$\pi 13060$
518.5

Introduction to Graphics in MINITAB Release 11

CEH Lancaster
by Archive Copy Please do NOT remove Not fortoon

Tim Sparks \& Peter Rothery

ITE Merlewood
March 1997
($4^{\text {th }}$ Edition)

$$
\begin{aligned}
& \because \cdots \ln
\end{aligned}
$$

Contents
1 Introduction
2 Minitab Graphics
2.1 The Menu System
2.2 The Options
2.3 Graph Elements And Their Options
2.4 Definitions
2.5 Common Features
3 Plot
4 Time Series Plots
5 Chart
6 Histogram
7 Boxplot
8 Matrix Plot
9 Draftsman Plot
10 Contour Plot
11 3D Plot
12 3D Wireframe Plot
13 3D Surface Plot
14 Pie Chart
15 Interval Plot
16 Marginal Plot
17 Probability Plot
18 Character Graphs
19 Regression and ANOVA Plots
20 Multiple Graphs
21 Macros and Saving Commands
22 Editing Graphs
23 Brushing (is good for you)
24 Some Further Examples
Minitab 11 - some comments on differences in graphics
Appendices
Some example graphs

1 Introduction

The graphics facilities of MINITAB have multiplied rapidly in recent releases. Those of us used to the old line-printer quality graphics will still find them under "character" graphics, but it is the high resolution graphics now available that form the focus of this short course.

Whilst MINITAB may lack the full versatility expected of dedicated graphics packages, such as Coreldraw or Harvard, it can now produce graphics of sufficient quality for talks and publications. Linked with the data manipulation and analysis features elsewhere within MINITAB, this creates a very powerful and practical package to use, and the Windows environment reduces the need to memorise commands for graph production. Do not , however, expect that MINITAB will be adequate for all of your graphics needs (in much that same way that it will not be adequate for all of your analysis needs) but we anticipate that it will cover the large majority of what you require.

Some of the data sets used in this course are contained within the appendices. These are Puffin data on beak length and depth of puffins from St. Kilda Muntjac data from Arnie Cooke on shrub damage and muntjac activity Essex Skipper data from Cor Zonneveld on abundance over time MLC pigs data on success rate and litter size from an AI programme Toads data from Arnie Cooke on toad road casualties over several years

In addition, I have used some of Sarah Alexander's data from Hafren for some examples although these data are not included in the appendices.

There are slight differences between the Windows 3.X and Windows 95 versions of Minitab release 11 . The original notes and examples for this course were based on release 10 . Where changes between releases were only minor these have not been updated.

2 Minitab Graphics

2.1 The Menu System

The following illustrates the opening screen from MINITAB Release 10. Access to the graphics facilities is via the sixth button along the top, i.e. click Graph

This menu offers a wide range of facilities for graphics (17 all told), which can be selected by further clicking.

Clicking Layout displays a further menu. This is generally used to modify the whole graph window environment, for example, when producing multiple graphs per page, or changing the aspect ratio (shape) of a graphics page.

2.2 The Options

Under the graphics button are 18 options. These are:
Layout
Plot
Time Series Plot
Chart
Histogram
Boxplot
Matrix Plot
Draftsman Plot
Contour Plot
3D Plot
3D Wireframe Plot
3D Surface Plot
Pie Chart
Interval plot
Marginal Plot
Probability Plot
Character Graphs

The majority of these, and some other graphics features are dealt with in the sections that follow.

2.3 Graph Elements And Their Options

There are some features that are common throughout the graph facilities of MINITAB. These will be dealt with here to avoid repetition under each graph type. These include

Lines. e.g. connecting lines, axes, tick marks, reference lines, legend boxes, borders etc. Options invariably exist to change colour (16 different colours are available; see below), line style (8 variants; see below) and line thickness (will normally have to be thicker to allow graphics to be converted for presentation use).

Available colours are:

$\mathbf{0}$ white	$\mathbf{1}$ black
$\mathbf{4}$ blue	$\mathbf{5}$ cyan
$\mathbf{8}$ dark red	$\mathbf{9}$ dark green
$\mathbf{1 2}$ dark magenta	$\mathbf{1 3}$ dark yellow

Available line types (styles):
0 null (invisible)
1 solid
4 dash 1-dot
5 dash 2-dots
2 dashes
6 dash 3-dots

3 dots
7 long dashes

Symbols. A range of symbols (30 in fact) are available, these can be modified in size, colour. They can be jittered (adjusted slightly by a random amount) so that overlapping points are visible.

Available symbols are detailed in the following box:

TYPE K
Changes the marker types, which you specify with an integer. The defaults for TYPE is 1 (circle). The marker types are as follows:

0 None	4*	$8 \oplus$	12 回	16	20 A	$24 \triangleright$	28∇
10	$5 \cdot$ (dot)	$9 \otimes$	13 -	$17 *$	$21 \triangle$	$25<$	29 V
$2+$	6	10 (3)	14 x	18 ¢	$22>$	264	30∇
$3 \times$	$7 \bigcirc$	$11 \square$	150	$19 \triangle$	23 -	27 ¢	

Shading (fill types). A range of 10 fill types/shadings are available, in a range of colours.
Fill types:

$\mathbf{0}$ null (transparent)	$\mathbf{1}$ solid background	$\mathbf{2}$ right hatch foreground
$\mathbf{3}$ left hatch foreground	$\mathbf{4}$ right \& left hatch foreground	$\mathbf{5}$ horizontal hatch foreground
$\mathbf{6}$ vertical hatch foreground	$\mathbf{7}$ horizontal \& vertical hatch foreground	
$\mathbf{8}$ grid foreground	$\mathbf{9}$ squares foreground	

On my printer, fill types are converted to grey scales on printing
Text. Axes labels, titles, legend details, tick mark labels, footnotes, free text etc. A range of fonts, colours, sizes are available. Text can be positioned at various angles.

Minimum and maximum values. Can be specified for most graph types, ditto intervals between tick marks etc.

Legend. Can be moved and modified etc.

Positioning. Graphs can be overlaid on top of one another, positioned as multiple graphs (frames) per page and edited.

Saving graphs. Graphs can be saved in three basic ways. These areas Minitab Graphic files (.mgf files using File - Save Window As) which can be reopened into Minitab (using File - Open Graph) and edited, though it will not be possible to modify and rerun the graph by this method. It does not appear to be possible to edit release 10 .mgf files by release 11.
.......as encapsulated postscript files through File - Print Window - Print to file. A file name has to be supplied. Print setup may need to set for postscript through File - Print setup - properties - postscript. Files can then be imported into other packages.
\qquad copied and pasted into other applications (e.g. WordPerfect) via the clipboard (using Edit Copy Graph)

Most of the graphics in these notes are captured by a separate package and inserted into WordPerfect. The one exception is the following graph which was saved as an encapsulated postscript file.

Compare it with that which appears under Multiple Graphs (section 20) for quality.

A sensible course of action is to save the Minitab commands that produced the graph as a text file. This can then be rerun at a later date.

Transposition Most of the graphs can be transposed so that the y - and x -axes are swapped.

2.4 Definitions

Some notation is needed to clarify matters. The following example shows a Figure region

sitting within a Page (in fact occupying the whole graphic page or window). The Data region is the area enclosed by axes (by default the central 60% of the Figure region). A title, footnote, axis labels, reference line and some free text have been added. The legend box has had its foreground, background and fill shading modified.

2.5 Common Features

There are a great deal of common elements to the menus for the various graphing facilities of Minitab. These are dealt with in outline below. Where there are substantial differences between different graph types, the differences are discussed under the relevant heading.

Graph variables

This details what is to be graphed; specifying which variables appear on which axes, and in some cases which are the categorical variables.

Data Display

This details in what form the data will be graphed. For instance, many of the graph types can be presented as symbols,
 connecting lines, solid areas below connecting lines, vertical lines from a reference line (e.g. the x-axis, or zero), bars, or LOWESS smoothed data. Data can be presented in toto or using an additional variable as a 'grouping' variable e.g. different symbols for different types.

Edit Attributes

This area allows you to change the appearance of the options chosen under Data Display. Symbols, lines, fill areas, line thickness, symbol size, colours etc.

Annotation

Title Allows creation of a title for an individual graph, size, colour, font etc.
Footnote Creation of footnote with options as above.
Text Text of various fonts, sizes and colour can be placed anywhere within the data area. Data labels Labels individual data items within the graph.
Line Placing of line upon the graph
Marker Ditto marker
Polygon Ditto closed polygon

Frame

Axis Adding axis labels. Changing font size, colour, appearance and size of these. Changing type, thickness and colour of axis lines.
Tick Changing position, size, type, colour etc. of tick marks
Grid Sets a series of vertical or horizontal lines or a grid behind the graph Reference Adds reference lines where appropriate Min and Max Sets minimum and maximum values for x and/or y axes
Multiple graphs controls printing of multiple graphs

Regions

Figure Changes location of figure within page. Modify or remove figure frame. Data Ditto but appearance of data region within figure region Legend Size, appearance and location of legend window.

Options

Varies from graph facility to graph facility. This will be detailed under the separate graph options. These range from simple jitter to complex manipulation of the presented figure.

3 Plot

Choose Graph - Plot

The plot command is the first in the graph menu. It has five basic variants; standard symbol plots (scatterplots), connecting points by lines, ditto but shading/filling the area below the line, connecting points to some known baseline (e.g. the x -axis) and LOWESS (locally weighted scatterplot smoothing) plots. Combination of the variants (e.g. lines plus symbols) are all available.

Examples of the default settings for these five types follow below.

The basic plot dialog box is like this
Under Options it is possible to jitter the data points and transpose the axes.

..Using the puffin data set we can click and select or double click on the variable list to specify y and x variables for the plot. Under display there are five optional presentations, each of which is displayed separately below.

This is the default Symbol plot; black open circles and axes titles taken from column names. Minimum and maximum values are set automatically. If points overlap we can jitter them (in Options) by a random amount so that they are all visible .

This is the default Connect option on the same set of data [although these data are not appropriate for such a presentation, this example is intended for illustration only].

The default Area plot fills the area below the line.
...and the default Lowess (locally weighted scatterplot smoothing) plot. This is effectively created by passing a moving window across the graph and calculating a smoothed value at the centre of the window as it passes. Options exist to change the extent of smoothing and the amount of data points in each window frame. This type of smoothing can be particularly useful in exploring patterns in data.

The Project plot connects points with the x -axis by default....

Having produced all these examples we get a busy window, with a new graph window produced for each. These cascade to a limit of 15 graphs at which point the user must close some or all of the graphs

Data display is used to produce separate symbols per group. Grouping variables can be either numeric or alphabetic. In Edit Attributes these have been set to red asterisks size 1.5 for male and blue diamond size 1.5 for female. A legend is added by default when groups are used. This can be omitted or moved. Under Annotation Title a title in Times New Roman of size 2 added. Under Frame - axis, axis titles have been added. Under Frame - min and max
 minima and maxima have been specified. The second x - and y - axes have been removed using Regions - data - region edge type set to none.

Differentiating by a single group variable can be extended to differentiating by more than one categorical variable. In this example groups are based on both sex and year. The default symbol for the fifth group is a dot (.). This is particular difficult to see at default size, particularly after photocopying when it can get confused with other specks. We recommend you use an alternative symbol.

Individual data points can be labelled with the values in an alphabetic or numerical column using the Annotation - data labels option.

And can be labelled by the y-values themselves.

4 Time Series Plots

Choose Graph - Time Series Plot

Here is the opening dialog box for a time series plot.

Under Options it is possible to specify start index values and transpose the axes.

Time series are often better displayed as long plots, shown here the number of dead toads (road casualties) recorded in successive years.

This graph has set the ymin value, trebled the line thicknesses of the axes, specified year as the unit of time with a start of 1974 , and including a symbol. Time series plots can be indexed by time units ranging from a second up to a year.

This graph is identical except that the time series is presented as a projection from the x -axis.

And as with all plots, the axes can be reversed (transposed).

This example shows the toad data time series. Individual years are displayed as connecting (thickened) lines from a base value (93.3). A reference line has been added. This feature of a baseline is available in many of the graph types.

5 Chart

- Choose Graph - Chart

Can represent histograms (frequency data) or some summary representation for each grouping variable. There are 10 possible summary measures: These are Count (number of values), N (number of non-missing values), Nmissing (number of missing values), Sum, Mean, Stdev (standard deviation), Median, Minimum, Maximum, SSQ (sums of squares).

The opening dialog box

the Options dialog box

This example tabulates the mean depth separately from the two sexes.

This chart is basically the same, although a grid, title, axis labels have been added and the minimum y-value set to zero.

Rather over the top, this fills the area of the data region. In a similar way the figure region and legend region can also be filled or coloured.

Under Options, charts can be clustered, for example here by year of record. Frequencies can be adjusted so that stacks or clusters each sum to 100%.

And this is basically the same but grouped by year and clustered by sex.

As mentioned earlier, other variables can be summarised in addition to just mean values. This chart shows the default settings when presenting the number of non-missing values for the two sex-classes.

Also under Options is the ability to stack bars, for example grouping by sex and stacking by year the number of non-missing values.

And data can be presented in cumulative form.

Or even in cumulative form per sex, and presented as a filled area.

We don't have to use an alphabetic column to label our graphs; we can specify under Frame - Tick what we want our tick labels to be (as shown here).

6 Histogram

Choose Graph - Histogram

The opening dialog box

and the Options box

些	Histogram Optinns	
	Type of Histogram	
	(1) Ercquency	O Cumulative Frequency
	ORercent	O Cumulative Percent
	Opensity	O Cumulative Densily
	Type of intervals	
	\bigcirc MidPoint	Ocutpoint
	Definition of Intervals	
	O Automatic	
	O Number of intervals:	-
	O Midpoinycutpoint posilions:	
	\square Iranspose X and Y	
3\% HISTOGRAM		

Presents basic histograms of recorded variables, here for puffin beak depth

Bars can be changed in width. Histograms can be presented as densities, i.e. summing to 1 , or as cumulative total (as here).

Data can also be presented as cumulative frequency represented by a filled area rather than by bars.

7 Boxplot

Choose Graph - Boxplot

As well as representing the usual box-and-whisker plot based on interquartile range with symbols for outliers, this function can also represent confidence intervals, absolute range and display actual data values.

The opening dialog box

The Options box allows the axes to be transposed

Puffin data for length, summarised by sex

Presented as individual values

Length data grouped by year

and as before but with medians connected

8 Matrix Plot

Choose Graph - Matrix Plot

The dialog box

The Options box

Presents a scatterplot of variables against one another, here using some of Sarah's data from Hafren.

Up to 20 variables may be used (Although these will probably be impossible to see because of their small size).

This can be modified to just produce the upper triangular plot, or lower (as here) with labels moved to the boundary.

9 Draftsman Plot

Choose Graph - Draftsman Plot

Produces an array of plots
The opening dialog box.

The Options box allows jittering.

With this option we can produce summaries in tabular format to our own specification. This example again uses some of Sarah's data from Hafren.

Up to 20 variables can be plotted in each direction.

In both matrix and draftsmans plots, groups can be represented by different symbols; in this case a different symbol for each month of collection.

10 Contour Plot
 Choose Graph - Contour Plot

The opening dialog box

The Options dialog box

For given x, y and z coordinates this option will produce a contour plot.
This rather crude picture derives from hastily abstracted tetrad altitudes in Huntingdonshire. Monks Wood is located to the high ground towards the top of the graph, with the fens and the Ouse valley shown in the top right and lower right areas respectively!

A better example is this contour map of annual mean French temperatures; Mediterranean bottom right.
or as contour sladed areas.

A better example is provided by a contour of the 'cowboy hat' function. We can specify the number of contour lines, the value of actual contours and the resolution of these. Data may be either from a regular or irregular mesh.

11 3D Plot

Choose Graph - 3D Plot
We have little experience with these as yet, and are unconvinced about their ease with which they convey information. This is the opening dialog box.

This graph shows the Huntingdon altitudes「referred to above.

This can be rotated and presented from many different angles.

12 3D Wireframe Plot Choose Graph - 3D Wireframe Plot

The opening dialog box

The Options box

A wireframe plot produced on the Huntingdon data. Again our experience with this type of graph is limited.

Data can be presented as wireframes, projections (as here), symbols (as for 3D plots) or any combination of these.

A wireframe of the 'cowboy hat' looks like this.

13 3D Surface Plot

 Choose Graph - 3D Surface PlotThe opening dialog

The classic surface plot, here showing the drop from Monks Wood, down into the fens (just like the Llanberis pass really).

And the same graph type for the 'cowboy hat' (p.s. it looks better in colour).

14 Pie Chart

Choose Graph - Pie Chart
Tim dislikes pies, especially 3D ones. This facility is available through a \%Macro and hence is notably slower than other graphic facilities.

15 Interval Plot

Choose Graph - Interval Plot
Another \%Macro

Here showing the mean \pm s.e for some data. In this form, it is disappointing to report that it is not possible to vary min and max values. Multiples of a s.e. and confidence intervals can also be displayed by these bars. These can be modified to be above, below, or both sides (as here) of the mean. S.e.'s can also be estimated pooled across groups, rather than calculated from an individual group.

16 Marginal Plot

This very useful plot plots two variables, and on the margins produces a histogram....

The bar width on the margins can be modified.

The marginal plot can be a dotplot of the variable on that axis.

17 Probability Plot

Choose Graph - Probability Plot

Tests whether the data from a variable can be considered to derive from one of four probability distributions
i) Normal
ii) Weibull
iii) Lognormal
iv) Exponential

The options box

18 Character Graphs

It is not our intention to dwell on these lineprinter graphics, but a few are summarised in the following pages

Histogram

MTB > Histogram 'Depth'.

Character Histogram

Histogram of Depth $N=41$
Midpoint
Count

29	2	$* *$
30	1	$*$
31	3	$* * *$
32	3	$* * *$
33	6	$* * *$
34	11	$* * *$
35	6	$* * *$
36	4	$* * *$
37	3	$* * *$
38	1	$* *$
39	1	$*$

Boxplot

MTB > BoxPlot 'Depth'; SUBC> By 'sex1m2f'.

Character Boxplot

```
sex1m2f
1 I
2------------------------------------------
```



```
Dotplot
MTB > DotPlot 'Depth';
SUBC> By 'sex1m2f'.
```

Character Dotplot

sex1m2f

1

```sex1m2f```	-	:	: :		
28.0	30.0	32.0	34.0	36.0	38.0

```
Stem-and-Leaf plot
MTB > Stem-and-Leaf 'Depth'.
Character Stem-and-Leaf Display
Stem-and-leaf of Depth N = 41
Leaf Unit = 0.10
1 28 6
3 29 18
5 3067
7 31 49
14 32 0356689
18 33 2588
(14) }340000133455678
 9 35 589
 6 36 159
 3 37 06
 1 38
 1. }39
Scatterplot
MTB > Plot 'Length' 'Depth';
SUBC> Symbol 'x'.
Character Plot
Length-
 30.0+ () xx
 M-
```

```
Multiple plot
MTB > MPlot 'Depth' 'year' 'Length' 'year'.
Character Multiple Plot
```



```
Time Series Plot (using toad data)
MTB > TSPlot 'number'
Character Time Series Plot
```



```
number
```

```
number
```


## Pseudo Contour plot (using Huntingdon data) MTB > TPlot C12 C11 C13.

Character TPlot

```
C12
M-
519.0 520.5 522.0 523.5 525.0 526.5
'0'< < 15.0791<'.' < 26.7000< '/'< < 38.3209 < 'X'
```


## 19 Regression and ANOVA plots

Found under the Stat menu rather than the graph menu these are still very useful high resolution graphical facilities

This is the fitted line plot from regression

and this is the diagnostic plot from regression (an identical facility exists for ANOVA diagnostics)


Under ANOVA is the main effect plot facility


## 20 Multiple Graphs

Example of multiple graph showing plot, histogram and boxplot together.


These are achieved by starting Layout then issuing various graph commands, each with complimentary Region - Figure positions and completing with Graph - Endlayout.

The session commands to create the above plot are shown below. Graphs are assigned to the page using a co-ordinate system which ranges from 0 to 1 in both $x$ and $y$ directions. In this example the lower graphs are set between $y=0.05$ and $y=0.45$, and the upper between $y=0.55$ and $y=0.95$. Left hand graphs are between $x=0.05$ and $x=0.45$, right hand graphs between $x=0.55$ and $x=0.95$, centre graph between $x=0.3$ and $x=0.7$.
MTB > Layout;
SUBC> Title "Example of Multiple Graphs";
SUBC $>$ TFont 1.

* NOTE * Beginning LAYOUT mode.

Type ENDLAYOUT to end mode.
MTB > Plot 'Length'*'Depth';
SUBC> Symbol;
SUBC> Figure 0.050 .450 .05 0.45.

* NOTE * N missing $=1$

MTB > Histogram 'Length';
SUBC> MidPoint;
SUBC> Bar;
SUBC> Figure 0.550 .950 .05 0.45.

* NOTE $*$ N missing $=1$

MTB > Boxplot 'Depth'*'sex';
SUBC> Box 'sex';
SUBC> Symbol;
SUBC> Outlier;
SUBC> Figure 0.30 .70 .50 .9 .
MTB $>$ EndLayout.

* NOTE * Ending LAYOUT mode.

Frame - Multiple Graphs can be used to place graphs on top of one another or to ensure that multiple graphs have some or all of the axes at a common scale.
Example of overlay, depth and length by histogram, one as a bar, the other as a connecting line.


The following Minitab commands produce four graphs to a page and demonstrate the connect options in plot.

Layout;
Title "4-to-a-page - connection options".
Plot 'Depth'*'Length';
Connect;
Title "Connection - x order";
Figure 0.00 .450 .50 .95 ;
Data;
EType 0;
Axis 1:
Label "length";
Axis 2;
Label "depth".
Plot 'Depth'*'Length';

## Connect;

Order 2;
Title "Connection - y order";
Figure 0.5510 .50 .95 ;
Data;
EType 0;
Axis 1;
Label "length";
Axis 2;
Label "depth".
Plot 'Depth'*'Length';
Connect;
Step 0;
Title "Connection - step x order";
Figure 00.4500 .45 ;
Data;
EType 0;
Axis 1 ;
Label "length";
Axis 2;
Label "depth".
Plot 'Depth'*'Length';
Connect;
Order 0;
Title "Connection - worksheet order!!";
Figure 0.55100 .45 ;
Data;
EType 0; $\cdot$
Axis 1 ;
Label "length";
Axis 2;
Label "depth".
EndLayout.

Here is the result showing the various Connect options in Plot. Top left; connecting in order of increasing $x$ value. Bottom left; ditto but in step fashion. Top right; in order of increasing y values. Bottom right; in order of the worksheet!!!


## 21 Macros and Saving Commands

Commands to produce graphs can be complex; as shown in the example for multiple graphs above. It is wise to save the commands that produce a graph in a preferred format. This can then be used again; either by pasting into the session window and editing, or by modifying them to produce macros.

Graph commands are best saved from the history window, either directly using File - Save Window, or by pasting into an appropriate file.

Using session commands it will be possible for the user to create macros similar in complexity to those that create the regression diagnostic plots shown earlier.

The following fairly limited macro (which needs development) was created to allow standard error bars to be added to bar charts created using Chart (which has more flexibility than Interval Plot). An example of the output is shown adjacent
unstack ck20 into c21-c24;
subs cl4.
let $\mathrm{kl}=$ mean $(\mathrm{c} 21)$
let $\mathrm{k} 2=$ mean(c22)
let $k 3=$ mean(c23)
let $\mathrm{k} 4=$ mean(C24)
let $\mathrm{k} 5=\operatorname{stdev}(\mathrm{c} 21) / \mathrm{sqrt}(\mathrm{n}(\mathrm{c} 21))$
let $\mathrm{k} 6=\operatorname{stdev}(\mathrm{c} 22) / \mathrm{sqrt}(\mathrm{n}(\mathrm{c} 22))$
let $k 7=\operatorname{stdev}(\mathrm{c} 23) / \mathrm{sqrt}(\mathrm{n}(\mathrm{c} 23))$
let $\mathrm{k} 8=\mathrm{stdev}(\mathrm{c} 24) / \mathrm{sqrt}(\mathrm{n}(\mathrm{c} 24))$
let $\mathrm{k} 9=\mathrm{kl} 1-\mathrm{k} 5$
let $k 10=k 2-k 6$
let $k 11=k 3-k 7$
let $k 12=k 4-k 8$
let $k 13=k 1+k 5$
let $\mathrm{k} 14=\mathrm{k} 2+\mathrm{k} 6$
let $\mathrm{k} 15=\mathrm{k} 3+\mathrm{k} 7$
let $k 16=k 4+k 8$
let $k 17=\min (c k 20)$
let $\mathrm{k} 18=\max (\mathrm{ck} 20)$
Chart Mean(ck20) * C15;
Bar;
Line $1 \mathrm{k} 91 \mathrm{kl3}$;
Line $2 \mathrm{k} 102 \mathrm{kl4}$;
Line $3 \mathrm{kl1} 3 \mathrm{kl}$;
Line 4 k 124 kl ;
Minimum 2 k 17 ;
Maximum 2 kl 8 .

## 22 Editing Graphs

Choose Editor - Edit

(or double click in graphic area)
Under the Minitab editor there exists some fairly complex facilities for editing graphs. There are two palettes associated with editor (the tool palette and the attribute palette). The former allows you to select items, draw lines, write text, create polylines (connecting lines), polygons (enclosed figure defined by points), drawing circles, ellipses, rectangles, squares and adding symbols. Once done these can all be duplicated, modified in size, colour, appearance etc. Shapes can be rotated or reversed etc.

On the adjacent figure we see the tool palette above the attribute palette. The upper specifies the type of editing; the lower selects options (colour, size etc) within that type.



The upper figure displays the extremes of editing, whilst the lower shows the addition of colour and shading.

## 23 Brushing (is good for you)

Choose Editor - Brush
Initial suggestions are that brushing is going to be a very useful diagnostic when familiarity is achieved. Points on graphs can be identified as the row numbers that exist in the worksheet.


Identification can be increased to display chosen variables (from Editor - Set ID variables).

and all points within regions can be identified.



When several graphs are visible at one time, then brushed points are highlighted on all of these. (unfortunately brushed points are less obvious on photocopies of monochrome output!).

Brushed points are highlighted in the data window. With release 11 comes the opportunity to create a column indicator variable in the worksheet based on points brushed graphically, i.e. to identify points within a certain portion of the graph. To use this facility use Editor - Brush Create Indicator Variable and fill in the dialogue box. Options exist to run a series of commands each time the brushed set changes.

## 24 Some Further Examples

During earlier presentations of this course a number of questions from the audience suggested the need to include examples of some more complex graphs

### 24.1 Influence Plots

These can be achieved by changing the Plot - For each to point, and then changing Size under Edit attributes to a variable indicating symbol size. The following example shows an influence plot where symbol size is set proportional to the number of values contributing to each data point.
layout
Plot 'otipl'*'martemp';
Symbol;
Type 1;
Size C9;
Title "Influence plot";
Figure 0.150 .850 .00 .5 ;
Data;
EType 0;
Axis 1;
Label "March temperature";
Axis 2;
Label "Appearance date".
Plot 'otipl'*'martemp';
Symbol;
Type 1;
Title "Standard plot";
Figure 0.150 .850 .51 ;
Data;

## EType 0;

Axis 1 ;
Label "March temperature";
Axis 2;
Label "Appearance date".
endlayout


### 24.2 Influence Boxplots

'Fat' Boxplots can be easily created by using the Options facility and setting boxplot width proportional to sample size.


### 24.3 Error Bars

Possibly one of the big failings of Minitab graphics. Influence plot is limited in its options. The macro shown earlier can be used but is less flexible. The following example assumes that means, mean-se and mean+se are available in three columns and then combines a 'bar' with two projections.

Chart Mean(mn)*'decd';
Bar;
Project 'decd';
Type 1;
Base 'mnminus';
Project 'decd';
Type 1;
Base 'mnplus';
Data;
EType 0;
NoLegend;
Minimum 2 110;
Axis 1;
Label "Decade";
Axis 2;
Label "Mn appearance date";
Tick 1;
Labels " 1880 " "1890" " 1900 " "1910" "1920" "1930" "1940" "1970" "1980" \& "1990";
Tick 2.


### 24.4 Two Different y-scales

Layout.
Plot c401*c402;
connect;
type 1 ;
colour 2;
title "orange tip appearance and march temperature";
Data;
EType 0;
Axis 1 ;
label "year";
Axis 2;
label "days after Dec 31";
tcolour 2;
tick 2;
tcolour 2.
Plot c403*c404;
connect;
type 1 ;
colour 3;
Data;
EType 0;
Axis 1;
label " ";
Axis 2;
side 2 ;
label "degrees C";
tcolour 3;
Side 2;
Tick 1;
Tick 2;
Side 2;
tcolour 3.
EndLayout.
orange tip appearance and march temperature

### 24.5 Logscale On Axis

This example uses the Butterfly monitoring scheme results where the collated index has traditionally been $\log (10)$ transformed.

Layout;
Title "Example of log scale".
Plot 'Small Co'*'yr';
Connect;
Title "BMS index";
Figure 0.20 .80 .50 .95 ;
Data;
EType 0;
Axis 1;
Label "year";
Axis 2;
Label "Small copper".
Plot c45*'yr';
Connect;
Title "BMS index - log scale";
Figure 0.20 .800 .45 ;
Data;
EType 0;
Minimum 2 1.2;
Axis 1;
Label "year";
Axis 2;
Label "Small copper";
Tick 1;
Tick 21.41 .722 .18 2.3;
Labels "25" "50" " 100 " " 150 " "200".
EndLayout.

## Example of $\log$ scale



BMS index-log scale


## Minitab 11 - some comments on differences in graphics

At the time of writing we have had Minitab release 11 at Monks Wood only for a short while and the manuals arrived only a week before this course! Hence we may be at a disadvantage to those of you who have more experience of the differences between releases 10 and 11.

The use of date-time variables in graphs has not been explored here, but potentially they can be used in all graphs.

Differences to probability plots enable the testing against four probability distributions, although the test of significance appears to have disappeared.

Some improvements to graph brushing mean that indicator variables can be automatically created in your worksheet.

The default symbol in Plot is now a solid circle rather than an open one
The default is not to have a frame around a figure
Release 10 Minitab graphics (.mgf) files do not appear to be editable by release 11

## Appendix 1

The following set of data will be familiar to those attending the Introductory MINITAB course.

```
Puffin beak measurements, St Kilda
Cl - Sex (1 = male, 2 = female) C2 - Length (mm) C3 - Depth (mm)
1 28.2 35.5
2 28.5 32.6
2 * 30.6
1 27.1 34.3
127.837.6
| 28.8 39.0
2.28.0 33.8
1 29.0 34.9
2 27.5 29.1
1 28.0 36.9
1 29.7 35.9
1 26.6 34.4
2 28.0 34.0
1 28.234.6
2 29.0 34.7
1.27.7 34.0
1 28.0 37.0
2 27.6 33.2
2 29.3 31.4
2 27.5 32.5
2 27.2 32.6
1 29.1 34.5
1 29.534.5
2 30.4 32.8
2 29.1 34.0
2 27.8 33.8
2 27.6 32.0
1 30.0 36.1
1 27.6 36.5
2 26.6 31.9
1 28.8 34.3
2 28.0 28.6
1 30.5 34.1
2 29.2 29.8
l 28.8 33.5
| 29.935.8
2 28.6 32.3
1 29.234.8
2.27.0 32.9
2 28.5 30.7
l 29.0 34.0
```


## Appendix 2

\#Arnie Cooke's Muntjac data
\# cl damage to shrubs
\# c2 standardised dung count
20.34
20.89
32.321
32.18
20.99
19.912
9.28
25.317
40.413
38.318
$36.8 \quad 13$
34.215

## Appendix 3

\#cor zonneveld's essex skipper data
\# cl day number
\# c2 essex skipper count
120
438
651
8105
10114
1281
1745
1951
2233
$25 \quad 23$
$27 \quad 20$
$28 \quad 22$
$30 \quad 19$
327
345
$37 \quad 7$
387
412
431
$46 \quad 2$
48 1

```
Appendix 4
#MLC pig ai results
cl % successful fertilisations
c2 Average litter size of ditto
c3 diluent type 1,2,3
c4 sequential 3-weekly period
69.2 10.98 1 1
66.2 11.17 1 2
66.5 10.96 1 3
73.4 11.01 1 4
79.7 10.89 1 5
81.3 10.60 1 6
84.5 10.52 1 7
80.1 11.18 1 8
81.9 11.04 1 9
80.0 10.83 1 10
81.9 11.01 1 11
77.3 10.48 1 12
79.6 11.14 1 13
74.0 11.27 1 14
77.7 10.21 1 15
 * * 2 1
73.9 11.79 2 2
75.2 10.26 2 3
76.0 10.79 2 4
71.2 10.28 2 5
71.8 10.93 2 6
76.6 9.86 2 7
80.2 10.75 2 8
73.9 10.59 2 9
77.4 10.70 2 10
79.6 10.63 2 11
70.9 10.05 2 12
8 4 . 6 ~ 1 0 . 5 9 ~ 2 ~ 1 3 ~
74.5 10.69 2 14
75.6 10.36 2 15
76.2 10.91 3 1
75.2 10.73 3 2
75.3 10.79 3 3
75.6 11.71 3 4
72.1 10.92 3 5
71.0 10.60 3 6
73.0 10.56 3 7
79.4 10.83 3 8
73.7 10.89 3 9
74.1 11.12 3 10
80.5 11.07 3 11
```


## Appendix 5

\#Arnie Cooke's toad counts
\# cl year
\# c2 toad counts
197445
197575
197646
197732
197857
1979189
1980105
1981102
1982118
1983136
198428
1985204
198676

## Some example graphs

The graphs on the following pages are intended to give you some examples of graphics within Minitab. These are a selection from real graphs produced over the last six months. They are not described in detail, but give examples of
mixing lines and symbols(2)
clustered bar charts
stacked bar charts
differential symbols and LOWESS smoothing
graphic symbols(2)
biplots with labelling(2)
ordination plots(2)
multiple frames of ordination, bar charts, biplots, symbol+connect+LOWESS, histograms, and plots



$\overleftarrow{6}$
$\vdots$
0
0

Figure 4.
s.
$\stackrel{\otimes}{\pi}$
Greatorex-Da $\infty$
0
0
$\stackrel{y}{0}$
0
0 Dover,



$$
\begin{aligned}
& \text { - 图 }
\end{aligned}
$$






Sparks, Scott \& Clarke. Figure 2.
モ


$$
\begin{aligned}
& \text { Sparks, Scott \& Clarke. Figure } 4 .
\end{aligned}
$$

FIGURE 3.1 R. RAY GRASSLANDS: DECORANA plot based upon transect mean values for vegetation composition in 1993 and 1996.






## ~ <br> Sparks, Bailey \& Elston. Figure




ITE has six Research Stations throughout Britain, which allows the efficient use of resources for regional studies and provides an understanding of local ecological and land use characteristics. The Institute's administrative headquarters is at Monks Wood.

> This report is an official document prepared under contract between the customer and the Natural Environment Research Council. It should not be quoted without the permission of both the Institute of Terrestrial Ecology and the customer.

## ITE sites

Monks Wood
(Admin HQ )
Abbots Ripton
HUNTINGDON PE17 2LS
Telephone 01487 773381-8
Fax 01487773467
Email MONKSWOOD@ITE.AC.UK
Merlewood Research Station
GRANGE-OVER-SANDS
Cumbria LAll 6JU
Telephone 01539532264
Fax 01539534705
Email MERLEWOOD@ITE.AC.UK
Edinburgh Research Station
Bush Estate
PENICUIK
Midlothian EH26 0QB
Telephone 01314454343
Fax 01314453943
Email BUSH@lTE.AC.UK

Furzebrook Research Station
WAREHAM
Dorset BH20 5AS
Telephone 01929 551518-9. 551491
Fax 01929551087
Email FURZEBROOK@TE.AC.UK
Banchory Research Station
Hill of Brathens
Glassel, BANCHORY
Kincardineshire AB31 4BY
Telephone 01330823434
Fax 01330823303
Email BANCHORY@ITE.AC.UK
Bangor Research Unit
University of Wales, Bangor
Deiniol Road
BANGOR, Gwynedd LL57 2UP
Telephone 01248370045
Fax 01248355365
Email BANGOR@TE.AC.UK

Details about the Institute are available on the Internet via the World Wide Web (http:/www.nmw.ac.uk/ite)


