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Abstract 

Electrical resistivity tomography (ERT) is a well-developed geophysical technique that is used 

to study a variety of geoscientific problems. In recent years it has been applied to studying 

permafrost processes at both field and laboratory scale. However, highly resistive surface 

conditions limit its applicability due to high and variable contact resistances. The use of 

capacitively coupled sensors is expected to overcome this problem by providing a steady 

contact impedance regime. Although the theory of capacitive resistivity imaging (CRI) is well 

understood, a point-pole approximation of the sensors is typically used to show the similarity 

between CRI and ERT. Due to their nature, capacitive sensors cannot be designed as point-poles 

as they require a finite extent. This paper assesses the effects the finite size of sensors has on the 

applicability of CRI theory and aims to provide an improved understanding of the measured 

data. We employ finite-element numerical modelling to simulate CRI measurements over a 

homogeneous halfspace and on a finite rock sample. The results of a parameter study over a 

homogeneous halfspace are compared to an analytical solution. Observed discrepancies between 

the two solutions clearly indicate that large sensor sizes and small sensor separations violate the 

point-pole assumption of the analytical solution. In terms of data interpretation, this dictates that 

sensor separations smaller than twice the sensor size have to be avoided in order to remain 

below a generic error threshold of 5%. We show that sensor elevation, halfspace resistivity, 

halfspace permittivity, and measurement frequency have only minor effects on the discrepancy 

between simulation and analytical solution. The simulation of sequential CRI measurements on 

a finite rock sample suggests that, in line with expectations, the measured signals lie mainly in 

the 4
th
 quadrant of the complex plane. However, also data with negative geometric factors are 

observed, which are related to uncommon array. A comparison between simulated and 

measured data showed very good agreement; it validated the simulations and explained the 

measured data which was acquired using a prototype multisensor CRI system. We show that a 



3 
 

comparison of simulated and measured imaginary part of the transfer impedance can be used to 

assess CRI measurement errors. Our work demonstrates that finite-element numerical modelling 

of CRI measurements is a valuable tool to define limitations on array design and to assess data 

quality. 
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Introduction 

Electrical resistivity tomography (ERT) is a well-developed and widely used tool 

applicable to a broad range of problems in near surface geophysics. In recent years it has also 

been applied to the investigation of permafrost at both field and laboratory scales  (Krautblatter 

and Hauck, 2007; Krautblatter et al., 2010; Kuras et al., 2012). However, the utility of galvanic 

sensors in permafrost research (or more generally, environments with highly resistive surface 

conditions) is limited by high levels of, and large variations in, contact resistances between the 

sensors and the host material. Although a capacitively coupled system using non-grounded 

electrical dipoles cannot have lower contact impedances than  galvanically coupled sensors of 

the same type (Hördt et al., 2013), it is expected that the capacitive approach will  limit the 

impact of electrode surface degradation (e.g. corrosion) on the quality of contact and provide 

more stable contact impedances over time. This should enable us to obtain high-quality 

resistivity measurements, whilst emulating conventional ERT measurements in terms of data 

processing and interpretation (Kuras et al., 2006). 

The theory of capacitively coupled resistivity measurements is well described (Grard, 

1990; Tabbagh et al., 1993; Kuras et al., 2006), but typically based on a point-pole 

approximation of  capacitive sensors. We focus here on laboratory studies where the rock 

samples have to be of finite size, whereas the capacitive sensors cannot be infinitely small and 

the sensor distribution must be dense to investigate structures of interest with sufficient 

resolution (Kuras et al., 2012). Therefore, the point-pole approximation is in danger of being 

violated and the geometric dimensions of the dipole configurations have to be considered.  

In this paper we employ finite-element numerical modelling using Comsol 

Multiphysics
®
 to investigate the effects of using capacitive sensors of finite size compared to the 
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standard point-pole approximation. The aim of this study is to determine limitations on array 

design, to improve our understanding of the response of a recently developed multi-sensor CRI 

system, and to validate the use of conventional ERT interpretation tools for CRI data.  This will 

be achieved by the comparison of simulated data with analytical solutions and real laboratory 

measurements. 

The parameters chosen for the numerical simulations (i.e. sensor separation and height, 

sample size, measurement frequencies, and sample resistivities) are derived from typical values 

encountered in laboratory studies on permafrost affected bedrock, as described by Kuras et al. 

(2012). 

Analytical solution using a quasi-static approach 

CRI is a low-frequency electromagnetic measurement that operates in a quasi-static 

regime, under which inductive effects, as well as displacement currents or polarization effects, 

are neglected. This requires the induction number B (a measure of the spatial scale in relation to 

the skin depth δ (McNeill, 1980)) to be small, i.e. B
2 
« 1(Benderitter et al., 1994), where B is 

defined as 

 

with the sensor separation l, the magnetic permeability µ, the measurement frequency f, 

and the halfspace resistivity ρ. For the frequencies (10 – 150 kHz), measurement scales (below 

1 m), and sample resistivities (10
1
 - 10

5 
Ωm) used in our laboratory investigations, the induction 

number tends to be below 1 and hence the condition is likely to be satisfied under typical 

circumstances (see Table 1). Nevertheless, there is concern that induction effects may become 

significant at the upper end of the frequency range, or for more conductive materials.  

(1) 
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(4) 

(5) 

 Based on these assumptions the transfer impedance of a capacitively coupled 

quadrupole (Figure 1), comprising two poles for current injection (C1 and C2) and two for the 

measurement of a potential difference (P1 and P2), can be derived using the method of image 

sources (Grard and Tabbagh, 1991). It can then be shown that the complex transfer impedance 

is (Kuras et al., 2006) 

 

  

This expression describes the transfer impedance measured by the system as  a modification of 

its free-space impedance Z0 (which depends on the mutual capacitance of the sensors C0 and the 

measurement frequency ω) by an electrostatic geometric factor K
ES

, comprising the distances 

between source and receiver points r and image source and receiver points r’: 

 

and a factor α that comprises the dielectric properties of the media above and below the ground 

surface. For an air-ground interface this factor α is given by (Kuras et al., 2006): 

 

with the measurement frequency ω, resistivity ρ and relative permittivity εr of the ground.  

 Similarly to conventional dc theory and following Kuras et al. (2006), we can derive an 

expression for the apparent resistivity, which is given by: 
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(6) 

(7) 

(8) 

For practical CRI measurements the electrostatic geometric factor K
ES

 is usually assumed to be 

approximately equal to one (note, K
ES

 = 1 implies that sensors are located at the ground surface) 

and the measured potential is expected to be approximately in-phase with the injected current. 

Therefore, equation (5) simplifies to  

 

where the mutual capacitance C0 is given as 

 

Inserting equation (7) into (6) the apparent resistivity becomes 

 

with the measured complex potential difference ΔV, the amplitude of the injected current , and 

the dc geometric factor K
dc

, which can be defined in terms of the sensor separation l as 

(Reynolds, 2011) 

 

Clearly, equation (8) is an analogue of the dc expression for the apparent resistivity. This 

implies that, according to the quasi-static theory, the real part of the complex transfer impedance 

can be used to estimate a dc apparent resistivity.  

This theoretical formulation suggests that under certain conditions (essentially the use 

of point poles on the surface within the quasi-static regime) CRI is capable of emulating ERT 

measurements, without the need for galvanic coupling to the ground. This provides the 

opportunity to use well-established ERT inversion routines to estimate models of the resistivity 

distribution of specific target structures.  

(9) 
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This theoretical framework leaves a number of practical questions unanswered.  For 

practical, finite-size capacitive sensor geometries, limits must be defined where the point pole 

approximation remains valid. Moreover, the effects of ground dielectric properties on the 

measured transfer impedance of a practical quadrupole must be studied. Our investigation will 

compare numerical simulations to the point pole formulation. In the first instance therefore, the 

dependence of the analytical solution on its geometric properties have to be understood. 

Kuras et al. (2006) presented an extensive study of the effects of parameter variations 

on the transfer impedance, which shows that for sufficiently large resistivities (ρ > 1,000 Ωm) 

the real part of the complex transfer impedance is practically equal to its corresponding dc 

value, independent of the sensor separations. However, it was also shown that the transfer 

impedance is more sensitive to sensor elevation than separation, particularly in its imaginary 

component. Figure 2 shows the behaviour of the real and imaginary parts of the complex 

transfer impedance with increasing sensor elevation for a square unit array. For a realistic range 

of elevations, the real part is clearly less affected by the sensor elevation than the imaginary 

part. Up to elevations of about 0.1 m, the real part is constant and equal to the dc solution for all 

resistivities under investigation. Above 0.1 m elevation, Re (Z) decreases monotonically, 

independent of the ground resistivity. Im (Z) is clearly resistivity dependent and shows stronger 

dependence on the sensor elevation (i.e. it varies over 5 orders of magnitude). Over resistive 

ground (ρ > 1,000 Ωm) the imaginary part remains constant for a wider range of small sensor 

elevations (up to ~ 1 mm). The observed behaviour of the real and imaginary components shows 

that the real part of Z in the capacitive case can be compared with the magnitude of Z for an 

equivalent dc array, provided that sensor elevations are small. The behaviour is also 

independent of sensor separation, which suggests that the use of standard dc data processing 

tools is justified. Assessment of the imaginary part, especially for conductive media, is likely to 

be of limited value due to its strong dependency on the sensor geometry. In the following 
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numerical simulations, the analytical formulation (hereafter denoted PP) will be used as a 

reference for appraising the effects of sensors of finite size. 

Numerical Simulation of CRI Measurements 

Forward modelling of geophysical data is usually done for two reasons: Firstly, to 

develop an improved understanding of the physical processes taking place during a 

measurement, and secondly, as a tool to interpret measured data (Butler and Sinha, 2012). Both 

goals will be pursued in this paper. Parameter studies over a homogeneous halfspace are 

intended to provide deeper insight into the physical processes; the results lead to a definition of 

limitations on array design and a better understanding of the effects on the complex transfer 

impedance of subsurface properties and measurement parameters. Finally, a comparison of 

simulated and measured data tests the agreement between simulation and reality.  

For the following numerical simulations we have used Comsol Multiphysics
®
, which 

provides a generic finite-element (FE) modelling environment. FE with unstructured grids is 

beneficial in the simulation of CRI measurements due to the significant differences in length 

scales (i.e. sensor separation ~ 1 m, sensor elevation ~ 1 mm), where a discretisation using 

regular grids would lead to a large number of cells. FE has the ability to adopt to arbitrary 

geometries and as a consequence no geometrical perturbations of the electrical field are 

introduced (Marescot et al., 2006).  

Nevertheless, the large contrast in length scales for CRI still requires careful mesh 

design and typically leads to a relatively complex model parameterisation. Together with the 

underlying physical relationships (quasi-static approximation), modelling of CRI measurements 

is a non-trivial exercise where care has to be taken to achieve a satisfactory convergence and 

reasonable model solutions. For the numerical simulations we take advantage of the AC/DC 

module of Comsol Multiphysics
®
, where a quasi-static regime is assumed in the same way as 

described above for the analytical PP formulation. 
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Homogeneous Halfspace 

  In order to compare the performance of capacitive sensors with finite dimensions 

(henceforth denoted FS) to that of point electrodes, a quasi-static quadrupole of square plate 

electrodes is modelled over a homogeneous halfspace using a range of parameters for its 

geometrical configuration (i.e. sensor size, separation, and elevation) and measurement 

conditions (i.e. halfspace resistivity, halfspace permittivity, measurement frequency). The 

results can then be compared to the analytical PP solution.  

The FS model consists of two blocks representing ground overlain by air with 

dimensions 30 m × 30 m × 25 m and 30 m × 30 m × 15 m, respectively. The quadrupole is 

modelled as an equatorial square array (i.e. equal sensor separation in every direction) and is 

placed within the upper air halfspace; air is also used as a dielectric between sensors and 

ground. The large dimensions of the model domain compared to the sensor separation (max. 1 

m) were chosen so as to minimise boundary effects. Moreover, infinite elements were assigned 

to the outer boundaries, where the potential field is extended to infinity (COMSOL, 2011). 

These two approaches provide a good approximation of the usual assumption of infinite 

dimensions within geophysical problems (Butler and Sinha, 2012). Dirichlet boundary 

conditions (V = 0) have been assigned to the outermost boundaries of the model domain. 

Current electrodes are modelled using a so-called “terminal”-type boundary condition, which 

simulates a connection to an external electric circuit through which a specific voltage or current 

can be applied to the electrodes. This method has the advantage that the electrode domains are 

intrinsically modelled as perfect conductors, without having to assign infinitely small resistivity 

(COMSOL, 2011). This implementation avoids strong resistivity contrasts between sensors and 

surroundings and thus contributes to a well posed problem. For the injection dipole, sensor 

domains are homogeneously charged with an injection current of I0 = 1 mA; opposing polarity 

is assigned to the two poles to ensure current flow between the sensors. Figure 3 shows the 

configuration as implemented in Comsol together with an example mesh. 
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In the following, the discrepancies between FS and PP will be expressed as relative 

errors, defined as their difference normalized by the PP solution: 

 

 We have to emphasize here that this formulation may incorporate numerical errors (e.g. 

due to mesh discretisation and numerical inaccuracy), as well as violations of the PP 

approximation (i.e. use of point poles, low induction numbers), given the chosen model 

parameters. In order to minimise the influence of numerical inaccuracies, for most of the models 

the mesh parameters (i.e. maximum cell size, grow factor, and edge resolution) have been 

adapted to reflect changes in the sensor size and elevation. Additionally, basic numerical checks 

(e.g. comparing solutions on different meshes) have been carried out. 

Sensor separation vs halfspace resistivity. A crucial parameter for experimental array design 

is the minimum separation between adjacent capacitive sensors. We therefore examine 

normalised sensor separation lr, defined as the absolute sensor separation l normalised by the 

sensor size w (i.e. the side length of a square plate sensor).  

 

 The top panel of Figure 4 shows the absolute values of the transfer impedance Z (as 

obtained from the PP solution) for a relevant subset of the parameter space (i.e. realistic 

combinations of normalised sensor separation and halfspace resistivities, with values ranging 

from 1.1 m/m to 20 m/m and from 100 to 100,000 Ωm, respectively). Real and imaginary 

components of Z show similar behaviour; as expected, increasing halfspace resistivities result in 

increasing complex transfer impedances. Increasing sensor separations (corresponding to 

increasing geometric factors) on the other hand lead to decreasing Z. The real part is more 

sensitive to halfspace resistivity than to sensor separation. The imaginary part shows the same 

(10) 

(11) 
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sensitivity for halfspace resistivities above 1,000 Ωm, while below the absolute value of the 

imaginary part of Z is more sensitive to the sensor separation. 

The lower panel of Figure 4 shows the normalised difference between FS and PP (“relative 

error”). The real part shows the expected behaviour; for large sensor separations the solutions 

for the two approaches (i.e. FS and PP) are almost identical and the relative errors small (< 0.1 

%), whereas for smaller relative separations (lr < 7) an exponentially increasing deviation (up to 

20% and more) with decreasing distance can be observed. These results suggest that for very 

small sensor separations (lr ≤ 2) the PP approximation is violated. Large discrepancies between 

FS and PP solutions imply that the fundamental linear relationship between measured real part 

of Z and apparent resistivity (see eq. 8) is compromised, since this holds for point poles only. 

Therefore, in order to justify the use of conventional ERT methods for interpretation of CRI 

measurements, the deviation due to the use of finite-size sensors should remain below an 

acceptable error threshold, here we choose 5 %. This implies that measurements using sensor 

separations smaller than twice the sensor size (i.e. lr < 2) should be avoided. The halfspace 

resistivity is shown to have only minor effects on the previously described behaviour. Only for 

very large resistivities of ρ > 100 kΩm the discrepancy at small separations reduces 

significantly (~ 8 % compared to ~ 22 % for smaller resistivities). This suggests improved 

performance of the capacitive resistivity technique in resistive environments, as highlighted by 

previous authors (e.g. Tabbagh et al., 1993; Kuras et al., 2006). 

 A high sensitivity towards sensor separation and halfspace resistivity was found for the 

relative error of Im(Z). The relative errors between FS and PP solutions vary from 0.1 % to 

more than 100 % across the parameter space. However, the general behaviour in terms of the 

sensor separation is comparable to the real part; the smaller the sensor separation, the larger the 

discrepancy between the simulation and the PP solution. This indicates again the violation of the 

point pole approximation. In contrast to the real part, the halfspace resistivity has a significant 

influence on the size of the error; resistivities larger than 10 kΩm show rapidly decreasing 
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relative errors with increasing halfspace resistivity. With resistivities as high as ρ = 100 kΩm 

(e.g. permafrost) and lr >4  the error becomes comparable to that of the real part and shows 

hardly any sensitivity towards the sensor separation, but increases very strongly (i.e. over 2 

orders of magnitude) for smaller values of the two parameters. Once more, the suggestion is that 

CRI is likely to perform better in resistive environments (e.g. permafrost). But due to its high 

sensitivity to the sensor geometry and halfspace resistivity, care has to be taken when evaluating 

the imaginary part. 

Sensor elevation vs halfspace resistivity. Another important parameter in terms of the sensor 

geometry is the sensor elevation h above the ground, since it usually cannot be determined 

exactly in practical experiments (e.g. due to the ground roughness). Whilst in the simulation 

ideal surface conditions have to be assumed, sensor elevation is varied to account for this 

uncertainty to some extent (i.e. h ranging from 0.001 m to 0.075 m). The effects of the 

quadrupole elevation on the transfer impedance and the discrepancy between the FS and PP 

solutions are shown in Figure 5. 

 The absolute values of Z (top panel of Figure 5) show similar sensitivities to those 

described for the sensor separation. Within the chosen range of sensor elevations, the transfer 

impedance depends mainly on the halfspace resistivity. The imaginary part shows the opposite 

behaviour; with increasing sensor elevation the imaginary part of Z increases, whereas with 

increasing halfspace resistivity the sensitivity towards the sensor elevation decreases. 

 Sensor elevations are incorporated in the analytical solution through the geometric 

factor K
ES

 (see eq. 2 and Figure 2), therefore only minor discrepancies between the real parts of 

the numerical simulation and analytical solution (lower panel of Figure 5) are found, with 

variations of the relative error between 0.05 % and 0.45 %. Hence, for all elevations under 

investigation Re(Z) can be accurately approximated by the analytical PP solution. The 

variations for different sensor elevations appear to be controlled by the mesh discretisation 
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between the lower face of the sensor domain and the surface boundary of the lower halfspace; 

thus they reflect numerical inaccuracy.  

Discrepancies between FS and PP are more pronounced for the imaginary part. For 

small sensor elevations and halfspace resistivities relative errors are large (up to 100%), but they 

are decreasing rapidly with increasing sensor elevation and halfspace resistivity. These results 

can be explained by two effects. Firstly, a higher sensitivity of the imaginary part to numerical 

inaccuracies, since absolute values of Im(Z) are small where relative errors are high. Secondly, 

the strong growth of Im(Z) with sensor elevation and halfspace resistivities causes the relative 

error between FS and PP to be reduced in significance.  

Sensor elevation vs sensor separation. Figure 6 shows a sensitivity study of sensor elevation 

against normalised sensor separation. The absolute values of Z (top panel) show basically the 

same behaviour as shown previously. With increasing sensor separation the geometric factor 

increases and hence the transfer impedance decreases. For small changes of the sensor elevation 

(h < 0.03 m) Re(Z) remains nearly constant for a chosen sensor separation. Much stronger 

changes can be observed for the imaginary part; both, sensor elevation and separation, affect the 

transfer impedance and can lead to significant changes in Im(Z), whereas increasing values for 

the sensor elevation and decreasing values for the separation result in increasing imaginary parts 

of the transfer impedance (i.e. over 7 orders of magnitude). 

 Comparing the FS against the PP solutions (lower panel of Figure 6) shows that the 

discrepancy within Re(Z) is more sensitive to changes of the sensor separation than to changes 

in the sensor elevation. However, specific combinations of sensor elevation and separation exist, 

at which the discrepancy between FS and PP becomes minimal. These areas might indicate 

favourable numerical conditions, such as optimal mesh geometry and parameterisation. In 

contrast to Re(Z) the relative error of Im(Z) shows more sensitivity towards the sensor 

elevation, where small elevations and separations cause the largest error (> 100 %). The large 
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error of the imaginary part for small sensor elevations (h < 0.01m) is independent of the sensor 

separation, which suggests numerical problems due to suboptimal mesh discretisation. 

Additionally, small sensor separations (lr < 2) introduce a larger error for higher elevations (h < 

0.025 m); this is likely to be caused by the finite size geometry (FS case), which is not 

accounted for in the PP solution. 

Pole elevation vs halfspace resistivity. In practice it cannot be guaranteed that each sensor has 

exactly the same elevation above ground, as assumed by the quasi-static theory for the 

derivation of equation 8. Figure 7 shows the discrepancy between FS and PP for the variation of 

the elevation of one pole (i.e. leaving the remaining three poles at h = 0.001 m) at a range of 

halfspace resistivities. Note, the PP solution was calculated with all four poles at the same 

elevation. The relative error for Re(Z) remains small (< 0.1 %) for a difference in pole height of 

up to 0.05 m, but increases exponentially thereafter. The marginally smaller errors at pole 

elevations between 0.02 m and 0.04 m are likely to be due to mesh effects. As for the previous 

studies, the imaginary part shows substantially more variability. For halfspace resistivities 

below 300 Ωm, the error is about 100 % (comparable with Figure 6). As previously discussed, 

this is likely to be caused by a mesh discretisation that is too coarse between the sensor domain 

and halfspace, thus causing numerical inaccuracies. Due to the large sensor separation (lr = 20) 

induction effects can be ruled out here (B = 2.04·10
-4

). However, with resistivities above 300 

Ωm the relative error of Im(Z) is decreasing and shows sensitivity towards the pole elevation; 

increasing pole height leads to an increasing relative error. For resistivities above 50 kΩm the 

sensitivity towards pole height is negligible and the error for the imaginary part small 

throughout the investigated elevations. 

 From a practical point of view, these results show that the overall sensitivity towards 

sensor elevation (quadrupole elevation, but also pole elevation, which is likely to be less 

accurately determined) is lower than towards dipole separation. Thus, not every pole of the 



17 
 

quadrupole has to have exactly the same height above ground to obtain meaningful results and 

be interpretable with dc theory.  

Measurement frequency vs halfspace resistivity. The measurement frequency is an essential 

parameter of the CRI technique. Figure 8 shows a sensitivity study of the halfspace resistivity 

for a typical quadrupole (i.e. h = 0.001 m, lr = 20). For halfspace resistivities smaller than 1 

kΩm, the real part of the transfer impedance is independent of the measurement frequency. Also 

the imaginary part of the transfer impedance shows only minor variations. For halfspace 

resistivities above 1 kΩm Re(Z) is decreasing with increasing measurement frequency, whereas 

Im(Z) is mainly increasing, but showing a more complex behaviour. 

 Only small discrepancies between the FS and PP solutions (lower panel of Figure 8) can 

be found for Re(Z). Im(Z) however shows significantly more variability within the relative 

errors. Small halfspace resistivities and measurement frequencies (< 1 kΩm and < 400 kHz) are 

associated with large errors (up to 100 %), which are caused by numerical inaccuracies, as 

observed previously for the modelled quadrupole configuration. However, these errors reduce to 

less than 10 % for resistivities above 2 kΩm and frequencies above 30 kHz, which are likely to 

be related to changes in the induction number B. Whilst for a small halfspace resistivity and 

measurement frequency of 10Ωm and 10 kHz, respectively, the induction number is B = 0.063, 

it drops one order of magnitude to B = 0.007 for a halfspace resistivity of 2kΩm and a 

frequency of 30 kHz. The correlation of halfspace resistivity and relative error seems to be 

stronger than for the frequency, since smaller frequencies (< 30 kHz) show still large errors at a 

resistivity of about 2 kΩm, albeit decreasing induction numbers; only at resistivities as high as 

10 kΩm, the relative error has dropped down to acceptable levels. With frequencies above 500 

kHz the relative error is decreasing noticeably, even for small resistivities (< 1 kΩm); this is an 

observation that is independent of the induction number, which would be comparably large at 

these resistivity-frequency regimes (e.g. B = 0.044, for ρ = 1 kΩm and f = 500 kHz) and 

inductive effects can no longer be neglected. This highlights that, whilst the difference between 
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numerical and analytical solution may become small, the assumption of a quasi-static regime 

may break down and the physics are not correctly represented by the simulation anymore. Note 

that the largest errors are found for combinations of halfspace resistivity and measurement 

frequency for which Im(Z) is smallest, which might indicate inaccuracies within the numerical 

solution.  

These results show that the measurement frequency does not affect the validity of the 

PP approximations for Re(Z), and hence irrespective of the chosen frequency Re(Z) for a CRI 

measurement should be equal to that of a dc measurement (provided that all other parameters 

are appropriately chosen). Although the relative error of the imaginary part shows more 

variability, changes with measurement frequency are only small, but indicate an improving 

performance towards very high frequencies (< 1MHz). Kuras et al. (2006) define an upper 

frequency limit for the CRI technique below which inductive effects for point poles can be 

neglected, which depends on the ground conditions 

 

This upper limit will increase with increasing halfspace resistivity, assuming that the 

sensor separation l remains constant. For the smallest halfspace resistivity under investigation, 

i.e. ρ = 10 Ωm, this upper frequency limit is ful ≈ 2.5 MHz, and hence all chosen frequencies are 

well below this limit. While this limit will apply for small scale applications, e.g. at laboratory 

experiments, field measurements are usually restricted to an upper frequency limit of 25 kHz. 

However, in the discussion of Figure 8 we saw that this limit might be at least an order of 

magnitude smaller using sensors with finite dimensions instead of point poles. 

Halfspace relative permittivityvs halfspace resistivity. Figure 9 shows the dependence of Z 

on the halfspace permittivity and resistivity. Re(Z) and Im(Z) (upper panel of Figure 9) are 

strongly dependent on the halfspace resistivity, but show also a minor dependence on the 

halfspace permittivity (note the similarity to Figure 8). Increasing permittivity results in 

(12) 
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increasing dielectric polarization and in a decreasing real part of the transfer impedance, an 

effect that is more pronounced at high resistivities (> 10 kΩm). The dielectric polarization also 

changes the phase of the signal, which can be seen at the increasing imaginary part of the 

transfer impedance at higher halfspace resistivities. This effect is strongest at permittivities 

between 5 and 10. 

 The lower panel of Figure 9 shows the discrepancy between FS and PP solution. Re(Z) 

shows a small relative error of about 0.05 % throughout the investigated ε-ρ space. A larger 

variability can be seen for Im(Z). For halfspace resistivities larger than 5 kΩm the relative error 

is comparable to the one of the real part, independent of the halfspace resistivity and 

permittivity. For smaller resistivities, the error increases with decreasing resistivity and 

permittivity. However, relating this behaviour to the absolute values of the imaginary transfer 

impedance highlights a strong correlation; for resistivities smaller than 5 kΩm the imaginary 

part of the transfer impedance becomes small (< 10 Ohm), but the error large (> 30 %). This 

suggests that numerical inaccuracies are the cause of the deviations. 

Halfspace relative permittivityvs measurement frequency. In Figure 10 the discrepancy 

between FS and PP solution is shown for a range of halfspace permittivities and measurement 

frequencies. The absolute values are not shown here, since frequency and permittivity affect the 

transfer impedance only marginally. For Re(Z), the discrepancy between FS and PP solutions is 

hardly affected by these parameters and remains small (< 0.1 %) throughout the investigated ε-f 

space. These results shows that whilst the permittivity increases the polarizability of the 

material, this effect is well described by the quasi-static theory for the real part, and relative 

errors between FS and PP are small. However, Im(Z) shows again more variability, whereas the 

relative error is more sensitive to the measurement frequency than to the halfspace permittivity. 

With increasing frequency and permittivity the relative error is decreasing.  
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 In summary, the parameter study suggests that the approximation of sensors of finite 

size by a point pole approximation is valid for Re(Z), as long as the sensor separation is not 

smaller than twice the sensor size. Sensor elevation was shown to affect the simulations to a 

lesser degree. The parameter study indicated a better performance of the CRI technique on 

resistive ground (> 300 Ωm), where relative errors, especially for Im(Z), generally tended to be 

small. In general however, Im(Z) is likely to be more affected by numerical instability. 

Simulations exploring a range of measurement frequencies indicated a negligible effect on 

Re(Z) and only minor effects on Im(Z) for the discrepancy between FS and PP. It was also 

shown that the quasi-static theory incorporates the polarizability of the studied material and that 

the real component of the analytical transfer impedance presents a very good approximation for 

the simulated one across much of the investigated parameter space. . These results justify the 

use of Re(Z) in quasi-static approximation for all data processing. However, the discrepancies 

between numerical and analytical solutions for Im (Z) were shown to be strongly dependent on 

the geometric configuration (i.e. sensor size, separation, elevation) and the material properties 

(i.e. resistivity, permittivity). Since Im (Z) for the analytical solution is known to be very 

sensitive to the geometric setup and resistivities (Kuras et al., 2006; Tabbagh et al., 1993), and 

the results for the numerical simulations show a similar behaviour, its interpretability will be 

limited, especially on conductive ground. However, within these studies the highest relative 

errors in Im(Z) between FS and PP were often found for parameter combinations where the 

absolute value of the transfer impedance was comparatively small. This may suggest that some 

of the large discrepancies are caused by numerical instability, which was found to be more 

pronounced in Im(Z) than in Re(Z).  But other cases indicate that large errors are not necessarily 

related to small absolute values of Im(Z). 

 

Finite Size Rock Sample 
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Building on our experience with the homogeneous halfspace model, a capacitive sensor array 

used in a real laboratory experiment (Kuras et al., 2012) was simulated in order to validate the 

measurement principle and to improve our understanding of the measured complex signal. A 

homogeneous rock sample instrumented with 128 sensors (64 source and 64 potential poles) has 

been modelled. The sample size is 0.3 m × 0.3 m × 0.45 m, and different electrical resistivities 

and permittivities can be assigned to the uniform sample domain. Sensors are modelled as plain 

squares of side length 0.05 m, with an elevation of 0.001 m. This value is at least one order of 

magnitude higher than realistic sensor elevations achieved in the experiments, but we found that 

smaller elevations could not be implemented due to the limitations associated with FE mesh 

generation for the large difference in spatial scales. However, as the parameter study over the 

homogeneous halfspace has shown, the precise sensor elevation is not necessarily a critical 

parameter for CRI measurements, provided that the sensors are close to the surface (relative to 

their size).  This is particularly true for Re(Z), which largely remains constant for small 

elevations (< 0.03 m). Once again the “Terminal”-Boundary condition was assigned to the 

source domains.. Between the electrode and sample domains, thin sheets with the dielectric 

properties of acetate (σ ~ 0 S/m, εr = 4 (Wood and Brobst, 1932)) represent the insulation layer 

as used in the laboratory setup. The complete geometry is placed within a larger domain (5 m × 

5 m × 6 m) that accounts for the potential distribution in air around the sample. Analogous to 

the homogeneous halfspace model, at the outer model boundaries domains were defined 

comprising infinite elements in order to reduce boundary effects. The model layout as 

implemented in Comsol together with a typical discretisation of the sample domain is shown in 

Figure 11. Due to the use of unstructured meshes all edges of the sample are very finely 

discretised, since these are areas of the model which may cause strong effects on the potential 

distribution.  

 Since the aim of this simulation was to model sequential 3D CRI measurements across 

a large set of source-receiver combinations (2408 different combinations), an automatic change 
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of source and receiver domains had to be implemented for the FE model. A “parametric sweep” 

(i.e. an automated, sequential change of model parameters) was defined, which ensured repeated 

solving of the forward problem for different source dipoles. For each solution the potentials at 

every receiving sensor were calculated and saved. After the solution of the complete set of 

source-receiver combinations, values corresponding to the chosen dipole sequence were 

extracted. Calculation time for a complete set of 2408 different dipole combinations (768 

different source dipoles) on a mesh consisting of 1,171,057 elements and 1,636,819 degrees of 

freedom was about 12 hours (on a computer consisting of 4 Intel
®
Xeon

®
 X7560 processors with 

8 cores each and 128 GB memory). The stability of the solution was tested by calculating a 

subset of the source sequence on finer meshes. Within the numerical accuracy (i.e. double 

precision), the results were found to be identical. Moreover, the solutions for separate source 

dipoles converged rapidly in a monotonical fashion, suggesting that the problem is well posed. 

 Figure 12 shows our workflow for setting up a 3D model to simulate sequential CRI 

measurements. Important for the sequential solution of the model is the definition of at least 2 

variables (e.g. dom_C1, dom_C2) representing the source domains (one charged positive, one 

negative). These variables can be used to dynamically define a source current on arbitrary 

sensors by means of a logical (Boolean) comparison with the Comsol-internal definition of an 

active domain, called “dom” (e.g. dom == dom_C1). Using a parametric sweep, we were able to 

change the value of dom_C1 and dom_C2, and thus the current source domain, after each 

solution of the model. Moreover, defining variables for other model properties (e.g. sample 

resistivity, permittivity, and frequency) allowed us to carry out additional parameter studies. 

Due to the complexity of the model (and the large contrasts in modelled scale) we decided to 

define a number of nested regions for refined discretisation, for example around the sample and 

sensors (Figure 11). Once the simulation of the complete set of source dipoles had finished, 

integrals over all sensor domains representing potential poles were calculated to obtain the 

corresponding potentials at the receiving sensors. By extracting source and receiver 
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combinations according to a predefined set, the simulated values could then easily be compared 

to experimentally measured data. 

Simulation Results. In order to compare the simulations with experimentally obtained data, the 

model was solved for different sample resistivities (ρ = 85 Ωm, 150 Ωm, 295 Ωm, and 555 Ωm) 

and measurement frequencies (f = 15 kHz, and 50 kHz). A solution of the model using ρ = 555 

Ωm and f = 50 kHz is shown in Figure 13. 

The simulated dipole configurations comprise three different types of electrode arrays: 

(i) a “cross-sample” (CS) array analogous to conventional horizontal and diagonal cross-

borehole arrays as shown in Chambers et al., 2007; (ii) an “over-edge” (OE) array distributing 

the dipoles over two adjacent faces; and (iii) a “same-face” (SF) array placing the four poles on 

the same face, similar to a Wenner γ-type. Figure 14 shows examples of the array geometries 

employed for the simulations. 

 The solutions for all combinations are shown in Figure 13. It is evident that the 

majority of data points lie in the 4
th
 quadrant of the complex plane (i.e. positive real, negative 

imaginary part) and that all data points are aligned along the same axis through the origin; this 

axis is inclined against the x-axis by a small phase angle (φ ≈ 0.92˚). This observation compares 

well with previous experimental data, where all data points lay in the same (4
th
) quadrant. A 

small phase angle of φ ≈ 1˚ was expected; reflecting the fact that the quadrature component of 

the signal is very small compared to the in-phase component. This observation is compatible 

with the quasi-static theory (Kuras et al., 2006) as discussed in the description of the analytical 

solution. It provides further justification for using only the in-phase component (Re(Z)) to 

derive apparent resistivities.  

 If we consider the CS array only (blue markers in Figure 13) then all data points are 

found to lie in the 4
th
 quadrant, which is also the expected result for a 1D situation. For the OE 

array, the distribution of data points shows most of them in the 4
th
 quadrant, but also spans over 
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the 2
nd

 and 3
rd

 quadrant (negative real, positive and negative imaginary part, respectively). In 

general, the distribution is broader than for the CS array. In contrast to the OE array, the SF 

array shows only a few data points outside of the 4
th
 quadrant, namely in the 1

st
 and 2

nd
 quadrant 

(positive and negative real, positive imaginary part, respectively), but more scattering in the data 

is observed. Figure 13 also gives an indication of the dc geometric factors for the data points 

shown. The contour plot suggests that data points in the 2
nd

 and 3
rd

 quadrant are associated with 

negative geometric factors, which are characteristic for some of the unusual sensor geometries 

of the OE array.  

  

 If acquisition is limited to all possible dipole combinations of the CS array only (this 

array tends to produce the least noisy measured data), the measurement sequence should still be 

able to recover the spatial characteristics of the resistivity distribution across the whole rock 

sample and provide good quality data at the same time. As a consequence, this type of sensor 

arrangement is likely to present the best compromise for practical 3D resistivity imaging of a 

rock sample. However, we are conscious that our results reflect homogeneous sample properties 

only. The sensitivity of different array geometries to heterogeneities in sample resistivity would 

have to be evaluated in order to assess this aspect quantitatively. An optimal set of dipole 

combinations for high-resolution imaging of such a rock sample could then be determined as a 

function of the specific resistivity distribution. 

Investigation of the voltage distribution on the sample suggests that potential sensors in the 

immediate vicinity of the source poles may experience the near field of the induced potential, 

where comparatively large voltage contrasts can occur on the scale of the sensor dimensions. 

This observation may explain the results obtained for the homogeneous halfspace model, which 

suggested that with decreasing sensor separation the point-pole approximation breaks down and 

larger geometric errors must be expected. However, our implementation of the 3D model does 
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not account for the potential sensors being finite-size metallic conductors that will distort the 

resulting electrical field; in reality the sensors will represent an equipotential surface.   

 Solving the model for different sample resistivities confirmed the linear relationship 

between sample resistivity and the simulated Re(Z). This direct relationship is the fundamental 

prerequisite for resistivity imaging with capacitive sensors. The results for the imaginary part 

showed only very subtle changes associated with increasing sample resistivities. However, the 

magnitude of Im(Z) is much smaller than that of Re(Z). Changing the measurement frequency 

from 15 kHz to 50 kHz showed no effects on the simulated Re(Z) at the investigated sample 

resistivity, but it has to be noted that higher frequencies and sample resistivities would also alter 

the real part of the transfer impedances; as demonstrated for the homogeneous halfspace model. 

 

Comparison with measured data 

 The simulations of CRI measurements on a finite rock sample were inspired by the work of  

Kuras et al. (2012), where CRI measurements are used to monitor the physical modelling of 

permafrost processes in chalk and limestone. These experiments define the requirements for the 

sensor and sample arrangement in our models, which makes comparison between simulated and 

measured data straightforward. For the purpose of this comparison, the median resistivity for the 

experimental data sets (i.e. using the data acquired over the whole sample) was used to define 

the (homogeneous) sample resistivity in the numerical models.  

 Figure 15 shows the comparison for Re(Z) obtained from simulation and experiment for 

a saturated sample with a median resistivity of ρ=150 Ωm. The agreement between simulation 

and experiment is very good, bearing in mind that the simulation assumes a perfectly 

homogeneous sample with well-defined sensor-sample separation and sample geometry, 

whereas in reality the sample is expected to include heterogeneities and its geometric shape is 
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imperfect. The simulated Re(Z) lies in the range of 25 to 1350 Ω, which compares well with the 

measured data (10 to 1400 Ω). The high logarithmic correlation coefficient r = 0.953 indicates 

good positive correlation between the two data sets, which is also reflected in a very reasonable 

alignment of the data along the diagonal. Differences between simulation and experiment 

increase with increasing impedances, but the relative error remains at the same level (about 

10%) throughout the range of impedances. Outliers are usually related to data points where the 

measured imaginary component is larger than the simulated one, i.e. where the logarithmic ratio 

of measured to simulated Im(Z) is greater than one (warm colours in Figure 15). This 

observation may offer an opportunity to use the imaginary part to evaluate the quality of CRI 

measurements. Furthermore, these results validate our approach to simulating CRI 

measurements numerically, and they prove the applicability of the methodology to the imaging 

of laboratory-scale samples. 

Conclusions 

In this paper we used numerical simulations with the aim of improving our understanding 

of practical CRI measurements and to define limitations on the array design, based on the 

assessment of relative errors between geometrically realistic simulation results and analytical 

solutions, derived from a point pole approximation. Simulations of CRI measurements above a 

homogeneous halfspace showed that the real component of the complex transfer impedance 

depends mainly on sensor size and separation; the smaller the normalised sensor separation the 

larger the discrepancy between the simulated and the analytical solutions. The point-pole 

approximation of the analytical solution breaks down if the sensor separation is smaller than 4 

times the sensor size. To avoid large errors (> 5%), the sensors have to be separated by more 

than twice their size. The influence of sensor elevation, halfspace resistivity, halfspace 

permittivity, and measurement frequency was investigated and their effect on the relative error 

between simulation and analytical solution was shown to be negligible for the case of Re(Z). It 
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was also shown that the imaginary component is more sensitive to the geometric configuration 

of the sensors (i.e. normalised sensor separation and elevation) and to measurement and 

dielectric ground properties (i.e. measurement frequency, halfspace resistivity, and permittivity) 

than Re(Z). Therefore, opportunities for the quantitative interpretation of  Im(Z) are limited. 

Additionally, it was highlighted that Im(Z) is more susceptible to numerical instability in the 

models than Re(Z).  

In order to prove the applicability of CRI simulations to experimental studies, we 

simulated sequential CRI imaging measurements on a 3D finite rock sample and compared them 

to measured data, thus fully exploiting the capabilities of finite-element numerical modelling. A 

comparison of the two data sets showed good agreement and validated the obtained results. 

More fundamentally, this outcome demonstrates that experimental CRI measurements can be 

simulated with a finite element approach  using a quasi-static regime, as results obtained are in 

accord with experimental data. Additionally, we were able to associate outliers in the 

experimental data with large discrepancies between simulated and measured Im(Z), thus 

highlighting the benefit of simulating CRI measurements in terms of data quality assessment. 

We showed that the use of finite-element numerical simulations of CRI measurements is a 

valuable tool to define limitations on array design and to evaluate measurement quality. 
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Figure 15 a) Comparison of the real part of the simulated and experimentally obtained transfer 

impedances for a saturated sample with mean resistivity of 150 Ωm. Note the logarithmic correlation 

factor of r = 0.953. Data points are coloured using the logarithmic of the ratio between measured and 

simulated imaginary part of the transfer impedance. b) Distribution of measured apparent resistivities. . 54 
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Table 1 Values of the induction number B for best to worst case scenarios using typical values 

used in the numerical simulations. It is evident that B remains well below 1 for all investigated 

scenarios.  

    Low Mid High 

f  [kHz] 10 25 150 

L  [m] 0.05 0.5 1 

ρ  [Ωm] 105 103 101 

B   3.1416∙10-5 4.9673∙10-3 0.2434 
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Figure 1 Schematic drawing of capacitively coupled quadrupole, non-grounded in air. C1 and 

C2 are source poles, P1 and P2 are potential poles, and C’1 and C'2 are image source poles. 

Indicated are distances between potential and source or image source points r or r’, respectively. 

The first subscript indicates the potential pole and the second the source pole. 
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Figure 2 Dependence of complex transfer impedance on sensor elevation, displayed 

for five different halfspace resistivities. Dipole separation r = 1 m, εr= 1, f = 15 kHz. 

Please note that all sensors are assumed to have exactly the same elevation. 
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Figure 3 Geometric configuration (left) and example mesh (right) used in the 

parameter study of a capacitively coupled quadrupole over a homogeneous 

halfspace. Infinite elements are assigned to surrounding outer boundary domains as 

indicated. 
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Figure 4 Surface plots showing (top) the range of absolute values of the real and 

imaginary transfer impedances from the analytical solution, (bottom) the discrepancies 

between simulated complex transfer impedance and analytic solution for different 

normalised sensor separations and halfspace resistivities (w = 0.05 m, h = 0.001m, ε = 3,  

and f = 15 kHz).  
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Figure 5 Surface plots showing (top) the range of absolute values of the real and 

imaginary transfer impedances from the analytical solution, (bottom) the discrepancy 

between simulated complex transfer impedance and analytic solution for different sensor 

elevations  and halfspace resistivities (w = 0.05 m, h = 0.001 m, ε = 3, and f = 15 kHz).  
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Figure 6 Surface plots showing (top) the absolute values of the complex transfer impedance 

and (bottom) discrepancy between simulated complex potential and analytic solution for 

combinations of sensor elevation and normalised sensor separation (w = 0.05 m, ρ = 100 Ωm, ε 

= 3, and  f = 15 kHz). 
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Figure 7 Surface plots showing the discrepancy between simulated complex potential and 

analytic solution for different heights of one out of the four poles at a range of halfspace 

resistivities (h (remaining poles) = 0.001m, lr = 20, ε = 3, and f = 15 kHz ).  
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Figure 8 Surface plots showing (top) the absolute values of the complex transfer impedance and 

(bottom) discrepancy between simulated complex potential and analytic solution for 

combinations of measurement frequency and halfspace resistivity (h = 0.001 m, lr = 20, and ε = 

3). 
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Figure 9 Surface plots showing (top) the absolute values of the complex transfer impedance and 

(bottom) discrepancy between simulated complex potential and analytic solution for 

combinations of halfspace permittivity and halfspace resistivity (h = 0.001 m, lr = 20, and f = 15 

kHz).  
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Figure 10 Surface plots showing the discrepancy between simulated complex potential and 

analytic solution for different halfspace permittivities at a range of measurement frequencies (h 

= 0.001m, lr = 20, and ρ = 100 Ωm). 
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Figure 6 Geometric configuration (left) and example mesh (right) used in the 

simulation of the laboratory experiments. 
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Figure 7 Workflow for setting up a sequential simulation of CRI measurements in Comsol 

Multiphysics
®
. 
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Figure 8 Complex transfer impedance calculated by simulating sequential CRI 

measurements on a finite rock sample of ρ = 555 Ωm, εr = 2.4, using f = 50 kHz 

(note the different scale of the y-axis). 
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Figure 9 Electrode arrays employed in the numerical simulation. a) cross-sample CS; 

b) over-edge OE; c) same-face SF. 
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Figure 10 a) Comparison of the real part of the simulated and experimentally 

obtained transfer impedances for a saturated sample with median resistivity of 150 

Ωm. Note the logarithmic correlation factor of r = 0.953. Data points are coloured 

using the logarithmic of the ratio between measured and simulated imaginary part 

of the transfer impedance. b) Distribution of measured apparent resistivities. 


