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The African humid tropical biome constitutes the second largest rainforest

region, significantly impacts global carbon cycling and climate, and has under-

gone major changes in functioning owing to climate and land-use change over

the past century. We assess changes and trends in CO2 fluxes from 1901 to

2010 using nine land surface models forced with common driving data, and

depict the inter-model variability as the uncertainty in fluxes. The biome is esti-

mated to be a natural (no disturbance) net carbon sink (20.02 kg C m22 yr21 or

20.04 Pg C yr21, p , 0.05) with increasing strength fourfold in the second half of

the century. The models were in close agreement on net CO2 flux at the beginning

of the century (s1901 ¼ 0.02 kg C m22 yr21), but diverged exponentially

throughout the century (s2010¼ 0.03 kg C m22 yr21). The increasing uncer-

tainty is due to differences in sensitivity to increasing atmospheric CO2, but

not increasing water stress, despite a decrease in precipitation and increase in

air temperature. However, the largest uncertainties were associated with the

most extreme drought events of the century. These results highlight the need

to constrain modelled CO2 fluxes with increasing atmospheric CO2 concen-

trations and extreme climatic events, as the uncertainties will only amplify in

the next century.
1. Introduction
Covering an area of 2.3 million km2 (as defined by Zelazowski et al. [1]), the African

humid tropical biome comprises 15% of global forests [2–5], yet dominates global

inter-annual variability in terrestrial carbon cycling—about 50% of that from the

global land mass, which is the most out of the pan-tropics, more than the entire

Northern Hemisphere, and approximately as much as all of the oceans over the

twentieth century [6–8]. African tropical rainforests strongly modulate regional cli-

mate, especially precipitation patterns, dominating global tropical rainfall during

the transition seasons, and are tightly connected to global climate [9–13].

Despite its global and regional importance, this region has among the

least environmental observations worldwide [6,13–17]. We have very few
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Figure 1. Map of African humid tropical forest delineation and station
locations (n ¼ 47) within mask used for climate forcing.
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measurements on African humid tropical carbon stocks and

fluxes [18,19], we do not know whether the biome is a net

sink or source of atmospheric CO2, and we have little cer-

tainty as to the climate change response for the region

[6,14]. Atmospheric CO2 flux inversions are subsequently

among the most poorly constrained for this region [20,21].

The region is undergoing major change from land use

and climate. Deforestation in Central Africa is accelerating,

similar to deforestation patterns in the rest of the tropics

[22,23]. The climate response, however, may be disproportio-

nately extreme. The ‘great drought’ that began in the 1960s in

the Sahel lasted well into the 1980s, with 20–40% less preci-

pitation in the 30 years following 1960 relative to before

[24–26]. The drought reached the northern Congo Basin,

which appears to have continued to decline strongly in preci-

pitation (at least in the short term), unlike the rest of the

humid pan-tropics (which have showed little consistent trend

apart from episodic droughts) [9,27–29]. Vegetation and soil

carbon stocks and productivity have been shown to be

highly correlated with annual rainfall in Africa [6]. Compound-

ing this decrease in precipitation, there has been an overall

warming trend in Africa at large [28,30,31]. Given less water

and hotter temperatures, we may expect increasing water

stress to decrease CO2 uptake, and move the biome towards

a net source of CO2 to the atmosphere [27].

Paradoxically, models and measurements have shown

an increase in vegetation productivity and biomass of 0.3–

0.4 Pg C yr21 in the African humid tropics since the 1960s

[6,7,14,18,19,32–34] (compare with deforestation fluxes of

0.1–0.3 Pg yr21 and fossil fuel emissions of 0.04 Pg yr21)

[35,36]. From these studies, water appears not to be the stron-

gest limiting control on plant productivity in the African

humid tropics; rather, plant productivity may be limited by

radiation [32,37,38] or there may be no climatic constraints

to productivity in this biome [39]. The recent increase in

plant productivity has been attributed to the CO2 fertilization

effect [7,14,18,19,28,40–45]. Still, free air CO2 enrichment

(FACE) studies have shown that the CO2 enrichment effect

can be curtailed by nutrient limitation [46–49]—a physical

mechanism not included in most of these modelling stu-

dies [50]. The latest developments of nutrient limitation in

global models have shown a major decrease in the ability of

the terrestrial biosphere to sequester increasing atmospheric

CO2 [51–58].

Given changes in atmospheric CO2 concentration, temp-

erature and water throughout the twentieth century, we ask

how have African humid tropical rainforests responded to

these different climate forcings? Because of the sparseness

of observation networks in the region for this period (apart

from some plots from the AfriTRON network) [18], we rely

on models. However, instead of relying on any one model,

which may or may not represent an outlier to the community

of models that encompass global uncertainty in climate

change [42,59], we take advantage of the development of a

new ‘network of models’, that is, a recent land surface

model intercomparison project (MIP) called TRENDY

(http://dgvm.ceh.ac.uk/node/21), which has united nine

global land surface models through common forcing data

over the period of 1901–2010 [60]. This extends a previous

CarboAfrica Model InterComparison (CAMIC) project [37]

that used four of these models over Africa for 1982–2006

(see also [61]). We are therefore able to add sophistication

to our driving question, and ask how the net CO2 flux
uncertainty—as defined by the model–model convergence/

divergence—varies over this space and time domain.
2. Methods
The nine global land surface models from the TRENDY MIP

include: CLM4-CN [55], HYLAND [62], LPJwsl [63], LPJ-

GUESS [64], OCN [56], ORCHIDEE [65], SDGVM [66], TRIFFID

[67] and VEGAS [68]. Model output for TRENDY was down-

loaded from: http://www-lscedods.cea.fr/invsat/RECCAP/.

Output from multiple versions of the same model was some-

times available; in these cases, we used output only from the

most recent version. We primarily used the version S2 runs,

which correspond to simultaneously meteorological forcings

and atmospheric CO2 concentration variation following twenti-

eth century increases, with disturbance turned off and a

constant land-use mask; this version represents the ‘natural’

state and change of the system. We also used version S1, which

varies only CO2, to evaluate sensitivities to CO2 and climate.

The TRENDY models were driven primarily with CRUþ
NCEP climate forcing data for 1901–2010 [60], downloaded

at http://dods.extra.cea.fr/data/p529viov/cruncep/ through

http://dgvm.ceh.ac.uk/node/9 [69–72]. The CRUþNCEP data

are a combination of two existing datasets: (i) Climate Research

Unit (CRU) TS.3.1 0.58� 0.58 monthly climatology covering the

period 1901–2009; and (ii) US National Oceanic and Atmosphe-

ric Administration (NOAA) National Centers for Environmental

Prediction (NCEP) and National Center for Atmospheric

Research (NCAR) reanalysis 2.58� 2.58 6-hourly climatology

covering the period 1948–near real time.

CRU TS.3.1 data were based on observed monthly mean temp-

eratures and precipitation (among other variables) interpolated

from more than 4000 weather stations distributed around the

world. Station abundance in our study region was n ¼ 47, though

most were located closer to the coast rather than more inland into

the Congo basin (figure 1). NCEP/NCAR reanalysis I data were

created by assimilation into a climate model of meteorological

observations from ships, satellites, ground stations, radar and

the Rawinsonde observation programme. Input variables for the

TRENDY models included: incoming longwave radiation, incom-

ing shortwave radiation, total precipitation, air temperature,

pressure, air-specific humidity, zonal wind (u) component and

meridional wind (v) component. Incoming solar radiation was cal-

culated from CRU-provided cloudiness, date and latitude; likewise,

relative humidity was converted to specific humidity as a function

of temperature and surface pressure (http://dods.extra.cea.fr/

data/p529viov/readme.htm). For the CRUþNCEP merged
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Figure 2. Mean annual African humid tropical net CO2 flux (negative is carbon sink) from nine dynamic global vegetation models in the TRENDY model inter-
comparison project.
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dataset, climate data between 1948 and 2009 were based on CRU

climatology, with NCEP used to generate the diurnal and daily

variability. NCEP data were bi-linearly interpolated to the 0.58 �
0.58 CRU resolution for all fields except precipitation. Data for

before 1948 and after 2009 were extrapolated from the CRU–

NCEP statistical relationships for during 1948–2009. Atmospheric

CO2 data were sourced from ice core þ NOAA annual resolution

for 1860–2010.

Model output variables assessed included: net biome pro-

duction (NBP), gross primary production (GPP), heterotrophic

respiration (Rh), autotrophic respiration (Ra), ecosystem respir-

ation (Re) and net primary production (NPP). The models

provided inconsistent and different combinations of variables,

but enough variables so that those missing could be calculated.

We calculated NPP for LPJ-GUESS from the available GPP

minus Ra. We calculated Ra for HYLAND, ORCHIDEE and

VEGAS from the available GPP minus NPP. We calculated Re

from available Ra plus Rh (CLM4-CN, LPJ-GUESS, LPJ, OCN,

SDGVM, TRIFFID) or NBP minus GPP (HYLAND, ORCHIDEE,

VEGAS). HYLAND reported net ecosystem production (NEP),

which we assume equal to NBP, though we note that technically

NBP should include an additional flux from fire and other dis-

turbance as well as lateral carbon transport that NEP would

not include. HYLAND was reported in opposite sign for NEP

so we reversed the sign. The models reported different time

units (VEGAS in per years, LPJwsl in per months, all others in

per seconds), so we converted all model results to per year.

We created a half-degree mask of the African humid tropics

(figure 1; area ¼ 2 312 749 km2) used to clip from the global

model output, following Zelazowski et al. [1] for consistency

with the previous analyses. We transformed the mask to match

the relative varying native spatial resolutions of the models.

We produced annual means for each of the variables by aver-

aging the available 6-hourly model output and preserving the

native spatial resolution for each model. For climate attribution,

we selected the dominant driving variables that have undergone

relatively large twentieth century shifts, i.e. precipitation and air

temperature. We calculated trend correlations—that is, we did

not remove trends to assess de-trended variability, as is often

done—as we were more interested in what drives trends rather

than inter-annual variability, though we additionally include a

complementary analysis of inter-annual variability. We defined

‘uncertainty’ as inter-model standard deviation. We compared

two time periods for pre- and post-1968, as defined as the start

of the ‘great drought’ in the Sahel, which we test for extension

into the humid tropics.

To assess the model sensitivity of the terrestrial carbon cycle,

we follow the ‘feedback analysis’ approach of Friedlingstein

et al. [42] for their uncoupled simulations. That is, the change

in land carbon storage sensitivity to change in atmospheric
CO2 concentration may be formulated as:

DCu
L ¼ bLDCu

A; ð2:1Þ

where DCu
L is the change in land carbon storage in the uncoupled

simulation arising from an increase in atmospheric CO2 con-

centration of DCu
A, and bL is the land carbon sensitivity to

atmospheric CO2. Friedlingstein et al. use equation (2.1) to show

the cumulative absolute change in land carbon storage from each

of the uncoupled C4 MIP runs against atmospheric CO2 concen-

tration for uncoupled simulations, which we also follow. To

isolate the impact from ‘climate change’, Friedlingstein et al. give

the following equation, which we adapt from their coupled runs:

DCu
L ¼ bLDCu

A þ gLDTc; ð2:2Þ

where gL is the land carbon sensitivity to climate change with

temperature increase of DTc. Subtracting equation (2.1) from

equation (2.2):

gL ¼
DCclim

L

DTc
; ð2:3Þ

which can isolate the ‘climate alone’ impact on land carbon uptake.

The resultant analysis shows the cumulative net CO2 flux over the

twentieth century as the standard deviation between the models

(e.g. uncertainty) forced with CO2 alone (e.g. TRENDY version

S1), forced with varying CO2 þ climate (e.g. TRENDY version

S2), and the difference between the two, which is the impact of cli-

mate alone.
3. Results
The African humid tropics are estimated to be an overall

significant natural (i.e. no disturbance) net carbon sink from

1901 to 2010, with a multi-model (nine) mean net CO2 flux

of 20.018+0.009 kg C m22 yr21 or 20.04+0.02 Pg C yr21

( p , 0.05; figure 2). The individual model largest carbon

sinks came from ORCHIDEE, OCN and HYLAND

(20.03 kg C m22 yr21; table 1). LPJwsl was a non-significant

overall carbon source (0.003 kg C m22 yr21). The multi-

model sink strength increased by 4.3� post-1968 (pre-1968:

20.008 kg C m22 yr21; post-1968: 20.035 kg C m22 yr21).

Apart from the edges, there was little spatial variability in

the multi-model net CO2 flux for the biome (figure 3a–c).

The component fluxes (GPP, NPP, Ra, Rh and Re) tended

to display distinct stratification with little to no overlap

among models (see the electronic supplementary material,

figure S1). Overall, GPP was largest, followed by Re, then

Ra, NPP and Rh.



Table 1. Decadal averaged net CO2 flux (kg C m22 yr21) per model and multi-model ensemble standard deviation for African humid tropics.

CLM4-

CN HYLAND

LPJ-

GUESS LPJwsl OCN ORCHIDEE SDGVM TRIFFID VEGAS

ensemble

s.d.

1901 – 1910 20.018 20.010 20.010 20.036 20.015 20.006 20.001 20.013 20.011 0.014

1911 – 1920 0.005 20.011 20.006 20.002 20.014 20.007 20.011 20.011 20.006 0.019

1921 – 1930 0.002 20.015 20.008 0.001 20.024 20.019 20.007 20.017 20.005 0.018

1931 – 1940 20.002 20.017 20.001 0.034 20.021 20.009 20.005 20.008 20.003 0.023

1941 – 1950 0.003 20.011 0.005 0.061 0.002 20.005 0.000 0.012 0.010 0.027

1951 – 1960 20.016 20.021 20.009 0.021 20.025 20.017 20.006 20.034 0.002 0.023

1961 – 1970 20.038 20.023 20.026 0.001 20.031 20.027 20.018 20.017 20.012 0.026

1971 – 1980 0.000 20.031 20.034 0.000 20.063 20.058 20.031 20.058 20.021 0.029

1981 – 1990 20.010 20.040 20.042 20.014 20.065 20.063 20.029 20.036 20.005 0.033

1991 – 2000 0.006 20.049 20.022 0.011 20.046 20.068 20.050 20.031 0.002 0.039

2001 – 2010 20.055 20.061 20.044 20.048 20.043 20.095 20.073 20.028 20.001 0.032

1901 – 2010 20.011 20.026 20.018 0.003 20.031 20.034 20.021 20.022 20.005 0.026

–0.06

(a)

(b)

(c)

0.06

–0.06 0.06

net CO
2 
flux (kg C m–2 yr–1)

net CO
2 
flux difference (kg C m–2 yr–1)

Figure 3. Multi-model (nine) mean net CO2 flux in the African humid tropics:
(a) 1901 – 1967; (b) 1968 – 2010; (c) 1968 – 2010 minus 1901 – 1967.
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The models were in relatively close agreement on the net

CO2 flux in the beginning of the century and prior to the onset

of the ‘great drought’ (s1901–1967¼ 0.021 kg C m22 yr21, increas-

ing 0.00017 yr21, p , 0.05; s1968–2010 ¼ 0.033 kg C m22 yr21,

increasing 0.00020 yr21, p , 0.05), but diverged from one

another exponentially throughout the century (1 � 1029e0.01x;

r2¼ 0.41, p , 0.05; figure 4). Uncertainty was 15% greater post-

1968 relative to pre-1968, and 35% greater in 2010 than in 1901

(s1901¼ 0.019 kg C m22 yr21; s1910¼ 0.029 kg C m22 yr21).

We show a significant ( p , 0.05) decrease in precipita-

tion (figure 5a) post-1968 in the African humid tropics. Mean

precipitation from 1901 to 1967 was 1656+9 mm yr21,

whereas mean precipitation from 1968 to 2010 was 1625+
10 mm yr21. The post-1968 precipitation, while lower, was

still relatively large—too large still to be considered a drought.

Precipitation uncertainty near the equator globally is estimated

to be approximately 30 mm [69], which is within a few % of

the trend we observed, so had little effect on the statistical

significance. While the overall spatially averaged biome

showed a marginal decrease in precipitation, the explicit

spatial patterns of precipitation change showed significant

areas of precipitation decrease, particularly in the north;

these were offset biome-wide by precipitation increases in

the east and southwest (see the electronic supplementary

material, figure S3a–c), similar to climate projections for the

region [73].

Near surface air temperature was significantly ( p , 0.05)

hotter post-1968 in the region, though only marginally

(figure 5b). Mean air temperature from 1901 to 1967 was

24.56+0.028C; from 1968 to 2010, mean air temperature was

24.71+0.058C, but increasing significantly ( p , 0.05) at

0.028C yr21. Temperature uncertainty near the equator glob-

ally is estimated to be 18C [69], which is within a few %

of the trend we observed, so had little effect on the statistical

significance. The temperature rise was greatest post-1980.

The brief elevated temperature in the 1940s was due to one

of the strongest El Niños of the century, which caused one of

the highest anomalous air temperatures of the century in the

Southern Hemisphere [74]. Air temperature primarily

increased in the east and south of the biome, with little

change in the northwest (see the electronic supplementary

material, figure S3d–f).
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We assessed which climatic and environmental factors

influenced the model uncertainty. The differences between

models are due to differences in sensitivities to climate forcings,

rather than, for example, treatment of disturbance and land

use, which were turned off in this analysis so as to focus on

the natural ecosystem change to climate. The factor most cor-

related with the trend in net CO2 flux uncertainty was the

trend in increasing atmospheric CO2 concentration (r2¼ 0.31,

p , 0.05). OCN, ORCHIDEE and HYLAND were the most

sensitive to CO2, whereas VEGAS, CLM4-CN and LPJwsl

were the least sensitive.

Second to CO2 was the trend in air temperature, which was

weakly correlated with the trend in net CO2 flux uncertainty

(r2¼ 0.10, p , 0.05). This is primarily because the air tempera-

ture variation was relatively small; hence, the models were

insensitive to air temperature in the region following the

feed-back analysis (data not shown). The elevated temperature

in the 1940s, for example, did not greatly impact the net CO2

flux uncertainty.

The trend in precipitation was not correlated with the

trend in net CO2 flux uncertainty, though the two largest
precipitation minima of the century (in 1913 and 1997), and to

a lesser extent the minimum in 1983, corresponded with the lar-

gest increases in net CO2 flux uncertainty. This result cannot be

understated given an expected increase in the number of

extreme climate events in the twenty-first century [59].

The change in climate alone moved the African humid

tropical biome towards an increasing net carbon source, as

temperatures increased and precipitation decreased, though

also with increasing uncertainty (figure 6). However, the

change in CO2 alone was a stronger driver of the biome

towards an increasing net carbon sink, with moderately

increasing uncertainty relative to that from climate. The

uncertainty from climate alone at the beginning of the

twenty-first century was 32% greater than that from CO2

alone. The strength of CO2 fertilization outweighed that

from changing climate, so that the combined effect led to a

net overall carbon sink.

The inter-annual variability of air temperature, precipi-

tation and net CO2 flux uncertainty illustrates the temporal

influences of the magnitude changes of the climatic variables

on the magnitude change of the net CO2 flux uncertainty
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(figure 7). It appears from figure 7 that there may be synergis-

tic interactions between precipitation and air temperature,

and their combined effect on net CO2 flux uncertainty, and

a multiple regression integrating the two climatic variables

yields a somewhat improved r2 of 0.17 (from 0.10 for air

temperature alone). Including atmospheric CO2 concentration

in the multiple regression increases the r2 to 0.35 (from 0.31

for atmospheric CO2 concentration alone). Integration of

these drivers into an artificial neural network resulted in an

equivalent r2 of 0.34, so no further structural explanation

was found through these statistical approaches for the net

CO2 flux uncertainty.
4. Discussion
Our analysis highlights three key results for the African

humid tropics over the twentieth century in response to chan-

ging climate from nine land surface models: (i) the biome has

been a natural net carbon sink, the strength of which

increased over the century; (ii) uncertainty in the strength

of the net carbon sink grew increasingly large throughout

the century; and (iii) the trend in that uncertainty was largely

related to increasing atmospheric CO2, not increasing water

stress, though maxima were observed with the largest

drought events.

As noted also in other modelling studies [7,14,17,37], as

well as in an extensive ground survey by Lewis et al. [18], the

influence of CO2 fertilization drove the biome towards an

increasing net carbon sink. Lewis et al. measured an increase

in aboveground carbon storage of 0.063 kg C m22 yr21 from

1968 to 2007, which is remarkably in the same order of magni-

tude as the multi-model carbon sink of 0.047 kg C m22 yr21 for

the same period in this study, especially given entirely different

estimation approaches, inexact spatial overlap and simplifica-

tion of a very complex biome by the models. The models

vary in how CO2 is allocated to wood, which has a long resi-

dence time and would show a greater biomass increase

for the same unit increase in GPP relative to models that allo-

cate NPP more towards pools with fast turnover times such

as fine roots and leaves. Moreover, the uptake estimate of

Lewis et al. is nearly identical to that from SDGVM
(0.064 kg C m22 yr21). The multi-model mean C uptake is

reduced primarily owing to the contribution from VEGAS,

which estimated a net C loss, rather than gain, during that

time period; removal of VEGAS from the multi-model mean

changes the C uptake to 0.054 kg C m22 yr21.

Still, in general, the models estimated less C uptake than

did Lewis et al., though with assumptions and biases in both

the measurement and modelling approaches it is difficult to

pinpoint the reasons behind the difference. Lewis et al. offer

a number of hypotheses to explain their large C uptake, lean-

ing towards changing resource availability and possibly

species-specific advantages, though with nothing as of yet

conclusive. It is possible that the models should be even

more sensitive to CO2 fertilization than they already are, at

least in this region, responding to the notion that in relatively

species-rich areas some species may find CO2 fertilization

particularly advantageous, and drive the whole biome

towards a stronger carbon sink. Supporting this concept is

observational evidence from Fauset et al. [29], who showed

that biomass increased in Ghana from a shift in species com-

position, though the shift was related to the ‘great drought’

rather than CO2 fertilization.

Unlike exponentially rising atmospheric CO2, the CO2 fer-

tilization effect on vegetation may not increase exponentially,

instead decelerating with nutrient limitation [46,48,49,51–58].

In our study, most of the models do not have nutrient limit-

ation mechanisms implemented; however, three do—

SDGVM, CLM4-CN and OCN, the latter of which may be

directly comparable with ORCHIDEE from which OCN is

derived. Throughout the century, OCN generally tracked

ORCHIDEE, which estimated the overall largest net carbon

sink, but OCN departed significantly from ORCHIDEE in the

past decade (sOCN-ORCHIDEE,1901– 2000¼ 0.011 kg C m22 yr21;

sOCN-ORCHIDEE,2001–2010¼ 0.039 kg C m22 yr21), aligning more

similarly to CLM4-CN (sOCN-CLM4-CN,2001–2010¼

0.017 kg C m22 yr21).

These patterns suggest that the CO2 fertilization effect

may or has already begun to decrease in strength, though

this would emerge more apparently as models start to inte-

grate nutrient cycles. African rainforests may be moderately

nutrient limited [47]. The difference in treatment of the CO2

fertilization effect is the primary reason for the increasing

uncertainty in net CO2 flux throughout the twentieth century.

Acclimation to high CO2 is not incorporated in most models,

nor are there any in situ CO2 enrichment experiments in tro-

pical forests with which to compare with models [75]. The

tropical forest carbon sink has the largest uncertainty of all

forests worldwide [34]. To help reduce the uncertainty,

models need to integrate nutrient cycling, which would

limit sensitivity to the CO2 fertilization effect particularly

moving forward into the twenty-first century. Further assess-

ment of in situ observations of C uptake is needed to

constrain the magnitude and drivers of C uptake. Moreover,

experimental data are needed to assess CO2 acclimation in the

humid tropics, e.g. a tropical FACE experiment, as well as

warming to confront models. Finally, the climatic forcing

data for the region need to have better quantification of

uncertainties, though presumably the climatic forcing data

have increased in robustness through time, thereby tighten-

ing our confidence on the increasing model divergence.

Despite the strong decrease in precipitation post-1968

related to the ‘great drought’ in the Sahel, we found only a

marginal decrease in precipitation overall for the African
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humid tropics (particularly for the northern part of the

biome) [9] and little impact of water stress for our study. Cer-

tainly, parts of the biome were more impacted than others

(see the electronic supplementary material, figure S3a–f ), so

averaging over a heterogeneously impacted area reduces

the drought signal. Still, the reduction in precipitation and

increase in temperature were sufficiently small enough not

to produce a strong signal. Water stress would have mani-

fested itself in GPP, because CO2 uptake should be

controlled by stomatal conductance/resistance, which is

controlled by water stress [76]. However, we found no

relationship between GPP uncertainty and net CO2 flux

uncertainty. In a recent study on ORCHIDEE in Africa,

Traore et al. [17] found that GPP increased over the past 30

years even though soil moisture decreased, and that there

was no relationship between precipitation and GPP variabil-

ity in Central Africa (see also [16]), which supports our

conclusions. Moreover, even with decreased precipitation,

the African humid tropical region has persistent cloud

cover and lower rates of evapotranspiration relative to, for

example, Amazonia, so soil moisture remains at non-stress

levels [77]. Further, if similar to Amazonia, then African
humid tropical forests may also be deep rooted and able to

withstand droughts [78].

Although there was a lack of response to the overall small

drying trend in the humid African tropics, the greatest uncer-

tainties resulted from direct response to the largest drought

events throughout the twentieth century. The model diver-

gence is linked to differences in soil moisture response

thresholds across models. The potential decreasing CO2 ferti-

lization strength may soon be outpaced by an increasing

climate response (figure 6). With extreme climatic events

expected to increase in the next century [59], it will be critical

that improvement to land surface models focuses on repre-

senting the land response to these extremes accurately.
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