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INTRODUCTION

Mercury (Hg) is a non-essential heavy metal that
biomagnifies within food webs (Riisgard & Hansen
1990, Jarman et al. 1996) and can accumulate in toxic
concentrations in top predators (Eisler 1987). Although
high levels of exposure are often associated with lo-
calised sources of pollution (such as chlor-alkali works
or lignite burning), elevated concentrations have also
been reported in biota from high latitudes (Wagemann
et al. 1990, Bocher et al. 2003). This is most likely a
result of atmospheric transport and geological seepage
(Braune et al. 1991), by which Hg enters the food chain
and is then biomagnified.

Seabirds have been identified as potential sentinels
for monitoring Hg contamination in the marine envi-
ronment, partly because many marine bird species are
apex predators and thus target the same prey types as
some human fisheries (Gilbertson et al. 1987, Walsh
1990, Burger 1993, Monteiro & Furness 1995). The Pro-
cellariiformes are the most diverse and abundant
group of seabirds in the Southern Ocean, occupying
trophic positions ranging from zooplanktivorous graz-
ers to top predators (Croxall & Prince 1980, Reid et al.
1997). Mercury levels in this group are very variable,
and in great albatrosses (Diomedea spp.) are amongst
the highest that occur naturally in any marine taxa
(Thompson et al. 1993, Hindell et al. 1999, Stewart et
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al. 1999). Thus, different species within the order have
the potential to act as indicators of pollutant exposure
for a wide range of Southern Ocean consumers.

Despite the longstanding use of seabirds as indica-
tors of heavy metal contamination, our understanding
of the factors driving variation in their Hg burdens
remains somewhat limited. Mercury levels vary sub-
stantially among tissues, individuals and species,
making interpretation of patterns difficult. Moreover,
previous work examining the effects of diet and
trophic position on Hg concentrations in seabirds has
produced contradictory results. Some studies suggest
that trophic effects are weak and that foraging location
and variation in individual physiology may be more
important factors (Thompson et al. 1993, Bearhop et al.
2000a). In contrast, other work has indicated that there
are strong trophic effects (Atwell et al. 1998), or that
the proportion of particular prey types in the diet (e.g.
mesopelagic fish) accessed through fisheries discards
may be more important than trophic level per se
(Thompson et al. 1998a, Monteiro et al. 1999, Arcos et
al. 2002). To date, most studies have either focused on
a single or a small number of species (but see Atwell et
al. 1998, Becker et al. 2002), or have examined mer-
cury burdens in a wide variety of species, but were
unable to compare diet and Hg burden directly, since
diets were assessed during the breeding season and
the tissues collected (feathers) reflect the non-
breeding season (e.g. Stewart et al. 1999, Becker et al.
2002). Moreover, few studies have addressed the issue
of temporal variation in mercury burdens resulting
from changing foraging patterns over the seasons
among Southern Ocean seabirds.

When relating contaminant burdens to diet, conven-
tional analyses (e.g. analyses of regurgitates or pellets)
suffer from 2 important problems. First, they can be
prone to biases, often under-estimating rapidly diges-
ted material (Phillips et al. 1999, Votier et al. 2003,
Catry et al. 2004). Second, it is often impossible to
assess diet consistently at all times of year, especially
during the non-breeding season (Duffy & Jackson
1986, González-Solís et al. 1997). Stable isotope analy-
ses (SIA) address these problems by reflecting assimi-
lated molecules, thus overcoming the issue of relative
digestibility of prey (Bearhop et al. 1999). Thus, careful
choice of tissue can provide insights into diet at times
of year when conventional data cannot be collected.
Moreover, this approach provides quantitative forag-
ing data on a continuous scale that facilitate robust sta-
tistical analyses and can be particularly powerful when
combined with conventional approaches.

SIA provides data on foraging patterns because the
isotopic composition of consumer tissue relates pre-
dictably to that of prey (DeNiro & Epstein 1978, 1981).
δ15N increases ca. 3 to 5‰ per trophic level (Minagawa

& Wada 1984, Wada et al. 1987, Fry 1988), whereas
δ13C increases to a much lesser degree, ca. 1‰ (DeNiro
& Epstein 1978, Fry et al. 1984). Stable carbon isotope
ratios can act more effectively as spatial markers,
because they vary over both large and small spatial
scales in marine systems (Rau et al. 1992, Lathja &
Marshall 1994, Fry 2006). Stable carbon isotope ratios
in seabird tissues can reflect regional foraging, as dif-
ferences in basal δ13C are propagated through food
webs (Cherel & Hobson 2007).

Moreover, different tissues can reflect different
dietary information as isotopic signatures are incorpo-
rated over the period of tissue formation (Hobson &
Clark 1992, Bearhop et al. 2002). Whole blood or cells
incorporate the isotope signatures of a consumer’s food
over a 3 to 4 wk period (Haramis et al. 2001, Bearhop et
al. 2002). Feather isotope ratios reflect diet at the time
of their synthesis (Hobson & Clark 1992, Bearhop et al.
2002). Although giant petrels (Macronectes spp.) moult
some body feathers throughout breeding, in other Pro-
cellariiformes, moult starts after adults depart from the
colony and proceeds at variable rates during the non-
breeding period (Marchant & Higgins 1990). Thus,
random sampling of body feathers predominantly pro-
vides isotopic information for a period when conven-
tional dietary assessment is extremely difficult. By
sampling feathers to reflect the non-breeding period
(usually winter), and blood to reflect the breeding
period (summer), it is possible to obtain diet informa-
tion for 2 very distinct parts of the life cycle (Bearhop et
al. 2006, Cherel et al. 2006).

Mercury can be found in most body tissues, but
feathers provide the main route of excretion in birds
(Braune & Gaskin 1987, Bearhop et al. 2000a). Once
bound to feather keratin, Hg is effectively inert and
cannot be re-incorporated into living tissues (Appel-
quist et al. 1984). Mercury bound in the plumage may
account for as much as 93% of total body burden
(Braune & Gaskin 1987), with feathers moulted to-
wards the beginning of the sequence having the high-
est levels (Furness et al. 1986). These characteristics of
Hg excretion mean that the examination of feathers
can provide a broad temporal perspective on the fate of
Hg in a community of birds (Becker et al. 1993). Con-
versely, Hg in blood represents that incorporated from
food during blood formation and some component of
residual Hg residing in other tissues since the cessa-
tion of the last feather moult. This residual Hg is
thought to equilibrate with levels in the liver, which
acts as the main store for Hg between moulting events
(Bearhop et al. 2000b). As birds of the Procellariiformes
may continue to moult some body feathers until late in
the non-breeding period, it is unlikely that residual Hg
levels in the blood, at least in the early to mid breeding
season, are much higher than that incorporated most
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recently from dietary sources, and are therefore pro-
viding information on Hg uptake primarily only for this
particular stage of the life cycle (Bearhop et al. 2000b).

In the present study we investigated Hg dynamics
across a seabird community and across multiple tissue
types, seeking generalities in the patterns of Hg accu-
mulation in relation to ecology and phylogeny. We
aimed to identify the extent to which trophic level
and/or foraging location affect Hg burdens. We also
compared results from 2 different tissue types in order
to assess the effects of breeding and non-breeding for-
aging on Hg burdens. We then related this variation to
Hg concentrations in known prey items to investigate
the relative importance of trophic level over prey type.
Previous studies have arrived at different conclusions
regarding the relative importances of prey type versus
trophic position on resultant Hg burdens in seabirds
(e.g. Monteiro et al. 1996, Thompson et al. 1998a,
Becker et al. 2002). We recognise the importance of
including comprehensive analyses of typical prey
items when attempting to understand Hg dynamics
within marine food webs and have attempted to
address this issue within the present study. Moreover,
by examining foraging behaviours and Hg levels
within a single speciose order, we hoped to reduce the
potential variation attributable to phylogeny that may
explain some of the variation found in other multi-spe-
cies studies where different taxa have much more dis-
tinct evolutionary origins (e.g. Atwell et al. 1998). We
assumed that species within a family are closely-
related and consequently have similar physiology. In
this way we aimed to extract more meaningful data on
the true impact of foraging behaviour on Hg burdens
across a diverse community of biomonitors.

MATERIALS AND METHODS

Sample collection and preparation. Samples were
collected on Bird Island, South Georgia (54° 00’ S,
38° 03’ W) between December 2001 and April 2002. We
sampled 10 Procellariiform species: Antarctic prion
Pachyptila desolata, black-browed albatross Thalas-
sarche melanophrys, blue petrel Halobaena caeru-
lea, common diving petrel Pelecanoides urinatrix,
South Georgian diving petrel P. georgicus, grey-
headed albatross T. chrysostoma, northern giant petrel
Macronectes halli, southern giant petrel M. gigan-
teus, white-chinned petrel Procellaria aequinoctialis
and wandering albatross Diomedea exulans. Blood
and feather samples were taken from surface-nesting
species (albatrosses and giant petrels) in the late
brood-guard stage and from burrow-nesting petrels
(the remaining species) whilst mist-netting adjacent
to breeding colonies during early to mid chick-rearing;

hence, all species were effectively at a similar stage of
breeding. All surface-nesting birds sampled were
breeders, while burrowing birds were of unknown
status, but most likely to consist predominantly of
breeders as many regurgitated prey (presumably
intended for chicks) when handled. For each species,
the maximum sampling interval between individuals
was 1 wk. An equal number of males and females were
sampled from each species wherever possible. Whole
blood (0.2 to 1.0 ml) was taken from the tarsal vein,
stored on ice in the field and centrifuged at 15000 rpm
for 15 min in the laboratory; separated red blood cells
and plasma were then frozen within 3 to 4 h of collec-
tion. Samples of red blood cells were subsequently
freeze-dried to a constant mass, homogenised and
again kept frozen until analysis. Feathers (6 to 8) were
plucked at random from the mantle region of each
bird, stored dry in plastic bags at room temperature
and later homogenised in a freezer mill prior to analy-
sis. Feathers were clean, but not washed prior to analy-
sis, which may have introduced some error into Hg
results. However, this was unlikely to confound our
interpretations for 2 reasons: first, the bulk of each
feather was overlaid by more anterior feathers and
hence only the tips would have been generally ex-
posed to atmospheric contamination. Second, all feath-
ers were treated in a similar manner and thus any Hg
adsorption post-sampling would be standard across all
samples and hence simply add a small degree of
‘noise’ to the dataset. Prey samples were chosen fol-
lowing a review of published literature on diet of the
species of Procellariiformes included in the study.
Fresh prey samples were collected from regurgitates,
or from nets deployed by research vessels in adjacent
waters, and immediately stored frozen in plastic bags.
Tissue samples were excised from inner muscle with
acid-washed tools to minimise the possibility of Hg
contamination. These samples were then homogenised
in a freezer mill prior to stable isotope and Hg
analyses.

Mercury analyses. Each sample was oven-dried for
>24 h at 50°C to a constant mass of between 0.05 and
0.1 g dry weight (dry wt), and solubilised in 2 ml of
cold nitric acid for 24 h. Samples were then hot-
digested for 50 min at 120°C, after which 0.5 ml of
hydrogen peroxide was added and left for a final
15 min. Total Hg levels were measured by atomic
fluorescence spectrophotometry using a PSA Merlin
Fluorescence Detector (PS Analytical). Detection limits
were 0.1 µg g–1 for blood and feathers, and 1.5 ng g–1

for prey samples. Precision and accuracy were mea-
sured using replicate samples and certified reference
material (TORT-2 lobster hepatopancreas, NRC, Ca-
nada; mean ± 95% CI certified value = 0.27 ±
0.06 µg g–1 dry wt); our measured values were 0.29 ±

279



Mar Ecol Prog Ser 375: 277–288, 2009

0.02 µg g–1 dry wt, n = 15). Mercury concen-
trations are expressed throughout as µg g–1

on a dry weight basis, with ±SD reported
throughout using standard notation, unless
otherwise specified.

Stable isotope analyses. Homogenised
feather, blood cell and prey samples were
oven-dried for >24 h at 50°C to a constant
mass. For prey samples only, lipids were ex-
tracted over a 4 h period by Soxhlet using
1:1 methanol:chloroform, and samples were
analysed with and without lipids. Sampled
blood cells and feathers were analysed with-
out prior lipid extraction as the proportion of
lipid in blood is very low and in feathers is
likely to be negligible, and because extrac-
tion methods can influence bulk δ15N signa-
tures (Bearhop et al. 2000c). Carbon and
nitrogen isotope ratios were measured by
continuous flow isotope ratio mass spec-
trometry (CF-IRMS) on ~ 0.7 mg sub-
samples of homogenised dry material
loaded into tin cups. These were combusted
in a Costech ECS 4010 elemental analyser
coupled to a Thermo Finnigan Delta Plus XP
mass spectrometer. Each group of 8 to 10
samples was bracketed by 2 laboratory stan-
dards, allowing correction for drift. Isotope
ratios are expressed in standard δ notation
as parts per thousand (‰) against interna-
tional reference standards: V-PDB (Vienna
PeeDee Belemnite) for δ13C and atmospheric
nitrogen for δ15N, according to the equation:

δX =  [(Rsample/Rstandard) – 1] × 1000

where X is 15N or 13C and R is the corre-
sponding ratio 15N:14N or 13C:12C. Precision
for both δ13C and δ15N was routinely esti-
mated to be ≥0.3‰.

Statistical analyses. The influences of
trophic level and foraging location (inferred
from δ15N and δ13C) upon Hg levels among
seabird species were investigated using
general linear models (GLMs). Full GLMs
were parameterised as follows: log10 trans-
formed Hg concentration (µg g–1) as the de-
pendent variable, species as a factor, δ15N
and δ13C as covariates, and all 2-way inter-
action terms. The most parsimonious models
were then determined using Akaike Infor-
mation Criteria (AIC) (Akaike 1973). Prey
data were analysed as above, but with each
species first assigned to its broader taxo-
nomic grouping (phylum) to allow for easier
interpretation of results (Table 1). All data
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were tested for departures from normality
and homoscedasicity using Q-Q plots.
Where appropriate, data were log trans-
formed to meet requirements for normality
and to reduce variance. Data on blood val-
ues for 1 species (blue petrel) were omitted
from all statistical analyses because of the
small sample size (n = 2). All tests were
performed using SPSS v. 14.

RESULTS

Hg and stable isotope ratio patterns in
seabird tissues

Hg levels varied widely within and
among species (Table 2). The highest
mean (± SD) Hg concentrations were in
wandering albatrosses for both blood cells
(11.15. ± 3.38 µg g–1 dry wt) and feathers
(27.43 ± 8.14 µg g–1 dry wt) and the lowest
were in common diving petrels for blood
(0.31 ± 0.15 µg g–1 dry wt) and in blue
petrels for feathers (2.69 ± 1.29 µg g–1 dry
wt). Mercury concentrations were consis-
tently higher in feathers than blood for all
species, as might be expected (Fig. 1), but
patterns of variation among species
remained generally constant between
breeding (blood) and non-breeding sea-
sons (feathers).

The most parsimonious model selected
by AIC for breeding season data was:
Log10Hg = δ15N + δ13C + species + δ13C ×
δ15N (Table 3). Mercury levels in blood dif-
fered significantly among species (F8,144 =
43.056, p < 0.001) and, at the community
level, were significantly related to δ15N
(β = 0.359, F1,144 = 4.328, p = 0.039), and
marginally to δ13C (β = –0.177, F1,82 =
3.927, p = 0.050), with a significant inter-
action between δ13C and δ15N (β = 0.019,
F1,144 = 4.568, p = 0.034; Fig. 2). The final
model explained a large proportion of the
variation in blood Hg levels (r2 = 0.912).
Although the optimal model determined
by AIC for non-breeding season data
included the same parameters: (Log10

Hg = δ15N + δ13C + species + δ13C × δ15N
interaction), in a detailed break-down the
only parameter that proved statistically
significant in explaining variation in Hg
burdens was species (F8,145 = 10.407, p <
0.001). δ15N, δ13C and the interaction

281

T
ab

le
 2

. M
ea

n
 c

on
ce

n
tr

at
io

n
s 

of
 δ

15
N

, δ
13

C
 (‰

) a
n

d
 m

er
cu

ry
 (µ

g
 g

–
1

d
ry

 w
t)

 in
 b

lo
od

 a
n

d
 fe

at
h

er
s 

of
 P

ro
ce

ll
ar

ii
fo

rm
es

. V
al

u
es

 o
f t

h
es

e 
va

ri
ab

le
s 

ar
e 

m
ea

n
s 

±
S

D
, w

it
h

 r
an

g
es

 
(i

n
 p

ar
en

th
es

es
) 

an
d

 c
oe

ff
ic

ie
n

ts
 o

f 
va

ri
at

io
n

 (
C

V
).

 S
p

ec
ie

s 
ra

n
k

ed
 b

y 
fe

at
h

er
 H

g
 c

on
ce

n
tr

at
io

n
s

S
p

ec
ie

s
n

δ15
N

δ13
C

M
er

cu
ry

 
R

at
io

C
V

R
at

io
C

V
C

on
ce

n
tr

at
io

n
C

V

B
lu

e 
p

et
re

l
B

lo
od

2
7.

78
 ±

0.
49

 (
7.

43
–

8.
13

)
6.

32
–2

5.
02

 ±
0.

55
 (

–2
5.

40
 t

o 
–2

4.
63

)
–2

.1
9

0.
56

 ±
0.

28
 (

0.
36

–
0.

75
)

49
.6

7
F

ea
th

er
5

7.
89

 ±
0.

45
 (

7.
31

–
8.

53
)

5.
69

–2
4.

11
 ±

0.
87

 (
–2

5.
46

 t
o 

–2
3.

22
)

–
3.

59
2.

69
 ±

1.
29

 (
1.

94
–

4.
99

)
48

.0
1

C
om

m
on

 d
iv

in
g

 
B

lo
od

15
7.

95
 ±

0.
62

 (
6.

74
–

8.
76

)
7.

78
–2

1.
18

 ±
0.

67
 (

–2
2.

41
 t

o 
–2

0.
07

)
–

3.
15

0.
31

 ±
0.

15
 (

0.
06

–
0.

59
)

47
.5

7
p

et
re

l
F

ea
th

er
15

7.
99

 ±
0.

37
 (

7.
38

–
8.

45
)

4.
65

–2
0.

58
 ±

0.
76

 (
–2

2.
58

 t
o 

–1
9.

66
)

–
3.

71
2.

90
 ±

1.
63

 (
0.

62
–

5.
46

)
56

.1
6

A
n

ta
rc

ti
c 

p
ri

on
B

lo
od

16
8.

15
 ±

0.
29

 (
7.

83
–

8.
93

)
3.

59
–2

1.
50

 ±
1.

26
 (

–2
3.

16
 t

o 
–1

9.
02

)
–

5.
87

0.
53

 ±
0.

21
 (

0.
24

–1
.1

9)
40

.3
1

F
ea

th
er

15
9.

43
 ±

1.
28

 (
6.

76
–1

1.
11

)
13

.5
9

–1
8.

43
 ±

0.
75

 (
–1

9.
74

 t
o 

–1
7.

49
)

–
4.

08
4.

51
 ±

1.
26

 (
2.

58
–

6.
82

)
27

.9
4

S
ou

th
 G

eo
rg

ia
n

 
B

lo
od

15
8.

49
 ±

0.
63

 (
7.

61
–

9.
54

)
7.

42
–2

1.
92

 ±
0.

90
 (

–2
2.

90
 t

o 
–2

0.
11

)
–

4.
12

0.
41

 ±
0.

14
 (

0.
12

–
0.

62
)

34
.9

1
d

iv
in

g
 p

et
re

l
F

ea
th

er
14

8.
46

 ±
0.

52
 (

7.
75

–
9.

98
)

6.
14

–2
0.

03
 ±

0.
92

 (
–2

2.
03

 t
o 

–1
8.

26
)

–
4.

61
5.

07
 ±

1.
30

 (
2.

18
–

7.
62

)
25

.6
7

W
h

it
e-

ch
in

n
ed

 
B

lo
od

16
14

.2
2 

±
0.

66
 (

13
.3

1
–1

5.
37

)
4.

66
–1

8.
13

 ±
0.

33
 (

–1
9.

02
 t

o 
–1

7.
71

)
–1

.8
4

5.
37

 ±
1.

18
 (

3.
61

–
7.

34
)

21
.9

7
p

et
re

l
F

ea
th

er
16

17
.5

5 
±

1.
37

 (
15

.2
2

–2
0.

13
)

7.
80

–1
5.

53
 ±

0.
80

 (
–1

6.
50

 t
o 

–1
3.

83
)

–
5.

15
7.

43
 ±

1.
97

 (
4.

35
–1

1.
39

)
26

.4
6

S
ou

th
er

n
 g

ia
n

t 
B

lo
od

16
11

.8
6 

±
0.

45
 (

11
.1

1
–1

2.
83

)
3.

82
–2

1.
92

 ±
0.

97
 (

–2
3.

18
 t

o 
–1

9.
74

)
–

4.
41

2.
74

 ±
1.

05
 (

1.
52

–
4.

74
)

38
.4

9
p

et
re

l
F

ea
th

er
16

12
.8

9 
±

1.
63

 (
10

.7
3

–1
5.

42
)

12
.7

1
–2

1.
04

 ±
1.

37
 (

–2
3.

20
 t

o 
–1

7.
98

)
–

6.
50

8.
25

 ±
3.

98
 (

2.
15

–1
4.

08
)

48
.3

5

B
la

ck
-b

ro
w

ed
 

B
lo

od
16

10
.7

9 
±

0.
89

 (
9.

13
–1

2.
86

)
8.

25
–1

9.
94

 ±
0.

78
 (

–2
2.

07
 t

o 
–1

8.
56

)
–

3.
93

4.
38

 ±
1.

10
 (

2.
49

–
6.

12
)

25
.0

9
al

b
at

ro
ss

F
ea

th
er

16
15

.8
5 

±
0.

97
 (

12
.9

6
–1

6.
87

)
6.

11
–1

4.
86

 ±
0.

90
 (

–1
7.

38
 t

o 
–1

3.
72

)
–

6.
04

8.
35

 ±
2.

63
 (

4.
24

–1
2.

97
)

31
.5

4

G
re

y-
h

ea
d

ed
 

B
lo

od
15

10
.9

9 
±

0.
42

 (
10

.3
0

–1
1.

70
)

3.
82

–1
9.

71
 ±

0.
90

 (
–2

1.
54

 t
o 

–1
8.

87
)

–
4.

56
6.

57
 ±

1.
11

 (
5.

35
–

8.
77

)
16

.8
6

al
b

at
ro

ss
F

ea
th

er
15

10
.4

8 
±

0.
89

 (
9.

05
–1

2.
06

)
8.

45
–1

9.
17

 ±
1.

12
 (

–2
1.

70
 t

o 
–1

7.
59

)
–

5.
86

9.
50

 ±
2.

84
 (

4.
34

–1
3.

24
)

29
.8

6

N
or

th
er

n
 g

ia
n

t 
B

lo
od

16
13

.2
6 

±
0.

78
 (

12
.1

4
–1

4.
99

) 
5.

85
–2

0.
59

 ±
0.

75
 (

–2
1.

67
 t

o 
–1

9.
04

)
–

3.
66

3.
93

 ±
1.

37
 (

2.
18

–
6.

38
)

34
.8

9
p

et
re

l
F

ea
th

er
15

13
.8

1 
±

1.
10

 (
11

.6
0

–1
5.

85
)

7.
97

–1
8.

76
 ±

0.
92

 (
–2

0.
73

 t
o 

–1
7.

55
)

–
4.

93
10

.5
2 

±
5.

54
 (

4.
50

–2
3.

54
)

52
.6

5

W
an

d
er

in
g

 
B

lo
od

15
13

.3
6 

±
0.

46
 (

12
.7

2
–1

4.
14

)
3.

43
–2

0.
16

 ±
0.

60
 (

–2
1.

42
 t

o 
–1

9.
22

)
–2

.9
5

11
.1

5 
±

3.
38

 (
5.

66
–1

9.
64

)
30

.2
9

al
b

at
ro

ss
F

ea
th

er
14

15
.1

5 
±

0.
78

 (
13

.0
7

–1
6.

72
)

5.
15

–1
7.

25
 ±

0.
79

 (
–1

8.
94

 t
o 

–1
5.

88
)

–
4.

60
27

.4
3 

±
8.

14
 (

15
.4

0
–

45
.3

6)
29

.5
5



Mar Ecol Prog Ser 375: 277–288, 2009

between δ13C and δ15N were not significant (F1,145 =
2.044, p = 0.155, F1,145 = 1.387, p = 0.241, and F1,145 =
3.172, p = 0.077). Nonetheless, this model explained a
substantial proportion of variation in Hg burdens
within feathers (r2 = 0.609).

Patterns in Hg and stable isotope ratios of prey

Generally, the larger mesopelagic prey species had
the greatest Hg concentrations. Lepidonotothen lar-
seni had the highest Hg concentrations of any fish
(0.27 ± 0.04 µg g–1 dry wt) and Gonatus antarcticus the
highest value for any squid (0.60 ± 0.02 µg g–1 dry wt).

Antarctic krill Euphausia superba
(0.01 ± 0.01 µg g–1 dry wt) and
the amphipod Themisto gaudichaudii
(0.02 ± 0.01 µg g–1 dry wt) had the low-
est Hg levels. For both fish and squid
prey types, the highest Hg concentra-
tions were recorded in predominantly
mesopelagic (200 to 1100 m depth) spe-
cies. This variation was similar in part
to that in the isotopic data, with mean
(± SD) δ15N being most enriched in
L. larseni (14.46 ± 0.22 ‰) and depleted
in T. gaudichaudii (5.58 ± 0.59 ‰). The
highest values for δ13C were found in
L. larseni (–15.99 ± 0.28 ‰) and lowest
in the squid Kondakovia longimana
(–23.30 ± 0.83 ‰). However, a number
of squid species (e.g. Gonatus antarcti-
cus, Galiteuthis glacialis, Moroteuthis
knipovitchi, Psychroteuthis glacialis)

displayed high Hg levels associated with depleted δ13C
values (Table 1).

At the group level, cephalopods had consistently
higher Hg concentrations than either fish or crustacea
(Table 1). This was confirmed in statistical analyses,
with the most parsimonious model selected by AIC
being the fully parameterised model: Log10 Hg = δ15N +
δ13C + group + group × δ13C + group × δ15N + δ13C ×
δ15N. Hg levels differed significantly among prey
grouping (F2,83 = 3.295, p = 0.043), and at the commu-
nity level were significantly related to δ13C (β = –0.381,
F1,83 = 7.222, p = 0.009) and δ15N (β = 0.824, F1,83 =
22.247, p < 0.001), with significant interactions be-
tween group and δ13C (F2,83 = 3.198, p = 0.047), group
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Table 3. Parameter estimates for AIC selected model of blood data (LogHg = 
δ15N + δ13C + species + δ13C × δ15N)

Parameter β SE T Signi- 95% confidence interval
ficance Lower Upper 

bound bound

Intercept –2.292 1.864 –1.229 0.221 –5.980 1.396
APR –1.479 0.186 –7.969 0.000 –1.846 –1.112
BBA –0.476 0.118 –4.050 0.000 –0.709 –0.244
CDP –1.825 0.198 –9.229 0.000 –2.216 –1.434
GDP –1.626 0.172 –9.471 0.000 –1.966 –1.287
GHA –0.282 0.115 –2.451 0.016 –0.509 –0.054
NGP –0.457 0.069 –6.663 0.000 –0.593 –0.322
SGP –0.590 0.082 –7.191 0.000 –0.752 –0.428
WCP –0.494 0.106 –4.655 0.000 –0.704 –0.284
WNA 0a

δ13C –0.177 0.089 –1.982 0.050 –0.353 0.000
δ15N 0.359 0.173 2.080 0.039 0.018 0.701
δ13C × δ15N 0.019 0.009 2.137 0.034 0.001 0.036

aThis parameter is set to zero because it is redundant

Fig. 1. Mercury levels in (a) blood and (b) feathers in 10 species of Procellariiformes from South Georgia. APR: Antarctic prion (16,
15), BBA: black-browed albatross (16, 16), BLP: blue petrel (2, 5), CDP: common diving petrel (15, 15), GDP: South Georgian div-
ing petrel (15, 14), GHA: grey-headed albatross (15, 15), NGP: northern giant petrel (16, 15), SGP: southern giant petrel (16, 16),
WCP: white-chinned petrel (16, 16), WNA: wandering albatross (15, 14). Means ± SD. Sample sizes in parentheses, blood and 

feathers consecutively
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and δ15N (F2,83 = 3.679, p = 0.030), and δ13C and δ15N
(β = 0.036, F1,83 = 18.778, p < 0.001) (Fig. 3). The final
model explained considerable variation in Hg burdens
(r2 = 0.749) (Table 4).

DISCUSSION

Hg variation in the breeding season

The significant and positive correlation between
δ15N isotope ratios and Hg levels in blood (after
accounting for the effect of species) suggests that indi-
vidual foraging preferences remain relatively constant

over extended periods during breeding. The alterna-
tive, i.e. that birds change diet over time would, by
comparison, result in partial ‘uncoupling’ of the 2 vari-
ables (Thompson et al. 1998b). Blood isotopic ratios
represent diet from 3 to 4 wk prior to sampling (Hara-
mis et al. 2001, Bearhop et al. 2002), whereas blood Hg
accrues over a somewhat longer timeframe (Bearhop
et al. 2000b). The significant relationship between δ15N
and Hg thus indicates a degree of individual adher-
ence to diet and foraging area, as also suggested
recently for a number of diving species (Bearhop et al.
2006).

The patterns of variation in blood Hg in relation to
foraging location (δ13C) during the breeding season
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were more difficult to interpret. We might have ex-
pected a positive relationship between δ13C ratios
and Hg burdens across a community of wide-ranging
foragers such as the Procellariiformes, given the neg-
ative relationships between latitude and both δ13C
(Rau et al. 1991a,b, Cherel & Hobson 2007) and Hg
(Bergan et al. 1999). However, overall, δ13C was neg-
atively associated with blood Hg concentrations at
the community level, and the relationship was only
marginally statistically significant (p = 0.050). This
could be because we blood-sampled the albatrosses
and giant petrels at the end of brood-guard, when
foraging ranges are much more tightly constrained
than in incubation or the later (post-guard) chick-
rearing period (Phillips et al. 2004, 2006, González-
Solís et al. 2008, Xavier et al. 2004). Consequently,
during this time, δ13C ratios of blood may be more
influenced by the proportion of benthic versus
pelagic or inshore versus offshore prey than by latitu-
dinal differences in foraging location. For example,
greater reliance on mesopelagic prey, which are
accessible to birds foraging at night (depending on
their behaviour), and which have greater Hg bur-
dens, could contribute to the negative association
between δ13C ratios and Hg.

Hg variation in the non-breeding season

In the non-breeding season (represented by data
from feathers), species-specific effects explained the

majority of variation in Hg burdens. It is
possible that widening foraging niches,
with concurrent changes in diet, could
explain this pattern. Equally, changing
isotopic baselines as individuals mi-
grate to distant areas (e.g. González-
Solís et al. 2002, Phillips et al. 2005,
2006) could also have reduced our abil-
ity to detect the influence of dietary/
trophic factors on Hg concentrations.

Procellariiformes demethylate orga-
nic Hg, accumulating high concentra-
tions of inorganic Hg in sequestering
tissues such as feathers (Muirhead &
Furness 1988, Wolfe et al. 1998). Thus,
inter-specific variability in capacity to
demethylate organic Hg and/or se-
quester Hg may also explain the lack of
correlation between δ15N and feather
Hg levels. In addition, differences in
moult schedules among species can
play a major role in determining
feather Hg burdens (Furness 1993,
Stewart et al. 1999). Wandering alba-

trosses moult biennially (Prince et al. 1997) and so have
a relatively long period over which to accumulate Hg
internally. Therefore, at the onset of moult, they
‘offload’ more Hg into newly-grown feathers than
other Procellariiformes that moult more frequently,
hence the greatly elevated feather concentrations.
Grey-headed albatrosses also take 2 yr to complete
moult (at least of primary feathers), but have a shorter
breeding season (Prince et al. 1993) and hence a
shorter inter-moult period over which to accumulate
Hg before it can be incorporated into newly-grown
feathers. Hence, moult schedule may well explain why
the differences in feather Hg concentrations between
grey-headed and wandering albatrosses are greater
than would be expected simply from their trophic
separation.

The foraging ranges of breeding birds are restricted
by the need to return to the colony to incubate the egg
or provision the chick. Outside the breeding season,
many species expand their foraging ranges. This is
accompanied by an increase in niche width (as reflec-
ted by increased coefficients of variation in feather sta-
ble isotope ratios relative to blood; Table 2), which
reduces inter- and intra-specific competition (Bearhop
et al. 2004). Variation in the relationship between
feather Hg and stable isotope ratios can also be caused
by changes in diet unrelated to trophic level. These
may include increased feeding on prey with higher Hg
concentrations if birds migrate to more contaminated
areas, on offal and discards (including from demersal
fisheries), or on mesopelagic prey, a known contributor
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Table 4. Parameter estimates for AIC selected model of prey group data 
(LogHg = Group + δ13C + δ15N + Group × δ13C + Group × δ15N + δ13C × δ15N)

Parameter β SE T Signi- 95% confidence interval
ficance Lower Upper 

bound bound

Intercept –10.215 1.768 –5.777 0.000 –13.739 –6.691
Cephalopods 0.340 1.876 0.181 0.857 –3.399 4.080
Crustaceans 8.787 3.427 2.564 0.012 1.957 15.617
Fish 0a

δ13C –0.381 0.088 –4.309 0.009 –0.557 –0.205
δ15N 0.824 0.153 5.369 0.000 0.518 1.130
Cephalopods 0.039 0.079 0.491 0.625 –0.119 0.197

× δ13C
Crustaceans 0.388 0.154 2.517 0.014 0.081 0.695

× δ13C
Fish × δ13C 0a

Cephalopods 0.134 0.067 2.010 0.048 0.001 0.268
× δ15N

Crustaceans –0.211 0.137 –1.536 0.129 –0.485 0.063
× δ15N

Fish × δ15N 0a

δ13C × δ15N 0.036 0.008 4.333 0.000 0.020 0.053

aThis parameter is set to zero because it is redundant
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to elevated Hg intake by seabirds (Thompson et al.
1998a, Monteiro et al. 1999). Thus, dietary switches
between breeding and non-breeding periods can
affect Hg burdens in feathers without necessarily
engendering a comparable shift in isotopic signatures.
Moreover, as individuals move across regions with
radically different nutrient regimes (with consequently
variable δ13C and δ15N baselines), spatial ‘uncoupling’
of isotope and Hg signatures may occur, obscuring the
relationship between the two (Thompson et al. 1998b).
We attempted to minimise this effect by analysing a
random sample of body feathers assumed to be grown
at varying times in the moult cycle. However, a degree
of uncoupling probably remains, and may have con-
tributed to the lack of significant correlation between
feather isotope and Hg values. Nevertheless, it is per-
haps not surprising that an overall ‘species’ effect con-
tributes most to Hg variation in feathers as this variable
essentially integrates a multitude of ecological, be-
havioural, physiological and life-history differences
among taxa. Moreover, among-species differences in
Hg burdens were generally reflective of known forag-
ing ranges, with those foraging at markedly lower lati-
tudes on the continental shelf and shelf slope (which
are more likely to be exposed to elevated Hg contami-
nation) demonstrating unusually high Hg burdens rel-
ative to their trophic position, for example white-
chinned petrels (Phillips et al. 2006), and those known
to forage at higher latitudes (with less likelihood of
contamination) displaying concurrently lower Hg bur-
dens, for example blue petrels (Cherel et al. 2002).

Hg variation in prey

The highest blood and feather Hg concentrations
were found in wandering albatrosses, with feather
concentrations almost 3 times higher than in any other
species (Fig. 1). Such elevated levels are suggestive of
foraging at high trophic levels, which is consistent with
studies indicating that wandering albatrosses feed pre-
dominantly on large squid and to a lesser extent on fish
and carrion (Rodhouse et al. 1987, Xavier et al. 2004).
Onychoteuthidae is the most important squid family,
and Kondakovia longimana is the dominant species in
the diet of breeding birds, although they also consume
Gonatus antarcticus, Martialia hyadesi, Moroteuthis
knipovitchi and M. ingens. K. longimana had high (but
not the highest) Hg levels amongst our prey samples
(Table 1). However, it should be noted that our sample
sizes were relatively low and could include juveniles,
whereas birds feed mainly on mature individuals of
some species (Rodhouse et al. 1987, Xavier et al. 2004).
This agrees with feather isotope signatures, which,
after accounting for fractionation, indicate a high tro-

phic level for typical prey items of wandering alba-
trosses. By comparing isotope ratios and Hg levels in
predators and prey in this way, it is possible to begin to
understand the routes by which particular individuals
and species assimilate high Hg burdens.

Individuals foraging in more contaminated or natu-
rally Hg-rich regions are likely to consume prey with
sometimes inconsistent quantities of Hg in their tis-
sues. This seems to be the case for white-chinned
petrels, which had the highest blood Hg levels of spe-
cies other than grey-headed and wandering alba-
trosses. During the summer, white-chinned petrels
travel frequently to the Patagonian shelf to feed (par-
ticularly during pre-laying and incubation, Phillips et
al. 2006), where it would appear they face greater
exposure to Hg contamination. By contrast, although
female southern giant petrels also visit the Patagonian
Shelf, they tend to forage mainly south of the Polar
Front during incubation (González-Solís et al. 2002),
which may expose them to less Hg. The reason grey-
headed and wandering albatrosses show even higher
levels than white-chinned petrels probably has less to
do with foraging location than with diet, as both feed
heavily on squid (Xavier et al. 2003, 2004), which in
turn often have high Hg burdens, most of which (70 to
90%) is in organic form (Bustamante et al. 2006).
Hence, these species might reasonably be expected to
accumulate more Hg during breeding, irrespective of
moult schedule (see earlier discussion), although con-
firmation of this route of exposure can only come from
further analyses of the total body burden of Hg in prey
species.

Hg concentrations were found to vary among prey
groups (Table 4), and biomagnification clearly plays an
important role, as indicated by the positive association
between trophic position (δ15N) and Hg within and
among groups (Fig. 3a). Foraging location (δ13C) was
also found to be an important determinant of Hg bur-
dens in prey, but displayed more complex patterns
(Fig. 3b). For prey, δ13C is not a particularly useful
proxy for latitudinal distribution, given the confound-
ing effect of differences in distribution both in the
water column (benthic versus pelagic) and in distance
from shore. Indeed, the negative correlation at the
community level confirms that Hg in prey species was
more influenced by these factors than by larger scale
changes across latitudes.

Conclusions

During the breeding season we found that species
was the predominant factor affecting the assimilation
of Hg levels by Procellariiformes, but that trophic posi-
tion was also significant. The relationship between
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trophic position and Hg has been shown to hold across
a community comprised of species foraging at different
trophic levels and spatial scales. However, within spe-
cies patterns were not always consistent with those
observed at the community level. Moreover, during the
non-breeding season, we found that species was the
only factor that significantly explained Hg accumula-
tion in feathers, and no significant effect of trophic
position could be detected. This is probably because of
the influence of numerous other behavioural, ecologi-
cal, physiological and life-history factors.

While feathers appear less useful in determining
trophic/Hg relationships across taxa, future work
might examine disparities in Hg burdens of individuals
of the same species with different moult strategies. For
example, there is the potential to examine the Hg in
feathers from individuals that are successful breeders
compared to those that are not. Moreover, it is not clear
to what extent our findings for Hg can be extrapolated
to other toxic heavy metals or organic pollutants, and
further research is clearly warranted.
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