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Abstract 1 

Acidification of lakes and rivers is still an environmental concern despite reduced emissions of 2 

acidifying compounds. We analysed trends in surface water chemistry of 173 acid-sensitive sites from 3 

12 regions in Europe and North America. In 11 of 12 regions, non-marine sulphate (SO4*) declined 4 

significantly between 1990 and 2008 (-15% to -59%). In contrast, regional and temporal trends in 5 

nitrate were smaller and less uniform. In 11 of 12 regions, chemical recovery was demonstrated in the 6 

form of positive trends in pH and/or alkalinity and/or acid neutralizing capacity (ANC). The positive 7 

trends in these indicators of chemical recovery were regionally and temporally less distinct than the 8 

decline in SO4*, and tended to flatten after 1999. From an ecological perspective, the chemical quality 9 

of surface waters in acid-sensitive areas in these regions has clearly improved as a consequence of 10 

emission abatement strategies, paving the way for some biological recovery. 11 

 12 

 13 

 14 

Keywords: acid deposition; surface waters; trend analysis; monitoring network; chemical recovery 15 

 16 

 17 

18 
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1. Introduction 19 

Over the past 30 years, acid atmospheric deposition (often referred to as“acid rain”) has 20 

received considerable attention as an international environmental problem in Europe and 21 

North America (Likens et al. 1979). Polluted air masses containing sulphur and nitrogen 22 

compounds travel long distances across national boundaries. Acidifying compounds thus 23 

affect surface waters, groundwaters and acid sensitive soils far beyond their country of origin. 24 

Acidification of the environment has lead to fish death and extinction of fish populations 25 

(Haines and Baker 1986), soil acidification (Matzner and Murach 1995), and reduced forest 26 

vitality (Fischer et al. 2007). Recently, deposition of reactive nitrogen has also been shown to 27 

pose a threat to remote terrestrial and aquatic ecosystems through nutrient enrichment (Lepori 28 

and Keck 2012; Stevens et al. 2011; Phoenix et al. 2012). 29 

The Convention on Long-Range Transboundary Air Pollution (CLRTAP) came into effect in 30 

1983 to control air pollutant emissions in Europe and North America, and thereby improve 31 

the environmental status of natural ecosystems. Under the CLTRAP, international cooperative 32 

monitoring programmes were initiated to assess the impact of atmospheric pollution on 33 

ecosystems. For surface waters, the International Cooperative Programme on Assessment and 34 

Monitoring Effects of Air Pollution on Rivers and Lakes (ICP Waters) has been an important 35 

contributor documenting the effects of the implemented Protocols under CLRTAP since 1985 36 

(Kvaeven et al. 2001). 37 

The ICP Waters programme is designed to assess, on a regional basis, the degree and 38 

geographical extent of acidification of surface waters. The collected data provide information 39 

on dose/response relationships for a wide range of acid-sensitive lakes and streams under 40 

varying deposition regimes by correlating changes in acidic deposition with the physical, 41 

chemical and biological status of lakes and rivers. Data collected by various monitoring 42 

schemes are integrated and interpreted, and inter-laboratory quality control systems are run to 43 

ensure data are comparable across participating countries. Previous trend analyses of ICP 44 

Waters data on surface water chemistry have provided important indications of the geographic 45 

extent of acidification and recovery of lakes and streams for the 1980s (Newell and Skjelkvåle 46 

1997), the 1980s and 1990s (Stoddard et al. 1999), and up to the start of 2000 (Skjelkvåle et 47 

al. 2005; Skjelkvåle et al. 2001). Early assessments provided little evidence for chemical 48 

recovery during the 1980s. Subsequently, however, patterns of widespread chemical recovery 49 
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became clear during the 1990s, as indicated by reduced sulphate (SO4) concentrations and 50 

increases in pH and alkalinity. The reduction in sulphur deposition is considered to be the 51 

main driver of the improved acidification status of surface waters and is also substantiated by 52 

catchment input – output budgets (Prechtel et al. 2001) and acidification models (Jenkins et 53 

al. 2003).  54 

Whether continued reduction in emissions of sulphur and nitrogen will lead to further 55 

improvement of surface water quality in acid-sensitive regions, sufficient to sustain biological 56 

recovery, depends on a number of factors (Wright et al. 2005). In some regions, base cations 57 

have declined at a similar or greater rate than SO4, preventing chemical recovery (Skjelkvåle 58 

et al. 2005; Stoddard et al. 1999). Catchments continue to be enriched by nitrogen deposition 59 

with possible consequences for enhanced leaching of nitrate (NO3) (Curtis et al. 2005; 60 

Moldan et al. 2006; Oulehle et al. 2008; Stoddard et al. 2001), especially under climate 61 

change. Additionally, widespread increases in concentrations of dissolved organic carbon 62 

(DOC) have also been documented and related to changes in atmospheric chemistry, most 63 

prominently the decline in sulphur deposition (Monteith et al. 2007). The increase in DOC 64 

may dampen expected reductions in acidity as humic substances are naturally acidifying 65 

agents (Erlandsson et al. 2011). Thus, ground truth data on the environmental status and 66 

recovery of acid-sensitive surface waters remain important for assessing the effects of 67 

emission controls.  68 

Here, we report trends in key variables of surface water chemistry from 173 monitoring sites 69 

from 1990 to 2008. Trends for individual sites, as well as aggregated trends by regions are 70 

presented.  71 

2. Methods 72 

2.1 Selection of variables 73 

The analysis of surface water response to changing deposition comprises variables that are 74 

sensitive to acidification and recovery:  75 

 Non-marine SO4 and NO3 are strong acid anions. As ICP Waters sites are selected to 76 

be remote from the influence of direct terrestrial pollution, elevated concentrations 77 

largely reflect the combined effects of recent trends in deposition and ecosystem 78 
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responses. The nitrogen acidification ratio (NAR), defined as the ratio of equivalent 79 

concentrations of NO3 to the sum of NO3 and SO4, is used to indicate the relative 80 

importance of nitrogen as a driver for acidification. 81 

 Non-marine base cations are mobilised by geological weathering and cation exchange 82 

reactions that neutralise acids in watersheds, and their concentrations will therefore be 83 

influenced by changes in acid deposition. Base cations will respond indirectly to 84 

changes in SO4 and NO3. The sum of non-marine Ca and Mg equivalents comprise the 85 

major fraction of non-marine cations at the majority of acid-sensitive monitoring sites, 86 

and was therefore used as a surrogate for total non-marine base cation concentration. 87 

 pH, measured alkalinity and calculated acid neutralizing capacity (ANC), reflect the 88 

outcome of interactions between changing concentrations of acid anions and base 89 

cations. Alkalinity is measured by titration and indicates the capacity of the water to 90 

buffer acidic inputs. ANC, calculated from sum of base cations (Ca+Mg+Na+K) 91 

minus the sum of acid anions (SO4+Cl+NO3), is an approximate surrogate for 92 

alkalinity in waters with relatively low concentrations of DOC. For waters where DOC 93 

is higher, alkalinity is normally significantly lower than ANC. 94 

 The concentration of dissolved organic carbon (DOC) (i.e., the fraction passing 95 

through a filter typically with a pore size of 0.45 µm) is considered as a surrogate for 96 

organic acids, mostly derived through degradation of natural organic matter in 97 

catchment soils. The Nordic countries report total organic carbon (TOC), but we do 98 

not discuss these results separately as the dissolved fraction is expected to be large (> 99 

90 percent) in most of the samples. 100 

Both SO4 and base cation concentrations were sea-salt corrected by subtracting the marine 101 

contribution estimated from the ratio of the ion to Cl in seawater (Lyman and Fleming 1940). 102 

Non-marine ions are hereafter denoted by an asterisk (SO4*, Ca*+Mg*). Water pH was 103 

transformed to H
+
 concentration (assumed to be equal to activity), prior to statistical analysis. 104 

2.2 ICP Waters sites selected for trend analysis 105 

ICP Waters data are provided by national and provincial monitoring programmes in the 106 

participating countries. Sampling frequencies, analytical methods, lengths of record, and site 107 

sensitivity to acidification vary between and within programmes. It was therefore necessary to 108 
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define criteria for inclusion of data in the analysis and comparison of trends among sites. Sites 109 

were selected if:  110 

1. data were available for at least 14 out of 19 years between 1990 and 2008 111 

2. data were available for at least 7 years between 1990 and 1999 and at least 7 years 112 

between 1999 and 2008 (i.e. 1999 was included in both periods in order to be able to 113 

compare  trends from two time spans of 10 years length with just 19 years of data 114 

available) 115 

3. they were sensitive to acidification (ANC < 300 µEq/L and/or alkalinity < 300 µEq/L)  116 

4. they had relatively undisturbed catchments (i.e. no known point sources of pollution, 117 

agricultural influence or commercial forestry) 118 

 119 

The number of sites that met the criteria ranged from 132 for DOC to 173 for SO4* (Table 1, 120 

Fig. 1), i.e. availability of data (criteria 1 and 2) was considered for each parameter in 121 

isolation and sites did not have to meet the data criteria for all parameters in order to be 122 

included.  123 

For the purpose of regional comparison, sites are grouped into geographic regions which, 124 

where necessary, were constrained by attributes including similar acid-sensitivity (e.g., 125 

similar geology, soil characteristics) and rates of deposition (Fig. 1). The list of regions on 126 

which we report is based on scientific and pragmatic decisions resulting from availability of 127 

data. Thirteen sites from Ontario, that do not contribute to the ICP Waters database, were 128 

nevertheless included in order to provide a sufficient number of sites to justify analysis as a 129 

separate region. 130 

2.3 Analytical methods and quality assurance of data 131 

Standardization of sample collection and analytical methodologies is addressed in the ICP 132 

Waters Programme Manual (ICP Waters Programme Centre 2013, http://www.icp-waters.no). 133 

Aspects of site selection, water chemistry/biological monitoring and data handling are also 134 

described in detail in the manual. Each country is responsible for sampling and analytical 135 

work and the data are submitted to the ICP Waters database hosted by NIVA. 136 
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Three levels of quality control of the data are distinguished: in-laboratory controls in 137 

individual countries, between-laboratory controls (intercomparisons) and a technical quality 138 

control before data are entered into the database. The last step includes looking for outliers, 139 

evaluation of continuity in time series and calculation of ionic balance. 140 

2.4 Statistical methods used for trend analysis 141 

Statistical analyses were performed on annual means only. The sampling frequency per 142 

station varied from a single annual sample for some lake sites, to weekly sampling, and the 143 

frequency of observations for some stations differed between years. For each site, the annual 144 

arithmetic mean for each parameter was calculated, thus minimising the effect of variable 145 

sampling frequency on the ability to detect trends. Seasonality in the data could affect the 146 

annual mean but not the choice of statistical test.  147 

The Mann Kendall test (MKT) (Hirsch and Slack 1984) was used to evaluate temporal trends 148 

of solute concentrations. This method is robust against outliers, missing data and does not 149 

require normal distribution of data. The method was used to determine monotonic trends 150 

based on the values of the test statistic (Z-score). Slopes were calculated using the Sen 151 

estimator (Sen 1968).  152 

We compiled the results of the MKT for the individual sites and calculated the total number 153 

of “increasing”, “decreasing” and “no trend” occurrences for each parameter. This procedure 154 

is not strictly valid because the risk of falsely rejecting null hypotheses increases when 155 

individual results are summed. However, if each test is regarded as a Bernoulli trial with a 156 

success probability of 0.05, the total number of false rejections can still be expected to be 157 

relatively low. We therefore assume that the compilation of MKT results by region gives a 158 

good overview of trends in the data. 159 

While the significance of sums of individual MKT tests are questionable from a statistical 160 

viewpoint, the slopes calculated for multiple sites within a region represent a distribution of 161 

results, which can in turn be examined and analysed for patterns. The non-parametric 162 

Wilcoxon test was used to test for different distributions of slopes (calculated with the Sen 163 

slope estimator) between two time periods of 10 years, i.e. 1990-1999 and 1999-2008 (1999 is 164 

included in both periods). The sites were grouped in the regions used for the regional trend 165 
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analysis (see below), and all sites that met the criteria (see above), were included in the 166 

analysis. The time intervals were chosen to minimise overlap between the time spans. 167 

Regional trends in the data were assessed using the Regional Kendall Test (Helsel and Frans 168 

2006), which provides median slopes and a p-value for the trend’s significance. The Regional 169 

Kendall Test has similar strengths as the MKT, and does not require normal distribution of the 170 

data. 171 

3. Results and discussion 172 

3.1 Trends in individual sites 173 

Patterns and qualitative results of the trend analyses for individual sites are summarised in 174 

Table 1. A significant decrease in SO4* concentration was observed at 87 % of sites; no 175 

significant increases were observed. Most sites (81 %) had no trend in NO3 concentration, but 176 

most trends for the remaining sites were negative. A decreasing trend in non-marine base 177 

cations (Ca+Mg)
*
 was observed at 55 % of the sites. A majority of sites did not show trends 178 

in NAR, alkalinity, ANC, DOC, or H
+
 concentration. However, increasing trends in NAR, 179 

alkalinity, ANC, and DOC were more common than decreasing trends, while the opposite was 180 

true for H
+
 concentration.  181 

3.2 Trends in sulphate by region 182 

Concentrations of SO4* decreased significantly in all regions included in this analysis, except 183 

Virginia Blue Ridge in North America (Fig. 2, Tables 2 and 3). Previous trend analyses 184 

(Skjelkvåle et al. 2005; Stoddard et al. 1999) have shown similar regional patterns. In most 185 

catchments, responses of aquatic SO4* concentrations appear to respond rapidly to changes in 186 

atmospheric inputs of SO4* (Prechtel et al. 2001) because of limited capacity of the soil to 187 

adsorb SO4. However, in the Virginia Blue Ridge region, deeply weathered soils with a large 188 

capacity to adsorb SO4 delay the response (Church et al. 1990), and the three sites follow the 189 

pattern revealed by a more comprehensive assessment of streams in the region (Stoddard et al. 190 

2003). Soils with large sulphur adsorption capacity also occur at stations from the Harz and 191 

Fichtel mountains in Germany (West and East Central European region, respectively), where 192 

again there is little evidence for reductions in surface water SO4 despite decreasing rates of 193 
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acidic deposition (see Alewell et al. 2001 for more detailed descriptions). A delayed response 194 

in surface waters can be caused by release of previously deposited sulphur stored in wetland 195 

and/or forest soils (see Mitchell et al. 2011 for a discussion of this and other potential 196 

confounding factors). Such release can affect surface water trends in SO4* as well as pH and 197 

ANC. 198 

The largest rates of decline in SO4* concentration were observed in Europe (Table 2), and 199 

especially in South Nordic region. Trends in most regions tended to be more gradual in the 200 

second decade, but only differed significantly in Vermont/Quebec and Ontario (Table 4). 201 

Trend analyses of SO4 in precipitation have indicated substantial decreases of sulphur 202 

deposition, especially in the areas that previously received the highest loads (Tørseth et al. 203 

2012). Regional and temporal patterns in changes of SO4* in surface water in North America 204 

and Europe were similar to those observed in precipitation, indicating that reduced deposition 205 

of sulphur has been the main driver of decreasing SO4* concentrations in surface waters.  206 

3.3 Trends in nitrate by region 207 

The regional and temporal patterns in NO3 concentration were more varied than for SO4* 208 

(Fig. 2). Even so, NO3 concentrations were found to be decreasing in 7 of the 12 regions 209 

(Tables 2 and 3). The Alps was the only region that showed increasing concentrations. 210 

However, in the Alps as well as in the North Nordic, and Maine/Atlantic Canada regions, 211 

slopes were significantly smaller for the period 1999-2008 than 1990-1999 (Table 4) and 212 

appear to have leveled out or changed from positive to negative (Fig. 2, see also Tables S1 213 

and S2 in supporting information). The results for Vermont/Quebec and possibly West 214 

Central Europe indicate that the opposite has occurred in these regions. 215 

While reduced deposition of sulphur is the main driver behind the extensive decline of 216 

freshwater SO4*, the controls of NO3 concentration are complex as a result of the 217 

biogeochemical cycling of nitrogen in soils. Factors that have been invoked to explain trends 218 

include changes in deposition of nitrogen (Curtis and Simpson 2014; Oulehle et al. 2008; 219 

Rogora et al. 2012), progressive N saturation (Curtis et al. 2011) and changes in snow cover 220 

(Brooks et al. 1999; De Wit et al. 2008) and temperature (Brookshire et al. 2011; Monteith et 221 

al. 2000). Furthermore, insect attack on vegetation can cause large temporal variation in NO3 222 

concentration as observed in sites from Blue Ridge Mountains and East Central Europe 223 
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(Eshleman et al. 1998; Oulehle et al. 2013). Thus, trends in NO3 remain poorly understood 224 

but at present, declining trends are more prominent than increases.   225 

The relative importance of NO3 for acidification of surface waters, i.e. the NAR, has 226 

increased somewhat in most regions (Table 2, Fig. 3). Exceptions are the Appalachian and 227 

Virginia Blue Ridge region where NAR showed a significant decrease. The relative 228 

importance of NO3 as an acid anion was greatest in the non-Nordic European regions where 229 

NAR was 0.3 to 0.5.  230 

3.4 Trends in non-marine base cations by region 231 

One of the expected responses of catchments to decreasing SO4
 
inputs is the reduced leaching 232 

of base cations because of increased pH and cation scavenging by cation exchange sites 233 

(Galloway et al. 1983).  234 

Almost all regions showed decreasing concentrations of Ca*+Mg* between 1990 and 2008 235 

(Table 2, Fig. 2). However, in 6 of the regions the trend slopes were significantly less 236 

negative in the latter half of the time span (Table 4), indicating that the rate of decline is 237 

decreasing. In contrast to the other regions, and despite a significant reduction in SO4*, the 238 

Alps showed increasing concentrations of Ca*+Mg*, while the rate of increase was greater in 239 

the more recent decade. While NO3 concentrations have increased slightly, there has been an 240 

overall reduction in acid anion concentration and other mechanisms are therefore required to 241 

explain this tendency. Possible explanations for the observed recent increase in base cations in 242 

the Alps include hydrological effects (i.e., drought), increased weathering rates caused by 243 

climate change (Rogora et al. 2003), and contribution from Saharan dust deposition episodes 244 

(Rogora et al. 2004).  245 

For most regions, the median decrease in Ca*+Mg* was lower than the equivalent decline in 246 

SO4* (Table 2), creating likely conditions for recovery in pH and alkalinity. This was most 247 

distinct in Europe. If the decrease in SO4* is entirely balanced by a decrease in base cations, 248 

no improvement of water quality (increase in pH, alkalinity and ANC) would be expected.  249 
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3.5 Trends in measured alkalinity and calculated ANC by region 250 

Measured alkalinity and calculated charge balance ANC are widely used as indices of the 251 

extent of acidification and the susceptibility of natural waters to acidification. The steeper 252 

negative regional trends for SO4* relative to those for base cations, combined with the 253 

regional signal of either no change or decreasing NO3, should result in increasing ANC and 254 

alkalinity. Indeed, all regions except Virginia Blue Ridge, the only region not to show a 255 

significant decline in SO4*, show positive regional trends in alkalinity and/or ANC between 256 

1990 and 2008 (Table 2, Fig. 3), indicating chemical recovery from acidification. In the South 257 

Nordic region and Vermont/Quebec, the increases in ANC were larger for1990-1999 than 258 

1999-2008 (Table 4, Fig. 3), while in the Alps, the largest increase in ANC and alkalinity 259 

occurred in the latter time span. In the Adirondacks there was a discrepancy between trends in 260 

measured alkalinity and calculated ANC. The former indicate larger improvement for 1990-261 

1999 than 1999-2008, while the latter suggest the opposite (Table 4). The rates of change are, 262 

however, small (Fig. 3). The discrepancy is possibly due to the influence of changes in 263 

aluminium and DOC, which are not included in the calculation of ANC, but which do 264 

influence measured (Gran) alkalinity (Driscoll et al. 1994; Waller et al. 2012). 265 

3.6 Trends in DOC by region 266 

Dissolved organic carbon (DOC) is a key component of aquatic chemistry, e.g. as an indicator 267 

of natural organic acidity (Erlandsson et al. 2011). In this respect, it has received considerable 268 

attention in recent years because of rising levels in many regions (Hruška et al. 2009; 269 

Monteith et al. 2007). The drivers of rising DOC are still debated in the scientific literature, 270 

but analysis of ICP Waters, and associated data has demonstrated that DOC trends are 271 

strongly correlated with trends in deposition chemistry and catchment acid sensitivity 272 

(Monteith et al. 2007). While changes in sulphur and seasalt deposition appear to control 273 

monotonic trends, climatic factors can exert strong influence on seasonal and interannual 274 

variations (Clark et al. 2010) and longer term climate change is therefore also likely to affect 275 

DOC trends. All regions where DOC data were available, except East Central Europe and the 276 

Appalachians, showed increasing DOC concentrations between 1990 and 2008 with median 277 

rates varying between 0.03 and 0.11 mg/L/y (Table 2). None of the regions showed a 278 

significant difference in the distribution of slopes between the first and second half of the time 279 
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span (Table 4), i.e. there are few indications that the rise in DOC concentrations is beginning 280 

to plateau. If the increase has mainly been driven by reduced acidification, DOC levels are 281 

likely to stabilise in the near future, because further reductions in SO4* concentrations are 282 

expected to be relatively slight.  283 

The link between rising DOC and declining SO4* concentrations indicates that rising DOC 284 

concentrations may be integral to the process of chemical recovery from acidification. This 285 

partial replacement of mineral acidity by organic acidity may explain why pH and alkalinity 286 

responses are more muted than had once been anticipated and predicted by process-based 287 

models of acidification dynamics such as MAGIC (Battarbee et al. 2005; Erlandsson et al. 288 

2010).  289 

3.7 Trends in pH by region 290 

Most processes in natural aqueous systems are pH-dependent, and pH is an important 291 

parameter for understanding biological consequences of acid deposition. However, trends in 292 

pH can be difficult to detect because of high measurement uncertainty in the low ionic 293 

strength water typical for most of the ICP Waters sites (Hovind 2010).  294 

All regions, except the Alps, Appalachians and Virginia Blue Ridge, showed decreasing H
+
 295 

concentration between 1990 and 2008 (Table 2). The H
+
 trends in the Adirondacks were 296 

steeper between 1990 and 1999 than between 1999 and 2008 (Table 4, Fig. 2), confirming the 297 

findings of Lawrence et al. 2011. Elsewhere, however, there is little evidence that trends in H
+
 298 

concentrations are levelling off. The relative change is smaller in North American regions 299 

than in most European regions.  300 

The trends in H
+
 are consistent with those observed for other parameters on a regional scale. 301 

In the European regions, the median decreases in base cations have been appreciably smaller 302 

than the equivalent declines in acid anions. Consequently, ANC, alkalinity and pH have 303 

increased here. An exception is the UK where increases in alkalinity and ANC were small and 304 

insignificant, respectively, despite significant decrease in H
+
. However, trends in alkalinity 305 

over the period 1988-2008 for a wider set of UK lakes and streams than assessed here 306 

(Monteith et al. 2014) averaged 0.63 µEq L
-1

 yr
-1

 which is similar to the average of all 307 

European regions in this analysis.  The apparent lack of response in ANC in UK may result 308 
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from the effect of large long-term variability in sea-salt deposition and compound analytical 309 

errors affecting the ANC calculation in waters with relatively high concentrations of sea salt 310 

(Evans et al. 2001a; b). When ANC for these UK sites is calculated using an alternative, 311 

alkalinity-based method, trends for the period 1988-2008 have been found to be statistically 312 

significant and are similar in magnitude to trends in other regions (Monteith et al. 2014). In 313 

the North American regions, the rates of decrease of base cations are closer to those observed 314 

for acid anions (see also e.g. (Driscoll et al. 2007; Stoddard et al. 2003). Changes in 315 

ANC/alkalinity are therefore relatively small and so is the decrease in H
+
.  316 

Inorganic monomeric aluminium (Ali), which is an important parameter associated with 317 

acidification, was not included in this analysis as it is not routinely measured across the ICP 318 

Waters network. The speciation of aluminium is highly dependent on pH, and decreasing 319 

trends in Ali concentration are likely to have occurred at strongly acidified sites with 320 

decreasing H
+
 concentration across the ICP Waters network. The implication of these trends 321 

in hydrochemical parameters is that conditions for sensitive biota in many of these waters 322 

have improved and various communities of organisms are responding (see e.g. the articles in a 323 

recent special issue on recovery from acidification in the UK, Ecological Indicators 37B, 324 

2014).  325 

4. Conclusions 326 

A pattern of chemical recovery from acidification of surface waters across a large number of 327 

rivers and lakes in Europe and North America is shown by trend analysis of SO4*, pH, ANC, 328 

and alkalinity data from 173 acid-sensitive ICP Waters monitoring sites. This recovery 329 

appears to be driven primarily by the reduction of sulphur deposition, confirming that 330 

emission control programs are having their intended effect on aquatic chemistry, even though 331 

improvements are not as universally clear, or rapid, as were once expected.  332 

Downward trends also dominated temporal patterns in NO3 concentration, but their slopes 333 

tended to be smaller and the pattern more complex than for SO4*. The lack of a clear pattern 334 

of regional decline in NO3 leaching remains poorly understood, and the potential for gradual 335 

nitrogen saturation of catchments, and consequences for these vulnerable systems, remains a 336 

concern, especially in areas receiving high deposition.  337 
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Water chemistry responses to changed precipitation chemistry are delayed by catchment 338 

processes. In several regions, trends in indicators of chemical recovery tended to be less 339 

pronounced after 1999, suggesting that the rate of improvement of water quality has slowed. 340 

Overall, the regional increases in pH, alkalinity and ANC which we have reported here should 341 

be creating the conditions conducive to partial biological recovery.  342 
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Tables and figure captions
 

 

Table 1 Number of ICP Water sites with significantly (p<0.05) increasing or decreasing  trends for 

the time span 1990 to 2008. Not significant means that no monotonic trend was detected. Variables 

are non-marine  SO4
 
(SO4*), NO3, NO3/(NO3+SO4

*
) (NAR), sum of base cations (Ca

*
+Mg

*
), alkalinity, 

Acid neutralizing capacity (ANC), H
+
, and dissolved organic carbon

1
 (DOC)  

    SO4* NO3 NAR Ca*+Mg* Alkalinity ANC H+ DOC1 

Europe Increasing 0 2 14 2 16 29 0 15 

 
Not significant 8 38 36 29 37 24 33 22 

 
Decreasing 55 10 0 33 1 0 30 0 

North America Increasing 0 1 11 0 29 26 2 14 

 
Not significant 14 92 94 41 72 67 92 78 

 
Decreasing 96 17 5 54 2 1 15 3 

  Total 173 160 160 159 157 147 172 132 

    
        All sites % increasing 0 2 16 1 29 37 1 22 

 
% not significant 13 81 81 44 69 62 73 76 

  % decreasing 87 17 3 55 2 1 26 2 
 
1
DOC was measured as DOC or as TOC 
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Table 2 Results from the Regional Kendall trend analysis for 1990 to 2008. For each region, median 

trend slope is shown for SO4
*
, NO3, NAR, sum of base cations (Ca+Mg)

*
), Acid Neutralizing Capacity 

(ANC), H
+
, and organic carbon (DOC)

1
. SO4 and base cations were seasalt-corrected. Significant 

(p<0.05) upward trends in dark gray shade, significant downward trends in light gray shade, non-

sigificant in white. Units: µEq/L/yr for all except DOC: mg C/L/yr. nd, no data 

 

    SO4* NO3 NAR Ca*+Mg* Alkalinity ANC H
+
 DOC

1
 

Europe North Nordic -1.42 -0.04 0.000 -0.54 0.88 1.19 -0.02 0.04 

 

South Nordic -4.58 -0.04 0.001 -2.12 0.48 2.64 -0.04 0.09 

 

United Kingdom -1.22 -0.09 0.007 -0.81 0.26 0.14 -0.25 0.11 

 

West Central Europe -3.74 0.13 0.005 -1.60 0.45 5.84 -0.08 0.05 

 

East Central Europe -3.03 -0.21 0.001 -1.54 0.92 3.23 -0.33 0.04 

 

Alps -1.27 0.37 0.006 0.88 2.22 1.92 0.00 nd 

N. America Maine & Atlantic Canada -0.95 0.00 0.000 -0.28 0.30 0.51 -0.01 0.03 

 

Vermont & Quebec -1.76 0.00 0.001 -1.11 0.14 0.42 -0.03 0.06 

 

Adirondacks -2.14 -0.18 0.000 -1.40 0.74 1.07 -0.04 0.03 

 

Appalachians -1.48 -0.33 -0.001 nd 0.41 nd 0.01 -0.02 

 

Blue Ridge Mountains 0.15 -0.73 -0.009 nd 0.22 nd 0.00 nd 

  Ontario -1.93 -0.03 0.000 -1.65 0.60 0.72 0.00 0.03 

 
1
 DOC was measured as TOC or DOC 
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Table 3 Relative regional change (percent) in key variables of surface water chemistry in ICP Waters 

sites for 1990 to 2008. See Caption of Table 2 for explanation of variables. Relative change was 

calculated using median slope and median 1990-value of the specific variable for each region. 

Significant (p<0.05) upward trends in dark gray shade, significant downward trends in light gray 

shade, non-sigificant in white. Units: µeq/L/yr for all except DOC: mg C/L/yr 

 

    SO4* NO3 Ca*+Mg* H
+
 DOC

1
 

Europe North Nordic -46 -42 -10 -35 15 

 

South Nordic -59 -19 -27 -23 35 

 

United Kingdom -48 -12 -34 -51 113 

 

West Central Europe -31 5 -9 -69 22 

 

East Central Europe -37 -13 -17 -73 16 

 

Alps -25 15 6 -3 nd 

N. America Maine & Atlantic Canada -35 0 -13 -7 14 

 

Vermont & Quebec -41 0 -24 -24 30 

 

Adirondacks -35 -20 -21 -19 11 

 

Appalachians -15 -34 nd 2 -18 

 

Blue Ridge Mountains 4 -132 nd -2 nd 

  Ontario -27 -19 -17 -7 20 
 

1
 DOC was measured as TOC or DOC 
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Table 4 Comparison of trends in surface water chemistry (key variables) for the periods 1990-1999 

and 1999-2008 for regions in Europe and North America. A Wilcoxon test was used to test for 

different distribution of slopes between the two periods.Near significant (*:  p<0.10) and significant 

(**: p<0.05) differences are indicated (n.d., no data). A plus or minus sign indicate whether slopes for 

the period 1999-2008 are higher or lower, respectively, than for the period 1990-1999 (, i.e. signs 

refer to inflection not trend direction) 

    SO4* NO3 NAR Ca*+Mg* Alkalinity ANC DOC H
+
 

Europe North Nordic  
**(-) **(-) 

     

 

South Nordic * (+) 

 
   

**(-) 
  

 

United Kingdom      
*(-) 

  

 

West Central Europe *(+) *(+) 
      

 

East Central Europe   
**(-) **(+) 

    

 

Alps *(+) **(-) **(-) **(+) **(+) **(+) nd. 
 

N. America Maine & Atlantic Canada  
**(-) **(-) **(+) 

 
*(-) 

 
*(-) 

 

Vermont & Quebec **(+) **(+) **(+) **(+) 
 

**(-) 
  

 

Adirondacks    
**(+) **(-) **(+) 

 
**(+) 

 

Appalachians    
nd. 

 
nd. 

  

 

Blue Ridge Mountains   
*(+) nd 

 
nd. nd 

 
  Ontario **(+)   **(-) **(+)         
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Fig. 1 Map showing location of the monitoring stations (coloured circles). Different colouring of the 

circles indicates that stations belong to separate regions  

  

  

Fig. 2 Relative change of annual means of SO4
*
, NO3, sum of base cations (Ca+Mg)

*
, H

+
, and organic 

carbon (DOC)
1
  in regions of Europe and North America from 1990-2008. Each annual mean is 

divided by the first annual mean (i.e. between 1990 and 1993) of each time series.The line is a cubic 

spline with a lambda of 0.05. Region names are abbreviated in the following way: NoN-North Nordic, 

SoN-South Nordic, UK-United Kingdom, WCE-West Central Europe, ECE-East Central Europe, Atl-

Manine and Atlantic Canada, Vt/Que-Vermont and Quebec, Ads-Adirondacks, App-Appalachians, 

BRi-Blue Ridge Mountains, Ont-Ontario 

 

 

Fig. 3 Absolute change of nitrate acidification ratio (NAR), alkalinity and ANC in regions of Europe 

and North America between 1990-2008. The line is a cubic spline with a lambda of 0.05. The points 

represent the median value and the vertical black lines extends from the 75
th
 percentile +the 

interquartile range multiplied by 1.5 and the 25
th
 percentile -the interquartile range multiplied by 1.5 
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Table S1 Results from the Regional Kendall trend analysis for 1990 to 1999.  For each region, 

median trend slope is shown for SO4
*
, NO3, Sum of base cations (Ca+Mg)

*
, Acid Neutralizing 

Capacity (ANC), H
+
, and organic carbon (DOC)

1
. SO4 and base cations were seasalt-corrected. 

Significant (p<0.05) upward trends in dark gray shade, significant downward trends in light gray 

shade, non-sigificant in white. Units: µeq/L/yr for all except DOC: mg C/L/yr. nd, no data 
1990-1999  SO4* NO3 Ca*+Mg* Alkalinity ANC H

+
 DOC

1
 

Europe North Nordic -1.50 0.03 -0.70 1.13 1.12 -0.02 0.06 

 South Nordic -5.29 0.03 -2.72 0.48 3.23 -0.06 0.11 

 United Kingdom -1.09 0.18 -0.63 0.00 0.16 -0.16 0.13 

 West Central Europe -4.64 -1.14 -2.37 2.38 11.40 0.00 0.02 

 East Central Europe -3.39 -0.53 -1.33 -0.07 3.06 -0.16 0.13 

 West Central Europe -4.64 -1.14 -2.37 2.38 11.40 0.00 0.02 

 Alps -2.12 0.49 -1.08 1.10 0.00 0.00  

N. America Maine & Atlantic Canada -1.15 0.02 -1.00 -0.22 0.03 0.00 0.03 

 Vermont & Quebec -3.04 -0.24 -1.77 0.40 1.42 -0.02 0.10 

 Adirondacks -2.31 -0.18 -2.39 0.98 -0.36 -0.05 0.02 

 Appalachians -2.77 -0.28 -1.41 1.39 1.85 -0.03 0.01 

 Blue Ridge Mountains 0.40 -0.96  -0.03  0.00  

 Ontario -3.98 0.01 -3.66 0.32 0.23 -0.02 0.02 

1 DOC was measured as TOC or DOC 

 

Table S2 Results from the Regional Kendall trend analysis for 1999 to 2008.  For each region, 

median trend slope is shown for SO4
*
, NO3, Sum of base cations (Ca+Mg)

*
, Acid Neutralizing 

Capacity (ANC), H
+
, and organic carbon (DOC)

1
. SO4 and base cations were seasalt-corrected. 

Significant (p<0.05) upward trends in dark gray shade, significant downward trends in light gray 

shade, non-sigificant in white. Units: µeq/L/yr for all except DOC: mg C/L/yr. nd, no data 
1999-2008  SO4* NO3 Ca*+Mg* Alkalinity ANC H+ DOC 

Europe North Nordic -1.10 -0.11 -0.22 0.99 1.24 -0.01 0.02 

 South Nordic -2.60 -0.07 -1.43 0.21 1.09 -0.02 0.08 

 United Kingdom -0.90 0.05 -0.39 0.25 -0.43 -0.10 0.13 

 West Central Europe -1.60 1.97 -0.95 -4.81 -3.65 -0.09 0.02 

 East Central Europe -1.70 -0.16 -0.60 0.28 2.81 -0.22 0.23 

 West Central Europe -0.80 -1.13 3.49 3.29 4.86 0.00  

N. America Maine & Atlantic Canada -1.40 0.00 -0.97 -0.42 -0.67 -0.01 0.05 

 Vermont & Quebec -1.60 0.09 -1.07 0.15 -0.45 -0.02 0.07 

 Adirondacks -2.40 -0.03 -1.62 0.07 0.55 0.01 0.01 

 Appalachians -1.20 -0.12 -0.87 0.02 0.77 0.02 -0.02 

 Blue Ridge Mountains -0.30 -0.11  -0.02  0.00  

 Ontario -1.30 -0.07 -0.50 0.96 1.20 0.01 0.02 
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