oceanic sediments). 

 

1.3.4 Marine bacterial diversity 

Like their eukaryotic counterparts, the scope of the diversity of marine 

prokaryotes has only recently been revealed and, as such, has also undergone 

major revisions in recent years. Indeed during the 1990’s the inclusion of 16S 

rRNA data within studies led to a complete revision of not only the diversity of 

bacterial life but also their functional role in the environment.  Because a 

universal bacterial species concept is contentious, common practice classifies 

bacterial taxa using molecular similarity cut-offs or operational taxonomic units 

(OTU’s) (Stackebrandt and Goebel, 1994; Rossello-Mora and Amann, 2001; 

Staley, 2006). This approach usually treats bacteria of >97% 16S small subunit 

ribosomal RNA (16S SSU rRNA) sequence homology to be synonymous with 

“species” level similarity (Stackebrandt and Goebel, 1994). Although arbitrary, 

the OTU approach is highly useful in quantifying bacterial diversity (Koeppel 

and Wu, 2013). Using a 97% 16S SSU rRNA sequence similarity cut off the 

total number of bacterial taxa in the ocean has been estimated to be between 

106 - 109 (Pedrós-Alió, 2006). Bacterial oceanic diversity can be characterised 

into 8 broad phylogenetic groups: the Proteobacteria, Cyanobacteria, 

Lentisphaerae, Bacteroidetes, Actinobacteria, Fibrobacter, Planctobacteria and 

Chloroflexi (see figure 1.4 adapted from Giovannoni and Stingl, 2005). Many of 

these groups contain members which have been found to be both globally 

important and numerous. For example, one of the most abundant bacterial 

ribotypes detected in seawater DNA is that of the SAR11 group (or 
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Figure 1.4: Schematic illustration of the phylogenetic position of major 
marine bacterial taxa. Figure adapted from Giovannoni and Stingl (2005). 
Taxa relevant to this study have been included. 

 

Pelagibacteraceae). However, until the application of environmental sequencing 

studies, it had been unknown to marine microbiologists (Morris et al., 2002a). 

 

1.3.5 Key bacterioplankton lineages 

 

One of the foremost bacterial groups is that of the phylum Proteobacteria 

(Stackebrandt et al., 1988). Proteobacteria can be further broken down into six 

classes: Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, 

Deltaproteobacteria, Epsilonproteobacteria and Zetaproteobacteria (Euzéby, 

1997; Emerson et al., 2007; Parte, 2014). Members of all the Proteobacterial 

classes can be found in marine systems, yet here I concentrate on the Alpha 

and Gamma classes (Guiry and Guiry, 2013; WoRMS Editorial Board, 2013). 

The early 1990’s saw a period of landmark papers in environmental marine 

biodiversity investigating marine planktonic communities (Giovannoni et al., 

1990; Britschgi and Giovannoni, 1991; Schmidt et al., 1991). Such studies 

demonstrated the abundance of Alphaproteobacteria within marine 

communities. Since their discovery SAR11 bacteria have been shown to 

http://en.wikipedia.org/wiki/Alphaproteobacteria
http://en.wikipedia.org/wiki/Betaproteobacteria
http://en.wikipedia.org/wiki/Gammaproteobacteria
http://en.wikipedia.org/wiki/Deltaproteobacteria
http://en.wikipedia.org/wiki/Epsilonproteobacteria
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dominate bacterioplankton communities across geographic and depth 

gradients, and encompass a diverse range of phyla and ecotypes (Morris et al., 

2002a; DeLong et al., 2006; Mary et al., 2006; Vergin et al., 2013). SAR11 

forms a monophyletic family within the alphaproteobacterial order Rickettsiales 

and is believed to share common ancestry with the eukaryotic mitochondrion 

(Thrash et al., 2011). SAR11 group organisms metabolize dissolved organic 

carbon to generate energy via proteorhodopsin or by respiration (Giovannoni et 

al., 2005a; Giovannoni et al., 2005b).  The first cultured isolate from this taxa 

has been named Candidatus Pelagibacter ubique (Rappe et al., 2002). Studies 

upon P. ubique have shown this group are not only one of the smallest known 

free living bacteria but also have an equally reduced genome size to match 

(Giovannoni et al., 2005b; Joint, 2008; Grote et al., 2012). Unlike its fellow 

alphaproteobacterium SAR11, many members of the marine family 

Rhodobacteraceae are readily found using both traditional marine culture and 

culture- independent techniques (González and Moran, 1997). This group is 

both highly diverse and abundant, and contains many significant genera such 

as the Rhodobacter, Roseobacter, Silicobacter and Sulfitobacter. The 

Rhodobacteraceae are a highly abundant and diverse group with equally 

diverse biogeochemical characteristics, which have been often associated with 

algal blooms (Selje et al., 2004; Buchan et al., 2005; Rink et al., 2007; Brinkhoff 

et al., 2008; Newton et al., 2010). In their recent study of Roseobacter genomes 

Newton and colleagues (2010) were able to identify genetic pathways related to 

a range of trophic strategies and biochemical utilisation (carbon, phosphorus, 

sulphur, nitrogen and iron) all of which would be advantageous during a 

phytoplankton bloom and ensuing nutrient release. 

 

Another important class of marine proteobacteria is that of the 

Gammaproteobacteria. Deep branch phylogeny within this class is difficult to 

resolve using 16S rRNA gene phylogenies alone (Williams et al., 2010). This is 

further hampered by the inclusion of novel environmental sequences. The term 

SAR86 refers to a group of Gammaproteobacteria 16S rRNA gene ribotypes 

first detected in surface marine communities, and subsequently found to be 

present globally (Britschgi and Giovannoni, 1991; Schmidt et al., 1991; 
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Gonzalez et al., 2000; Malmstrom et al., 2007). SAR86 is found to contain 3 

main sub-groups (I, II, and III), and, as yet has no cultured representatives 

(Suzuki et al., 2001a; Sabehi et al., 2004). Studies using SAR86 bacterial 

artificial chromosomes (BACs) have enabled researchers to ascertain that 

SAR86 organisms are likely to be aerobic heterotrophs, with the potential for 

ATP production via proteorhodopsin. Proteorhodopsin was first discovered a 

BAC containing a SAR86 18S SSU rRNA, and is now thought to be present in 

at least 50% of marine bacteria (Béjà et al., 2000; Campbell, et al., 2007).  Like 

SAR11, SAR86 exhibits a streamlined genome (Sabehi et al., 2004; Dupont et 

al., 2012). Further, Dupont and colleagues (2012) suggested that SAR86 

organisms are specialized in lipid and polysaccharide degradation, and hence 

occupy a niche distinct from other globally distributed proteobacteria such as 

SAR11. 

Members of the Bacteroidetes phylum constitute not only one of the most 

abundant marine heterotrophic bacterial groups but, also one of the most 

functionally valuable. Bacteriodetes are believed to have a role as ‘particle 

specialists’ and are common members of phytoplankton bloom associated 

bacterial assemblages, where the ability to degrade complex bio molecules is 

advantageous (Riemann et al., 2000; Kirchman, 2002; Fandino et al., 2005). A 

recent analysis of Bacteroidetes genomes found adhesion and glycosyl 

transferase genes typical to an attached lifestyle, and confirmed this group has 

a key role in polymer degradation through the presence of a high number of 

glycoside hydrolase and peptidase encoding genes (Fernandez-Gomez et al., 

2013). Further, to this strains grown in light and dark conditions provide 

evidence that at least one member of this group is able to utilise 

proteorhodopsin to capture and harvest light energy to benefit its growth and 

survival (Gomez-Consarnau et al., 2007; Gómez-Consarnau et al., 2010). 

Finally it is important to mention phylum Cyanobacteria. Phototrophic 

cyanobacteria of the genera Synechococcus and Prochlorococcus have been 

shown to contribute up to 80% of marine oligotrophic primary production 

(Goericke and Welschmeyer, 1993; Li, 1995; Liu et al., 1999; Rocap et al., 

2002). Discovered in 1979 and 1988 respectively, they are likely to be the most 
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abundant photosynthetic organisms on Earth (Waterbury et al., 1979; Chisholm 

et al., 1988; Partensky et al., 1999). Considering the wide taxonomic, trophic 

and functional diversity present within marine picoplankton it is important to 

consider how they are likely to respond to global climate change, and the 

ecological impact of such changes. 

1.4 Climate Change and Ocean Acidification 

1.4.1 Climate change 

In 2013 the intergovernmental panel on climate change (IPCC) reported that 

“Warming of the climate system is unequivocal, and since the 1950s, many of 

the observed changes are unprecedented over decades to millennia. The 

atmosphere and ocean have warmed, the amounts of snow and ice have 

diminished, sea level has risen and the concentrations of greenhouse gases 

have increased” (IPCC, 2013). Solar energy passes through the atmosphere 

and is absorbed by the Earth’s surface, warming it up. The greenhouse effect is 

the process by which reflected thermal energy is absorbed by the atmosphere 

and its greenhouse gases then, redirected back to the Earth, heating it further. 

Without this natural process the average temperature of the Earth’s surface 

would be below the freezing point of water, thereby limiting life. However, any 

Gas 

Pre-1750 

trophospheric 

concentration 

Recent 

trophospheric 

concentration 

Percentage 

increase 

since 1750 

Carbon 

Dioxide (CO2) 

280
  
parts per million 

(ppm) 
400 (ppm) 

 

   40.2% 

 
 

Methane 

(CH4) 
700

 
parts per billion (ppb) 1874/1758 (ppb) 167.7/151.1% 

Nitrous 

Oxide (N2O) 
270

 
(ppb) 324/323 (ppb) 20/19.6% 

Table   1.2: Comparison of average global pre-industrial and current 
trophospheric greenhouse gas concentration for 3 major greenhouse gases. 
Data taken from CDIAC (Blasing, 2013). As per IPCC (2001) convention, 
anthropogenic contributions prior to 1750 are taken to be negligible. Current 
values represent recorded annual mean (2012 for CO2 and 2011 for CH4 and 
N2O).  
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increases in greenhouse gases would lead to an increased reflected heat 

thereby increasing surface temperature further, a process known as global 

warming (IPCC, 2007). Since industrialisation the atmospheric concentration of 

greenhouse gases such as carbon dioxide (CO2), methane (CH4) and nitrous 

oxide (N2O) have risen dramatically, due to anthropogenic activities such as 

burning fossil fuels and changes in land use (e.g. deforestation and the 

intensification of farming). A comparison of some current trophospheric 

greenhouse gas concentration shows that values for CO2, CH4 and N2O 

represent a rise of approximately 40, 159 and 20% respectively, since 1750 

(see table 1.2).  

Influential papers presenting ice core data suggest that present levels are far 

higher than any in the past 800,000 years (Petit et al., 1999; Siegenthaler et al., 

2005; Spahni et al., 2005; Luthi et al., 2008), and data from ancient 

foraminiferan shells suggests that CO2 levels were last higher than this around 

20 million years ago (Pearson and Palmer, 2000). The intergovernmental panel 

on climate change (IPCC) fourth assessment report on climate change, used 

the IPCC special report on emissions scenarios (SRES) to present future 

climate predictions; - these models suggested that by 2100 atmospheric CO2 

concentration could range between 541 and 970 ppm (IPCC, 2000; IPCC, 2007; 

IPCC, 2013). In 2013, readings taking for CO2 at the Mauna Lao research 

station passed 400ppm, a symbolic benchmark which is likely to represent the 

norm within a few years (BBC, 2013). If the upward trend in CO2 and other 

greenhouse gas emissions continues as predicted, there are likely to be global 

consequences for both biotic and abiotic processes. However there is another 

consequence of elevated CO2 the scale of which has been overlooked until 

recently, that of ocean acidification (OA). 

1.4.2 Ocean acidification 

Since industrialisation, global CO2 emissions have increased and as a result a 

greater understanding of the relationship between rising atmospheric CO2, 

ocean biogeochemistry and the populations therein, is essential (Caldeira and 

Wickett, 2003; Cicerone et al., 2004; Feely et al., 2004; Orr et al., 2005). 
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Figure 1.5: Summary of the chemical processes involved in ocean 
acidification. Atmospheric carbon dioxide (CO2) dissolves in seawater (1). 
Dissolved CO2 reacts with water (H2O) to form carbonic acid (H2CO3), a weak 
acid (2). H2CO3 dissociates to bicarbonate ions (HCO3

-) and hydrogen ions 
(H+) an excess of which combine with carbonate ions (CO3

2-) to form more 
bicarbonate ions (HCO3

-)(3). As a result there is a net increase in dissolved 
carbon dioxide, carbonic acid, bicarbonate ions and hydrogen ions, but a 
decrease in bio-available carbonate ions. Since pH is determined by the 
negative log of the activity of hydrogen ions, increases in seawater hydrogen 
ion concentration will lead to a decrease (or acidification) of oceanic pH. 
Chemistry taken from Joint et al. (2011). 

Figure 1.5 outlines the process first coined ‘ocean acidification’ (OA) by 

Caldeira and Wickett (2003) in which CO2 released into the atmosphere 

dissolves in seawater and reacts to form carbonic acid (H2CO3), the dissociation 

of which forms hydrogen and bicarbonate ions. When hydrogen ions are in 

excess they react with carbonate ions to form more bicarbonate ions. As a 

result there is a net increase in dissolved carbon dioxide, carbonic acid, 

bicarbonate ions and hydrogen ions, alongside a decrease in bio-available 

carbonate ions, overall resulting in a net decrease (acidification) of oceanic pH 

(see Joint et al. 2011 for review). 

 The ocean’s buffering capacity is only able to neutralize some additional CO2 
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(Sabine et al., 2004) therefore, a decrease in seawater pH and carbonate 

saturation is set to continue as long as excess CO2 enters the atmosphere 

(Brewer et al., 1997; Feely et al., 2004).  Currently, a pH change in the region of 

0.3-0.4 units is predicted by the end of the century (Caldeira et al., 2007; Feely 

et al., 2008). 

The concept that oceanic pH can effect organisms is not new. In the first half of 

the 20th century, a number of early publications were able to highlight the 

potential effect of changes in hydrogen ion concentration to organisms. Early 

investigations were able to establish a negative effect upon egg development of 

a sea urchin (edible sea urchin) and fish species (European plaice) (Moore et 

al., 1906; Whitley, 1906). Gail (1919) demonstrated a specific pH range (pH 7.4 

- 8.6) where Fucus (a brown algae) spore germination was optimal. Although 

much of this early research has since been re-evaluated, it is important to note 

that even over a century ago the importance of pH balance in marine systems 

was conceived. Reviews of this early data can be found elsewhere (Rubey, 

1951; Gattuso and Hansson, 2011). Modern ocean acidification research was 

established by Revelle and Suess (1957). In their seminal paper they were the 

first to link the uptake of anthropogenically derived CO2 to a decrease in the 

oceans buffering capacity - the oceans ability to absorb atmospheric CO2. In 

combination with the observation that changes in carbonate ions (CO3
2-), which 

decrease with elevated pCO2, lead to changes community calcification rates, 

this has evolved into the modern concept of ocean acidification (Broecker and 

Takahashi, 1966). Subsequent studies have demonstrated that oceanic pH has 

changed in response to elevated CO2 using time series data (Bates, 2001; 

Santana-Casiano et al., 2007; Dore et al., 2009). Many reviews, policy 

documents and recommendations have since been written in order to try and 

understand and potentially minimise the effect of OA (Cicerone et al., 2004; 

Raven et al., 2005; Henderson, 2006; Field et al., 2011; IGBP IOC SCOR, 

2013; IPCC, 2013). Yet, all highlight the need for a greater understanding in 

how projected pH changes will affect the oceans biota and integral processes 

(Fabry et al., 2008; Guinotte and Fabry, 2008; Doney et al., 2009; Kerr, 2010; 

Sabine and Tanhua, 2010). 
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1.4.3 The effect of ocean acidification upon organisms and processes 

As outlined in section 1.4.2, ocean acidification is occurring and, as such, the 

associated changes in pH and CO2 are likely to have both a positive and 

negative effect on the growth of oceanic microorganisms (Riebesell, 2004). The 

most publicised negative effect of OA comes as a result of a decrease in bio-

available carbonate ions limiting calcifying organisms’ ability to make protective 

shells or skeletons, with organisms such as coral and molluscs appearing 

particularly vulnerable (Gattuso et al., 1998; Riebesell et al., 2000; Michaelidis 

et al., 2005; Shirayama and Thornton, 2005; Gazeau et al., 2007; Kuffner et al., 

2008). Calcium carbonate occurs in two polymorphic forms (calcite and 

aragonite) both of which can be accessed. However, there is a critical 

concentration of carbonate saturation within seawater below which calcium 

carbonate (CaCO3) will start to dissolve. As aragonite dissolves more readily 

than calcite, organisms utilising aragonite may respond more rapidly to OA 

induced changes (Orr et al., 2005). However it is important to note that 

calcification responses will likely be species specific and that no general trend 

should be applied for all (Langer et al., 2006).  Fine and Tchernov (2007) found 

that complete recovery was possible in a coral species previously exposed to 

pH 7.4, clearly demonstrating that ecosystem recovery/maintenance is possible. 

It is also important to consider that much OA research has focused upon 

calcifying organisms and the effect upon non-calcifiers may not be as apparent. 

The early reproductive and juvenille stages of many organisms are sensitive to 

OA (Kurihara et al., 2004; Kurihara and Shirayama, 2004; Kurihara, 2008; 

Ceballos-Osuna et al., 2013). Melzner et al. (2009) suggest that metazoan 

species which tolerate predicted future CO2 concentrations have high metabolic 

rates and levels of mobility/activity. Such organisms naturally experience 

varying levels of oxygen consumption and sebsequent CO2 excreation during 

respiration, and therefore may be better able to withstand changes in external 

acid-base chemistry. However, in contrast intracellular elevated pCO2 levels 

may lead to shifts in an organisms energy budgets which would likely affect 

growth, survival, and physiology in general (for reviews see Pörtner et al., 2004; 

Pörtner et al., 2011). 
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Secondly, elevated CO2 concentration has been linked to higher levels of 

primary production (Hein and Sand-Jensen, 1997; Schippers et al., 2004). For 

example, the marine coccolithophore Emiliania huxleyi responded to increased 

CO2 by increasing both cell volume and primary production (Iglesias-Rodriguez 

et al., 2008) and the cyanobacteria Trichodesmium responded by increasing 

CO2 fixation by 15-128% and N2 fixation by 35-100% (Hutchins et al., 2007). 

However, not all organisms will respond in the same way, even within the same 

family. Fu and colleagues (2007) examined two marine cyanobacteria, 

Synechococcus and Prochlorococcus, the former showed a fourfold increase in 

photosynthesis, the latter Prochlorococcus showed only a minimal response.  In 

picoeukaryotes within the Mamiellales, Micromonas-like rcbL (ribulose 

bisphosphate carboxylase/ oxygenase, RubisCO) phylotypes were significantly 

in higher number, in high CO2 mesocosms, whereas Bathycoccus- like rcbL 

phylotypes were not (Meakin and Wyman, 2011). An emerging perception from 

these and other studies is that organisms which don’t contain effective carbon 

concentration mechanisms (CCM’s) - which have evolved to support 

photosynthesis in low concentration CO2 - may be more competitive under 

elevated CO2 (Engel et al., 2008; Egge et al., 2009; Reinfelder, 2011).  

Finally, since ecosystems and community composition are strongly determined 

by their environment (Martiny et al., 2006), if biogeochemical factors within this 

environment change then communities are likely to respond.  Although many 

studies have looked at organismal level responses, as yet little work has 

focused upon microbial community responses to ocean acidification. The 

application of basic ecological principles has proven to be a powerful tool in 

explaining the community distribution and abundance patterns of macro-

organisms in response to environmental change, yet these ideas have only 

been applied to microbiology recently (Prosser et al., 2007). An important 

aspect of community analysis in an environmentally disturbed system (such as 

CO2 perturbation) is the accurate evaluation of biological integrity and recovery 

following such an event (Ager et al., 2010) - how will a community respond to 

change and will it recover? When discussing ocean acidification Joint and 

colleagues (2011) proposed that ‘marine microbes possess the flexibility to 

accommodate pH change and there will be no catastrophic changes in marine 
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biogeochemical processes that are driven by phytoplankton, bacteria and 

archaea’, although Joint does highlight that calcifying and photosynthetic 

organisms may pose an exception to this. As discussed in the experimental 

chapters of this thesis, this view is not supported by all (Grossart et al., 2006; 

Liu et al., 2010; Lidbury et al., 2012), but does serve as a good working 

hypothesis to investigate microbial community response.  

1.5 Studying Ocean Acidification and Microbes 

1.5.1 Community phylogeny 

As mentioned previously, the majority of environmental microbes are 

unculturable and, as such, have been identified exclusively upon their 

phylogenetic signature (Staley and Konopka, 1985; Rappe and Giovannoni, 

2003). The biggest breakthrough in microbial ecology during the last century 

was the now widespread application of molecular techniques to this field. In 

their benchmark paper Woese and Fox (1977) used differences in conserved 

regions of the 16S ribosomal gene, to split life into 3 separate domains, and the 

concept of a phylogenetic marker was born. In combination with the polymerase 

chain reaction (PCR) and chain terminating sequencing reactions (Sanger 

sequencing), specific target regions of genetic sequence, e.g. 16S/18S rRNA 

could be studied (Sanger et al., 1977; Saiki et al., 1985). Clone libraries could 

be generated from mixed total environmental DNA, by firstly amplifying the 

desired genetic region (usually 16S or 18S SSU rRNA) and, after insertion of 

single amplicons into a cloning vector, cultured and sequenced (Olsen et al., 

1986; Pace et al., 1986). This method has proven to be a powerful tool in 

understanding the unknown environmental diversity, and as outlined in section 

1.3 has led to the discovery of many new organisms. However, it is important to 

note that this approach has its limitations. Firstly, clone libraries only represent 

the number of sequences you have produced, not the total community.  One 

millilitre of seawater in the open ocean contains about 5 × 105 prokaryote cells 

(Whitman et al., 1998). Ashelford et al. (2006) defined a large clone library as 

over 100 sequences, clearly this represented a minute fraction of the total 

community. Secondly, bias exists in each step of the process including; 
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preferential amplification of certain gene sequences (Reysenbach et al., 1992), 

interference from flanking genes (Hansen et al., 1998), template concentration 

(Chandler et al., 1997), restricted community coverage using ‘universal’ primers 

(Polz and Cavanaugh, 1998), chimeric sequence formation (Ashelford et al., 

2005), polymerase error rate (Tindall and Kunkel, 1988), preferential cloning of 

small sized PCR amplicons (Huber et al., 2009), a disparity in copy number of 

genes, accurate and meaningful sequence alignment and phylogenetic tree 

composition (Page and Holmes, 1998). Many of these have been minimised by 

improved molecular techniques (Taylor et al., 2007) and developments in 

bioinformatics. The development of sequence and phylogenetic analysis 

packages such as; Staden (Staden, 1996; Staden et al., 2000), Phred (Ewing 

and Green, 1998; Ewing et al., 1998), Phrap (Green, 2008) and PAUP 

(Swofford, 2002), have enabled the accurate analysis of large numbers of 

sequences. Such processes have been further aided by the use of chimeric 

sequence identification and evolutionary model checking programs such as 

chimera check (Huber et al., 2004), primrose (Ashelford et al., 2006) and Model 

test (Posada and Crandall, 1998; Posada, 2006). In addition the use of the 

freely accessible and accurately identified sequence repositories Silva (Pruesse 

et al., 2007) and Greengenes (DeSantis et al., 2006a; DeSantis et al., 2006b) 

and the development of comprehensive open source bioinformatics packages 

e.g MOTHUR (Schloss et al., 2004; Schloss and Handelsman, 2005; Schloss 

and Handelsman, 2006; Schloss et al., 2009) provide an invaluable resource to 

the modern microbial ecologist. Yet, the emerging use of next-generation 

sequencing (NGS) technologies likely holds the biggest advancement in this 

area. Because, NGS technologies produce millions of sequence reads it is 

possible to investigate environmental microbial populations at a sequencing 

depth which was previously impossible (Liu et al., 2012; Egge et al., 2013; Taib 

et al., 2013). Even so, current sequence read length cannot reach that of 

traditional Sanger sequencing and clone library analysis is still a powerful tool in 

investigating environmental sequence diversity. 

Because clone libraries can never represent the total community diversity 

present in a sample and can be prohibited by time and cost, other rapid PCR 

based community fingerprint techniques have been developed. These include:  
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temperature/denaturing gradient gel electrophoresis (T/DGGE) (Muyzer, 1999), 

single strand confirmation polymorphism (SSCP) (Schwieger and Tebbe, 1998), 

length heterogeneity PCR (LH-PCR) (Suzuki et al., 1998) which has 

subsequently been superseded by automated ribosomal intergenic spacer 

analysis (ARISA) (Fisher and Triplett, 1999) and terminal restriction fragment 

length polymorphism (T-RFLP) (Liu et al., 1997). These techniques have been 

demonstrated to show similar findings (Smalla et al., 2007). However, terminal 

restriction fragment length polymorphism (T-RFLP) is often favoured over other 

community fingerprint techniques because of its relative simplicity, high 

reproducibility between runs, rapid generation of ‘fingerprints’ from a large 

number of samples, and quantitative value (Schütte et al., 2008). Molecular 

fingerprint techniques are reliant on PCR amplification of the target genomic 

region and will be subject to bias, but it is commonly accepted that comparative 

inter sample variation is unaffected as they apply in equal measure to all 

samples (Blackwood et al., 2003).  

Although fingerprint techniques are often criticised because of a lack of 

resolution, they have proven to be an indispensable tool in modern 

environmental microbiology for the detection of changes in the structure and 

composition of microbial communities (Ramette, 2009).  

1.5.2 Phylogeny and function  

It is important to consider not only the structure and composition of a community 

but also the function it performs. Whether community composition itself will 

change or not in an experimental system, observed functional changes may 

occur. Herein lies a problem, as discussed in section 1.3, environmental 

microbial diversity is not only vast, but severely undercultured (Staley and 

Konopka, 1985). Therefore, one of the central problems faced by modern 

microbial ecology is not only the phylogenetic characterisation of such 

communities, but also the ability to link diversity to their function. Consequently 

the development of additional molecular approaches has been necessary to 

address this predicament.  
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One approach, metagenomics, isolates and inserts total environmental DNA 

into artificial chromosomes or vectors. In a pioneering study on the 

metagenome of the Sargasso Sea, it was possible to identify 1800 genomic 

species, of which 148 were novel, additionally these species contained over 1.2 

million genes new to science (Venter et al., 2004). The data produced has been 

further investigated to include picoeukaryotic sequences, giving a glimpse into 

the functional genes within this elusive group (Piganeau et al., 2008). The 

metagenomic approach has been applied to investigate soil (Liles et al., 2003) 

and wastewater (Strous et al., 2006) and recently extended to look at RNA 

transcripts or metatranscriptomes. In one such study, marine microbial 

populations observed during a phytoplankon bloom, studied in a mesocosm 

CO2 manipulation study, were noted to have high levels of novelty within their 

transcriptome (Gilbert et al., 2008). An alternative to looking at a transcriptome 

would be to measure quantitative gene expression through the use of 

microarrays (Sebat et al., 2003) or quantitative PCR (qPCR) (see section 1.5.4)  

(Zhu et al., 2005; Hou et al., 2010; Hunt et al., 2013). Finally, stable isotope 

probing (SIP) has been used to demonstrate bacterial populations actively 

metabolising C1 compounds during a phytoplankton bloom (Neufeld et al., 

2008) and is further discussed in section 1.5.3.  

Each of the techniques listed above have advantages and disadvantages as 

discussed elsewhere (Manefield et al., 2002b; Griffiths et al., 2004; 

Handelsman, 2004; Allen and Banfield, 2005; Dumont and Murrell, 2005; 

Handelsman, 2005; Hofmann et al., 2005; Whiteley et al., 2006; Chen and 

Murrell, 2010; Mock and Kirkham, 2012), however in combination with modern 

high throughput sequencing technologies these techniques are emerging as a 

powerful tool in understanding the ‘microbial black box’ (Tiedje et al., 1999). 

Below specific techniques used in this study are introduced more 

comprehensively. 

1.5.3 Stable isotope probing (SIP) 

Stable isotope probing looks at the level of stable isotope integration into 

cellular biomarkers and therefore, can be used to determine organisms which 
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are actively utilising a specific labelled substrate. The first to use stable isotopes 

as markers of microbial function identified the organisms responsible for 

sulphate reduction coupled to acetate and methane oxidation in sediments, by 

examining 13C enriched polar lipid derived fatty acid (PLFA) (Boschker et al., 

1998). However the use of PLFA analysis was superseded by approaches 

which look at the integration of labelled substrate into DNA (DNA-SIP) 

(Radajewski et al., 2000), and further developed to look at direct integration into 

the ribosomal RNA molecule (RNA-SIP) (Manefield et al., 2002a; Manefield et 

al., 2002b; Whiteley et al., 2006). Generally, PLFA-SIP provides the highest 

sensitivity, yet has fewer potential downstream applications than either DNA or 

RNA-SIP. DNA-SIP enables a researcher to retrieve actively labelled genomic 

DNA from an environment and therefore can be used to detect a large range of 

potential markers. However to obtain labelling sufficient for detection, DNA-SIP 

requires DNA replication and is therefore limited by cell division (Neufeld et al., 

2007a). In contrast, by directly studying labelled rRNA, it is possible to study 

phylogenetically linkable uptake of a substrate independently of cell replication 

(Whiteley et al., 2007). Consequently, RNA-SIP is more sensitive than DNA-

SIP, although downstream applications are usually, but not always limited to 

ribosomal RNA analysis (Huang et al., 2009). When combined with community 

fingerprint techniques, SIP allows for the identification of specific community 

members which are actively metabolizing a given substrate under the defined 

experimental parameters. Figure 1.6 summarises a typical nucleic acid SIP 

experiment, full methodology and reviews available elsewhere (Dumont and 

Murrell, 2005; Neufeld et al., 2007a; Neufeld et al., 2007b; Whiteley et al., 

2007). 

Primary studies using DNA SIP were able to demonstrate the presence of 

active bacterial methylotrophs within forest soils (Radajewski et al., 2000; 

Radajewski et al., 2002), and methanotrophs in peat soils (Morris et al., 2002b). 

When extended to include the analysis of RNA, it was possible to identify a 

novel organism belonging to the bacteria genus Thauera key to the degradation 

of phenol in a bioreactor community (Manefield et al., 2002a). Since these early 

studies SIP has been used to demonstrate the assimilation of labelled stable 

isotopes in compounds including carbon dioxide (Griffiths et al., 2004), acetate 
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(Longnecker and Kujawinski, 2013) and ammonium (Gerbl et al., 2014). 

Additionally, SIP experiments have been performed in pure cultures (Lueders et 

al., 2004a) to diverse communities such as those found in soil (Rangel-Castro, 

2005; Cébron et al., 2007) and marine environments (Neufeld et al., 2008). 

These studies, clearly demonstrate that - in conjunction with community 

fingerprint techniques such as DGGE or T-RFLP - SIP successfully overcomes 

the ‘microbial black box’ and allows the identification of metabolically active 

members within a given microbial community. 

Alternatively, when combined with quantitative PCR techniques (qPCR), SIP is 

able to accurately quantify the amount of a specific gene which is actively 

metabolising within a study (Lueders et al., 2004b; He et al., 2012; Sharp et al., 

2012). 

1.5.4 Quantitative PCR (qPCR)  

Quantitative PCR (qPCR) and Quantitative Reverse Transcriptase PCR (qRT-

PCR) are considered to be “the method of choice” for the sensitive 

quantification of the production of a specific nucleic acid (NA) transcript (Bar et 

Figure 1.6: Graphical outline of a nucleic acid stable isotope probing (SIP) 
experiment. Environmental community is incubated with desired stable isotope 
substrate or control and either DNA or RNA extracted. Extract separated by 
ultracentrifugation, across either a Caesium chloride (CsCl) or Caesium 
Trifluoroacetate (CsTFA) density gradient. Nucleic acids (NAs) separate based 
upon molecular weight, those which have integrated heavier stable isotope 
(e.g 13C) will be denser than control samples. Gradients can be fractionated, 
and NAs precipitated for down stream community characterisation applications 
such as qPCR, molecular fingerprint techniques or metagenomics. 
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al., 2012). First applied in order to quantify DNA (viral) endpoint PCR 

transcripts, qPCR has come into popular use when combined with ‘real time’ 

measurement of PCR product formation (Abbott et al., 1988; Higuchi et al., 

1993; Chiang et al., 1996; Gibson et al., 1996; Heid et al., 1996; Bar et al., 

2012). Current technologies follow the production of PCR product or cDNA 

transcript (qRT-PCR) over time by measuring fluorescence. A number of 

technologies have been developed however, the most commonly applied in 

microbiological studies are the detection of fluorogenic probes such as TaqMan 

(Livak et al., 1995; Heid et al., 1996) or  a dsDNA binding dye such SYBR green 

(Wittwer et al., 1997; Ponchel et al., 2003). Although less specific than TaqMan 

probes, the SYBR green approach is often favoured in environmental 

microbiology because it monitors the amplification of any double stranded 

sequence, and is comparatively cheaper than TaqMan.  The number of gene 

copies (or NA quantity if using an accurately quantified standard) of a target 

taxonomic group can be determined by the number of PCR cycles required to 

cross a fluorescence detection threshold (quantification cycle, or Cq) (Bustin et 

al., 2009). qPCR assays have been successfully employed in marine 

prokaryotes (Suzuki et al., 2000; Suzuki et al., 2001b) and later eukaryotes (Zhu 

et al., 2005). For example, Zhu and colleagues (2005) developed a qPCR assay 

to look at specific groups of picoeukaryotes, through which they were able to 

directly assess the prevalence of order Mamiellales in the Mediterranean Sea. 

Furthermore, Lueders et al. (2004b) combined both DNA and RNA-SIP with 

qPCR and RT-qPCR, to track community dynamics in rice field methanotrophs 

over time, providing evidence of 13C uptake in prokaryotic methylotrophs and 

possible indirect uptake in fungi and protozoa. Studies such as Lueders and 

colleagues (2004b) and Zhu and colleagues (2005) clearly demonstrate the 

potential to use qPCR in conjunction with SIP to investigate active 

picoeukaryote communities.  

1.5.5  The Bergen mesocosm  

As outlined in section 1.4.3, much of the primary work investigating the effect of 

ocean acidification upon planktonic organisms has been carried out upon single 

organisms and small scale incubations of mixed populations, for example: 
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assemblages (Tortell et al., 2002), coccoliths (Riebesell et al., 2000), coral 

(Gattuso et al., 1998) and their algae (Kuffner et al., 2008), copepods (Kurihara 

et al., 2004), cyanobacteria (Barcelos e Ramos et al., 2007) gastropods and 

echinoderms (Kurihara and Shirayama, 2004; Shirayama and Thornton, 2005). 

Although this approach does allow greater repetition and manipulation than in-

situ studies, it may be prone to “bottle effects” (Zobell and Anderson, 1936) and 

therefore simplify community level interactions.  An alternative to this would be 

an in-situ mesoscale approach, as in Thingstad et al. (2005a) and Boyd et al. 

(2007), yet the opportunity to manipulate on this scale is rare and statistically 

limited because of the inability to replicate. An alternative approach is that of a 

mesocosm study. Mesocosm studies allow direct manipulation and repetition in 

a large scale naturalistic setting. Mesocosm studies have been successfully 

employed in the study of seawater acidification in a series of three experiments 

in 2001, 2003 and 2005 (Riebesell et al., 2008).  Named the Pelagic Ecosystem 

CO2 Enrichment studies (PeECE I-III), these studies set out to: test the validity 

of laboratory based studies, examine CO2 sensitivity transfer from the organism 

to community and assess the impacts of these findings upon both 

biogeochemical processes and air sea gas exchange (Riebesell et al., 2008). 

In their 2005 policy document, Raven and colleagues (2005) recommended that 

there was a need for large scale (mesocosm) experiments to further investigate 

the impact of ocean acidification upon “sensitive organisms, functional groups 

and ecosystems”. Additionally, they highlighted the current lack of knowledge 

about the potential effects of OA upon microorganisms. As a result the Bergen 

Mesocosm Experiment 2006 (a multi consortia initiative funded through the UK 

Natural Environment Research Council’s ‘Aquatic Microbial Metagenomes and 

Biogeochemical cycles’ grant) was conceived. The overarching aim of the 2006 

Bergen mesocosm experiment was to determine the impact of pH change on 

key carbon and nitrogen metabolic pathways in marine microbial communities. 

Particpiants in the experiment included national research institutes (Plymouth 

Marine Laboratory and the Centre for Ecology and Hydrology), and a number of 

universities (inc. Warwick, Newcastle, Stirling, Cardiff and Liverpool). Individual 

groups investigated the effect of elevated CO2 upon nitrogen fixation, viral host 

interactions, methylotrophs, and transcriptomic response. One of the key roles 
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of CEH within this experiment was to investigate this aim in the context of active 

13C-bicarbonate integration by phototrophs and to follow the transfer of label 

into the heterotrophic community, through the application of RNA-SIP. As part 

of the CEH Oxford/Wallingford research team, I utilised the experimental 

samples and data collected during this experiment, to investigate picoplanktonic 

diversity as well as carbon utilisation. The aims of this thesis are outlined in 

section 1.6. 

1.6 Aims and Objectives 

1.6.1 Aims 

Because only a small fraction of the oceans microbial diversity has been 

cultured and formally described one of the key challenges faced is the ability to 

link phylogenetic diversity to the functional diversity – “who is there and what 

are they doing?” (Dubilier, 2007). 

Aim 1: How does bacterial community structure respond to elevated CO2? 

This aim is addressed in chapter 3. The application of basic ecological 

principles has proven to be a powerful tool in explaining the community 

distribution and abundance patterns of macro-organisms in response to 

environmental change, yet these ideas have only been applied to microbiology 

recently (Prosser et al., 2007). Using a community fingerprint technique (T-

RFLP) and the definitions for community disturbance outlined in Martiny and 

colleagues (2006) this chapter addresses the null hypothesis proposed by Joint 

and colleagues (2011) that ‘marine microbes possess the flexibility to 

accommodate pH change and there will be no catastrophic changes in marine 

biogeochemical processes that are driven by phytoplankton, bacteria and 

archaea’. This chapter is based upon a first author accepted for publication in 

Environmental Microbiology Reports. 
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Aim 2: How do members of the picoplankton (0.2-2.0µm) respond to elevated 

CO2? 

This is addressed in chapter 4. Although chapter 3 investigates bacterial 

community structure it is important to understand the taxonomic constituents of 

this community. Gattuso and colleagues (2011) highlight the need for work 

integrating community responses to OA and individual responses to elevated 

CO2. Chapter 4 utilises flow cytometry, SSU rRNA gene sequencing and T-

RFLP to investigate both the phylogenetic diversity and fine resolution dynamics 

of the dominant members of the picoplankton (both bacterial and eukaryote) to 

elevated CO2. This chapter has been formed from a published, first author 

paper (Newbold et al., 2012).  

Aim 3: Do functional microbial communities respond to OA? 

Microbes are key to oceanic processes through their roles in photosynthesis, 

grazing and the microbial loop, and as such it is important to consider how OA 

will affect the function of such communities. One of the most challenging tasks 

faced by microbial ecologists is to link these functions to uncultured members of 

a community. Chapter 5 (with some crossover in chapter 6) utilises RNA-SIP to 

investigate the direct microbial community uptake of CO2 and glucose within the 

resident prokaryote and eukaryote communities. 

Aim 4: Is it possible to detect functional shifts in key picoeukaryotes response to 

elevated CO2? 

Elevated CO2 concentration has been linked to higher levels of primary 

production (Hein and Sand-Jensen, 1997; Schippers et al., 2004). 

Consequently, there is an emerging perception that phytoplankton may 

experience a shift in favour of smaller non calcifying organisms, which put less 

effort into costly carbon concentration mechanisms (CCM’s) (Paulino et al., 

2008; Newbold et al., 2012; Brussaard et al., 2013). In the final experimental 

chapter of this thesis, RNA-SIP and qPCR are used in conjunction to investigate 

the effect of elevated CO2 upon the function of the dominant picoeukaryotes 

Micromonas and Bathycoccus. 
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Figure    2.1: The raft housing the mesocosm enclosures 

Chapter 2. Study Site and Experimental Parameters 

The experimental chapters of this thesis are written in the style of research 

papers for the publications Environmental Microbiology and Environmental 

Microbiology Reports, and hence the methods applied are described in each 

chapter.  However, to aid clarity a brief description of the sample site and an 

experimental time-line follows. 

2.1 The Study Site 

Situated around 25km from Bergen, Norway, the Marine Biological Research 

Station, Esplend houses the Large-Scale Mesocosm Facility of the University of 

Bergen. Aside from multidisciplinary laboratories the facility houses a raft 

moored in the Raunefjorden, 60.3ºN, 5.2 ºE with the ability to hold up to 12 

Mesocosm enclosures (figure 2.1).  
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2.2 Experimental Parameters and Time-line 

During May 2006 six experimental mesocosm enclosures (3.5m depth, 2m 

diameter, holding ~1100L) were constructed from polyethylene and suspended 

0.5m above the surface water level. Mesocosm supporting structures were 

anchored to an experimental raft housed in Raunefjorden, Norway 60.3ºN, 5.2 

ºE, and 200m from shore. Prior to the commencement of sampling mesocosm 

enclosures were filled with nutrient deplete unfiltered native fjord water on 2nd of 

May. In order to minimise contamination from atmospheric conditions 

enclosures were covered with reinforced lids constructed from high UV 

transmitting polyethylene. On May 6th a phytoplankton bloom was stimulated 

through the addition of phosphate and nitrate in all enclosures (concentrations 

at experimental commencement: 1 µmol l-1 phosphate; 17 µmol l-1 nitrate). Note 

that mesocosms 2 and 5 used 15N nitrate as opposed to 14N in other 

enclosures. Mesocosm enclosures were exposed to two initial CO2 treatments 

high/elevated (mesocosm enclosures 1-3) and ambient (mesocosm enclosures 

4-6). High/elevated enclosures were sparged with ambient air enriched to 

750 ppmV CO2 (g) from 4-6th May, until the pH of the seawater within the 

enclosures had declined to ~7.8 (range 7.81–7.82). Ambient mesocosm 

enclosures were treated identically, but with ambient air. Subsequently 

blooming phytoplankton growth reduced CO2 concentrations in the high CO2 

mesocosms, therefore mesocosm enclosures 1 and 2 were re-acidified 10 days 

after mesocosm establishment, and ambient condition enclosures 5 and 6 again 

sparged with air. In order to assess the consequences on the community if the 

experiment had continued without resparging, the remaining 2 mesocosm bags 

(3 and 4) were left unsparged. Experimental samples were taken for 18 days 

beginning the 6th May.   

In conjunction with the main mesocosm study, CEH Oxford/Wallingford set up a 

series of stable isotope microcosm incubations at three key time points in the 

study. These time points corresponded to an early nutrient replete phase (SIP 

1, 7th May), phytoplankton bloom peak (SIP 2, 13th May) and final nutrient 

deplete phase (SIP 3, 20th May). Microcosm incubations were filled from 4L 

water sampled directly from all mesocosm bags to fill 5L Nalgene bottles 
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containing either 12C or 13C glucose (50mg/L) or sodium bicarbonate (0.15g/L). 

These microcosms were submerged under surface fjord water and incubated in 

situ. During each incubation daily pH and cell abundance was measured. 

Plankton was collected from 1L of microcosm water onto 0.2 µm Durapore 

membranes for a period of 5 days. 

A summary timeline of key events within the 2006 BME is found in figure 2.2. 
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Figure    2.2: Timeline of experimental manipulations within the 2006 Bergen mesocosm experiment. 

 



67 

 

Chapter 3: Marine Bacterial Communities are Resistant to 

Elevated Carbon Dioxide Levels 

Running title: Marine Bacterial Communities and Elevated CO2 

 

Lindsay K. Newbold1,2†
, Anna E. Oliver1†, Andrew S. Whiteley3, and 

Christopher J.  van der Gast1* 

1NERC Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK 

2School of Civil Engineering and Geosciences, University of Newcastle upon 

Tyne, Newcastle, NE1 7RU, UK. 

3School of Earth and Environment, University of Western Australia, Crawley, 

WA 6009, Australia  

*For correspondence E-mail cjvdg@ceh.ac.uk; Tel.  (+44) 1491 692647; Fax 

(+44) 1491 692424. 

† Contributed equally to this work. 

 

Accepted for publication in Environmental Microbiology Reports, © 2014 Society 

for Applied Microbiology and John Wiley & Sons Ltd. Edits in format and 

references were made in keeping with the thesis structure however all other 

wording remains consistant with the submitted publication. Figures have been 

placed within the text and online supplimentary data included listed as 

supplimentary figures S3.7.1 - 3.7.4.  The role of individual authors has been 

outlined on page 207. 

 

Keywords: Ocean acidification; Taxa-time relationships; Distance-decay 

relationships; taxa turnover; Bacterial Resistance  



68 

 

 

3.1 Summary  

It is well established that the release of anthropogenic derived CO2 into the 

atmosphere will be mainly absorbed by the oceans, with a concomitant drop in 

pH; a process termed ocean acidification. As such, there is considerable 

interest in how changes in increased CO2 and lower pH will affect marine biota, 

such as bacteria, which play central roles in oceanic biogeochemical processes. 

Set within an ecological framework, we investigated the direct effects of 

elevated CO2, contrasted with ambient conditions, on the resistance of marine 

bacterial communities in a replicated temporal seawater mesocosm experiment. 

The results of the study strongly indicate that marine bacterial communities are 

highly resistant to the elevated CO2 and lower pH conditions imposed, as 

demonstrated from measures of turnover using taxa-time relationships and 

distance-decay-relationships. In addition, no significant differences in 

community abundance, structure or composition were observed. Our results 

suggest that the bacterial fraction of microbial plankton holds enough flexibility 

and evolutionary capacity to withstand predicted future changes from elevated 

CO2 and subsequent ocean acidification. 
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3.2 Introduction 

It is well established that most anthropogenically derived carbon dioxide that is 

released into the atmosphere, as a result of burning fossil fuels and cement 

production over the past 200 years, will eventually be absorbed by the oceans 

(Caldeira and Wickett, 2003; Raven et al., 2005).  This process of absorption of 

atmospheric carbon dioxide (pCO2) is changing the chemistry of the oceans and 

in particular is decreasing pH, making seawater more acidic (Caldeira and 

Wickett, 2003; Raven et al., 2005; Joint et al., 2011).  Joint and colleagues  

(2011) succinctly described the chemical absorption process; stating that as 

anthropogenic CO2 increases in the atmosphere, it dissolves in the surface 

ocean, aqueous CO2 then reacts with water to form  a weak acid (carbonic acid, 

H2CO3), the dissociation of which forms hydrogen (H+) and bicarbonate ions 

(HCO3
-).  The increase in the concentration of hydrogen ions then results in an 

inevitable drop in oceanic pH: a process which is commonly termed ocean 

acidification (OA), since the ocean’s buffering capacity is only able to neutralize 

some of this additional CO2 (Sabine et al., 2004; Raven et al., 2005).   The 

present average surface ocean pH is approximately 8.1, being 0.1 units lower 

than pre-industrial revolution levels (Caldeira and Wickett, 2003).  Atmospheric 

CO2 is predicted to reach between 550 and 1000 µatm by the year 2100, with a 

concurrent decline in surface ocean pH of between 0.2 and 0.5 units, for which 

there is no known analogue from the past 300 million years (Wolf-Gladrow et 

al., 1999; Nakicenovic et al., 2000).   

There is significant interest in how changes in pCO2 levels and subsequent 

ocean acidification will affect the oceans biota and integral processes (Orr et al., 

2005; Fabry et al., 2008; Guinotte and Fabry, 2008; Doney et al., 2009; Kerr, 

2010; Sabine and Tanhua, 2010).  The marine ecosystem contributes over 90% 

of the Earth’s biosphere and marine microbes play an essential role in marine 

biogeochemical cycles central to the biological chemistry of the Earth with 

around 50% of global primary production attributed to phytoplanktonic bacteria, 

and protists (Field et al. 1998).  Further to this, over half of autotrophically fixed 
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oceanic CO2 is reprocessed or turned over by heterotrophic bacteria and 

archaea through processes such as the microbial loop and carbon pump 

(Azam, 1998; Jiao et al., 2010).  An increasing number of studies have 

reshaped our understanding of the extent and importance of marine bacterial 

diversity e.g. (Giovannoni et al., 1990; Britschgi and Giovannoni, 1991; Schmidt 

et al., 1991; Fuhrman et al., 1992; Fuhrman et al., 1993; Rappe et al., 2000), 

with more recent additional insights into the functional and phylogenetic 

diversity of the Earth’s oceans, reinforcing the perceived importance of marine 

microbial communities to the biogeochemical cycles present globally (e.g. 

Kannan et al., 2007; Rusch et al., 2007; Yooseph et al., 2007). 

The application of basic ecological principles has proven to be a powerful tool in 

explaining the community distribution and abundance patterns of macro-

organisms in response to environmental change, yet these ideas have only 

been applied to microbiology recently (Prosser et al., 2007).  An important 

aspect of community analysis in an environmentally disturbed system (such as 

CO2 perturbation) is the accurate evaluation of biological integrity and recovery 

following such an event (Ager et al., 2010) - how will a community respond to 

change and will it recover?  Previous mesocosm studies investigating 

community response to OA suggested that the total abundance of bacteria did 

not significantly differ between CO2 perturbation treatments, although changes 

in free living bacterial community composition did, likely leading to no loss of 

function (Grossart et al., 2006; Allgaier et al., 2008).  Most recently the 

European project on ocean acidification (EPOCA) found free living bacterial 

community structure was not majorly affected by degree of ocean acidification, 

but by variations in productivity and nutrient availability (Roy et al., 2013; 

Sperling et al., 2013; Zhang et al., 2013).  This highlights not only the often 

conflicting results found in such studies but also the difficulty in distinguishing 

direct effects upon bacteria from indirect effects relating to phytoplankton 

assemblages.   

When discussing ocean acidification Joint and colleagues (2011) proposed the 

null hypothesis that ‘marine microbes possess the flexibility to accommodate pH 

change and there will be no catastrophic changes in marine biogeochemical 
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processes that are driven by phytoplankton, bacteria and archaea’ a view 

supported by some studies (Allgaier et al., 2008; Newbold et al., 2012; Roy et 

al., 2013; Sperling et al., 2013), but not all (Grossart et al., 2006; Liu, 2010; 

Lidbury et al., 2012).  In our previous work we demonstrated that in 5 out of 6 

key bacterial groups no significant response to CO2 perturbation was observed, 

yet this work reflected only a small proportion of the total community and 

therefore an in depth study of the direct changes in total bacterial community 

response is warranted (Newbold et al., 2012). 

Here, we test null hypothesis of Joint and colleagues (2011), focusing on direct 

bacterial community responses to elevated CO2 in a replicated temporal 

seawater mesocosm experiment.  Specifically, using culture independent 

methods, we examined bacterial community turnover, composition, structure, 

and abundance under elevated CO2 and ambient conditions.   

3.3 Results and Discussion  

3.3.1 pH and abundance 

Seawater samples were collected daily over an 18 day study period from six 

mesocosms each with a working volume of ~11,000 L.  Three mesocosms were 

enriched with carbon dioxide (elevated CO2), while the remaining three were 

used as control (ambient condition) mesocosms.  A consequence of increased 

dissolved carbon dioxide in seawater will be a decrease in pH and subsequent 

ocean acidification (Joint et al., 2011).  This was the case in the experimental 

mesocosms where an inverse relationship was observed between pH and 

pCO2, being autocorrelated as expected (pH = a – b log pCO2 [r
2 = 0.99; F1,100 = 

2560.2; P < 0.0001]).  Measurement and analyses of the physical and chemical 

parameters within the mesocosms revealed that only pCO2, pH and total 

inorganic dissolved (TID) carbon were significantly different between treatments 

(figure S3.7.1); where pCO2 and TID carbon were significantly higher and, 

conversely, pH was significantly lower in mesocosms under elevated CO2 

conditions compared to the ambient control mesocosms (figure S3.7.1; figure 

S3.7.2a and b).  
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The mean bacterial abundance within the elevated CO2 mesocosms was 4.5 x 

106 ± 1.03 x 106 cells ml-1 and was not significantly different (ANOVA: F1,4 = 

2.05; P = 0.23) from the mean abundance within the mesocosms under ambient 

conditions; 5.74 x 106 ± 9.79 x 105 cells ml-1.  The temporal patterns of mean 

 

Figure   3.1:  The taxa-time relationships (TTRs) for bacterial communities in 
mesocosms under elevated CO2 and ambient conditions.  Given are the TTR 
for each mesocosm (A to F) and the mean TTR by treatment.  Error bars 
represent the standard deviation of the mean (n = 3).  Also given are the taxa-
time power law equation S = cTw: (1) r2 = 0.94, F1,15 = 253.2; (2) r2 = 0.70, F1,15 
= 34.4; (3) r2 = 0.76, F1,15 = 46.4; (4) r2 = 0.94, F1,15 = 230.5; (5) r2 = 0.96, F1,15 
= 391.4; (6) r2 = 0.84, F1,15 = 79.6; (Elevated CO2 mean) r2 = 0.89, F1,15 = 
117.7; and (Ambient mean) r2 = 0.98, F1,15 = 748.7. All regression coefficients 
were significant (P < 0.0001).   
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bacterial abundance mirrored each other until day 14, thereafter mean cell 

counts under elevated CO2 conditions declined, albeit with high variance, in 

contrast to mean cell counts under ambient conditions (figure  S3.7.2c). 

To determine whether the mean abundance distributions over time were 

significantly different we applied the two-sample Kolmogorov-Smirnov 

distribution fitting test, which indicated that there was no statistical difference in 

the bacterial abundance dynamics between treatments (D = 0.353; P = 0.245).  

Furthermore, no significant relationships were observed between bacterial cell 

counts and pCO2 concentrations or pH in any of the mesocosms (P > 0.05 in all 

cases). This finding is in line with other studies where bacterial abundance was 

largely unaffected by CO2 perturbation (Grossart et al., 2006; Allgaier et al., 

2008; Liu, 2010; Krause et al., 2012; Newbold et al., 2012; Lindh et al., 2013).  

3.3.2 Temporal turnover in acidified bacterial communities 

The bacterial communities within each mesocosm, over the 18 day study 

period, were analysed by 16S rRNA terminal restriction fragment length 

polymorphism (T-RFLP).  In this study, TRF peak richness and intensity were 

used to infer the richness and relative abundance of bacterial taxa within each 

mesocosm.  Taxa-time relationships (TTR) were used to investigate the effect 

of elevated CO2 levels on bacterial diversity (figure 3.1); specifically, to assess 

temporal taxa turnover of bacterial taxa across the two treatments.  The TTR 

describes how the observed taxa richness of a community in a habitat of fixed 

size increases with the length of time over which the community is monitored 

(van der Gast et al., 2008).  The TTR was modelled with the power law 

equation, S = cTw.  Where S is the cumulative number of observed taxa over 

time T, c is the intercept and w is the temporal scaling exponent and therefore 

increasing values of w can be taken as greater rates of taxa turnover.  The 

mean w-value within the elevated CO2 mesocosms was 0.145 ± 0.018, whereas 

w was significantly higher (ANOVA: F1,4 = 63.21; P < 0.001) within the ambient 

mesocosms, w = 0.240 ± 0.011 (figure 3.1).  As slopes, the values of w for each 

mesocosm between treatments, using the t-distribution method (Fowler et al., 

1998), were found to be significantly different (table 3.1a); that is the rate of 
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turnover within the elevated CO2 mesocosms produced a significant decrease 

in cumulative taxa richness and therefore taxa turnover, when compared to the 

ambient mesocosms.  

In addition to the TTR analyses, distance-decay relationships were employed to 

measure bacterial community turnover rates within the mesocosms (figure 3.2).  

The distance-decay relationship essentially allows an analysis of how similarity 

in community composition between sites changes with the geographic distance 

separating those sites (van der Gast et al., 2011).  For the current study, 

geographical distance was substituted for temporal distance (days) and the rate 

of decay in community similarity through time was assessed and compared 

amongst the experimental mesocosms.  The distance-decay relationship was 

modelled with the power law equation, SSOR = cDd, where SSOR is the pair-wise 

similarity between any two samples using the Sørensen index, c is a constant, 

D is temporal distance between pair-wise samples and d is the rate of decay in 

similarity or community turnover rate.  The mean rate of decay within the 

elevated CO2 mesocosms was d = -0.030 ± 0.007, however, d was significantly 

higher (ANOVA: F1,4 = 36.07; P < 0.004) within the ambient mesocosms; d = -

0.167 ± 0.039 (figure 3.2).  Using the t-distribution method, the slopes for each 

mesocosm distance-decay relationship when compared between treatments 

were found to be significantly different (table 3.1b).  This indicated that the rate 

of decay, and therefore turnover, was significantly dampened within the 

elevated CO2 mesocosms, selecting for a more conserved community 

composition through time when compared to the more dynamic communities 

within the ambient mesocosms.  Although the distance-decay relationships 

significantly differed by the overarching treatment, the temporal scaling of 

bacterial taxa within the mesocosms was driven by time (temporal distance) and 

not day-to-day differences in pH or pCO2 concentrations (table 3.2). 
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Figure   3.2:  The distance-decay of bacterial community similarity (Sørensen 
index (Ss)) in mesocosms under elevated CO2 and ambient conditions over 
time.  Given are the distance-decay relationships (DDR) for each mesocosm 
(1 to 6) and the mean DDR by treatment.  Error bars represent the standard 
deviation of the mean (n = 3).  Given are the distance-decay power law 
equation Ss = cDd: (1) r2 = 0.05, F1,134 = 6.5; (2) r2 = 0.02, F1,134 = 6.4; (3) r2 = 
0.09, F1,134 = 13.9; (4) r2 = 0.28, F1,134 = 52.8; (5) r2 = 0.40, F1,134 = 90.5; (6) r2 
= 0.43, F1,134 = 101.6; (elevated CO2 mean) r2 = 0.16, F1,134 = 24.6; and 
(ambient mean) r2 = 0.56, F1,134 = 168.8.  All regression coefficients were 
significant (P < 0.05).  Partial Mantel summary statistics are listed in Table 
3.2. 
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A Treatment   Elevated CO2  Ambient 

  Mesocosm  1 2 3 4 5 6 

 Elevated CO2 1  0.72 0.25 <0.0001* <0.0001* 0.002* 

  2 0.36  0.30 0.03* 0.01* 0.03* 

  3 1.18 1.06  0.0002* <0.0001* <0.0001* 

 Ambient CO2 4 4.48 2.22 4.37  0.55 0.51 

  5 5.94 2.71 5.25 0.60  0.76 

   6 3.41 2.31 3.73 0.67 0.31 1 

B Treatment   Elevated CO2  Ambient 

   Mesocosm 1 2 3 4 5 6 

 Elevated CO2 1  0.49 0.98 <0.00001* <0.00001* <0.00001* 

  2 0.69  0.43 <0.00001* <0.00001* <0.00001* 

  3 0.02* 0.80  <0.00001* <0.00001* <0.00001* 

 Ambient CO2 4 5.34 5.86 5.67  0.02* 0.67 

  5 4.74 5.65 5.61 2.41  0.01 

   6 6.53 7.30 7.29 0.43 2.63   

Table   3.1:  Comparison of power regression slopes between all mesocosms for (A) taxa-time relationships (TTR) and (B) distance-
decay relationships.  In each case, the t-distribution method test statistic (t) is given in the lower triangle and significance (P) is given in 
the upper triangle for each comparison.  For the taxa-time relationships the degrees of freedom (df) = 1,30, and for the distance-decay-
relationships, df = 1, 268.   Asterisks denote those slopes that were significantly different at the P < 0.05 level. 
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As expected, Mantel tests demonstrated pCO2 and pH were significantly 

autocorrelated in all mesocosms: Mantel statistic r = (Mesocosm 1) 0.949, (2) 

0.966, (3) 0.966, (4) 0.950, (5) 0.943, and (6) 0.942 (P < 0.0001 in all cases).  In 

addition, Mantel and partial Mantel tests revealed that other environmental 

variables (including, temperature, salinity, nitrate, phosphate, etc.) did not have 

significant relationships with similarity in any of the experimental mesocosms.  

Based on a direct ordination approach, the bacterial community composition 

was significantly influenced by time, the best explanatory variable in all 

mesocosms, and phosphate and / or nitrate (table 3.3).  In agreement with the 

Mantel based tests, pH or pCO2 did not significantly explain any of the variance 

in the mesocosms communities.  

Bacterial taxa abundance distributions for mesocosms under different 

treatments were plotted as rank-abundance curves to examine differences in 

evenness and dominance over the course of the study and specifically to 

determine what impact elevated CO2 levels had on community structure (figure 

S3.7.3).  It is generally accepted that a reduction of taxa richness will occur in 

an ecological community as a consequence of an environmental perturbation 

(Magurran and Phillip, 2001).  In addition, the loss of species is accompanied by 

a change in community structure (Ager et al., 2010).  Whereby, unperturbed 

species-rich assemblages are typically evenly distributed and following a 

perturbation are replaced by species-poor assemblages with high dominance 

(Magurran and Phillip, 2001; Ager et al., 2010).  To more clearly visualise 

changes in community structure, the mean slope values (b) from the rank-

abundance plots were used as a descriptive statistic of evenness and plotted 

over time for each treatment (figure S3.7.3).  When the mean slope values were 

compared (CO2 b = -0.077 ± 0.026, and Ambient b = -0.080 ± 0.014) no 

significant differences in community structure were observed by treatment 

(ANOVA: F1,4 = 0.51; P = 0.514). 
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Treatment Mesocosm r(SD.C) P r(SC.D) P r(SD.p) P r(Sp.D) P 

Elevated CO2 1 -0.293 0.001* 0.226 0.995 -0.279 <0.0001* 0.217 0.994 

 2 -0.199 0.002* -0.007 0.473 -0.200 0.001* 0.003 0.515 

 3 -0.325 0.001* 0.115 0.089 -0.333 <0.0001* 0.160 0.968 

Ambient CO2 4 -0.472 <0.0001* 0.331 0.999 -0.643 <0.0001* 0.241 0.997 

 5 -0.421 <0.0001* 0.275 0.998 -0.538 <0.0001* -0.052 0.273 

  6 -0.510 <0.0001* 0.074 0.202 -0.769 <0.0001* 0.247 0.998 

 

 

Table 3.2: Summary statistics for partial Mantel tests. The partial Mantel statistic r(AB.C) estimates the correlation between two proximity 
matrices, A and B, whilst controlling for the effects of C.  Given are bacterial community similarity S (Sørensen index) and also C and p 
which are differences in pCO2 and pH, respectively.   Also given is P to ascertain whether the partial Mantel regression coefficients were 
significantly different from zero following 9,999 permutations.  P-values significant after Bonferroni correction for multiple comparisons 
(0.05/18 = 0.003) are denoted with asterisks. 
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 Allison and Martiny (2008) defined resistance as ‘the degree to which microbial 

composition remains unchanged in the face of a disturbance’ and resilience as 

‘the rate at which microbial composition returns to its original composition after 

being disturbed’ regardless of the system studied.  The EPOCA studies of Roy 

and colleagues (2013); Sperling and colleagues (2013) and Zhang and 

colleagues (2013) suggested that variations in nutrients and productivity were 

the dominant drivers of free living bacterial community change, not increased 

CO2. In contrast, we found evidence that species turnover was significantly 

dampened within the elevated CO2 mesocosms, selecting for a more conserved 

community composition through time, giving clear evidence that the bacteria 

constituted a community resistant to CO2 perturbation.  Further to this, distance 

decay measures demonstrated that community composition changes little with 

CO2 perturbation, indicating that the elevated CO2 likely had no direct effect 

upon the mesocosm community.  Others have demonstrated that microbial 

communities are ‘resistant’ to perturbation (Klamer et al., 2002; Chung et al., 

2005; Horz et al., 2005; Kasurinen et al., 2005; Gruter et al., 2006; Bowen et al., 

2011).  However before generalising it’s important to consider that bacterial 

communities don’t all respond in the same way (Bissett et al., 2013). 

3.3.3 Conclusions 

Our findings suggested that the bacterioplankton communities studied were 

resistant to short term catastrophic pCO2 perturbation.  This study corroborates 

  Elevated   CO2   Ambient CO2   

Mesocosm 1 2 3 4 5 6 

Time 34.71 30.32 23.48 34.00 49.51 40.54 

Phosphate 20.76 17.41 19.92 22.39 30.89 24.02 

Nitrate 16.71 - - 17.70 - 19.47 

Undetermined 27.82 52.26 56.60 25.91 19.61 15.97 

Table   3.3: Canonical correspondence analyses for determination of percent 
variation in bacterial communities in mesocosms under elevated CO2 or 
ambient conditions by environmental variables and time. 
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the emerging perception that bacteria are able to withstand much environmental 

change (Liu, 2010; Joint et al., 2011).  We cannot however rule out the effect of 

OA upon the long term resilience of communities.  For example Newbold and 

colleagues (2012) found significant differences in key members of the 

picoeukaryote community assemblage, a finding also evident in the study of 

Brussaard and colleagues (2013).  Any changes in the pelagic food web are 

likely to have an effect upon the bacterioplankton as much of bacterial 

community structure is determined by ‘top down’ pressures (Bell et al., 2010; 

Martinez-Garcia et al., 2012).  To our knowledge recovery has not been 

measured in a similar mesocosm experiment greater than 30 days (the EPOCA 

arctic campaign 2010).  The changes imposed in our study are meant to 

simulate conditions faced in 100 years’ time, 100 years represents millions of 

bacterial generations and therefore the scope for evolutionary adaption is huge.  

This study highlights the need for long term naturalistic studies, which would 

examine the effects of ocean acidification upon bacterioplankton in a 

biologically relevant setting and time scale. 

3.4 Experimental procedures 

3.4.1 Experimental set up and sampling regime 

The complete experimental set up has been outlined previously (Gilbert et al., 

2008; Hopkins et al., 2010; Meakin and Wyman, 2011).  We present the data for 

3 elevated CO2 (experimental) and 3 ambient CO2 control mesocosms (2 m 

diameter, 3.5 m deep, ~11,000L).  Experimental mesocosm enclosures were 

gently sparged with CO2 (750 µatm) for 2 days until a pH ~ 7.8 was established.  

To control for sparging effects ambient condition mesocosm enclosures were 

sparged with air.  In order to simulate natural conditions more closely, a 

phytoplankton bloom was induced through the addition of nitrate and phosphate 

in all mesocosms (initial concentrations: 1 µmol l-1 phosphate; 17 µmol l-1 

nitrate).  Blooming phytoplankton growth reduced CO2 concentrations in the 

elevated CO2 mesocosms, therefore 2 of the experimental mesocosm 

enclosures were re-acidified 11 days after mesocosm establishment  

(16/5/2006), and 2 ambient condition enclosures again sparged with air (the 
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remaining 2 mesocosm bags left unsparged).  To isolate picoplankton daily 

samples of ~2 L of water were pre-filtered through Whatman GF/A filters to 

remove large eukaryote cells and filtrate collected onto 0.2 m Durapore 

membranes.  These were stored at -80 ºC prior to molecular analysis.  Note that 

samples for molecular analysis were not taken on day 12 of the study.  Physical 

and chemical parameters of the water samples (including; atmospheric carbon 

dioxide (pCO2), pH, temperature, and salinity) were taken and analysed as 

described previously (Hopkins et al., 2010), and the summary measurements 

are presented in figure S3.7.1.   

3.4.2 Enumeration of bacterial cells using flow cytometry  

Daily flow cytometric counts of absolute concentrations of bacterioplankton 

were performed using a Becton Dickinson FACSortTM flow cytometer equipped 

with an air-cooled blue light laser at 488nm according to the protocols of (Gasol 

et al., 1999; Zubkov et al., 2001; Tarran et al., 2006; Zubkov et al., 2008). 

3.4.3 Terminal restriction fragment length polymorphism (T-RFLP) 

Full experimental procedures have been described previously (Newbold et al., 

2012).  In summary, total nucleic acids were extracted as previously described 

(Huang et al., 2009).  Approximately 20-30 ng of purified template was used per 

50 µL PCR reaction.  A ~500 bp region of the 16S small subunit ribosomal RNA 

gene (SSU rRNA) was amplified using fluorescently labelled forward primer 

(6FAM) 27F and 536R reverse primer (Suzuki et al., 1998).  Amplification 

conditions were as follows; 2 minute pre-denaturation phase at 94 oC followed 

by 30 cycles of 94 oC for 1 minute, 52 oC for 1 minute, and 72 oC for 3 minutes 

and a final extension phase of 10 minutes at 72 oC.  20 µL of gel purified PCR 

product was digested for 4 hours at 37 oC in a 30 µL total reaction volume using 

20 units restriction enzyme Mspl (Promega, UK) and buffers.  Digestion product 

(0.5 µL) was combined with 0.5 µL denatured LIZ600 size standard (Applied 

Biosystems) and 9 µL Hi-Di formamide (Applied Biosystems), and run on an 

Applied Biosystems 3730 DNA sequencer.  The sizes of restriction fragments 

were calculated and binned using GenemarkerTM (Softgenetics) and restriction 

fragments crossed correlated to specific cloned sequences (see Newbold et al, 
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2012).  Bin widths were checked and manually adjusted to encompass all 

detected peaks.  To differentiate signal from background, a Fluorescence Unit 

(FU) threshold of 40 units was used for a presence/absence binary matrix.  All 

peaks were manually checked for inclusion in analysis.  Relative abundance 

measures were calculated by dividing individual peak height by total peak 

height spanning all valid peaks within the analysis.  Resultant data were 

analysed for community richness, composition, and structure.   

3.4.4 Statistical analyses of data 

One-way ANOVA tests, regression analysis, coefficients of determination (r2), 

residuals and significance (P) were calculated using Minitab software (version 

14.20; Minitab, University Park, PA, USA).  The two-sample Kolmogorov-

Smirnov test is used to compare empirical distribution fitting tests from a sample 

with a known distribution.  It can be used, as was the case for the current study, 

for comparing two empirical distributions (Nikiforov, 1994).  The test was 

performed using the XLSTAT program (version 2012; Addinsoft, France) and 

applied as previously described (Newbold et al., 2012).   

Taxa-time relationships (TTR) were used as one method to visualise and 

statistically compare differences in marine bacterial temporal scaling between 

elevated CO2 and ambient mesocosms as previously described (van der Gast 

et al., 2008).  In addition to the TTR, we employed a second method, the 

distance-decay relationship (DDR), to also examine differences in marine 

bacterial beta diversity.  The DDR describes how similarity in taxa composition 

between two communities varies with the geographical distance that separates 

them (Green et al., 2004).  In addition, it also allows us to go on to determine 

how patterns of beta diversity are influenced by environmental factors (Green et 

al., 2004).  In the current study, the DDR has been modified from the power law 

described previously (van der Gast et al., 2011), to incorporate temporal 

distance in place of geographic distance.  The Sørensen index of community 

similarity and subsequent average linkage clustering of community profiles were 

performed using PAST (Paleontological Statistics program, version 2.16), 

available from the University of Oslo website link 
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(http://folk.uio.no/ohammer/past) run by Øyvind Hammer.  The t-distribution 

method was used to compare the regression line slopes generated from the 

taxa-time and distance-decay relationship analyses as described previously 

(Fowler et al., 1998).  

Two complementary approaches, direct ordination and Mantel test (Tuomisto 

and Ruokolainen, 2006), were used to relate variability in the distribution of 

bacteria to environmental factors (pCO2, temperature, salinity, nitrate, 

phosphate, particulate organic nitrogen, particulate organic carbon, and total 

inorganic carbon) and temporal distance (days).  For the direct ordination 

approach, temporal distance and environmental variables that significantly 

explained variation in bacterial communities were determined with forward 

selection (999 Monte Carlo permutations; α < 0.05) and used in canonical 

correspondence analysis (Peros-Neto et al., 2006).  Partial canonical 

correspondence analysis was performed when both time and environmental 

variables were significant.  Analyses were performed in the ECOMII software 

package (version 2.1.3.137; Pisces Conservation Ltd., Lymington, UK).  For the 

Mantel approach (Mantel, 1967; Green et al., 2004; van der Gast et al., 2011), 

bacterial similarity matrices for each mesocosm, using raw presence/absence 

T-RF data, were calculated using the Sørensen index of similarity.  Similarity 

matrices for environmental factors were generated by calculating the absolute 

difference of values between each pair wise time point. Lower tailed partial 

Mantel tests were conducted in the XLSTAT program. 

Rank-abundance plots were used to determine differences in bacterial 

community structure (Ager et al., 2010).  For each sample the relative 

abundance of each taxon (TRF) was standardized to percent values before 

construction of the rank-abundance plots.  The rank-abundance plots were 

visualized by plotting the taxa rank order on the x-axis against relative 

abundance (log10 transformed) on the y-axis.  For each plot a linear regression 

model was fitted, represented by the equation, log10 y = a + bx, where a is the 

intercept and b is the slope of the plot.  The slope (b) was subsequently used as 

a descriptive statistic for changes in community structure as previously 

described (Ager et al., 2010). 
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3.7 Supplementary Information  

Figure S3.7.1:  Baseline physical and chemical characteristics for the elevated CO2 and ambient mesocosms.  For each parameter 
within each mesocosm the mean and standard deviation (SD) over 18 days is given.  Given is the mean for each parameter (n = 3) 
and SD for each treatment.  Also given are ANOVA test results, F-ratio (including degrees of freedom) and significance (P), for each 
parameter compared under both treatments.  Asterisks denote those relationships that were significantly different between 
treatments at the P < 0.05 level. a. Atmospheric CO2 (µatm). b. Temperature in oC. c. Salinity in practical salinity units (PSU).  d. 
Measured in µmol nitrate or phosphate L-1.  e. Particulate organic (PO) nitrogen or carbon (µg N or C L-1).  f. Total inorganic 
dissolved carbon in µmol kg-1. 
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Figure   S3.7.2:  Changes in mean (A) pCO2 concentration, (B) pH, and (C) 
bacterial abundance in mesocosms under elevated CO2 and ambient 
conditions.  Error bars represent the standard deviation of the mean (n = 3). 
Figure adapted from data first presented in Hopkins et al. (2010). 
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Figure  S3.7.3:  Changes in bacterial community structure in elevated CO2 
and ambient mesocosms visualised using rank-abundance plots over time 
(days).  Given are replicate plots and the mean slope values plus the standard 
deviation of the mean (n = 3) for each time point within each treatment.  All 
regression coefficients were significant (P < 0.05).   
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4.1 Summary 

 

Since industrialisation global CO2 emissions have increased, and as a 

consequence oceanic pH is predicted to drop by 0.3-0.4 units before the end of 

the century - a process coined ‘ocean acidification’ (OA). Consequently, there is 

significant interest in how pH changes will affect the oceans’ biota and integral 

processes. We investigated marine picoplankton (0.2-2 µm diameter) 

community response to predicted end of century CO2 concentrations, via an 

‘elevated CO2’ (~750 ppm) large volume (11,000 L) contained seawater 

mesocosm approach. We found little evidence of changes occurring in bacterial 

abundance or community composition due to elevated CO2 under both 

phytoplankton pre-bloom/bloom and post-bloom conditions. In contrast, 

significant differences were observed between treatments for a number of key 

picoeukaryote community members. These data suggested a key outcome of 

ocean acidification is a more rapid exploitation of elevated CO2 levels by 

photosynthetic picoeukaryotes. Thus, our study indicates the needs for a more 

thorough understanding of picoeukaryote mediated carbon flow within ocean 

acidification experiments, both in relation to picoplankton carbon sources, sinks 

and transfer to higher trophic levels. 
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4.2 Introduction 

The marine ecosystem accounts for over 90% of the Earth’s biosphere and its 

microbes play an essential role in marine biogeochemical cycles central to the 

biological chemistry of the earth (Falkowski et al., 2008; Worden and Not, 

2008).  Picoplankton communities (prokaryotes and eukaryotes of 0.2-2.0 m 

cell diameter) are known to function as phototrophs, heterotrophs and 

potentially mixotrophs (Groisillier et al., 2006; Zubkov and Tarran, 2008; 

Zubkov, 2009).  Although picoeukaryotic abundance can be lower than that of 

their prokaryotic counterparts, their large cell volume means that they often 

contribute a higher proportion of total picoplanktonic biomass in marine 

ecosystems (Moran, 2007). 

In the last decade, the putative importance of the relationship between rising 

atmospheric CO2, ocean biogeochemistry and the populations therein, has 

been raised (Caldeira and Wickett, 2003; Cicerone et al., 2004; Feely et al., 

2004; Orr et al., 2005).  Specifically, CO2 released into the atmosphere 

dissolves in seawater and reacts to form carbonic acid (H2CO3), the dissociation 

of which forms hydrogen and bicarbonate ions (H+ and HCO3
-).  An increase in 

the concentration of hydrogen ions results in a drop in oceanic pH, a process 

termed ‘ocean acidification’ (OA), since the ocean’s buffering capacity is only 

able to neutralize some of this additional CO2 (Sabine et al., 2004).  A decrease 

in seawater pH and carbonate saturation is set to continue as long as excess 

CO2 enters the atmosphere (Brewer et al., 1997; Feely et al., 2004).  Currently, 

a pH change in the region of 0.3-0.4 units is predicted by the end of the century 

(Caldeira et al., 2007; Feely et al., 2008).  Consequently, there is significant 

interest in how these pH changes will affect the oceans biota and integral 

processes (Fabry et al., 2008; Guinotte and Fabry, 2008; Doney et al., 2009; 

Kerr, 2010; Sabine and Tanhua, 2010). 

Changes in pH and CO2 are likely to have both positive and negative effects 

upon the growth of oceanic organisms.  Aside from the direct physiological and 

metabolic cost of a change in pH upon organisms (see Pörtner et al 2004 for a 

summary), a decrease in bio-available carbonate ions results in difficulties for 
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organisms which utilise calcium carbonate to make protective shells or 

skeletons (Gattuso et al., 1998; Riebesell et al., 2000; Shirayama and Thornton, 

2005; Gazeau et al., 2007; Kuffner et al., 2008).  

In contrast, increased CO2 concentration has also been linked to higher levels 

of primary production (Hein and Sand-Jensen, 1997; Schippers et al., 2004).  

For example, the marine coccolithophore Emiliania huxleyi responded to 

increased CO2 by increasing both cell volume and primary production (Iglesias-

Rodriguez et al., 2008) and the cyanobacteria Trichodesmium responded by 

increasing CO2 fixation by 15-128% and N2 fixation by 35-100% (Hutchins et al., 

2007).  However, not all organisms will respond in the same way, even within 

the same family. Fu and colleagues (2007) examined two marine 

cyanobacteria, Synechococcus and Prochlorococcus, the former showed a 

fourfold increase in photosynthesis, when incubated in increased CO2 and 

temperature conditions, yet the latter Prochlorococcus showed only a minimal 

response.  This variation in response isn’t limited to prokaryotes, in the 

picoeukaryote order Mamiellales, numbers of Micromonas-like rcbL (ribulose 

bisphosphate carboxylase/ oxygenase) sequences were significantly higher in 

elevated CO2 mesocosms, whereas numbers of Bathycoccus- like rcbL 

sequences were evenly spread across treatments (Meakin and Wyman, 2011).  

Previous mesocosm studies investigating community response to OA 

suggested that the total abundance of bacteria did not significantly differ 

between CO2 perturbation treatments although changes in free living bacterial 

community composition can be linked OA, however this likely leads to no loss of 

function (Grossart et al., 2006; Allgaier et al., 2008).  Initially autotrophic 

picoeukaryotes were also thought not to be significantly affected by elevated 

CO2 environments (Engel et al., 2005), yet a recent mesocosm experiment has 

suggested that this is not likely to be the case (Paulino et al., 2008). Paulino 

and colleagues (2008) found in a high CO2 post bloom community that a 

marked increase in picoeukaryote concentration was observed.  This was linked 

to an ability to out compete larger community members in times of nutrient 

depletion (Thingstad et al., 2005).  In these studies bacterial population 

dynamics were closely tied to that of the eukaryotic population, and the 



98 

 

interaction between autotrophs, heterotrophs and their grazers is key to 

understanding the response of picoplankton to OA. 

Although these experiments set out a basis to understand the effects of ocean 

acidification upon marine microbiota, the techniques and approaches previously 

used targeted broad phylogenetic levels and have often lead to conflicting 

results (Joint et al., 2011). Environmental DNA sequencing projects have 

reshaped our understanding of the extent and importance of marine microbial 

diversity, both prokaryotic (Giovannoni et al., 1990; Britschgi and Giovannoni, 

1991; Schmidt et al., 1991; Fuhrman et al., 1992; Fuhrman et al., 1993; Rappe 

et al., 2000; Rusch et al., 2007) and picoeukaryotic (Diez et al., 2001; Lopez-

Garcia et al., 2001; Moon-van der Staay et al., 2001; Romari and Vaulot, 2004; 

Piganeau et al., 2008; Not et al., 2009). Consequently, the application of more 

sensitive community fingerprinting techniques to investigate the response to 

CO2 changes in the total picoplanktonic community and the interaction between 

its constituent members is necessary. 

In response to the questions raised during the seminal mesocosm studies 

previously outlined (see Riebesell et al., 2008), the 2006 Bergen Mesocosm 

experiment aimed to investigate the effect of OA upon bacterial populations. 

During this experiment it has already been observed that trace gas 

concentrations were affected by elevated CO2 and that a large level of novelty 

within the transcriptome of the microbial population was present (Gilbert et al., 

2008; Hopkins et al., 2010). Meakin and Wyman (2011) clearly demonstrated 

that two closely related prasinophytes differed in response to treatment. In this 

study we extend these studies by investigating community diversity and 

dynamics in response to elevated CO2 concentration (~750 ppm, equivalent to 

year 2100 predictions). Specifically, we investigated the fine resolution 

dynamics within key marine microbial picoplankton communities (prokaryotes 

and eukaryotes of 0.2-2.0 m cell diameter) subjected to increased atmospheric 

CO2 during phytoplankton bloom and post bloom conditions, in a large (11,000 

L) contained seawater mesocosm experiment. 
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4.3 Results and Discussion 

4.3.1 pH change and nutrient depletion 

In order to simplify discussion of this study it was decided to split the study into 

two phases: phase one, a pre-bloom/bloom, nutrient replete phase (days 1-10) 

and phase two, a post-bloom, nutrient deplete phase (days 11-18). Chlorophyll 

a data has previously been presented and supports the delimitation of these 

phases (Hopkins et al., 2010).  As expected, CO2 and pH were significantly 

autocorrelated throughout the experiment (Regression analysis: r2 = 0.99; F1,34 

= 45963.7; P < 0.0001) and the mean CO2 levels were significantly higher 

(ANOVA: r2 = 0.99; F1,34 = 145.1; P < 0.0001) in the elevated CO2 mesocosms 

(638.9 ± 125.9 µatm) when compared to the ambient mesocosms (246.3 ± 57.4 

µatm).  During phase one of the experiment the introduction of CO2 into the 

mesocosms induced a change in pH from ~8.1 to ~7.8 (figure 4.1).   Dissolved 

nitrate and phosphate were both utilised during the phytoplankton bloom which 

in turn caused an increase in pH in both the elevated CO2 and ambient 

condition mesocosms, rising to ~pH 8 and ~pH 8.3 respectively and in line with 

an uptake of excess carbon dioxide during photosynthesis.  In the second 

phase of the experiment, following the second CO2 amendment on day 10, the 

pH in acidified mesocosms was maintained between ~pH 7.8 and ~pH 7.9.  

Dissolved nitrate and phosphate fluctuated in overall concentration but 

remained relatively low in comparison to pre-bloom levels.  

4.3.2 Bacterial abundance and acidification 

In general, averaging all abundances for each mesocosm over the experiment 

indicated both experimental (5.11 x 106 ± 2.75 x 106 cells per millilitre) and 

control mesocosms (6.13 x 106 ± 2.31 x 106 cells per millilitre), did not 

significantly differ with treatment (ANOVA: F1,34 = 1.44; P = 0.238). Total 

bacterial numbers slowly increased during the beginning of the first (nutrient 

replete) phase of the experiment, irrespective of treatment (figure 4.2).  Since 

total cell count can be affected by its constituent subpopulations, we further 

resolved into the high and low nucleic acid groupings (herein HNA and LNA).   
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Figure 4.1: Mean daily nutrient and pH values for elevated ‘High’ CO2 

mesocosms (closed circle) and ambient mesocosms (open circle).  Error bars 
represent standard deviation from the mean of the 2 replicate mesocosms.  
Solid vertical bar separates phases one and two. Nutrient data collected by I. 
Joint and pH data first presented in Hopkins and colleagues (2010). 

Marked growth was shown by both the HNA and LNA bacteria, in parallel with 
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total cell count increases, which peaked on day 6 (~4 x 106 and ~0.9 x 106 cells 

per millilitre, for HNA and LNA respectively). Subsequently, both HNA and LNA 

bacteria exhibited a decrease in number between days 7-10 (figure 4.2), 

 

Figure 4.2: Mean daily FACS counts for elevated CO2 mesocosms (closed 
circle) and ambient mesocosms (open circle).  Prokaryotic groupings include 
total bacteria, High Nucleic Acid content bacteria (HNA), Low Nucleic Acid 
content bacteria (LNA) and Synechococcus. Eukaryotic groupings include 
small picoeukaryotes, large picoeukaryotes, nanoeukaryotes, 
Coccolithophores and Cryptophytes.  Error bars represent standard deviation 
from the mean of the 2 replicate mesocosms.  Solid vertical bar separates 
phases one and two. 
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corresponding to the initiation of the phytoplankton bloom. 

During the second (post-bloom, nutrient deplete) phase total bacterial numbers 

rose rapidly under both regimes (figure 4.2), peaking at day 14 for elevated CO2 

(~1x107 cells per millilitre) and day 15 for ambient (~1 x 107 cells per millilitre). 

In the elevated CO2 treatment this was followed by a rapid drop in cell numbers, 

comparable to those observed at the initiation of the experiment (~1.7 x 106). 

Ambient cell counts remained comparatively high ~8.1x106. The pattern for total 

bacterial abundance was mirrored by both the HNA and LNA bacterial 

operational groupings (figure 4.2).  To determine if any of these observations 

were significant the two-sample Kolmogorov-Smirnov distribution fitting test was 

applied, and indicated that there was no statistical difference in the bacterial 

abundance dynamics between treatments for both the major bacterial nucleic 

acid types (D = 0.278, P =  0.425). 

The phototrophic bacteria Synechococcus gradually increased over the duration 

of the experiment (figure 4.2) from 2.5 x 103 cells per millilitre (day 1) to 2.5 x 

104 cells per millilitre under elevated CO2 (day 16) and 3.5 x 104 cells per 

millilitre under ambient conditions (day 17).  Similarly to other bacteria, 

Synechococcus did not respond in terms of abundance or dynamics to the 

experimental treatment, reflected by the fact that no significant difference was 

found in the bacterial cell count distributions for  the two treatments (D  = 

0.0389, P = 0.098). 

Previous studies have also indicated that increased acidification has no 

significant influence on the abundance of total bacteria (Rochelle-Newall et al., 

2004; Grossart et al., 2006; Allgaier et al., 2008), and thus, these broad data 

confirm previous observations.   

4.3.3 Eukaryote abundance and acidification 

The mean cell abundances of key eukaryote groups were compared between 

treatments (figure 4.2), with the exception of the coccolithophores there were no 

significant differences between treatments (supplementary figure S4.7.1).  

Despite high variance in cell counts, the mean coccolithophore cell abundances 
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were significantly lower (ANOVA: F1,34 = 6.15; P = 0.018) under elevated CO2 

conditions (411 ± 337.5 cells per millilitre) when compared to ambient 

conditions (942.6 ± 844.2 cells per millilitre). More specifically, when analysing 

the pattern of evolution of cell counts over time, only the small picoeukaryotes 

significantly differed (Kolmogorov-Smirnov test statistic, D = 0.500, P = 0.021) 

between treatments, suggesting that the temporal distribution of only these 

organisms responded to the experimental regime imposed.  Hopkins and 

colleagues (2010) found that the abundances of large picoeukaryotes, 

cryptophytes, and coccolithophores were suppressed in high CO2 conditions at 

localised time points, yet we found no significant evidence for this in the 

evolution of cell count distributions over time; large picoeukaryotes (D = 0.444, 

P = 0.056), nanoeukaryotes (D = 0.278, P = 0.503), coccolithophores (D = 

0.389, P = 0.132) and cryptophytes (D = 0.389, P = 0.132).  Our study would 

suggest the differences observed by Hopkins and colleagues are likely to be 

temporary and that the community is able to adjust in the relatively short time 

period studied.  

Cell abundance data, derived from flow cytometry, suggested that small 

picoeukaryotes also numerically dominated the eukaryotic organisms examined 

during this study (figure 4.2).  Small picoeukaryotes established an initial bloom 

faster under elevated CO2 conditions when compared to ambient pH conditions.  

In the elevated CO2 treatment small picoeukaryotes achieved a twofold 

increase in cell concentration by day 6 (4.6 x 104 cells per millilitre) followed by 

a considerable reduction to 1.2 x 104 cells per millilitre (day 10).  The small 

picoeukaryote bloom in the ambient treatment took longer to establish but was 

more prolonged reaching a maximum of 5.1 x104 cells per millilitre on day 10. In 

phase two of the experiment, small picoeukaryotes decreased in abundance (or 

remained low in the elevated CO2 treatment) until day 16 when a secondary 

bloom initiated and numbers rapidly increased to levels comparable to those 

observed at the peak of phase one (figure 4.2). 

 An increase in abundance in elevated CO2 conditions is consistent with Paulino 

and colleagues (2008) work; however, in their study differences in small 

picoeukaryote abundance were most pronounced under nutrient depletion 
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towards the end of their experiment. Here, we observed differences in 

abundance throughout. 

4.3.4 Sequence abundance and richness 

In order to map bacterial community structure effects by acidification, we first 

sought to confirm that the populations within the mesocosms were 

representative of marine communities, and not simply random assemblages 

due to ‘bottle effects’ (Zobell and Anderson, 1936). 

Provisional identification attributed bacterial sequences to a broad range of 

phylogenetic groups typical of marine samples including the Proteobacteria, 

Bacteriodetes, Cyanobacteria and Actinobacteria.  Of these, a total number of 

469 bacterial OTUs were identified at the 97% similarity level.  Figure 4.3a 

represents bacterial OTUs containing 10 or more sequences.  Tree topology 

supported high taxonomic ranking with abundant OTUs falling within well 

supported clusters.  The highest number of bacterial SSU rRNA sequences 

could be attributed to the Rhodobacterales (861 sequences) and within it the 

most abundant OTU (OTU 6, 584 sequences) was closely affiliated with other 

cultured marine Roseobacter sequences (93.5% bootstrap support).  

Additionally, we found significant numbers of sequences relating to SAR11 

(OTU 7, 260 sequences).  Although not as prevalent as the 

Alphaproteobacteria, a sizeable number of Gammaproteobacterial sequences 

were also detected within our clone libraries, most closely related to 

environmental sequences belonging to SAR86 groups II (OTUs 8 and 25 

totalling, 296 sequences), III (OTU 4, 63 sequences) and SAR92 (OTUs 18 and 

15 totalling 21 sequences).  Finally, sequences associated with members of the 

phylum Bacteriodetes were commonly detected, the most abundant OTU (38) 

containing 339 sequences. A complete list of picoplankton OTU identity is given 

in supplementary figure S7.4.2a and b. 
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Figure 4.3a: A 70 % Majority Rule Consensus Tree of dominant prokaryotic OTUs as inferred by Neighbour Joining distance criterion under 
GTR+I+G model.  Bootstrap support from 1000 replicates are shown at nodes. Phyla/sub-phyla are highlighted as follows: Blue = 
Alphaproteobacteria, Red = Gammaproteobacteria, Orange = Betaproteobacteria and Green = Bacteriodetes. For more specific taxonomic 
grouping refer to key. 
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Figure 4.3b: A 70 % Majority Rule Consensus Tree of picoeukaryotic OTUs as inferred by Neighbour Joining distance criterion under 
GTR+I+G model.  Bootstrap support from 1000 replicates are shown at nodes.  Phyla/sub-phyla are highlighted as follows: Blue = 
Stramenopiles, Red = Archaeplastida, Purple = Rhizaria (inc Cercozoa), Yellow = Prymnesiophyceae, Orange = Fungi and Green = 
Alveolata. For more specific taxonomic grouping refer to key. 
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All major picoeukaryotic lineages typically retrieved from a costal pelagic marine 

community were also represented (figure 4.3b).  Tree topology supported high 

level taxonomic identity.  Archaeplastida and Stramenopiles formed well 

supported monophyletic groups, and within these the sequences clustered 

within well supported sub-groups.  The Alveolata were paraphyletic with respect 

to the Ciliophora when using a 70% support value, yet support within contained 

groups was high.  The highest sequence OTU diversity (at 98% identity) was 

found within the Chrysophyceae (14), Ciliophora (7) and group I Alveolates (5).  

However, the most abundant OTUs corresponded to the photosynthetic 

Mamiellales organisms Bathycoccus (OTU 4) and Micromonas (OTU 2); 

together contributing 38% of the entire sequences detected within the 18S clone 

libraries (219).  Members of the Novel Alveolates group I (NAI) contributed over 

25% of sequences and Chrysophyceae, 17%.   

As such, we confirmed that the large volume mesocosms utilised here 

contained communities similar to those found within other marine environments 

both at local and global scales (Zubkov et al., 2002; Worden, 2006; Allgaier et 

al., 2008). 

4.3.5 Bacterial community response to OA 

The majority of T-RF fragment lengths were linked to specific sequences within 

our clone library (supplementary figure 4.7.2a).  For simplification, the dynamics 

of the 6 most abundant bacterial and picoeukaryote peaks were plotted over 

time (figure 4.4) and tested for significance using the two-sample Kolmogorov-

Smirnov distribution fitting test.  Of the most abundant bacterial T-RFs, 3 were 

attributed to the Alphaproteobacteria (peaks 145 bp, 435 bp and 436 bp), 2 to 

Bacteriodetes (peaks 86 bp and 88 bp) and one to the Gammaproteobacteria 

(peak 136 bp).  No significant responses to treatment were detected in the 

majority of bacteria examined: Rhodobacterales 436 (D  =  0.353, P  = 0.190), 

SAR11 145 (D  = 0.412, P = 0.081), Bacteriodetes 86 (D = 0.176, P = 0.930) 

Bacteriodetes 88 (D = 0.294, P = 0.387) Gammaproteobacteria 136 (D  = 0.294, 

P  = 0.387). Rhodobacterales 435 showed a significant difference between 
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treatments (D = 0.471, P = 0.031) which was attributed to fluctuations in the first 

phase of the experiment.  

Various studies have demonstrated that the distinct dissolved organic carbon 

(DOC) compounds released by algae during the course of a phytoplankton 

bloom and post bloom conditions selected for specific bacterial sub-

communities or populations (Riemann et al., 2000; Schäfer et al., 2001; 

Grossart et al., 2005).  In this study there were indications that bacterial 

populations can be linked to phase of experiment.  A high prevalence of 

organisms such as the Rhodobacterales at the beginning of the study, and 

increased levels of SAR 11 at the end of the study are likely to be indicative of 

their ideal nutrient concentrations during these phases (see Hopkins et al, 2010 

and BMED for further nutrient data). 

Therefore, in combination with the cell abundance data we have demonstrated 

that bacterioplankton communities undergo dynamic changes during 

phytoplankton bloom and post-bloom conditions, but on the whole do not 

significantly differ with acidification.  With respect to this, we surmised that if 

short term acidification effects did not alter microbial community dynamics 

significantly, then longer term (e.g. 100 year) effects will more than likely have 

minimal effects due to the time allowed for physiological adaptation to the 

prevailing changes.  Our assumption has validity when considering the diversity 

of habitats and pH gradients to which bacteria are already exposed. Many 

bacterial populations already experience pH as low or even lower than those 

projected for the end of the century and continue to function (Joint et al., 2011).  

When looking at population changes with depth (which constitutes a natural pH 

gradient) at the ALOHA sampling station many key organisms were detected 

across the depth gradient (DeLong et al., 2006) suggesting some natural 

populations are already able to withstand a range of pH.  For individual taxa, 

recent studies have highlighted that some common marine species, e.g.  Vibrio 

spp. are able to regulate internal pH (Labare et al., 2010), the prevalence of 

such compensation mechanisms and the ability to withstand changes in future 

pH would confer a large advantage under elevated CO2 concentrations 
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(equivalent to year 2100 predictions) and warrants further investigation in key 

marine taxa.   

4.3.6 Picoeukaryote community response to OA 

Unlike the bacterioplankton, significant differences in picoeukaryote community 

composition were observed between treatments, but this varied between group 

studied and phase of the experiment. 

Figure 4.4: Picoplankton community change over time as assessed by T-
RFLP.  Community T-RFLP profiles were generated for all samples. Mean 
values for the 6 most abundant bacterial and picoeukaryotic T-RFs are shown 
for ambient (open circle) and elevated CO2 mesocosms (closed circle). Solid 
vertical bar separates phases one and two. 
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Picoeukaryotes belonging to the Mamiellales (Micromonas and Bathycoccus 

with a peak at 265 bp) together formed around 38 % of the total sequences 

detected and were found to significantly differ between treatments when using 

T-RFLP (Kolmogorov-Smirnov test statistic: D = 0.47, P = 0.04).  More 

specifically, in early phase one elevated CO2 promoted Mamiellales 265 

causing it to form a higher proportion of the total community profile within the 

elevated CO2 mesocosms (0.90 in elevated CO2 compared to 0.50 in ambient 

CO2 day 1).  This difference became less pronounced as phase one progressed 

(days 2-10).  In the post-bloom mesocosms (phase two) abundance decreased 

(days 11-14) and then recovered for the remainder of the study (figure 4.4).  

Although the application of T-RFLP is unable to differentiate between 

Micromonas and Bathycoccus phylotypes, a higher percentage of Micromonas 

sequences were detected in the elevated CO2 treatment (85%) than in ambient 

treatment CO2 (15%), whereas Bathycoccus sequences were evenly distributed 

(55% and 45% respectively).  Corroborating these data, Meakin and Wyman 

(2011) found Micromonas like rcbL phylotypes were significantly higher in 

elevated CO2 than those of Bathycoccus during the first phase of the same 

mesocosm experiment.  Further, they postulated that these differences were 

due an inefficient operation of carbon concentration mechanisms (CCM) within 

Micromonas, which would be favoured under future predicted increases in CO2 

concentration (Engel et al., 2008). 

In the post-bloom, nutrient deplete, phase two, changes in T-RFLP abundance 

was seen for all of the abundant T-RFs (figure 4.4).  The contribution of 

Mamiellales 265 to the T-RFLP profile was similar to the levels observed in the 

ambient treatment suggesting that under phosphate and nitrate limitation the 

positive effect of CO2 amendment is counteracted.  The proportional reduction 

of Mamiellales 265 corresponded to an increase in the contribution of the other 

dominant community members.  Both Group I Alveolate at peak 222 bp (GIA 

222) and the Chrysophyceae organisms at peak 231 bp  (Chrysophyte 231) 

significantly favoured ambient conditions, (both D = 0.53, P = 0.02).  It is likely 

that heterotrophic organisms would be favoured in the second phase of the 

experiment and increased abundance of lineages such as the Alveolates and 
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Chrysophyceae, both of which are thought to contain heterotrophic or 

mixotrophic organisms (Jones, 2000; Moreira and Lopez-Garcia, 2002; 

Andersen, 2004), supports a switch to heterotrophy/bacterivory after the 

phytoplankton bloom.  No significant differences between treatments were 

found in the distribution of Chrysophyte 221 (peak 221 bp) Chrysophyte 227 

(peak 227 bp) and Group II Alveolate 373 (GIIA, peak 373 bp) (figure 4.4). 

4.3.7 Trophic interactions 

Allgaier and colleagues (2008) noted that heterotrophic bacterial dynamics were 

closely correlated to phytoplankton development and, hence, responded to 

changes in CO2.  Further, Tank and colleagues (2009) suggested that in their 

study cascading trophic interactions were a key driver of bacterial response to 

pH perturbation.  During the first phase of the experiment added phosphate and 

nitrate was utilised by the phytoplankton bloom (inc. picoeukaryotes) thereby 

depleting the dissolved N and P concentration.  Bacterivory would serve as an 

important mechanism to overcome this limitation during the nutrient-deplete 

phase two. Although undoubtedly heterotrophic nanoflagellates were likely key 

grazers within the community, there is evidence that mixotrophy is high in 

oligotrophic waters (Unrein et al, 2007). In their study Zubkov and Tarran, 2008 

noted that plastid containing eukaryotes <5 µm (which were numerically 

dominated by picoeukaryotes) can graze a significant proportion of marine 

bacteria (40-95%) suggesting that mixotrophy is common in nutrient deplete 

waters.  Indeed further to this, there is evidence that Micromonas is able to act 

mixotrophically (Gonzalez et al., 1993). We hypothesize that autotrophy and 

potentially mixotrophy within the picoeukaryote population may explain some of 

the patterns observed in this experiment (fast bloom promotion, population 

maintenance and bacterial abundance cycling).  Further, with potential 

switching of carbon processing pathways (sources and sinks for carbon), and 

their increased abundance under acidification, we suggest that key future 

research areas within ocean acidification studies should examine 

picoeukaryote-mediated carbon flow, its magnitude and effects upon higher 

trophic levels if we are to fully understand the effects of increased atmospheric 

CO2 upon the world’s marine ecosystems. 
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4.4 Experimental Procedures 

4.4.1 Experimental set up and sampling regime 

The complete experimental set up has been outlined previously (Gilbert et al., 

2008; Hopkins et al., 2010; Meakin and Wyman, 2011).  Here, we present the 

data for 2 elevated CO2 experimental and 2 ambient CO2 control mesocosms 

(2 m diameter, 3.5 m depth).  Experimental mesocosm enclosures were filled 

with unfiltered native fjord water and gently sparged with CO2 (750 µatm) for 2 

days (4th-6th May) until a pH~7.8 was established.  To control for sparging 

effects, ambient condition mesocosm enclosures were sparged with air.  In 

order to simulate natural conditions more closely, a phytoplankton bloom was 

induced through the addition of nitrate and phosphate in all mesocosms on the 

6th of May (initial concentrations: 1 µmol l-1 phosphate; 17 µmol l-1 nitrate).  

Blooming phytoplankton growth reduced CO2 concentrations in the elevated 

CO2 mesocosms, therefore mesocosm enclosures were re-acidified 10 days 

after mesocosm establishment (15/5/2006), and ambient condition enclosures 

again sparged with air.  To isolate picoplankton daily samples of ~2 L of water 

were pre-filtered through Whatman GF/A (1-6 m nominal pore size) filters to 

remove large eukaryote cells and filtrate collected onto 0.2 m Durapore 

membranes. Sampling was initiated on the 6th May (day 1) and filters stored at -

80ºC prior to molecular analysis. 

4.4.2 Enumeration of planktonic cells via flow cytometric analysis 

Daily flow cytometric counts of absolute concentrations of major bacterial and 

eukaryotic groups were performed using a Becton Dickinson FACSort flow 

cytometer equipped with an air-cooled blue light laser at 488nm according to 

previously documented protocols (Gasol et al., 1999; Zubkov et al., 2001; 

Acinas et al., 2004; Tarran et al., 2006; Zubkov and Burkill, 2006; Zubkov et al., 

2008). 
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4.4.3 Nucleic acid extraction, PCR and T-RFLP analysis 

Total nucleic acids were extracted using the protocol outlined in Huang and 

colleagues (2009).  Approximately 20-30ng of purified template was used per 

PCR. For T-RFLP analysis, a 500 bp region of the 16S small subunit ribosomal 

RNA (SSU rRNA) was amplified using labelled primers (6FAM)27F and 536R 

(Suzuki et al., 1998), and a 600 bp region of 18S SSU rRNA amplified using 

primers (6Fam)EukF and Euk570R (Baldwin et al., 2005).  For the construction 

of clone libraries, near full length fragments of the 16S and 18S SSU rRNA 

genes were amplified using 27F-1492R(16S) and EukF-EukR(18S) (DeLong, 

1992).  For short SSU rRNA amplification thermal cycling conditions were as 

follows: Initial pre-denaturation at 94ºC for 2 minutes followed by 30 thermal 

cycles of 94ºC for 1 min, 52ºC for 1 min and 72ºC for 3 min. Near full length 

SSU rRNA amplification consisted of Initial pre-denaturation at 94ºC for 2 

minutes followed by 30 thermal cycles of 94ºC for 1 min, 60ºC (16S) or 55ºC 

(18S) for 2 min and 72ºC for 3 min, all PCR reactions employed a final 

extension phase of 10 min at 72ºC.  

T-RFLP PCR products were gel purified using a QIAquick Gel Extraction Kit 

(QIAGEN) and 20 μl of product was digested for 4 hours at 37ºC in a 30 μl total 

reaction volume using 20 units restriction enzyme MspI (Promega).  Digestion 

products (0.5 μl) were combined with denatured 0.5 μl LIZ600 size standard 

(Applied Biosystems) and 9 μl of Hi-Di formamide (Applied Biosystems), 

analysed on an Applied Biosystems 3730 DNA sequencer and the sizes of 

restriction fragments were calculated.  Binning analysis was performed using 

Genemarker (Softgenetics) and restriction fragment cross correlated to specific 

cloned sequences. See additional experimental procedures in supplementary 

figure S4.7.4 for full description. 

4.4.4 Clone library construction and library sequencing 

Near full length SSU rRNA PCR products were cloned using the TOPO TA 

Cloning Kit for Sequencing (Invitrogen Corporation, Carlsbad, California).  For 

the 16S SSU rRNA gene, ~480 clones were randomly picked from each of 5 

libraries corresponding to sample days 2, 8, 9, 14 and 15 (7th, 13th, 14th, 19th 
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and the 20th of May 2006) from both elevated and ambient CO2 mesocosms (10 

libraries, 4800 clones in total).  Clones were sequenced using vector primers 

M13F and R at the NERC Biomolecular Analysis Facility-Edinburgh (NBAF-E).  

For the 18S SSU rRNA gene ninety six clones were randomly picked from each 

of 4 libraries corresponding to days 2, 8, 14 and 17 (7th, 13th, 19th and 22nd May 

2006) from both elevated and ambient CO2 mesocosms (8 libraries, 768  in 

total).  Clones were sequenced using vector primers M13F and R and internal 

primer 3F (Giribet et al., 1996).  Sequencing services were provided by Source 

BioScience LifeSciences (http://www.lifesciences.sourcebioscience.com/). 

4.4.5 Sequence processing and analysis 

Sequence processing was carried out within the Staden pregap4 and gap4 

framework (Staden, 1996), base-called using Phred (Ewing and Green, 1998; 

Ewing et al., 1998) and assembled using Phrap (Green, 2008) with default 

settings.  Screening for chimeras was performed using Mallard (16S) (Ashelford 

et al., 2006) and Bellerophon (18S) (Huber et al., 2004).  Any sequences which 

were of short length, low quality or deemed chimeric were removed from 

analysis. 

4.4.6 OTU identification 

Sequences were aligned using the NAST alignment tool (DeSantis et al., 2006) 

(16S) or SINA (SILVA INcremental Aligner) web aligner (Pruesse et al., 

2007)(18S).  Modeltest (Posada and Crandall, 1998) was used to determine 

optimal likelihood settings to calculate a distance matrix in PAUP4b8 (Swofford, 

2002) using the general Time Reversable model (GTR) (Tavaré, 1986) and a 

gamma distribution.  The resultant matrix was used to calculate the number of 

operational taxonomic units (OTUs) using DOTUR and MOTHUR (Schloss et 

al., 2004; Schloss and Handelsman, 2005; Schloss and Handelsman, 2006; 

Schloss et al., 2009).  MOTHUR was again used to designate representative 

sequences for each OTU in the combined elevated and ambient CO2 libraries 

using a 97 % (16S) and 98 % (18S) similarity cut-off, which roughly corresponds 

to a species/genus level (Stackebrandt and Goebel, 1994; Romari and Vaulot, 

2004). 

http://xyala.cap.ed.ac.uk/MGF/index.html
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16S OTUs with 10 or more associated sequences and all 18S OTUs were 

realigned (as above) to include a selection of published sequences (figure 

S4.7.3).  The 16S alignment contained 99 sequences and 1799 nucleotide 

positions and the 18S alignment contained 218 sequences and 2399 nucleotide 

positions after duplicate sequences and common gaps were removed. 

For each dataset PAUP4b8 (Swofford, 2002) was used to generate a Neighbour 

Joining (NJ) tree using the likelihood criterion, and bootstrap support values for 

1000 replicates.  The resultant tree was used to determine the taxonomic 

affiliation of each OTU, identity was given via inclusion in the nearest supported 

cluster (at 70 % bootstrap value or higher). 

4.4.7 Statistical analyses 

One-way ANOVA tests, regression analysis, coefficients of determination (r2), 

residuals and significance (P) were calculated using Minitab software (version 

14.20, Minitab, University Park, PA, USA).  In order to test the similarity of 

distribution, shape and position of data generated, from the FACS count and the 

T-RFLP community distribution data, the two-sample Kolmogorov-Smirnov test 

was utilised.  This analysis employed distribution fitting tests for comparing an 

empirical distribution determined from a sample with a known distribution.  It 

can also be used, as was the case for the current study, for comparing two 

empirical distributions (Nikiforov, 1994).  

4.4.8 Curation 

Samples, extractions and clone libraries were bar-coded and curated using 

Handlebar (Booth et al., 2007).  Biogeochemical data including key nutrients, 

chlorophyll concentration, temperature, salinity, sequence information, T-RFLP 

traces and additional metadata is available at http://nebc.nerc.ac.uk/bergendb, 

The Bergen Mesocosm Experiment Database (BMED).  Hosting of BMED was 

performed on the NEBC Bio-Linux scientific computing platform (Field et al., 

2006) (See supplementary figure S4.7.4 for full description).  A total of 2871 

(16S SSU rRNA) and 573 (18S SSU rRNA) non-chimeric gene sequences with 

the associated MIMARKS (Yilmaz et al., 2011a; Yilmaz et al., 2011b) compliant 
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metadata have been deposited at EBI using Webin under the accession 

numbers FR683104 - FR685974 (16S) FR874265 - FR874837 (18S). 
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4.7 Supplimentary Information 

 

Eukaryotic Groups 

CO2 

Treatment Mean SD F1,34 P 

Small picoeukaryote Elevated 24068 13154 1.29 0.264 

 Ambient 29724 16539   

Large Picoeukaryotes Elevated 2906 2188 4.01 0.053 

 Ambient 6051 6293   

Nanoeukaryotes Elevated 1031 891 0.73 0.399 

 Ambient 1331 1197   

Coccolithophores Elevated 411 337.5 6.15 0.018 

 Ambient 942.6 844.2   

Cryptophytes Elevated 89 92.6 2.12 0.155 

  Ambient 150 151.8     

Figure S4.7.1: Comparison of abundances from key eukaryotic group 
abundances using ANOVA tests.  Given for each group and treatment are the 
mean abundance, the the standard deviaition of the mean (SD), and the 
ANOVA tests results, including F-ratio and significance (P). 

 

  



128 

 

 

 

  

OTU 

ID 

T-RFLP 

cut site 
Phylogenetic ID 

Reference 

sequence 

Elevated 

CO2 

Ambient 

CO2 

Total 

Number of 

sequences 

6 435-437 Roseobacteria LE17 160102C08 371 213 584 

38 520 Bacteroidetes 160402G06 104 235 339 

7 145 
Candidatus Pelagiobacter 

(SAR11) 
160105C06 134 126 260 

8 136 SAR86-II 160102H02 133 117 250 

1 435-437 Rhodobacteriales 160102D06 57 67 124 

5 86-88 Bacteroidetes 160102F11 75 32 107 

4 488 SAR86-III 160402D04 32 31 63 

81 435-437 Rhodobacteriales 160202B10 17 39 56 

25 136 SAR86-II 160105H11 15 31 46 

21 142 Gammaproteobacteria 160700F10 14 17 31 

31 495 Betaproteobacteria 160304C10 19 6 25 

10 86-88 Flavobacteria 160200A02 10 12 22 

17 435-437 Roseobacteria LE17 160205F11 12 8 20 

2 492 Betaproteobacteria 160304C09 15 4 19 

92 440 Roseobacteria LE17 160202F03 12 6 18 

59 492 Bacteroidetes 160904G12 4 13 17 

133 486 Gammaproteobacteria 161003F04 4 13 17 

57 435-437 Rhodobacteriales 160602D05 8 7 15 

110 483 Chloroplast OM5 160703A05 4 11 15 

76 440 Alphaproteobacteria 160603C12 4 10 14 

35 435-437 Roseobacteria LE17 160105G12 8 5 13 

231 435-437 Alphaproteobacteria 160805H04 2 11 13 

52 90 Flavobacteria 160600D10 5 7 12 

18 496 SAR92 160602B07 2 9 11 

65 435-437 Roseobacteria LE17  160901B05 5 6 11 

204 488 Gammaproteobacteria 160700G11 5 6 11 

286 86-88 Bacteroidetes 160505H10 6 5 11 

15 486 SAR92 160803D06 3 7 10 

96 435-437 Rhodobacteriales 160205G05 2 8 10 

102 435-437 Rhodobacteriales  160805G12 3 7 10 

215 145 
Candidatus Pelagiobacter 

(SAR11) 
160803B09 5 5 10 

Figure S4.7.2a: Identity and abundance of OTU’s from prokaryotic clone libraries.  
A distance matrix of sequences was used to determine OTU’s (similarity level 97 % 
for bacteria) and their abundance across the total experiment using MOTHUR.  
Taxonomic identity of reference sequences was determined by phylogenetic 
placement.  The number of sequences detected in clone libraries pooled by 
treatment is given. 
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OTU 

ID 

T-RFLP 

Cut Site 

Phylogenetic 

ID 

Reference 

sequence 

Elevated 

CO2 

Ambient 

CO2 

Total 

Number of 

sequences 

4 265 Bathycoccus 1801A06 80 64 144 

2 265 Micromonas 1804A07 63 12 75 

8 222 
Novel Alveolate 

Group I  
1801C02 14 41 55 

5 222 
Novel Alveolate 

Group I 
1801A08 16 33 49 

13 221 Chrysophyceae  1804B06 20 22 42 

30 222 
Novel Alveolate 

Group I  
1804C03 10 15 25 

15 227 Chrysophyceae  1802A11 17 2 19 

45 373 
Novel Alveolate 

group II 
1815B03 3 14 17 

1 222 
Novel Alveolate 

Group I 
1801A01 4 12 16 

27 370 

MAST 2 (Marine 

Novel 

Stramenopiles 

Group 2) 

1802G08 9 1 10 

14 222 Chrysophyceae  1806D12 2 5 7 

46 373 
Novel Alveolate 

group II 
1815C01 2 4 6 

20 599 

MAST 12 (Marine 

Novel 

Stramenopiles 

Group 12) 

1802C04 6 0 6 

26 290 

MAST 12 (Marine 

Novel 

Stramenopiles 

Group 12) 

1802G05 6 0 6 

21 227 Chrysophyceae  1804A05 4 2 6 

39 221 Trebouxiophyceae  1807B08   5 5 

50 364 Ostreococcus 1815D05 5   5 

17 227 Chrysophyceae  1802B08 5 0 5 

44 132 Chrysophyceae   1815A02 5 0 5 

24 275 Fungi 1802F03 3 1 4 

56 265 Dictyochophyceae  1816F05   4 4 

18 380 Rhizaria 1804C10 4 0 4 
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3 376 
Novel Alveolate 

group II 
1801A05 1 2 3 

10 383 

MAST 7 (Marine 

Novel 

Stramenopiles 

Group 7) 

1801F10 2 1 3 

53 376 Ciliophora 1815H04 3   3 

23 228 Chrysophyceae  1804H06 2 1 3 

33 275 Ascomycota 1804D06 3 0 3 

7 265 Micromonas 1801C01 2 0 2 

57 350 Ciliophora 1816G03   2 2 

40 232 Chrysophyceae  1807D03 1 1 2 

42 231 Chrysophyceae  1809B06   2 2 

52 227 Chrysophyceae  1815G07 2   2 

31 376 Chrysochromulina 1804C04 2 0 2 

29 285 Rhizaria 1804A10 2 0 2 

55 275 Ascomycota 1816C11   2 2 

59 275 Ascomycota 1816G09   2 2 

51 119 
Novel Alveolate 

Group I  
1815F07 1   1 

11 265 Micromonas 1801F12 1 0 1 

43 233 

MAST 7 (Marine 

Novel 

Stramenopiles 

Group 7) 

1809G01   1 1 

37 279 Imantonia 1806A03   1 1 

6 223 
Metazoa 

(Echinodermata) 
1801B10 1 0 1 

41 279 Dictyochophyceae  1807E08   1 1 

49 274 Dictyochophyceae  1815D01 1   1 

54 213 Cryptomonadales 1816B02   1 1 

12 365 Ciliophora 1801G01 1 0 1 

16 244 Ciliophora 1802B01 1 0 1 

35 370 Ciliophora 1804G10 1 0 1 

38 352 Ciliophora 1806H01   1 1 

48 376 Ciliophora 1815C12 1   1 

9 227 Chrysophyceae  1801E06 1 0 1 
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Figure S4.7.2b: Identity and abundance of OTU’s from picoeukaryotic clone 
libraries. A distance matrix of sequences was used to determine OTU’s 
(similarity level 98 % for picoeukaryotes) and their abundance across the total 
experiment using MOTHUR.  Taxonomic identity of reference sequences was 
determined by phylogenetic placement.  The number of sequences detected in 
clone libraries pooled by treatment is given. 

 

  

19 221 Chrysophyceae  1802C03 1 0 1 

36 221 Chrysophyceae  1806A02   1 1 

47 221 Chrysophyceae  1815C09 1   1 

28 249 
Metazoa 

(Chordata) 
1804A01 1 0 1 

32 188 Cercozoa/Rhizaria 1804C05 1 0 1 

34 385 Cercozoa/Rhizaria 1804G02 1 0 1 

58 275 Ascomycota 1816G05   1 1 

25 218 Amoebozoa 1802F11 1 0 1 
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Bacterial reference sequences Picoeukaryote reference sequences 
AACY01089405 X90641 EF661583 AB193568 AF525860 EF172974 AF109326 AJ514867 DQ244028 

AF359531 DQ372840 AY167339 AY626995 AF525865 EF526977 AF174376 AJ867028 DQ303924 

AF354611 DQ372845 M96746 L81939 AF525868 EF527002 AB183583 AJ867029 DQ310276 

AF353208 DQ372849 DQ167249 AY339145 AF525871 EF527020 AB183605 AM050344 DQ310333 

AF353226 DQ372850 AY744399 AY339149 AF525876 EF527104 AB183618 AM050345 DQ367046 

AF354612 DQ372852 U20797 DQ060805 AF525879 EF527105 AB275040 AY033487 DQ367048 

AY548988 DQ396099 U65908 AF372731 AY129037 EF527106 AB275055 AM114819 DQ629385 

CP000084 AM279169 AF001653 AF372732 AY129048 EF527126 AB275058 AM231737 DQ647512 

DQ234199 AM279197 AF001650 AF372733 AY129050 EF527171 AB290575 AM412525 DQ647516 

AY458647 AM279200 EF182722 Q629387 AY129052 EU050966 AB330056 AM491015 DQ647534 

AF268217 AM279204 AY936189 DQ242509 AY129061 EU247836 AB425943 AY665020 DQ834370 

AF279106 AM279179 CP000435 DQ504335 AY129063 EU304548 AF123297 AY665021 DQ977726 

AF268236 AM279161 M34115 EU162635 AY129064 U14387 AF143943 AY665044 DQ980478 

DQ015813 AF241654 AF245632 M55639 AY129065 U73222 AF184167 AY665057 DQ986131 

DQ015817 AF173974   DQ278883 AY129067 U73230 AF257316 AY665094 EF023353 

DQ015775 AF173975   AY646226 DQ369015 X71140 AF290083 AY665101 EF023502 

AY794084 NR_027580   AY864822 DQ369016 AF290540 AF363186 AY821968 EF023594 

AY697879 AY654757   EF532930 AY143572 AJ246274 AF372754 AY919815 EF023894 

AY794144 U70693   AACY020214703 AY143573 AM491021 AF372755 AY919816 EF043285 

AY794064 U70678   AAXK01002636 AY381207 AF472554 AF411268 AY954993 EF165124 

AATR01000002 U70679   AB058312 AY425313 AF472553 AJ007277 AY965868 EF165125 

AY102027 U70704   AB058331 AY425314 AF47255 AJ007284 CR954212 EF165134 

AY102028 U70715   AB080302 AY425319 AF069516 AJ131691 DQ116021 EF172839 

AY771771 U70696   AB058360 AY590482 AY082996 AJ251929 DQ116022 EF172972 

EF016464 U70717   AB183613 AY626163 AJ402354 AJ251930 DQ121425   

AY772092 DQ489286   AB096264 AY642694 AY129036 AY329635 DQ145112   

AB193724 AF353235   AF109323 AY665019 AF525856 AJ495816 DQ243996   

 

 

Figure S4.7.3: Accession numbers for additional sequences downloaded from GenBank, used in 16S and 18S 
phylogenetic analysis.  
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Figure   S4.7.4: Additional Experimental Procedures 

T-RFLP 

T-RFLP PCR products were gel purified using a QIAquick Gel Extraction Kit 

(QIAGEN) and 20 μl of product was digested for 4 hours at 37ºC in a 30 μl total 

reaction volume using 20 units restriction enzyme MspI (Promega). Digestion 

products (0.5 μl) were combined with denatured 0.5 μl LIZ600 size standard 

(Applied Biosystems) and 9 μl of Hi-Di formamide (Applied Biosystems) and 

analysed on an Applied Biosystems 3730 DNA sequencer. Fragments were 

calculated and binned using Genemarker (Softgenetics). Briefly, bin widths 

were checked and manually adjusted to encompass all detected peaks. To 

differentiate signal from background Fluorescence Unit (FU) a threshold of 40 

units was used to determine which T-RF’s to include and subsequently a cut off 

of 20 FU’s was used for a presence/absence binary matrix. All peaks were 

manually checked for inclusion in analysis. When required, relative abundance 

measures were calculated by dividing individual peak height by total peak 

height spanning all valid peaks within the analysis. In order to investigate 

community structure these data were ranked based upon total abundance, then 

change in the 6 most dominant peaks plotted over time. When required, e.g. to 

putatively identify T-RF fragments, the cut site position was determined by 

running unaligned non-chimeric sequences, trimmed to short amplicon primer 

region through T-RFLPmap (Field and Griffiths, 2008). The fragment length of 

specific clones was then cross correlated to this data to determine the identity of 

specific T-RF’s in relation to clone sequences generated from the mesocosms. 

Sequence assembly and quality assessment 

Near full length SSU rRNA PCR products were cloned using the TOPO TA 

Cloning Kit for Sequencing (Invitrogen Corporation, Carlsbad, California). For 

the 16S SSU rRNA gene, five hundred clones were randomly picked from each 

of 5 libraries corresponding to sample days 2, 8, 9, 14 and 15 (7th, 13th, 14th, 

19th and the 20th of May 2006) from both high and ambient CO2 mesocosms. 

Clones were sequenced using vector primers M13F and R at the NERC 

Biomolecular Analysis Facility-Edinburgh (NBAF-E). For the 18S SSU rRNA 
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gene ninety six clones were randomly picked from each of 4 libraries 

corresponding to days 2, 8, 14 and 17 (7th, 13th, 19th and 22nd May 2006) from 

both elevated and ambient CO2 mesocosms. Clones were sequenced using 

vector primers M13F and R and internal primer 3F (Giribet et al., 1996). 

Sequencing services were provided by Source BioScience LifeSciences 

(http://www.lifesciences.sourcebioscience.com/). 

SSU rRNA sequence processing was carried out within the Staden pregap4 and 

gap4 framework (Staden, 1996), using a custom script 

(FRProcessing_triplets.pl), and accompanying parameter settings file 

(pregap4params_v2.txt). Script and parameter file can be downloaded from: 

http://nebc.nerc.ac.uk/tools/code-corner/scripts/sequence-processing#-

frprocessing_pairs_v2-pl. Processing was run on the Bio-Linux platform (Field 

et al., 2006) on a Dell Optiplex 755 32 bit system with 4Gb RAM. Briefly, 

sequences were base-called using Phred (Ewing and Green, 1998; Ewing et al., 

1998) with the trim-alt option with cut off specified at 0.025. Vector clipping was 

done with the pregap4 sequencing vector clip module and reads were 

assembled using Phrap (Green, 2008) with default settings. Assembly logs 

were screened for low quality sequences or assembly problems. Final cleaned, 

assembled consensus sequences were exported via the Staden gap4 program.  

Screening for chimeras was performed using Mallard (16S) (Ashelford et al., 

2006) and Bellerophon (18S) (Huber et al., 2004). 
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5.1 Summary 

The link between industrialisation and increases in atmospheric CO2 is 

irrefutable, and consequently there is significant interest in how related changes 

in pH will affect the oceans’ microbiota and core biogeochemical processes. A 

growing body of evidence suggests that while microbial abundance will be 

minimally effected, there may be specific functional responses to elevated CO2.   

This study investigates the affect of elevated CO2 upon carbon assimilation in 

heterotrophic and phototrophic picoplankton using RNA-SIP.  Whilst many taxa 

appeared unaffected - being significantly associated with temporal dynamics - 

specific carbon assimilation responses within dominant picoplankton taxa were 

observed. This indicates that such populations will functionally respond to 

predicted future CO2 concentration, yet this response will likely be constrained 

by nutrient availability.  
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5.2  Introduction 

Evidence for the link between industrialisation and increases in atmospheric 

CO2 is undeniable (Petit et al., 1999; Siegenthaler et al., 2005; Luthi et al., 

2008), as is the evidence that excess CO2 will lead to decreases in oceanic pH 

a process commonly known as ocean acidification (OA) (Caldeira and Wickett, 

2003; Cicerone et al., 2004; Feely et al., 2004; Orr et al., 2005). When dissolved 

in the oceans, atmospheric CO2 forms a weak acid (carbonic acid), which can 

alter seawater chemistry. The most predominant effect is upon the oceans’ 

carbonate chemistry. Increases in carbonic acid leads to increases in 

bicarbonate ions and dissolved inorganic carbon, but decreases in pH and 

carbonate ions, which in turn alters the saturation state of key carbonate 

minerals such as aragonite, calcite and magnesium calcite (Gattuso and 

Hansson, 2011).  Changes in oceanic chemistry are likely to affect the ocean 

either directly through pH effects or indirectly through impacted marine 

ecosystems (Gehlen et al., 2011). Ocean acidification appears to influence shell 

composition (Gattuso et al., 1998; Riebesell et al., 2000; Shirayama and 

Thornton, 2005; Kuffner et al., 2008) reproductive strategy (Kurihara et al., 

2004; Kurihara and Shirayama, 2004; Kurihara, 2008; Ross et al., 2011) and 

trophic organization (Harvey et al., 2013). Furthermore, there is an emerging 

perception that phytoplankton may experience a shift in favour of smaller non 

calcifying organisms, which put less effort into costly carbon concentration 

mechanisms (CCM’s) (Paulino et al., 2008; Newbold et al., 2012; Brussaard et 

al., 2013). In contrast to eukaryotes, previous studies suggest that prokaryotic 

community organisation appears largely unaffected and even resistant to OA 

(Newbold et al., 2012; Newbold et al., 2014). Recently the European project on 

ocean acidification (EPOCA) found free living bacterial community structure was 

not majorly affected by degree of ocean acidification, but by variations in 

productivity and nutrient availability (Roy et al., 2013; Sperling et al., 2013; 

Zhang et al., 2013).  This makes a direct in depth study of carbon flow within 

such communities crucial - how will microbial community function respond to 

elevated CO2? 
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Herein lies a problem, the majority of picoplanktonic organisms are unculturable 

and as such have been identified exclusively upon their molecular signature, 

meaning their functional roles are largely unknown.  The application of stable 

isotope probing (SIP) - whereby a given community is incubated with a 

substrate containing a naturally rare stable isotope such as 13C, causing 

metabolically active community members to integrate this ‘heavy labelled’ 

compound into their nucleic acids which can then be recovered by density 

gradient ultracentrifugation - in conjunction with community fingerprint 

techniques such as terminal restriction fragment length polymorphism (T-RFLP) 

has successfully been applied to allow the identification of metabolically active 

members within a given microbial community (Manefield et al., 2002a; Morris et 

al., 2002; Radajewski et al., 2003; Griffiths et al., 2004; Lueders et al., 2004; 

Rangel-Castro, 2005). Initial approaches investigated the integration of labelled 

substrate into DNA (DNA-SIP) (Radajewski et al., 2003). SIP was then further 

developed to look at direct integration into the ribosomal RNA molecule (rRNA- 

SIP) allowing for the identification of specific community members actively 

metabolizing a given substrate (Manefield et al., 2002a; Manefield et al., 2002b; 

Whiteley et al., 2006). 

In our previous studies of a large volume mesocosm experiment we found that 

bacterial communities were seemingly resistant to predicted 2100 elevated CO2 

concentrations (~750ppm), but that photosynthetic picoeukaryotes were able to 

rapidly exploit additional CO2 (Newbold et al., 2012; Newbold et al., 2014). In 

this study we utilize RNA-SIP to investigate the direct community uptake of 

sodium bicarbonate (by photosynthesisers) and glucose (by heterotrophs), and 

apply these results to investigate active carbon flow within the resident 

prokaryote and eukaryote communities. 
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5.3 Results and Discussion 

5.3.1 Baseline community analysis 

The 2006 Bergen Mesocosm experiment (BME) community diversity has been 

outlined in our previous studies and here has been used as a baseline for non-

incubated samples and as a resource for community member identification 

(Newbold et al., 2012; Newbold et al., 2014). The 2006 BME was split into 

phases 1 (nutrient replete) and 2 (nutrient deplete) based upon nutrient 

availability (figure 5.1 reproduced from Newbold et al., 2012), we continue to 

use this division in the current study. Unfiltered water from these baseline 

mesocosm bags was used to fill experimental microcosms containing either 12C-

control or 13C-labelled glucose or sodium bicarbonate (see Experimental 

procedures for details). After 48 hours the microbial community was collected 

 

Figure 5.1: Mean daily nutrient and pH values for elevated ‘High’ CO2 

mesocosms (closed circle) and ambient mesocosms (open circle).  Error bars 
represent standard deviation from the mean of the 2 replicate mesocosms.  
Solid vertical bar denotes the separation between phases one and two. Nutrient 
data collected by I. Joint , pH data first presented in Hopkins and colleagues 
(2010). Figure adapted from Newbold et al. 2012 
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by filtration and total RNA extracted. Density gradient ultracentrifugation was 

used to recover ‘heavy’ 13C labelled and ‘light’ 12C unlabelled RNA. The 

heaviest or most significantly labelled RNA molecules were used to investigate 

microbial community activity, under the elevated CO2 experimental mesocosm 

regime imposed. 

Refractive index (RI) of blank gradients demonstrated a steady decrease from 

the heavy to light fractions (r2= 0.9221). Further, differences in both RNA 

concentration and RT-PCR product formation were observed from the heavy to 

light fractions, in both experimental 13C and control 12C incubations, 13C 

incubations consistently showed a higher RNA and PCR product concentration 

in heavy fractions which peaked in fraction 5. We assume that the observed 

changes between heavy and light fractions were due to differing levels of heavy 

or light substrate assimilation into ribosomal RNA (rRNA), which would be 

consistent with similar studies (Manefield et al., 2002a; Frias-Lopez et al., 

2009). These results suggest that assimilation of 13C into RNA has occurred 

within our incubations and are therefore a suitable descriptor of active 

communities. 

5.3.2 Microcosm and mesocosm community composition 

In our previous study we were able to extensively sample small subunit 

ribosomal RNA (SSU rRNA) phylotypes from both prokaryote and 

picoeukaryote communities, using large full length sequence clone libraries 

(2871, 16S SSU rRNA sequences and 570, 18S SSU rRNA sequences) in 

conjunction with T-RFLP analysis (Newbold et al., 2012). In this study we utilise 

this information to identify and compare it to microcosm RNA-SIP incubation 

community T-RFLP profiles for prokaryotes and eukaryotes. Figure 5.2 and 

supplementary figure S5.7.1 presents a summary of this information. Bacterial 

microcosm T-RFLP profiles were similar to those of the mesocosms, with no 

new terminal restriction fragments (TRF’s) observed. The 6 dominant bacterial 

TRF’s identified in our previous study remain highly prevalent in this study. It 

should be noted however that some lower abundance fragments do appear to 

show preference to bicarbonate or glucose based upon a system of ranking. For 
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example, TRF peak 483 correlates to Chloroplast/Cyanobacterial full length 16S 

rRNA sequences, so increased prevalence in SIP incubations targeting 

photosynthesisers (sodium bicarbonate) is unsurprising (rank 6 in bicarbonate, 

53 in glucose and 13 in the mesocosm samples). In contrast TRF peak 200 was 

in low abundance in both the bicarbonate and mesocosm incubations (ranks 33 

and 47) but the most prevalent TRF in the glucose incubations. Sequences 

correlating to TRF peak 200 were not detected in our extensive clone library so 

taxonomic affiliation wasn’t possible. 

Unlike bacterial communities there were apparent differences between the 

overall mesocosm and microcosm 18S rRNA gene T-RFLP profiles including a 

greater 18S diversity (double that of the mesocosm study) and changes in T-RF 

relative abundance. Although it may represent assimilation of labelled substrate, 

the difference likely lies in the methodological approach. In our previous study 

all samples employed a pre-filtration stage in order to remove larger community 

members and focus upon pico-sized organisms. Due to time constraints we 

were unable to perform this on SIP microcosm samples. Consequently, the total 

eukaryote community (including nano and micro plankton), not just 

picoeukaryotes were studied and the 18S rRNA clone library from our previous 

study would not be fully representative. 

In order to investigate if any significant community level differences were 

observed between SIP incubations, T-RFLP profiles from fraction 5 of 

prokaryote and eukaryote communities were tested using canonical 

correspondence analysis (CCA) against a range of variables: pH, incubation 

type (ambient or elevated CO2), substrate (glucose or bicarbonate), time (day in 

mesocosm experiment, samples corresponded to days 4, 10 and 17) and 

isotope label (12C or 13C) (table 5.1 and supplementary figure S5.7.2). None of 

the variables were found to be significantly collinear (ECOM II software 

package, Pisces Conservation ltd), however pH and incubation type showed 

some level of collinarity (r2>0.74 and VIF>4.3 in all analyses). As pH and 

incubation type were closely linked, pH was removed from analysis. Further, 

forward selection indicated the most important variables in prokaryotic 
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Figure 5.2: Changes in TRFLP abundance during mesocosm and stable isotope microcosm incubations, for dominant 
prokaryotes (5.2a) and picoeukaryotes (5.2b) over time. Changes for individuals within in mesocosm incubations (primary 
vertical axis) assessed by relative contribution to total T-RFLP profile in elevated (closed circles) and ambient (open circles). 
Relative uptake of 13C substrate assessed by peaks relative contribution to total 12C T-RFLP profile subtracted from relative 
contribution to total 13C T-RFLP profile. Positive values for T-RF peaks in bicarbonate (dark grey bars) and glucose (light grey 
bars) incubations had higher proportional values in 13C community profile compared to equivalent 12C incubation (fraction 5) 
and were therefore assumed to be actively metabolising substrate. 

5.2b 
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community profile were time, substrate, incubation type and isotope (all P= 

0.01) (table 5.1). Together these variables accounted for 81.91% of total 

community variance. These results indicated that prokaryote communities were 

most affected by time followed by substrate, CO2 treatment and isotope. This 

finding is in line with others where prokaryote community composition appeared 

to be derived from nutrient availability and larger community change over time, 

not acidification (Roy et al., 2013; Sperling et al., 2013; Zhang et al., 2013). 

Further, the preferences indicated by shifts in TRF abundance would support 

the view that nutrient availability during blooms creates a succession of 

separate niches which individual bacterial groups are able to exploit (Teeling et 

al., 2012). 

CCA analysis of eukaryotic communities indicated that 82.56% variance could 

be explained by the environmental variables; time, substrate and isotope, (P= 

0.01 for all). Although time is likely the dominant explanatory factor in this study, 

incubation type although significant (P=0.027) explained less variation than the 

other variables. This is perhaps unexpected when you consider the evidence 

presented in both our previous study, and those of the EPOCA campaign. In 

these elevated CO2 appeared to favour smaller members of the eukaryote 

community (Newbold et al., 2012; Brussaard et al., 2013; Schulz et al., 2013). 

The difference again can be explained by the lack of pre-filtration and therefore, 

in the presence of larger organisms with multiple copies of the 18S rRNA gene. 

Such organisms would form a higher proportion of 18S rRNA template and 

consequently be preferentially amplified over the picoeukaryotic community 

members.  

5.3.3 Dominant bacterial community response to elevated CO2 

CCA analysis of the complete dataset suggested that substrate type was a key 

explanatory variable in this study, and therefore individuals abundance in 

glucose and bicarbonate incubations were likely different.  Since one of the 

aims of this study was to investigate OA and picoplankton response to glucose 

and bicarbonate assimilation, the direct effect of elevated CO2 upon the six 

dominant prokaryote and picoeukaryote TRF’s identified in our previous study 
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were investigated in depth (although it is acknowledged that other community 

members may also contribute to these peaks). Dominant picoplankton TRF 

peaks were identified within SIP microcosm communities (figure 5.2a and b) 

and compared to other T-RF’s of known trophic function and experimental 

variables using canonical correspondence analysis, CCA (figure 5.3). The top 

three significant explanatory variables were time, substrate and isotope in each 

substrate incubation type (see table 5.1).  Figure 5.2a suggests that dominant 

prokaryotes were assimilating carbon from both bicarbonate and glucose, as 

represented by those samples that had higher proportional values of 13C 

compared to equivalent 12C samples (fraction 5). Rhodobacterales (T-RF peaks 

435 and 436) appear to be actively assimilating 13C to a higher degree in 

elevated CO2 SIP incubations, and 13C glucose appears to be more readily 

accessed than bicarbonate. This finding is further evidenced by the association 

of TRF peaks 435 and 436 to elevated CO2 in CCA analysis of glucose 

incubation (figure 5.3). Rhodobacterales are often considered ecological 

generalists, and as such are highly diverse and adaptable occupying a wide 

range of ecological niches (Moran et al., 2004; Polz et al., 2006; Moran et al., 

2007; Newton et al., 2010).  Wang and colleagues (1993) presented evidence 

that two Rhodobacterales strains - without Ribulose bisphosphate carboxylase-

oxygenase (RubisCO) - were able to grow on media where thiosulphate or 

sulphide acted as electron donors, and CO2 was the only available carbon 

source.  Additionally, this group contains some of the first described aerobic 

anoxygenic phototrophs (AAnP’s) whereby they are able to fix CO2 without the 

production of oxygen (Moran and Miller, 2007; Swingley et al., 2007). Finally, at 

least one Rhodobacterales species Roseobacter denitrificans has been shown 

to process glucose- through the Entner-Doudoroff pathway (Tang et al., 2009). 

Therefore, a positive functional response within this group is not entirely 

surprising. 

SAR11 TRF peak 145 13C assimilation changed temporally in both glucose and 

bicarbonate incubations, showing higher assimilation during phase 1 (SIP 1, 

day 4) in elevated CO2, and assimilating more carbon during phase 2 (SIP3, 

day 17) in ambient incubations (figure 5a). A recent DNA-SIP study found that 

bicarbonate assimilation was widespread in marine bacterial communities which 
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included Rhodobacteriales and SAR11 signatures (DeLorenzo et al., 2012). 

However, CCA analysis indicated SAR11 showed minimal associations with 

experimental variables, instead associating most strongly with time. 

Bacteroidetes TRF peaks 86 and 88 showed higher assimilation of 13C in 

ambient microcosm incubations (figure 5.2a). However, like SAR11 CCA 

analysis indicated a closer association with experimental day in both glucose 

and bicarbonate incubations (figure 5.3). This was mirrored in the 

Gammaproteobacteria (TRF 136) (figure 5.2a and 5.3), where again time was 

the greatest explanatory factor. 

Although these findings should be taken with caution as actual 13C integration 

into RNA was not measured (i.e. by isotope ratio mass spectrometry, IRMS), 

both the T-RFLP and CCA analysis suggested that although community 

abundance does not significantly alter (Newbold et al, 2012), a populations 

function (as in the Rhodobacterales) may respond to elevated CO2. 

5.3.4 Dominant picoeukaryotic community response to elevated CO2 

Like the bacterial populations there are observable differences between 13C and 

12C microcosm incubations, in both elevated and ambient CO2 incubations. 

Figure 5.2b suggests that chrysophyceae TRF peak’s 221, 227 and 231 actively 

assimilate 13C bicarbonate and therefore likely act autotrophically, a position 

further supported by the CCA analysis (figure 5.3). This is not surprising 

considering one of the classifying features of chrysophyceae is the presence of 

chloroplasts (Adl et al., 2012). Interestingly, Mamiellales peak 265 shows a 

mixed response to elevated CO2 within this analysis. During Phase 1 of the 

experiment (SIP1, day 4) there is evidence for a stimulatory effect upon 

photosynthesis in elevated CO2 (figure 5.2b). This supports, our previous 

findings and those of others which suggested that Mamiellales organisms 

increased abundance in elevated CO2, during the nutrient replete phase 1 of 

this experiment (Meakin and Wyman, 2011; Newbold et al., 2012). Increased 

relative abundance in the day 4 elevated CO2 bicarbonate, would support these 

findings and indicate that they are assimilating autotrophically derived 13C 

during this phase of the experiment. However, as the experiment progressed 
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active glucose assimilation was observed in both the elevated (day 10) and in 

the ambient 13C glucose incubations (days 10 and 17). Mamiellales TRF peak 

265 shows a close association to time in bicarbonate incubation CCA analysis. 

 

Figure 5.3: Ordination plot of canonical correspondence analysis (CCA) in 
glucose and bicarbonate, prokaryote and eukaryote T-RFLP profiles. The 
ordination is obtained through CCA analysis of percentage contribution of 
individual TRF’s combined with explanatory environmental variables. Only 
time, isotope and substrate have been included as significant determined by 
forward selection through permutation tests in ECOM II, software package.  
Dominant picoplankton TRF’s (closed circles) identified in Newbold et 
al.(2012) are shown in comparison to other community members with known 
trophic preference (see supplementary figure S4.7.2 for identifications).  
Percentage values on axes represent percentage of total variation explained. 
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Prokaryote Total Bicarbonate  Glucose  

Environmental variable Variance (%) Probability (P) Variance (%) Probability (P) Variance (%) Probability (P) 

Time
a
 9.377 0.001* 33.450 0.001* 12.854 0.001* 

Substrate
b
 8.085 0.001*     

Incubation Type 
c
 4.757 0.001* 8.167 0.001* 10.589 0.001* 

pH
d
 4.131 0.002 7.567 0.001 7.774 0.001 

Isotope
e
 4.118 0.001* 5.156 0.002* 10.863 0.001* 

Eukaryote Total Bicarbonate  Glucose  

Environmental variable Variance (%) Probability (P) Variance (%) Probability (P) Variance (%) Probability (P) 

Time
a
 4.421 0.001* 19.611 0.001* 10.179 0.001* 

Substrate
b 
 7.005 0.001*     

Incubation Type
c
 2.483 0.027 5.710 0.051* 5.668 0.006* 

pH
d
 2.574 0.018 3.766 0.353 5.310 0.025 

Isotope
e
 4.484 0.001* 9.072 0.004* 13.603 0.001* 

Table 5.1: Canonical Correspondence Analyses (CCA) for determination of percentage variation in prokaryotic and eukaryotic 
communities. Values represent CCA analysis for TRF’s from complete dataset (Bicarbonate and Glucose incubations combined), and 
separate communities from Bicarbonate and Glucose incubations. Forward selection of the most significant variables to include in 
analysis (represented by*) -  a time (day in mesocosm experiment), bsubstrate (glucose or bicarbonate), cincubation type (ambient or 
elevated CO2), 

dpH and eIsotope label (12C or 13C) - was performed in ECOMM II software package based upon 999 iterations. Note 
although pH was significantly associated with data in some conditions it was removed from analyses due to a high level of colinnearity 
with incubation type. 
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However, in glucose it is highly associated with 13C, separating from the 

chrysophyceae peaks and associating more closely to the heterotrophic fungal 

TRF peak 275 (figure 5.3). The ability to access both 13C bicarbonate and 

glucose may be indicative of an ability of Mamiellales to act mixotrophically. 

Others have suggested that at least one Mamiellales species, Micromonas is 

able to act in this way (Gonzalez et al., 1993; Sanders and Gast, 2012). It is 

important to note that the T-RFLP is taxonomically inexact and doesn’t enable 

the separation of individual species within the Mamiellales, therefore a more 

quantitative approach (i.e qPCR) would be desirable. Finally figures 5.2b and 

5.3 indicate little carbon assimilation of either substrate was observed in the 

alveolate TRF peaks 222 and 373 during SIP 1 or 2 (phase 1, days 4 and 10), 

however there was some evidence of 13C bicarbonate assimilation in TRF peak 

373 during the final stage of the experiment (SIP3, day 17), which would 

correspond to observed increases in abundance during the mesocosm 

experiment. This is further reflected by an association with autotrophic 

chrysophyceae peaks in bicarbonate CCA analysis (figure 5.3).  

5.3.5 Conclusion 

These findings corroborate our previous studies where elevated CO2 did not 

significantly affect community abundance profile. Further, this experiment would 

suggest that overall community function (in terms of carbon acquisition) did not 

majorly alter with the changes imposed, but responded more to temporal 

succession within the blooming community. This can be explained by changes 

in nutrient availability during blooms creating a succession of separate niches 

which individual groups are able to exploit (Teeling et al., 2012). There were 

some exceptions such as Rhodobacterales and Mamiellales which did respond 

to elevated CO2 and therefore the ability of such organisms to adapt and take 

functional advantage of excess CO2 may favour them in the future. It was 

possible to detect differences in response to elevated CO2 in individual 

community contribution for dominant Rhodobacterales and Mamiellales T-RFLP 

peaks. If these findings hold true, then they would suggest that planktonic 

communities are either resistant or able to functionally respond to elevated CO2 

by increased photosynthesis and bacterial assimilation of released dissolved 
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organic carbon. This would, to some extent negate the impact of OA and would 

support the view of Joint and colleagues (2011) that ‘marine microbes possess 

the flexibility to accommodate pH change and there will be no catastrophic 

changes in marine biogeochemical processes that are driven by phytoplankton, 

bacteria and archaea’. 

5.4 Experimental Procedures 

5.4.1 Experimental design 

The complete experimental design of the May 2006 Bergen mesocosm 

experiment has been outlined previously (Gilbert et al., 2008; Hopkins et al., 

2010; Meakin and Wyman, 2011; Newbold et al., 2012). Here we present the 

data from a microcosm experiment, run in parallel to the main mesocosm study.   

Experimental mesocosm enclosures were filled with unfiltered native fjord water 

and gently sparged with CO2 (750 µatm) for 2 days (4–6th May) until a pH~ 7.8 

was established. To control for sparging effects, ambient-condition mesocosm 

enclosures were sparged with air. In order to simulate natural conditions more 

closely, a phytoplankton bloom was induced through the addition of nitrate and 

phosphate in all mesocosms on 6th May (initial concentrations: 1 mmol l-1 

phosphate; 17 mmol l-1 nitrate). Blooming phytoplankton growth reduced CO2 

concentrations in the elevated-CO2 mesocosms; therefore, mesocosm 

enclosures were re-acidified after sampling on the 10th day post mesocosm 

establishment (15/5/2006), and ambient-condition enclosures again sparged 

with air.  

Microcosm incubations used 4L water sampled from mesocosm bags 1 

(elevated CO2) and 6 (ambient CO2) to fill 5L Nalgene bottles containing either 

fully labelled 12C or 13C glucose (50mg/L) or sodium bicarbonate (0.15g/L). 

Microcosms were submerged in surface fjord water and incubated in situ. 

Following microcosm establishment pH was measured, cells were enumerated 

and plankton collected from 1L of microcosm water onto 0.2 µm Durapore 

membranes daily, for a period of 5 days. All membranes were immediately 

stored at -80 prior to molecular analysis. This process was repeated at 3 key 
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time points, corresponding to pre-phytoplankton bloom (day 4, 7th), peak 

phytoplankton bloom (day 10, 13th) and post phytoplankton bloom (day 17, 

20th). Samples obtained 2 days after microcosm establishment were later found 

to show optimal isotope integration therefore only data corresponding to these 

days has been presented.  

5.4.2 Nucleic acid extraction 

Total nucleic acids were extracted following the CTAB bead beating protocol 

outlined by Huang and colleagues (2009). RNA-SIP template of total nucleic 

acid extract was treated with DNase using DNA-free™ kit, Ambion®.  DNase 

treated RNA was quantified on Qubit® 1.0 Fluorometer with Qubit® RNA BR 

assay (Invitrogen) using the manufacturers protocol. 

5.4.3 RNA Stable isotope probing (RNA-SIP) 

RNA SIP protocol followed that outlined by Whiteley and colleagues (2007). 

Briefly, between 400-500ng RNA was loaded onto a caesium trifluoroacetate 

(CSTFA) gradient (~2.0 g/ml) and centrifuged in a TLA120.2 rotor on an Optima 

TLX ultracentrifuge at 64,000 rpm (150,000 x g) for 48 h at 20°C. Gradients 

were fractionated using peristaltic pump at a flow rate of 0.2 ml min−1. RNAs 

were isolated from gradient fractions by precipitation with 1 volume of isopropyl 

alcohol and 1µl glycogen. Fractions were resuspended in 10 µl molecular grade 

Tris EDTA pH 7.4 and quantified on Qubit® 1.0 Flourometer with Qubit® RNA 

HS assay. Prokaryote and eukaryote RNA was reverse transcribed separately 

using 2µl (1ng) purified RNA template, 1µl (10mM) dNTP’s  and 1µl (10mM) 

reverse primers 536R, 16S or Euk570R, 18S (Suzuki et al., 1998; Baldwin et 

al., 2005) and 1µl  SuperScript® II Reverse transcriptase, Invitrogen, following 

manufacturers protocol including the recommended addition of RNase OUT™, 

Invitrogen. Additionally as a measure of gradient formation blank gradients were 

fractionated and refractive index measured at 18ºC.  

 

 



153 

 

5.4.4 Terminal restriction fragment length polymorphism (T-RFLP) 

Full experimental procedures have been described previously (Newbold et al., 

2012). Briefly, a 500 b.p. region of the 16S small subunit ribosomal RNA gene 

(SSU rRNA) was amplified using labelled primers (6FAM) 27F and 536R 

(Suzuki et al., 1998), and a 600 b.p. region of 18S SSU rRNA gene amplified 

using primers (6Fam) EukF and Euk570R (Baldwin et al., 2005). Amplfication 

employed a 2 minute pre-denaturation phase at 94 oC followed by 30 cycles of 

94 oC for 1 minute, 52 oC for 1 minute, and 72 oC for 3 minutes and a final 

extension phase of 10 minutes at 72 oC.  20 µL of gel purified PCR product was 

digested for 4 hours at 37 oC in a 30 µL total reaction volume using 20 units 

restriction enzyme Mspl (Promega, UK) and buffers.  Digestion product (0.5 µL) 

was combined with 0.5 µL denatured LIZ600 size standard (Applied 

Biosystems) and 9 µL Hi-Di formamide (Applied Biosystems), and run on an 

Applied Biosystems 3730 DNA sequencer.  The sizes of restriction fragments 

were calculated and binned using GenemarkerTM (Softgenetics) and where 

possible restriction fragments crossed correlated to specific cloned sequences 

(see Newbold et al, 2012).  Bin widths were checked and manually adjusted to 

encompass all detected peaks.  To differentiate signal from background, a 

Fluorescence Unit (FU) threshold of 40 units was used for a presence/absence 

binary matrix.  All peaks previously included in mesocosm analysis and 

additional peaks were manually checked for inclusion in analysis.  Relative 

abundance measures were calculated by dividing individual peak height by total 

peak height spanning all valid peaks within the analysis.  Resultant data was 

compared to recorded metadata in order to determine if any factors contributed 

to differences in community composition and abundance. 

5.4.5 Statistical analysis 

Ecological datasets can be distinguished from other datasets by uneven 

distribution of individuals (not all species will occur at all sites), and non-linear 

relationships between species distribution and environmental variables which 

can often be binary (presence/absence) in nature, therefore multivariate 

analyses such as canonical correspondence analysis (CCA) can be used to 
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overcome this problem (ter Braak and Verdonschot, 1995). Here we applied 

CCA within the in ECOM II software package (Pisces Conservation ltd) for 

variable selection and XLSTAT Advance Data Analysis (ADA) module 

(Addinsoft) to investigate terminal restriction fragment proportional abundance 

in relation to binary variables; incubation type (ambient or elevated CO2), 

substrate (glucose or bicarbonate), and isotope label (12C or 13C) and 

continuous parameters time (day in mesocosm experiment) and pH (of 

microcosm water).  
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5.7 Supplimentary Information                     

Prokaryotes           

Total Number of TRF's In Mesocosm 57                   

Total Number of TRF's In SIP Microcosms 57                   

Mesocosm (in rank order 1-10) 145 436 86 435 88 136 488 486 437 92 

Glucose (in rank order 1-10) 200 522 436 88 171 440 476 448 278 86 

Bicarbonate (in rank order 1-10) 88 436 435 145 486 483 136 86 138 482 

Eukaryotes                     

Total Number of TRF's In Mesocosm 38                   

Total Number of TRF's In SIP Microcosms 110          

Source incubation type                     

Mesocosm (TRF’s in rank order 1-10) 265 222 221 227 373 231 383 228 360 376 

Glucose (TRF’s in rank order 1-10) 378 275 268 267 265 281 83 370 73 367 

Bicarbonate (TRF’s in rank order 1-10) 268 279 267 380 479 169 370 179 265 220 

Figure S5.7.1:  Summary of T-RFLP analysis. All fraction 5 samples were reverse transcribed and T-RFLP analysis performed. 
Resultant T-RFLP peaks were ranked on the basis of overall total contribution to community profile, the most abundant peak given rank 
1. The top 10 TRF peaks for both glucose and bicarbonate incubations, were compared to ranking in mesocosm incubation, in order to 
establish any changes in peak prevalence between incubation types. 
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Figure S5.7.2:  Ordination plot of canonical correspondence analysis (CCA) in prokaryote and eukaryote T-RFLP profiles. The ordination 
is obtained through CCA analysis of percentage contribution of individual TRF’s combined with explanatory environmental variables. Only 
the three most important environmental variables have been included as determined by forward selection through permutation tests in 
ECOM II, software package.  Dominant picoplankton TRF’s (closed circles) identified in Newbold et al. (2012) are shown in comparison 
to other community members with known trophic preference (see figure S4.7.2 for identifications).  Percentages on axes represent the 
percentage of total variance explained by axis. 
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6.1 Summary 

The link between anthropogenic derived increases in atmospheric CO2 and 

oceanic pH is firmly established. As a result there is significant interest in how 

such changes will affect oceanic organisms and biogeochemical processes. A 

key observation of other marine CO2 manipulation studies is that primary 

production will be enhanced, favouring  small non-calcifying autotrophs, which 

will likely have consequences for marine carbon availability. This study uses a 

highly abundant picoeukaryote taxon (Mamiellales) as a model of such 

populations. We developed a qPCR assay in conjunction with RNA-SIP to 

investigate carbon assimilation (response to elevated CO2) in individual 

Mamiellales phylotypes. Phylotype specific carbon assimilation responses 

within the Mamiellales were observed, indicating that Mamiellales populations - 

although likely to be constrained by nutrient availability - may be able to exploit 

future oceanic CO2 concentration.  
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6.2 Introduction 

The link between industrialisation and increases in atmospheric CO2 is 

irrefutable (Petit et al., 1999; Siegenthaler et al., 2005; Luthi et al., 2008, IPCC., 

2013), as is the evidence that excess CO2 will lead to decreases in oceanic pH, 

a process known as ocean acidification (OA) (Caldeira and Wickett, 2003; 

Cicerone et al., 2004; Feely et al., 2004; Orr et al., 2005). Perhaps the most 

publicised effect of OA is a reduction of bioavailable carbonate ions and 

consequently, reduced calcification in organisms such as corals, molluscs and 

coccoliths (Gattuso et al., 1998; Riebesell et al., 2000; Michaelidis et al., 2005). 

Conversely, elevated CO2 concentration has been linked to higher levels of 

primary production (Hein and Sand-Jensen, 1997; Schippers et al., 2004).  

Planktonic microorganisms account for only 0.2% of global primary producer 

biomass; yet contribute the majority of the oceans’ primary production, which in 

turn accounts for half of global primary production (Field et al., 1998). The ‘pico’ 

sized 0.2-2.0m phytoplankton can be broken down into the photosynthetic 

prokaryotes - cyanobacterial linages such as Prochlorococcus and 

Synechococcus - and photosynthetic unicellular eukaryotes. Although 

contributing numerically less than their prokaryotic counterparts, picoeukaryotes 

hold a major role in net primary production and therefore act as CO2 sinks 

(Raven, 1998; Worden et al., 2004; Jardillier et al., 2010; Grob et al., 2011). 

Previous work has suggested that amongst the picoeukaryotes 

Mamiellophyceae (order Mamiellales) is highly important in coastal ecosystems, 

especially polar waters (Not et al., 2005; Worden and Not, 2008; Massana, 

2011). The first to propose class Mamiellophyceae, Marin and Melkonian 

(2010), describe this class as comprising “not only the smallest eukaryotes 

known, but also arguably some of the ecologically most successful 

picoeukaryotes in the ocean”.  
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Members of the Mamiellales were some of the first picoeukaryotes described 

and are readily culturable (Knight-Jones and Walne, 1951). Even so, many 

environmental strains have been identified exclusively upon their molecular 

signature, and therefore the functional role of such organisms is unclear. 

Genomes published for strains of Ostreococcus (Derelle et al., 2006; Palenik et 

al., 2007), Micromonas (Worden et al., 2009) and Bathycoccus (Moreau et al., 

2012) have given huge insight into this order, including their photosynthetetic 

pathway (C4), small genome size, and adaptions for growth in oligotrophic 

environments (Piganeau et al., 2011). However, genomic studies on a large 

scale are not only cost prohibitive but also require experimental evidence to 

investigate and understand such processes. The application of stable isotope 

probing (SIP) has successfully been applied to identify metabolically active 

members within given microbial communities (Manefield et al., 2002; Morris et 

al., 2002; Radajewski et al., 2003; Griffiths et al., 2004; Lueders et al., 2004; 

Rangel-Castro, 2005). Quantitative PCR (qPCR) and Reverse Transcriptase 

quantitative PCR (RT-qPCR) have been widely applied in microbial ecology to 

quantify abundance and expression of taxonomic markers (Smith and Osborn, 

2009). By directly studying stable isotope labelled ribosomal RNA (rRNA), in 

conjunction with RT-qPCR it is possible to measure uptake of a substrate 

independent of cell replication within targeted organisms. 

One of the emerging perceptions from our previous studies, and the work of 

others, is that members of the Mamiellales were favoured within the elevated 

CO2 Bergen mesocosms (Meakin and Wyman, 2011; Newbold et al., 2012). 

Previously, we found a positive relationship between elevated CO2 treatment 

and proportional community contribution of the Mamiellales under nutrient 

replete conditions (Newbold et al., 2012). Further, in a follow up study, we were 

able to determine a putative link between elevated CO2 and carbon 

assimilation, with possible evidence of mixotrophy within the Mamiellales  

(Newbold et al., 2014). However, both studies were unable to link changes in 

specific Mamiellales genera due to limited taxonomic resolution in the methods 
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OTU 

ID 
Phylogenetic ID 

Reference 

sequence 

Elevated 

CO2 

Ambient 

CO2 

Total Number 

of sequences 

4 Bathycoccus 1801A06 80 64 144 

2 Micromonas 1804A07 63 12 75 

7 Micromonas 1801C01 2 0 2 

11 Micromonas 1801F12 1 0 1 

50 Ostreococcus 1815D05 5 0  5 

Table 6.1: Identity and abundance of Mamiellales OTUs in picoeukaryotic 
clone libraries. A distance matrix of sequences was used to determine OTUs 
(98% for picoeukaryotes) and their abundance across the total experiment 
using MOTHUR. Taxonomic identity of reference sequences was determined 
by phylogenetic placement. The number of sequences detected in clone 
libraries pooled by treatment is given. 

 

employed. In response, a qPCR assay in conjunction with RNA-SIP was 

developed to investigate the abundance and functional response of individual 

Mamiellales phylotypes to elevated CO2 over the duration of the 2006 Bergen 

mesocosm experiment. 

6.3 Results and Discussion 

6.3.1 Primer design, optimization and experimental validation 

The work presented in this study used samples generated during both the main 

mesocosm study and a stable isotope probing experiment as outlined in our 

previous studies (Newbold et al., 2012; Newbold et al., 2014). Here, we 

successfully developed a qPCR assay in conjunction with rRNA SIP to assess 

the ability to directly equate differences in function between elevated and 

ambient CO2 treatments.  

An alignment of a total of 144 Bathycoccus-like and 78 Micromonas-like 

sequences was generated from the clone libraries reported in Newbold et al 

(2012). These data are summarised in table 6.1. Around 65% of Mamiellales 

signatures detected during this study were attributed to Bathycoccus- like OTUs 
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which were roughly spread equally between elevated and ambient CO2 

libraries. In contrast, of the 78 Micromonas signatures 85% were detected in 

elevated CO2 libraries. This alignment was used to design genus specific 

primers suitable for quantitative PCR (qPCR) targeting the Newbold et al (2012) 

OTUs. 

Primer specificity was determined by the sequences within the Newbold et al 

(2012) library and the Silva SSUr 117 database, using prime check tool 

(Klindworth et al., 2013). Both primer sets were found to have no matches 

outside of Mamiellophyceae. Furthermore, when tested by standard PCR no 

cross amplification occurred between standards and non-target controls 

(Micromonas for Bathycoccus and vice versa). When tested by qPCR, non 

targets had quantification cycle (Cq) values of greater than 28 (comparable to 

water) in all but the highest concentrations (see figure 6.1). Subsequent melt 

curve analysis identified a single peak for both primers. Finally, dilution series of 

 

Figure 6.1: Primer specificity for Bathycoccus and Micromonas qPCR 
assays. Bathycoccus primer set 570F-BATHY03R and Micromonas primer 
set 570F-MICROR, were used to amplify a dilution series of Bathycoccus-like 
18S standard (closed triangles), Micromonas-like standard (open triangle) 
and water (grey triangle). Micromonas was used as non-specific control for 
Bathycoccus assay and vice versa, and water used as negative control.  

 

 

http://www.arb-silva.de/browser/ssu-117/silva-ref-nr/testprime/146382/#n68093
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log copies target against (Cq) value reported efficiency values of 100.4 and 

102.37%, and r2 values of 0.999 and 0.990, for Bathycoccus and Micromonas 

assays respectively. Reliable qPCR assays should have efficiency values 

between 90-110%, and r2 values >0.990 (>0.98 for RT-qPCR) (Taylor et al., 

2010). It can therefore be concluded that the primer sets presented in this study 

were highly specific and could be confidently used to quantify resident 

Bathycoccus and Micromonas sequences.  

6.3.2 Mamiellales abundance in mesocosms over time 

qPCR was used to track the concentration of Bathycoccus and Micromonas 

phylotypes over the course of the Bergen mesocosm experiment (figure 6.2). 

 

Figure 6.2: Mean abundance of Mamiellales 18S signatures (ng/µg) over 
duration of the Mesocosm experiment. Elevated (M1) represented by closed 
circles and Ambient enclosure (M6) represented by open circles. Error bars 
represent the standard deviation from the mean of triplicate qPCR reactions. 
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Bathycoccus appeared to be in a concentration of at least two orders of 

magnitude higher than Micromonas throughout the experiment regardless of 

treatment.  Mamiellales signatures appeared to change over the complete 

course of the mesocosm experiment however, despite some minor observed 

treatment preferences (ambient for Bathycoccus, elevated for Micromonas), no 

significant effect of treatment was found using the Kolmogorov–Smirnov 

distribution fitting test, (Bathycoccus p=0.25; Micromonas p=0.078). This was 

contrary to our previous study which indicated that Mamiellales favoured 

elevated CO2 (Newbold et al., 2012). Further, Meakin and Wyman (2011) 

tracked copy number of Bathycoccus and Micromonas RubisCO (rbcL) genes 

over the first 8 days of this experiment. They found that Micromonas 

significantly favoured elevated CO2, whereas no treatment effect was 

observable for Bathycoccus. Although this study observed a higher 

concentration of Micromonas signatures in elevated CO2 between days 2-7, no 

significant difference over the duration of the experiment was seen. Differing 

methodologies between the studies is likely an explanatory factor. Newbold and 

colleagues (2012) used T-RFLP and, as such, were not able to separate 

Bathycoccus and Micromonas signatures. Meakin and Wyman (2011) on the 

other hand, did use qPCR but looked at chloroplast RubisCO (rbcL) genes not 

18S SSU rRNA.  Additionally, Meakin and Wyman (2011) normalized their 

qPCR results to a set volume of filtered seawater. Although this approach 

allowed the calculation of copies per L, others have found that varying inhibitor 

concentrations in extractions can effect qPCR quantification (Lloyd et al., 2010). 

To overcome this problem, this study normalized to µg template. 

6.3.3  RT-qPCR validation 

The validity of using RNA stable isotope probing to detect changes in the 

assimilation of sodium bicarbonate and glucose was established in our previous 

study (Newbold et al., 2014). 
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However, one of the challenges highlighted was a lack of phylogenetic 

resolution, resulting from no pre-filtration and the use of terminal restriction 

fragment length polymorphism (T-RFLP). The qPCR assay discussed in section  

6.3.1 was extended to allow for quantification of rRNA (RT-qPCR). Positive 

control RNA standards were generated via T7 transcription from plasmids 

containing target 18S rRNA sequence, selected by OTU affiliation and 

 

Figure 6.3: Changes in RT-qPCR abundance during stable isotope 
microcosm incubations for Bathycoccus and Micromonas. Relative uptake 
Elevated M1 CO2 incubations (closed circles) compared to ambient M6 
incubations (open circles). Relative uptake of 13C substrate assessed by 
concentration of target RNA in 12C incubations subtracted from target 
concentration in 13C incubations. Positive values in bicarbonate and glucose 
incubations are taken to have higher activity in 13C incubations compared to 
equivalent 12C incubation (fraction 5) and were therefore assumed to be 
actively metabolising substrate. Error bars represent standard deviation from 
triplicate RT-qPCR reactions. Positive error bars corresponded to 13C 
incubation values, negative to 12C. Vertical line denotes the separation of 
phases 1 and 2. 
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sequence insert orientation. These, standards were subsequently used to 

optimize annealing temperature in one step RT-qPCR reactions, (verified by 

both melt curve analysis and the inclusion of non-target controls). Accurately 

quantified standard curves were used to determine PCR reaction efficiency, and 

subsequently quantify concentration of target Mamiellales 18S template in RNA-

SIP samples. Standard curves from RT-qPCR of Bathycoccus and Micromonas 

gave efficiency values of 101.4 and 108.88, and R2 values of 0.991 and 0.987. 

6.3.4 Response of bicarbonate assimilation to elevated CO2  

Figure 6.3 presents substrate specific assimilation of 13C across the three time 

points studied. During the first SIP incubation, levels of Bathycoccus 

bicarbonate assimilation in 13C incubations did not exceed those of natural 12C 

under either regime. In contrast, higher assimilation was observed for 

Micromonas phylotypes. During SIP 2 (end of phase 1, day 10) bicarbonate 

assimilation was highest in Bathycoccus under ambient conditions, whereas 

Micromonas assimilation was roughly equal in both treatments. Finally 

bicarbonate assimilation did not surpass that of the background 12C incubations 

in the final SIP incubation for either phylotype. The findings of SIP 1 would 

support Meakin and Wyman (2011), who found higher levels of photosynthetic 

Micromonas-like rbcL gene signatures in elevated CO2 during the early stages 

of the 2006 BME. This SIP experiment would suggest a higher level of 

photosynthetic carbon assimilation in Micromonas under elevated CO2, 

compared to Bathycoccus during the initial days of the nutrient replete phase 

(see Newbold et al, 2012 figure 4.1 for nutrient data). Interestingly, Bathycoccus 

photosynthetic assimilation was highest in SIP 2 ambient treatment (end of 

phase 1, day 10). The flow cytometry data presented in Newbold et al. 2012 

(figure 4.2) suggested that in the ambient treatment, small picoeukaryotes 

bloomed later (day 10) than in elevated CO2 mesocosms (day 8). Both 

Bathycoccus and Micromonas would fall in the small picoeukaryote size 

grouping (Gómez-Pereira et al., 2013). Therefore, it is most likely that the SIP 2 
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microcosm’s ambient community represented this bloom peak and hence this is 

reflected by high levels of Bathycoccus bicarbonate assimilation. In contrast, 

elevated CO2 incubations, having already bloomed, showed comparatively little 

Bathycoccus bicarbonate assimilation. It should be noted however that 

Micromonas assimilation was equal in both treatments at this time point and 

may therefore represent a group specific response. During the final nutrient 

deplete phase (SIP3, day 17), assimilation of bicarbonate did not exceed that of 

the background 12C incubations in either Bathycoccus or Micromonas. Newbold 

and colleagues (2012) observed a secondary bloom in picoeukaryote cell count 

during this phase and, through T-RFLP analysis, established that within the 

picoeukaryote community, dominant species abundance shifted favouring 

groups such as alveolates and chrysophytes. Phytoplankton bloom 

communities are thought to provide a series of ecological niches based upon 

nutrient availability, which individuals are able to exploit (Teeling et al., 2012). 

The observed reductions in Mamiellales activity in the second phase of the 

experiment, despite an observed picoeukaryote bloom community, are like to 

represent niche separation; whereby conditions favoured other bicarbonate 

assimilating picoeukaryotes.  

6.3.5 Response of glucose assimilation to elevated CO2  

When using RNA-SIP to look at community level functional responses to OA, 

we previously found evidence for glucose assimilation within the Mamiellales 

(Newbold et al., 2014). This study found more specifically that 13C glucose was 

actively assimilated in elevated CO2 during the nutrient replete phase (SIP 1), 

but minimally assimilated during the remaining phases (figure 6.3). Further, 

levels of glucose assimilation appeared to exceed that of bicarbonate 

assimilation during this phase - a response which held for both Bathycoccus 

and Micromonas. The presence of chloroplasts and photosynthetic genes within 

the Mamiellales clearly demonstrates a photosynthetic lifestyle (Derelle et al., 

2006; Palenik et al., 2007; Worden et al., 2009; Piganeau et al., 2011; Moreau 
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et al., 2012). Yet, there is a growing body of evidence that picoeukaryotes can 

act mixotrophically (Zubkov and Tarran, 2008; Hartmann et al., 2013).More 

specifically there is evidence of mixotrophy within the Mamiellales. Gonzalez 

and colleagues (1993) determined that cultured Micromonas showed high levels 

of lysozyme activity when incubated with bacteria and suggested that this was 

due to the ingestion of bacteria. More recently, high levels of mixotrophy have 

been observed in Artic picoeukaryote populations which were dominated by 

Micromonas-like cells (Sanders and Gast, 2012). The data presented in this 

study would certainly suggest that dissolved glucose is accessible to both 

Bathycoccus and Micromonas. Mixotrophy is often considered an ecological 

advantage in nutrient deplete (oligotrophic) waters, however, this experiment 

observed little glucose assimilation in the nutrient deplete phase of the study 

(SIP 3, day 17) (Hartmann et al., 2012). This indicated that within the confines 

of this experiment, glucose assimilation was only an advantage to Bathycoccus 

and Micromonas during nutrient replete conditions.  

Although these data might suggest that glucose assimilation is favoured over 

that of bicarbonate, these findings should be taken with caution and examined 

in the context of the broader community. During the first phase of the 

experiment added nutrients and elevated CO2 will have favoured all autotrophs, 

most of which have a larger cell mass than the Mamiellales. Therefore, labelled 

bicarbonate would have been readily assimilated by all autotrophs and 

consequentially been less bio-available than labelled glucose. Because 

Mamiellales were rapidly multiplying (as demonstrated by flow cytometry and T-

RFLP in our previous study) and presumably assimilating nutrients from every 

available source, glucose assimilation may have been observed to be artificially 

higher than bicarbonate. Studies on pure cultures of Bathycoccus and 

Micromonas strains would be able to determine if this were the case.  
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6.3.6 Conclusion 

This experiment demonstrates the validity of using both stable isotope probing 

and qPCR to trace and quantify individuals, at genus level, from a larger mixed 

community. Phylotype specific carbon assimilation within the Mamiellales in 

response to elevated CO2 was observed. Further, the presented data 

suggested that glucose assimilation is present in the Mamiellales but only in 

elevated nutrient replete CO2 conditions. These findings would support the view 

that Mamiellales populations, like others, are able to exploit predicted future 

CO2 concentrations. Even so, nutrient availability will likely provide unique 

niches which separate an organism’s specific response.   

6.4 Experimental Procedures 

6.4.1 Experimental design 

The complete experimental design of the May 2006 Bergen mesocosm 

experiment has been outlined previously (Gilbert et al., 2008; Hopkins et al., 

2010; Meakin and Wyman, 2011; Newbold et al., 2012). This study presented 

the data from a microcosm experiment, run in parallel to the main Mesocosm 

experiment.  Experimental mesocosm enclosures were filled with unfiltered 

native fjord water and gently sparged with CO2 (750 µatm) for 2 days (4–6th 

May) until a pH~ 7.8 was established. To control for sparging effects, ambient-

condition mesocosm enclosures were sparged with air. In order to simulate 

natural conditions more closely, a phytoplankton bloom was induced through 

the addition of nitrate and phosphate in all mesocosms on 6th May (initial 

concentrations: 1 mmol l-1 phosphate; 17 mmol l-1 nitrate). Blooming 

phytoplankton growth reduced CO2 concentrations in the elevated-CO2 

mesocosms; therefore after day 10 sampling, mesocosm enclosures were re-

acidified (15/5/2006), and ambient-condition enclosures again sparged with air. 
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As described in Newbold and colleagues (2014) microcosm incubations used 

4L water sampled from mesocosm bags 1 (elevated CO2) and 6 (ambient CO2) 

to fill 5L Nalgene bottles containing either 12C or 13C glucose (50mg/L) or 

sodium bicarbonate (0.15g/L). Microcosms were submerged under surface fjord 

water and incubated in situ. Following microcosm establishment, daily pH was 

measured and plankton collected from 1L of microcosm water onto 0.2 µm 

Durapore membranes for a period of 5 days. All membranes were immediately 

stored at -80 prior to molecular analysis. This process was repeated at 3 key 

time points, corresponding to pre-phytoplankton bloom (day 4, 7th), peak 

phytoplankton bloom (day 10, 13th) and post phytoplankton bloom (day 17, 

20th). Samples obtained 2 days after microcosm establishment were later found 

to show optimal isotope integration (via T-RFLP) therefore, only data 

corresponding to these days has been presented.  

6.4.2 Nucleic acid extraction 

Total nucleic acids were extracted following the CTAB bead beating protocol 

outlined by Huang and colleagues (2009). RNA-SIP template of total nucleic 

acid extract was treated with DNase using DNA-free™ kit, Ambion®.  DNase 

treated RNA were quantified on Qubit® 1.0 Fluorometer with Qubit® RNA BR 

assay. 

6.4.3 RNA Stable Isotope Probing (RNA-SIP) 

RNA-SIP protocol followed that outlined by Whiteley and colleagues (2007). 

Briefly, between 400-500ng RNA was loaded onto a caesium trifluoroacetate 

gradient (2.0 g/ml) and centrifuged at 64,000 rpm for 48 h at 20°C on Beckman 

TLX bench top ultra-centrifuge (TLA120.2 rotor). Gradients were fractionated 

using a Beckman fraction recovery system and peristaltic pump at a flow rate of 

0.2 ml min−1. RNAs were isolated from gradient fractions by precipitation with 1 

volume of isopropyl alcohol and 1µl glycogen. Fractions were resuspended in 
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10 µl molecular grade Tris EDTA pH 7.4 and quantified on a Qubit® 1.0 

Fluorometer with Qubit® RNA HS assay. 

6.4.4 Positive control selection and transcription 

This study relied upon accurately quantified DNA and RNA template as positive 

controls. Newbold and colleagues (2012) identified 5 Mamiellales near full 

length 18S SSU rRNA gene sequence phylotypes (referred to here as 

operational taxonomic units, OTUs), of these two dominated; Micromonas-like 

OTU2 and Bathycoccus- like OTU4. Representative clones (and contained 

pCR4-TOPO vectors) from OTUs 2 and 4 were selected to act as standards 

and templates for RNA transcription. Vector inserts contained antisense 

sequences from Micromonas-like OTU2 clone 1804A07, accession number 

FR874290 and Bathycoccus- like clone OTU4 1801A12, accession number 

FR874275. Plasmids were extracted using the QIAprep spin miniprep kit 

(Qiagen). Linearised plasmid DNA was obtained by digesting 20µl plasmid 

extract with SpeI  (4µl SpeI 10 units/ µl, Promega, 5 µl 10X buffer, 0.2 µl 100 X 

BSA and 7.1 µl molecular grade water) for 4 hrs at 37OC, followed by heat 

inactivation at 65 OC for 20 mins. Linearised DNA was quantified on Qubit® 1.0 

Fluorometer with Qubit® dsDNA BR Assay, and used as DNA standard for 

qPCR. Between 0.5-2 µg of linearised plasmid DNA was used as a template for 

RNA transcripts using the HiScribe™ T7 In Vitro Transcription Kit and  

manufacturers protocol (New England Biolabs inc). Transcripts were 

concentrated using ethanol precipitation and verified by gel electrophoresis. All 

residual DNA was removed from RNA standards, using DNA-free™ kit, 

Ambion®. Standards were quantified on Qubit® 1.0 Flourometer with Qubit® 

RNA BR Assay (RNA) Qubit® dsDNA BR Assay (DNA). Template rRNA copy 

was calculated using the formula: 

molecules/ µl = a/(plasmid length x 660) x 6.022 x 1023 
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Where a is the plasmid DNA concentration (g/µl), plasmid length including insert 

(5731bp for Bathycoccus, 5733bp for Micromonas), 660 is the average 

molecular mass of one bp, and 6.022 X1023 is the molar constant (Zhu et al., 

2005). 

6.4.5 Primer design and PCR optimisation 

 The environmental 18S SSU rRNA sequence data presented in Newbold et al., 

(2012) was used as a reference dataset to develop genus specific qPCR 

assays corresponding to a 167bp region of Bathycoccus and 150bp region of 

Micromonas- like phylotypes. Target Bathycoccus and Micromonas 18S SSU 

rRNA genes were amplified using the universal forward primer 570F- 5’ 

GTAATTCCAGCTCCAATAGC 3’ (Baldwin et al., 2005), and gene specific 

reverse primers BATHY03r-5’ACCACGATGACTCCATGTCTCA3’ (Zhu et al., 

2005) and MICROR- 5’CCAGACCGTTAAGCCCAGAGCAC3’. 

6.4.6 (RT-)qPCR 

Quantitative PCR (qPCR) reactions were performed in a final reaction volume of 

20µl, consisting of 9 µl EXPRESS SYBR® greenER™ qPCR supermix 

(invitrogen), 200nM forward and 200nM reverse primers and 10ng template 

DNA. RT-qPCR was likewise made to final reaction volume of 20µl, with the 

addition of 10 µl EXPRESS SYBR® greenER™ qPCR supermix (Invitrogen), 

200nM forward and 200nM reverse primers, 0.5µl Express one step 

Superscript® (Invitrogen) and 10ng purified RNA template. All reactions were 

set up in sterile conditions and performed in twin.tec PCR plates, sealed with 

masterclear real-time PCR film, on Mastercycler® ep realplex 4S (all 

Eppendorf). Thermal cycling conditions consisted of 50°C for 5 minutes, 95°C 

for 2 minutes, 40 cycles of: 95°C for 15 seconds, 60°C (Bathycoccus)/ 65°C 

(Micromonas) for 1 minute and final melting curve analysis of 60°C–95°C. All 

reactions were performed in triplicate as per MIQE guidelines, with suitable 

dilution series of standards, non-target controls and water (Bustin et al., 2009). 
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Standard curves of positive template standards were used to determine reaction 

efficiency in the Agilent Genomic tools calculator (Agilent Technologies, 2013). 

Using the formula: Efficiency = -1+10(-1/slope) 

6.4.7 Statistical analysis 

In order to test the similarity of distribution, shape and position of data 

generated, from the qPCR data, the two-sample Kolmogorov-Smirnov test was 

utilised.  This analysis employs distribution fitting tests for comparing an 

empirical distribution determined from a sample with a known distribution.  It 

can also be used, as was the case in this study, for comparing two empirical 

distributions (Nikiforov, 1994). Here this test was applied in XLSTAT software 

(version 2013.6.04, Addinsoft). 
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Chapter 7: General Discussion and Conclusions 

7.1 Summary of Findings 

This project examined the consequences of elevated CO2 (linked to ocean 

acidification, OA) on marine microbial communities within the confines of a large 

volume mesocosm experiment, and through the application of molecular 

techniques. The broad aims of this thesis were to examine the consequences of 

elevated CO2 on marine picoplankton community structure, diversity, phylogeny 

and function (outlined in section 1.6.1). In response the following conclusions 

have been drawn: 

1) The majority of community abundance and functional changes 

observed within this study can be explained by changes in temporal 

dynamics, not CO2.  

2) Bacterial cell abundance is largely unaffected by elevated CO2. 

3) Picoeukaryote cell abundance is significantly higher in elevated CO2. 

4) Bacterial community composition is resistant to elevated CO2. 

5) Some picoeukaryote populations respond to elevated CO2, but this is 

likely to be determined by nutrient availability and changes in the 

wider planktonic food web. 

6) Microbial populations hold the capacity to either resist or functionally 

respond to elevated CO2. 

7) Dominant members of picoplanktonic communities either show 

minimal functional responses to elevated CO2 or respond positively by 

increasing autotrophic and/or heterotrophic carbon assimilation. 

7.2 How Will Microbes Respond to Predicted Future Levels of Elevated 

CO2? 

The work presented in this thesis indicates that presently non-calcifying marine 

microbes hold enough taxonomic and functional diversity to accommodate 
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predicted future levels of pH. Therefore, it is unlikely that catastrophic changes 

in the marine biogeochemical processes driven by picoplankton will occur (Joint 

et al., 2011).  In the experiments presented here, and elsewhere, the majority of 

microbial community variance was explained by temporal dynamics (Liu et al., 

2010; Brussaard et al., 2013; Roy et al., 2013; Sperling et al., 2013; Zhang et 

al., 2013). Yet, it is important to consider that this thesis did detect some 

individual responses to elevated CO2. 

7.2.1 Prokaryotes 

Overall bacterial community diversity within this study was typical of similar 

environments and studies (Giovannoni et al., 1990; Britschgi and Giovannoni, 

1991; Fuhrman et al., 1993; Rappe et al., 1997; Suzuki et al., 1998; Morris et 

al., 2002; Rusch et al., 2007; Fuhrman, 2009). The six most dominant 

prokaryotes within both 16S SSU rRNA clone libraries and T-FRLP analysis 

belonged to four taxa all highly abundant in marine ecosystems; 

Rhodobacteriales, Bacteroidetes, Candidatus Pelagiobacter (SAR11) and 

Gammaproteobacteria. Chapter 3 looked at the consequences of predicted year 

2100 CO2 concentrations upon bacterial community turnover and found that not 

only was community composition conserved over time but that community 

turnover was dampened with elevated CO2. These data therefore implied that 

bacterial communities were resistant to the experimental regime imposed. It is 

however important to consider that although bacterial communities appear 

resistant to CO2 perturbation, the time scale of this experiment would not 

represent a true OA community. One hundred years represents millions of 

bacterial generations and therefore the scope for adaption or ‘resilience’ cannot 

truly be measured in the 18 days represented by the 2006 Bergen mesocosm 

experiment. Chapter 4 found that there were no significant differences in 

bacterioplankton cell count between elevated and ambient mesocosms. Further, 

although dynamic population changes were observed in 5 of 6 key bacterial 

populations, no significant differences in abundance could be detected (as 
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assessed by T-RFLP). This finding is in line with other mesocosm studies which 

report no or minimal responses in bacterial abundance to elevated CO2 

(Rochelle-Newall et al., 2004; Grossart et al., 2006; Allgaier et al., 2008; Paulino 

et al., 2008; Brussaard et al., 2013).  

In contrast to bacterial abundance the evidence from the stable isotope probing 

(SIP) experiment presented in chapter 5, suggested that bacterial populations 

may functionally respond to future CO2 concentrations. Two of the dominant 

terminal restriction fragments (TRF’s) identified as belonging to the 

Rhodobacteriales assimilated a higher proportion of labelled 13C glucose and 

sodium bicarbonate in elevated CO2. This result was contrasted by the 

Bacteroidetes TRF’s which showed higher assimilation in ambient incubations. 

Grossart et al. (2006) demonstrated that total prokaryotic protein production 

was enhanced by elevated CO2 in a similar mesocosm study. However this 

finding was not replicated more recently, where bacterial production significantly 

decreased with increasing CO2 (Motegi et al., 2013) thereby demonstrating the 

requirement for further work into bacterial functional response to elevated CO2. 

The work of this thesis and other recent studies would suggest that on the 

whole bacterial response to OA will likely be driven by indirect changes in 

overall community dynamics rather than directly by degree of acidification (Roy 

et al., 2013; Sperling et al., 2013).  However, there are a number of 

considerations that should be taken into account: 

1) The work presented within this thesis represents only free living 

bacterioplankton and does not take particle-attached bacteria into 

consideration. Engel and colleagues (2008) found that free living bacterial 

diversity was affected by elevated CO2, whereas particle-attached bacterial 

diversity was independent of CO2 treatment, and strongly coupled to 

phytoplankton bloom development. However, in a more recent study the 

authors found that both free-living and particle attached bacterial communities 
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were strongly associated to phytoplankton bloom development and 

temperature, not CO2 (Sperling et al., 2013). Additionally, the composition of 

bacterial populations closely associated to corals has been shown to shift from 

mutualistic to pathogenic in response to reduced pH, clearly suggesting that not 

all bacterial populations respond in the same way (Vega Thurber et al., 2009). 

2) The work of this thesis focuses on the dominant members of the bacterial 

community and, as such, ignores much of the ‘rare’ portion of the community. 

Studies have suggested that rare organisms may represent a ‘microbial seed 

bank’ – whereby organisms of low abundance might shift to high abundance in 

response to environmental change (Sogin et al., 2006; Caporaso et al., 2012; 

Gibbons et al., 2013). Although the methods employed in this study were likely 

to capture little of this diversity, there was evidence in the SIP incubations of a 

rare 16S SSU rRNA OTU becoming highly abundant in glucose incubations, 

which was undetected in the 16S mesocosm library (chapter 5). 

3) Viral interactions are a known driver of prokaryote mortality and therefore a 

key factor in nutrient release (Suttle, 2007). No measure of viral lysis rates or 

abundance were investigated in this study, however others have found that viral 

response to OA will likely be minimal (Rochelle-Newall et al., 2004; Larsen et 

al., 2008) or host dependant (Traving et al., 2014). Therefore, further work 

investigating the role of picoplankton-virus interactions would be prudent. 

4)  This study concentrated on marine bacteria and picoeukaryotes excluding 

the third domain of life, archaea. Like the other domains archaea exhibit a vast 

marine diversity and play integral roles in nitrogen (and other) biogeochemical 

cycles (Francis et al., 2007). When universal primers were used to detect 

archaea present in our system they proved difficult to detect. Furthermore, 

sequence data from the clone libraries which were produced showed a very low 

diversity when compared to bacteria and picoeukaryotes (unpublished data) 

and as a consequence research was focused elsewhere. A recent study 



 

 

 

190 

 

however, has suggested that whereas ammonia oxidizing bacteria (AOB) 

communities responded to acidification by increased abundance in 

Nitrosomonas, ammonia oxidizing archaea (AOA) showed no significant shifts 

in community structure, suggesting that archaea may be less sensitive to 

reduced pH (Bowen et al., 2013).  It would be interesting to investigate whether 

this finding holds for all archaeal communities. 

7.2.2 Picoeukaryotes 

The picoeukaryote diversity revealed in this study, like the bacterial community, 

matched that found in similar environments (Diez et al., 2001; Lopez-Garcia et 

al., 2001; Moon-van der Staay et al., 2001; Massana et al., 2004; Romari and 

Vaulot, 2004; Piganeau et al., 2008; Not et al., 2009; Massana et al., 2011). All 

major picoeukaryotic lineages typically retrieved from a coastal pelagic marine 

community were represented, with organisms from the Mamiellales, 

Chrysophyceae, Ciliophora and Alveolata dominating. Chapter 4 determined 

that the cell abundance of small picoeukaryotes was significantly higher in 

elevated CO2. When T-RFLP was used to examine changes in the abundance 

of dominant TRF’s (identified by a large 18S SSU rRNA clone library), half were 

significantly different between elevated and ambient CO2 mesocosm 

incubations. TRF’s identified as members of the novel alveolates group I (NAI) 

and Chrysophyeace, had a significantly higher abundance in ambient 

mesocosm incubations. In contrast, a TRF peak identified as Mamiellales 

appeared to be favoured elevated CO2, contributing a significantly higher 

proportion of the total picoeukaryote community. From this it was concluded that 

the Mamiellales organisms were able to autotrophically exploit elevated 

concentrations of CO2. When examined in a functional context (using RNA 

stable isotope probing, RNA-SIP) distinct differences in the level of glucose and 

bicarbonate assimilation were observed between CO2 treatments (chapter 5). 
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Interestingly, the Mamiellales appeared to behave mixotrophically, but only in 

nutrient replete conditions. Using qPCR and RT-qPCR it was possible to detect 

phylotype specific carbon assimilation responses to elevated CO2 within the 

dominant Mamiellales signatures Bathycoccus and Micromonas (chapter 6). 

Micromonas appeared to actively assimilate more bicarbonate with elevated 

CO2, but only in nutrient replete conditions. Bathycoccus bicarbonate 

assimilation on the other-hand, was highest in bloom peak ambient 

mesocosms. Further, both Bathycoccus and Micromonas showed evidence of 

assimilating glucose, but again only in nutrient replete conditions.  

The findings presented in this thesis relating to picoeukaryotes would suggest 

elevated CO2 will have an effect upon autotrophic carbon assimilation. 

However, the exact response is likely to be taxon specific and constrained by 

nutrient availability. This work adds to the emerging perception that OA will 

favour small non calcifying autotrophs which put less resources into costly 

carbon concentrating mechanisms (Paulino et al., 2008; Meakin and Wyman, 

2011; Brussaard et al., 2013). The enzyme ribulose-1,5-bisphosphate 

carboxylase oxygenase (RubisCO) utilizes dissolved CO2 in the carbon fixation 

step of marine photosynthesis. However, RubisCO has a low substrate affinity 

and therefore requires a mechanism for concentrating CO2 – carbon 

concentration mechanism (CCM) (Rost et al., 2008). Organisms which have 

efficient CCM’s have appeared to be less affected by elevated CO2 than those 

lacking efficient CCM’s (Engel et al., 2008). Furthermore, organisms with a 

large surface to volume ratio, like Micromonas, have been shown to capitalize 

elevated dissolved CO2 by increased diffusion (Brussaard et al., 2013). It 

follows that the potential to access alternative carbon sources (act 

mixotrophically), could serve as a competitive advantage over strict autotrophs 

(Zubkov, 2009; Sanders and Gast, 2012; Hartmann et al., 2013). 

If these findings hold true then a shift in phytoplanktonic community composition 

would have implications for the structure and function of pelagic food webs. 
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Brussaard and colleagues (2013) found that organisms which prospered with 

elevated CO2 were more prone to viral lysis, and suggested that this would shift 

bioaccumulation in living organisms into the dissolved organic carbon pool. 

Consequently, there would be a reduction in transfer to higher predators and an 

increase in the importance of the microbial food web.  This thesis did find 

evidence for elevated functional responses in both the Mamiellales and 

bacterial group Rhodobacteriales which would support this view, however there 

are additional factors which need also need to be considered: 

1)  As previously discussed no measure of viral activity was taken into account. 

Additionally, this thesis focused on picoeukaryotes and therefore the effect of 

OA upon key grazers of picoplankton such as heterotrophic nanoflagellates 

(HNF) was only briefly considered in chapter 4. Brussaard and colleagues 

(2013) found evidence for increased abundance of the nano size class in 

elevated CO2, yet our study found no significant differences in their cell 

abundance. 

2) The work presented here did not measure actual photosynthetic rate, only 

changes in microbial abundance and the relative assimilation of bicarbonate 

into rRNA. Hopkins and colleagues (2010) reported a significant reduction of 

chlorophyll a in elevated CO2, in the same Bergen mesocosm study, suggesting 

that overall photosynthesis may have been inhibited, not increased, by elevated 

CO2.  

7.3 Methodological Considerations and Limitations 

7.3.1 The ability to link phylogeny and function- “who is there and what 

are they doing” (Dubilier, 2007) 

As established in the introduction to this thesis, one of the central challenges of 

microbial ecology is the linking of phylogeny to function in unculturable 

microbes. This thesis applied a number of culture independent techniques to 
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both establish the diversity present, and to link this diversity to functional 

responses to ocean acidification. The methods applied however highlighted a 

number of considerations and limitations which need to be explored. These are 

outlined in sections (7.3.2 - 7.3.5) below. 

7.3.2 The 2006 Bergen mesocosm experiment (BME) 

All of the samples used within this study were the result of the 2006 Bergen 

mesocosm experiment. Therefore, there are a number of aspects relating to 

overall experimental design which should be discussed as they will undoubtedly 

have shaped the results presented in this thesis. 

One of the strengths of a mesocosm experiment is the ability to make large 

scale manipulations in a semi-natural setting, however this means that the 

number of replicates is cost prohibited. At the outset of the 2006 BME it was 

decided to have three experimental (elevated CO2) and three control (ambient 

CO2) mesocosm enclosures. However, as the experiment progressed it became 

apparent that the phytoplankton bloom utilized elevated concentrations of 

dissolved CO2 and consequently, pH returned to that in line with ambient 

conditions (Joint et al., 2011).   In response a consortium wide decision was 

made to re-acidify two of the experimental enclosures (in order to investigate 

communities in elevated CO2 conditions), leaving the remaining experimental 

enclosure to fulfil the original experimental design. Although the experiment still 

had validity, due to the large volumes investigated, the data produced lost some 

of its statistical power. This produced a knock on effect to the parallel SIP 

incubations where experimental replication was lost. 

It is also important to consider the length of study. In both the bacterial and 

eukaryotic communities the majority of variation could be explained by dynamic 

temporal changes. Although it was possible to establish that bacterial 

communities were resistant to elevated CO2 (chapter 3), the 18 day duration of 
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the BME 2006 meant resilience (community recovery) couldn’t be accurately 

measured.    

Temporal patterns in the community were also shaped by the addition of 

nutrients which led to a phytoplankton bloom, and its subsequent decay. The 

addition of nutrients prior to sampling meant that the communities studied were 

the result of both nutrient addition and elevated CO2, not in response solely to 

elevated CO2. A recent mesocosm consortia studied the effect of elevated CO2 

on microbial communities prior and post nutrient addition to account for this 

factor (Schulz et al., 2013). Schulz and colleagues (2013) found distinct 

changes in plankton community structure when nutrients were added, although 

higher abundances of picoeukaryotes were noted in elevated CO2 in pre and 

post-nutrient addition.   

It is also important to consider that climate change will work upon a number of 

environmental parameters including ocean warming, expanding hypoxic regions 

and changes in salinity (Gattuso et al., 2011). Fu and colleagues (2007) found a 

synergistic effect upon the photosynthetic rates of the cyanobacterium 

Synechococcus, when looking at elevated CO2 and temperature. Further, Lindh 

and colleagues (2013) established that temperature was the dominant driver of 

bacterial community composition, not pH. However, when elevated temperature 

and CO2 were combined distinct shifts in community composition were seen.  

These studies clearly demonstrate need to look at all potential climate change 

factors, not just changes in pH. 

Finally, the mechanism by which the mesocosm pH was adjusted may have 

influenced the results. The BME 2006 adjusted pH by sparging experimental 

mesocosms with CO2 enriched air. This method was favoured over direct pH 

adjustment (through the addition of an acid) as it best mimics future OA 

scenarios - where pCO2 increases and pH decreases (Riebesell et al., 2010). 

Furthermore, it doesn’t change trace metal availability (Shi et al., 2009).  There 
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is evidence however that sparging can reduce the growth rate of planktonic 

species (Shi et al., 2009). Unfortunately there are no reliable alternatives 

therefore future studies need to keep sparging to a minimum. 

In order to account for all of these factors it would be desirable that future 

experiments increase the number of experimental replicates, number of 

environmental parameters (including temperature, nutrient and pH gradients) 

and are performed over a longer duration. These, and numerous other desirable 

qualities for mesocosm experiments have been outlined elsewhere (Rost et al., 

2008; Riebesell et al., 2010). 

7.3.3 Culture independent community fingerprint and diversity 

techniques 

Many of the drawbacks associated with community fingerprint and diversity 

techniques were outlined in the introduction to this thesis (1.5.1). The work 

presented here tried to overcome most bias by improved methodology in 

extraction, amplification and sequencing. One of the biggest criticisms of culture 

independent techniques is a lack of taxonomic resolution. This thesis 

sequenced a library consisting of a total of around 3000 16S and 18S full length 

rRNA sequences, a value far higher than most similar studies (Ashelford et al., 

2006). This depth is now dwarfed by that of equivalent next generation 

sequence libraries, which have retrieved greater than 10,000,000 reads 

(Caporaso et al., 2012; Roy et al., 2013). Even so, the read length of such 

libraries was much shorter (<200 bp) allowing less phylogenetic resolution than 

the sequences presented here. Next generation sequencing technologies are 

however evolving at a rapid pace, with 600bp reads being readily achieved at a 

relatively low cost. As such, they are likely to soon eclipse traditional methods, 

making in-depth microbial community diversity studies both technologically and 

financially viable. 
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7.3.4 RNA stable isotope probing (RNA-SIP) 

Like other elements of this study, the data produced by the SIP experiment are 

likely to reflect a number of methodological choices. Past SIP studies have 

successfully demonstrated organisms responsible for phenol degradation 

(Manefield et al., 2002), methane oxidation (Cébron et al., 2007) methanol and 

methylamine assimilation (Neufeld et al., 2007) and ammonia oxidation 

(Pratscher et al., 2011) - to name but a few. These substrates were chosen 

carefully to target relatively select groups of taxa responsible for specific 

functional roles within the wider community. Here glucose and sodium 

bicarbonate, substrates accessible to a wide range of the microbial community, 

were used as tracers for heterotrophy and phototrophy. For example, many 

bacterial groups contain glycolytic pathways and therefore added glucose was 

likely readily utilised (Fothergill-Gilmore and Michels, 1993; Canback et al., 

2002; Pollack et al., 2013). Furthermore, a recent DNA-SIP study established 

that bacterial oceanic bicarbonate assimilation is ubiquitous, with bacterial 

populations employing a number of trophic pathways to access carbon 

(DeLorenzo et al., 2012). Mixotrophy has been found to be common in both 

prokaryote and eukaryote marine populations (Zubkov and Tarran, 2008; 

Zubkov, 2009; Hartmann et al., 2012; Hartmann et al., 2013), and consequently 

it is difficult to separate carbon assimilatory responses of strict phototrophy or 

heterotrophy. It is not surprising therefore that only minimal detectable changes 

were observed between 13C and background 12C. 

The use of a more sensitive molecular technique, RT-qPCR was able to 

overcome this issue within the Mamiellales. However, the determination of 

carbon assimilation mechanisms – in the case of the Mamiellales through direct 

diffusion or indirectly through phagocytosis of 13C labelled bacteria or lysed 

bacterial cellular biomatter - would require an alternative approach.  Frias-Lopez 

and colleagues (2009) added 13C labelled bacteria to seawater and were able to 

successfully determine the breadth of eukaryotic mixotrophs within their system. 
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Further, a recent study, using a combination of flow cell sorting and 

fluorescence in situ hybridization, was able to successfully detect plastidic 

picoeukaryote cells which had internalised bacterial cells, giving clear evidence 

for mixotrophy in this size class (Hartmann et al., 2013). It would be interesting 

to apply such approaches to determine if Mamiellales are able to graze bacteria 

directly. 

A further factor which appreciably influenced the SIP results was a lack of pre-

filtration to remove larger eukaryotes and particulate matter. As discussed in 

chapter 5, a lack of pre-filtration meant that the SIP rRNA template 

encompassed the complete community, not just members of the picoplankton. 

As a result mesocosm clone libraries were not fully representative and the 

assignment of T-RF peak identity limited. This was a particular problem in the 

eukaryote T-RFLP analysis where the presence of larger organisms, with multi- 

copy rRNA genes were likely to have swamped the signal of lower abundance 

picoeukaryote community members. These may have been actively assimilating 

13C, but were below the detection threshold of T-RFLP. Although the 

development of a qPCR assay did counteract this issue by specifically targeting 

Mamiellales signatures, it would be advisable that future SIP studies on the 

functional effects of OA on picoplankton employ a pre-filtration step. 

7.3.5 (RT) qPCR 

This thesis showed the successful development of a (RT) qPCR assay to 

quantify individual taxa within the Mamiellales, thus minimising the effect of a 

lack of pre-filtration within the eukaryote community. It would be interesting to 

extend this assay to include other community members (e.g. the other dominant 

picoplankton members). However, the quantities of RNA recovered from 

fractionation were low. Statistically valid (RT) qPCR data requires a high level of 

repetition and consequently assay number in this study was limited to a few 

organisms (Bustin et al., 2009). This limitation could be overcome through the 
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use of a multiplex taqMan probe assay - where multiple probes can be run at 

the same time - requiring less total template. The taqMan approach has been 

successfully applied to detect members of the Roseobacter, SAR11, SAR86, 

Synechococcus and Cytophaga taxa, from a mixed environmental community 

(Suzuki et al., 2001), and also has the advantage of minimizing the effect of 

non-specific PCR amplification (Smith and Osborn, 2009).  

A final consideration is that much of the functional work presented within this 

thesis concentrated on the assimilation and subsequent integration of carbon 

compounds into rRNA. Although this gave a measure of phylogentically active 

populations, the presented data did not provide any further functional 

(transcriptomic) information. An attempt was made to produce and sequence 

mRNA libraries, however, they were dominated by rRNA, despite the use of 

various ribodepletion methods (A. Oliver, unpublished data). An exciting 

technology, far too new and cost prohibitive at the time of study, is that of 

transcriptomics, or next generation RNA sequencing. The first environmental 

transcriptomes generated were from soils (Leininger et al., 2006; Urich et al., 

2008) and later marine plankton (Frias-Lopez et al., 2008). However, the 

relative mRNA content compared to rRNA of these first studies was low.  Even 

so, the application of such technologies allowed the examination of mRNA in far 

greater depth than previously available, with the added benefit of a lower 

template requirement. In combination with the growing development of more 

successful mRNA enrichment methods, the study of environmental 

transcriptomes becomes one of the most interesting avenues of future research 

(Gilbert et al., 2008; Sorek and Cossart, 2010; Cho et al., 2013). 

7.4 The Future 

So “will ocean acidification affect marine microbes?”(Joint et al., 2011). On the 

whole it appears that the majority of marine picoplankton will be resistant to 

changes imposed through OA, and as such micro-organismal diversity already 
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holds the genetic and functional capacity to respond to change. However, the 

sensitivity of individual organisms varies and, as such, may influence vital 

oceanic processes such as carbon availability. Future work should target long 

term holistic studies which look at communities as both diverse and functional 

entities. Further, studies should focus on the synergistic interactions of 

proposed climate change models and how multiple factors affect communities. 
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Samples collected by L. Newbold, A. Whiteley and M. Maguire. Statistical 
analysis was carried out under the supervision of C. van der Gast. Samples 
processed and analysed by L. Newbold under the supervision of A. Oliver. All 
phylogenetics performed by L. Newbold.  Bioinformatics advice and analysis 
was provided by T. Booth, B. Tiwari, T. DeSantis and G. Andersen. Paper was 
written by L. Newbold with edits by A. Oliver, A. Whiteley and C. van der Gast. 

Chapter 5: Active Bicarbonate and Glucose Picoplankton Communities 
Under Elevated CO2 

Samples collected by L. Newbold and A. Whiteley. Samples processed and 
analysed by L. Newbold under the supervision of A. Oliver. Statistical analysis 
was carried out by L. Newbold under the supervision of C. van der Gast. Paper 
was written by L. Newbold with edits by A. Oliver and C. van der Gast. 

Chapter 6: The Mamiellales: Strategies for Nutrient Acquisition under 
Elevated CO2 

Samples collected by L. Newbold and A. Whiteley. Samples processed and 

analysed by L. Newbold. Assay development L. Newbold. Paper was written by 

L. Newbold with edits by A. Oliver. 


