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Abstract 

Penguin colonies represent some of the most concentrated sources of ammonia 
emissions to the atmosphere in the world. The ammonia emitted into the atmosphere 
can have a large influence on the nitrogen cycling of ecosystems near the colonies. 
However, despite the ecological importance of the emissions, no measurements of 
ammonia emissions from penguin colonies have been made.  The objective of this 
work was to determine the ammonia emission rate of a penguin colony using inverse-
dispersion modelling and gradient methods.  We measured meteorological variables 
and mean atmospheric concentrations of ammonia at seven locations near a colony 
of Adélie penguins in Antarctica to provide input data for inverse-dispersion 
modelling.  Three different atmospheric dispersion models (ADMS, LADD and a 
Lagrangian stochastic model) were used to provide a robust emission estimate.   The 
Lagrangian stochastic model was applied both in ‘forwards’ and ‘backwards’ mode to 
compare the difference between the two approaches. In addition, the aerodynamic 
gradient method was applied using vertical profiles of mean ammonia concentrations 
measured near the centre of the colony.  The emission estimates derived from the 
simulations of the three dispersion models and the aerodynamic gradient method 
agreed quite well, giving a mean emission of 1.1 g ammonia per breeding pair per 
day (95% confidence interval: 0.4-2.5 g ammonia per breeding pair per day).  This 
emission rate represents a volatilisation of 1.9% of the estimated nitrogen excretion 
of the penguins, which agrees well with that estimated from a temperature-dependent 
bioenergetics model.  We found that, in this study, the Lagrangian stochastic model 
seemed to give more reliable emission estimates in ‘forwards’ mode than in 
‘backwards’ mode due to the assumptions made. 

 

Keywords: Ammonia emissions; Penguins; Seabirds; Inverse-dispersion modelling; Nitrogen 
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1. Introduction 

 
Large colonies of wild animals can emit substantial quantities of ammonia (NH3) into 

the atmosphere.  This is especially true for colonies of seabirds such as penguins, 

which represent some of the most concentrated natural sources of atmospheric 

ammonia in the world (Wilson et al., 2004; Riddick et al., 2012).  Most penguin 

colonies are situated in remote locations and hence the emitted ammonia can 

represent the principal source of atmospheric nitrogen (N) input into nearby 

ecosystems, making them interesting case studies of ecosystem N-cycling 

(Lindeboom, 1984; Crittenden et al., unpublished results). Although penguins and 

other seabirds contribute less than 2% of global NH3 emissions (Riddick et al., 2012), 

the concentrated nature of seabird colony emissions can have important local 

ecological effects, the understanding of which is aided by knowing how much NH3 is 

emitted.  At the same time, seabird colonies provide a model system for studying NH3 

emission processes that largely excludes human management of the excreta, 

allowing the effects of climatic differences to be examined (Sutton et al., 2013). 

 

Initial estimates of penguin ammonia emissions on a global scale were made by 

Blackall et al. (2007), who estimated total NH3 emissions from all seabird species of 

242 Gg NH3 year-1 using a simple bioenergetics model.  Penguin species contributed 

most, accounting for around half of this total.  This approach was subsequently 

modified by Riddick et al. (2012) to include an estimated temperature dependency 

and updated database of seabird colonies to produce a spatial emission inventory for 

seabird NH3 emissions.  Laboratory studies have also been carried out to estimate 

the potential of penguin colonies to emit NH3 into the atmosphere.  For example, Zhu 

et al. (2011) studied the NH3 emission potential of guano and ornithogenic soils from 

penguin colonies and their dependence on temperature, pH and total nitrogen 

content. However, despite these advances in emission inventories and laboratory 
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studies, no field-based estimates of NH3 emissions from penguin colonies have been 

published.   

 

The objective of this paper is to derive the first field-based emission estimates (and 

their uncertainty) of a penguin colony using different dispersion models and micro-

meteorological methods. 

 

2. Materials and methods 

2.1. Colony location 

Cape Hallett is situated at the southern end of Moubray Bay, northern Victoria Land, 

in the western Ross Sea (Figure 1a) at the northern tip of the Hallett Peninsula (72° 

19’ S, 170° 16’ E; Figure 1b). At the northern tip of the Cape is the small spit of 

Seabee Hook (Figure 1c), where a colony of Adélie penguins (Pygoscelis adeliae) is 

located. 

 

The most recent estimate of the colony size is 39 000 breeding pairs, recorded in the 

breeding season 1998-1999 (Landcare Research, 2000).  In addition to the breeding 

pairs, the colony also contains non-breeding adults and chicks.  The colony occupies 

an area of approximately 33.2 ha covering most of the spit and part of the slopes of 

the Cape (Figure 1c).  During summer, the sea surrounding the spit partly melts, while 

to the east rise the steep slopes of the Hallett peninsula (Figure 1b).   
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Figure 1: Maps showing the locations of: a) the study site relative to the Antarctic continent; b) 

the Cape Hallett peninsula and c) the penguin colony.  The numbered circles indicate the 

locations and site numbers of the ammonia concentration measurements.  Note the rotated 

north directions in maps b and c.  Land cover and contour data courtesy of the Antarctic Digital 

Database (ADD Consortium, 2000).  Extent of sea ice and shape of Seabee Hook modified 

based on personal observations and aerial photographs, respectively. 

2.2. Measurements 

During the experimental period (December 2005-January 2006), which was 

coincident with the penguin breeding season, mean atmospheric ammonia 

concentrations were measured at seven locations (Figure 1c) using ALPHA passive 

diffusion samplers (Tang et al. 2001) mounted at a height of 1.5 m above ground.  

The height of 1.5 m was used so that the measurements were made close to the 

emitting surface but out of reach of the penguins. Samplers were exposed in triplicate 

at each site for three periods: 26th December 2005 to 10th January 2006, 11th to 

17th and 17th to 23rd January 2006.  Measurements at additional heights of 0.25, 

0.63, and 2.5 m above ground level were also made at a site near the centre of 
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Seabee Hook (site 1) for the calculation of emission rates using the aerodynamic 

gradient method.  Samplers were also exposed at four remote locations during the 

first sample period to estimate background concentrations (sites 8-11, Figure 1b).  

 

Meteorological data were recorded at the long-term automatic meteorological station 

situated approximately 500 m east of the centre of the colony.  The meteorological 

variables (air temperature, relative humidity, incoming and reflected solar radiation, 

wind speed and direction, minimum and maximum wind speed and the standard 

deviation of the wind direction) were logged every 15 minutes.  Due to a damaged 

sensor, wind speed and direction data were not available for the first part of the first 

measurement period (up to 2nd January 2006). 

 

2.3. Emission estimation methods 

Many experimental techniques have been used to estimate emissions from a diverse 

range of (mostly agricultural) sources of NH3 (see e.g. McGinn and Janzen (1998) for 

a review of commonly used methods).  These techniques range from simple mean 

concentration vertical profile measurements (e.g. Misselbrook et al., 2005) to state-of-

the-art eddy covariance systems requiring fast concentration sensors and accurate 

turbulence measurements (e.g. Famulari et al., 2004).  

 

For application to penguin colonies, many of which are located in remote areas, a 

non-labour-intensive and non-resource-intensive (e.g. without mains power) 

technique is required.  One such technique is the aerodynamic gradient method, 

which was used by Sutton et al. (2000) to estimate fluxes of NH3 between an oilseed 

rape crop and the atmosphere. This method is based on the theoretical vertical 

concentration profiles of wind speed: 
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where d is the displacement height, u* is the friction velocity, κ is the Von Kármán 

constant (0.41), z0 is the aerodynamic roughness length, L is the Monin–Obukhov 

length, C* is a friction concentration and ψm and ψh are the stability corrections for 

momentum and heat, respectively.  The emission flux is calculated from: 

**CuF            (3) 

This method can be applied to both short (< 1 hour) and long (several days) 

averaging periods (conditional on limited variation in atmospheric stability, Famulari et 

al., 2010), making it suitable for experiments in remote locations.   

 

For the long sampling periods used in this study, it was assumed that neutral 

conditions dominated and so the stability corrections of the aerodynamic gradient 

method (in Equations 1 and 2) could be ignored (Sutton et al., 2000).  The 

displacement height (d) was assumed to be zero in the absence of any vegetation 

canopy at the site. 

 

Another non-resource-intensive estimation method makes use of inverse atmospheric 

dispersion modelling to relate mean atmospheric concentrations measured near the 

source to NH3 emission rates.  This technique is based on the assumption that 

atmospheric concentrations resulting from an emission source are directly 

proportional to the emission rate, thus for a perfect dispersion model it can be inferred 

that the real emission rate 
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where Cmeas is the measured atmospheric concentration, Cbg is the background 

concentration and Csim is the predicted concentration for a simulation using the 

emission rate Qsim. 

 

One model based on this principle is the backwards Lagrangian stochastic (Ls) 

model of Flesch et al. (2004), which is implemented in the WindTrax software 

(Thunder Beach Scientific, Nanaimo, Canada). This model has been successfully 

applied to estimate emission rates using mean concentrations for averaging periods 

of less than one hour (see e.g. Flesch et al., 2005) up to 26 hours (Sommer et al., 

2005).  

 

The model of Flesch et al. (2004) also has the capability to be run forwards, i.e. the 

calculation of atmospheric concentrations from a known or estimated source emission 

rate.  In this respect, the model functions similarly to other atmospheric dispersion 

models such as ADMS (Carruthers et al., 1994), AERMOD (Cimorelli et al., 2002) and 

LADD (Dragosits et al., 2002).  All three of these models have been used to estimate 

emission rates of NH3 sources by using an arbitrary emission rate in the model and 

then fitting the modelled atmospheric concentrations to the measured values (above 

background) by applying a correction factor (see e.g. Hill et al, 2008; Faulkner et al., 

2007; Theobald et al., 2006).  From Equation 4, the real emission rate (Q) is 

estimated to be the emission rate used in the simulation multiplied by the correction 

factor.  
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Three atmospheric dispersion models (ADMS 4.1, LADD and the Ls model of Flesch 

et al. (2004), implemented in WindTrax V.2.0.8.3) were used to estimate the ammonia 

emissions of the penguin colony.  All three models simulate atmospheric dispersion 

processes in fundamentally different ways (see Appendix 1).   

 

All three models were used to simulate the mean atmospheric concentration at the 

measurement locations closest to the colony (1-7; Figure 1c) for the three 

measurement periods using an arbitrary constant emission rate of 1 μg NH3 m
-2 s-1.  

Appendix 1 provides details of the model parameterisations used and the uncertainty 

analyses. The Ls model was also used in ‘backwards’ mode using the measured 

mean concentrations and hourly meteorological data as input to derive hourly 

emission estimates.  Both the forwards and backwards simulations used the 

trajectories of fifty thousand “fluid particles” for each measurement location for each 

hour.   

 

The forwards simulations (ADMS, LADD and the Ls model) assume that the colony 

emission rate is constant in time and the atmospheric concentrations vary temporally 

as a result of changing meteorological conditions.  The backwards simulations of the 

Ls model, however, assume that the atmospheric concentrations are constant in time 

and that the emission rate varies temporally.  Both of these assumptions are not 

realistic since the emission rate and the atmospheric concentrations will both vary 

temporally as result of changing meteorological conditions and penguin behaviour.  

However, this does not mean that the methodology cannot give a useful emission 

estimate.  For example, Theobald et al. (2012) showed that the ADMS and LADD 

models predicted mean NH3 concentrations near a pig farm to an acceptable degree 

of accuracy, even though a constant emission rate was used in the simulations. Due 

to the lack of emission estimates for penguin colonies in the literature, we believe that 
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the application of these techniques has the potential to provide useful emission 

estimates, although the uncertainty introduced due to the assumptions made must be 

taken into account.  

 

The emission rate estimated for each measurement period from the backwards Ls 

simulations was calculated as the mean value of the hourly emission estimates output 

by the model.  For the forwards simulations of all three models, the concentration 

predictions using the arbitrary emission rate (1 μg NH3 m
-2 s-1) were compared with 

the measured values and then multiplied by a factor to fit the predicted concentrations 

to the measured values for each measurement period.  This correction factor 

represented the ratio of the actual emissions to the emission rate used in the 

simulations and was determined by optimisation of four of the performance measures 

of Chang and Hanna (2004) (Table 1).  These were optimised individually by 

adjusting the correction factor to either remove the bias (i.e. MG=1 or FB =0) or 

minimise the scatter (i.e. minimising NMSE or VG).  By definition, VG is minimised 

when MG=1 and so the same correction factor is obtained by the optimisation of both 

of these performance measures.   
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Table 1: The performance measures used to optimise the predicted concentrations and 

their relationship to the observed (Co) and predicted concentrations (Cp). 

Performance 

measure 
Definition Optimum value 

Fractional bias (FB) 
)(

)(2

po

po

CC

CC
FB




  0 

Geometric Mean 

Bias (MG) 

 po CCMG lnlnexp   1 

Normalised mean 

square error (NMSE) 

 

po

po

CC

CC
NMSE

2


  0 

Geometric variance 

(VG) 
  2

lnlnexp po CCVG   1 

 

3. Results 

3.1. Meteorological data 

Due to the influence of the Cape Hallett peninsula, the predominant wind direction 

during all three measurement periods was from the southwest (Figure 2).  Table 2 

shows the minimum, maximum and mean values for the wind speed, air temperature 

and solar radiation for the three measurement periods.  Wind speeds were, on 

average, strongest during the first measurement period (for the period with available 

data) and weakest during the second, while mean air temperatures decreased 

throughout the experimental period.  
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Figure 2: Wind speed and wind direction frequency plots for the three measurement periods.  

Plotted using WRPLOT v7.0 (Lakes Environmental Software). 

Table 2: Mean, minimum and maximum values of selected meteorological variables for 

each measurement period. 

Measurement Period 
Wind speed  

(m s
-1

) 

Air temperature 

(ºC) 

Solar radiation 

(W m
-2

) 

 Mean 
Min 

Max 
Mean 

Min 

Max 
Mean 

Min 

Max 

1) 26/12/2005 – 10/01/2006 6.8 
0.2 

16.6 
-0.5 

-6.0 

 2.8 
232 

10 

830 

2) 11 – 17/01/2006 1.6 
0.3 

6.4 
-1.0 

-5.8 

 2.1 
298 

12 

761 

3) 17 – 23/01/2006 2.3 
0.2 

6.9 
-1.9 

-7.5 

0.6 
225 

5 

761 

 

Ten-degree wind-sector roughness lengths were calculated to be between 0.008 and 

0.46 m (see Appendix 1).  However, some of these values were calculated from very 

few records and were, therefore, not very reliable.  A more robust zo estimate was 

calculated from the wind sectors that made up 95% of the data record (nine wind 

sectors), with a range of 0.008 to 0.034 m and a mean value of 0.020 m. 
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3.2. Measured and modelled atmospheric concentrations 

For all measurement periods, a general decrease in measured concentrations with 

distance from the colony centre was observed (Figure 3).  Measured concentrations 

during the first period at the remote sites (8-11) were in the range 0.06-0.26 μg NH3 

m-3.  

   

Figure 3: Measured mean ammonia concentrations versus distance from the colony centre for 

all three measurement periods plotted on log-log axes.  Error bars indicate ± two standard 

deviations of the triplicate ALPHA sampler values. The colony centre is defined as the 

geometric centre of the wide part of Seabee Hook (approximately 30 m south-west of site 1). 
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Concentrations predicted by ADMS, LADD and the Ls model (forwards), using the 

arbitrary emission rate, were well correlated with the measured values (R2=0.69-0.88, 

R2=0.62-0.87 and R2=0.79-0.91 for ADMS, LADD and the Ls model, respectively) 

(Figure 4). 

 

 

Figure 4: Modelled versus measured NH3 concentrations on log-log axes for the ‘forwards’ 

simulations of a) ADMS; b) LADD and c) Ls model for all three measurement periods, with the 

models run using an arbitrary emission rate of 1 μg NH3 m
-2

 s
-1

.  Error bars indicate ± two 

standard deviations of the triplicate measured values and the 5th and 95th percentile 

concentrations from the uncertainty analysis of the modelled values (see Appendix 1).  

 
3.3. Emission calculations 

Inverse dispersion modelling 

For the forwards simulations, optimising the predictions of the three models using 

each performance measure individually gave the emission correction factors shown in 

Table 3. Since it is not possible to optimise more than one performance measure at a 

time (other than MG and VG) and since the correction factors are similar for all 

performance measures for each measurement period and model, the range of 

correction factor values was taken as the correction factor uncertainty.   
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All three models estimated a decrease in the correction factor (i.e. colony emission) 

going from Period 1 to Period 3. To take into account the uncertainty due to model 

input data (roughness length and deposition parameters, see Appendix 1), correction 

factors were also calculated for the predictions at both the lower and upper end of the 

concentration uncertainty ranges shown in Figure 4.  The three-model mean emission 

estimates (and 95% confidence intervals) were 4.4 (3.7-6.4), 1.9 (1.4-3.5) and 1.4 

(1.1-2.4) μg m-2 s-1, for the three periods respectively. 

 

The backwards Ls model gave significantly larger (P<0.05) mean emission rates (7.4, 

8.2 and 3.6 μg m-2 s-1, for the three periods respectively) than the optimisation of the 

forwards simulations, with 95% confidence intervals of 5.9-10.0, 5.4-11.5 and 2.6-4.7 

μg m-2 s-1, respectively. 

Table 3: Emission correction factors obtained by optimising the performance measures 

MG, VG, FB and NMSE for all three forwards models and for all three measurement 

periods. These correction factors are derived from simulations using an arbitrary 

emission rate of 1 μg NH3 m
-2

 s
-1

.  

Model 
Performance 
measure 

Correction factor for measurement period: 

  1 2 3 

A
D

M
S

 MG and VG 5.2 1.8 1.6 

FB 3.9 2.0 1.6 

NMSE 3.6 2.0 1.5 

L
A

D
D

 

MG and VG 4.1 1.2 0.9 

FB 4.4 1.5 1.2 

NMSE 4.7 1.6 1.3 

L
s
 

MG and VG 5.8 2.3 1.6 

FB 3.9 2.4 1.5 

NMSE 3.7 2.4 1.5 
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Aerodynamic gradient method 

The measured vertical concentration profiles are shown in Figure 5.  For the 

calculation of the fluxes using the aerodynamic gradient method, the concentration 

measured at the lowest height during Period 1 was not used because only one of the 

triplicate samples survived and that sample was damaged.  The uncertainty in the 

emission estimates was estimated from the 95% confidence intervals of the 

roughness length and the slopes of the linear regressions shown in Figure 5.  The 

mean emission estimates (and 95% confidence intervals) were 5.5 (4.6-7.0), 1.3 (0.6-

2.3), 1.1 (0.5-2.0) μg m-2 s-1, for the three periods respectively.  

 

 

Figure 5: Measured vertical concentration profiles plotted on a logarithmic height axis for the 

three sampling periods.  The concentration measured at the lowest height during Period 1 

(open symbol) was excluded from the analysis.  Error bars indicate ± two standard deviations 

of the triplicate measured values. N.B. the displacement height (d) is assumed to be zero. 

Emission estimate summary 

The emission per penguin breeding pair was calculated from the source emission 

estimates using the colony population data and surface area of the colony, for each of 

the estimation methods (three dispersion models and the aerodynamic gradient).  
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These calculations resulted in a range of emission estimates from 0.8 to 6.0 g NH3 

per breeding pair per day with varying degrees of uncertainty (Figure 6), with the 

largest emission estimates from the backwards simulations of the Ls model. Breeding 

pair numbers were used to scale the colony emission rate since they are the only 

population data available.  However, it must be borne in mind that the emission rate 

per breeding pair will also include contributions from non-breeding adults and chicks.  

 

All three forwards models and the aerodynamic gradient calculations estimate a larger 

emission rate for the first measurement period than for the second and third periods.  

This is primarily due to the larger mean wind speed for this measurement period.  

However, only about half of the measurement period was simulated due to 

anemometer failure and, therefore, it is not known whether these larger mean wind 

speeds were typical for the entire measurement period or only for the second half.  

Due to this uncertainty, the simulations of the first measurement period provide less 

reliable emission estimates, while remaining useful for comparison.   

 

Figure 6: Penguin breeding pair ammonia emission estimates calculated from the simulations 

of the three models and the aerodynamic gradient method for all three measurement periods.  

The error bars indicate the uncertainty in the ADMS, LADD and Ls model estimates due to 

uncertainty in the surface parameters and the uncertainty in the vertical profile calculations 

due to uncertainty in z0 and the slopes of the logarithmic concentration profiles.  
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4. Discussion 

4.1. Method applicability and best estimate of emission rate  

The reasonable agreement between the emission estimates obtained from the three 

forwards dispersion models (ADMS, LADD and the Ls model) is encouraging.  The 

three models simulate the main dispersion processes in different ways and the fact 

that the resulting emission estimates are similar and are of the same order of 

magnitude as those from the aerodynamic gradient approach gives some confidence 

in these estimates. It can be assumed, therefore, that all three models are suitable for 

this type of inverse modelling case study (i.e. ground level area source, flat terrain 

and long concentration averaging periods). This assumption is also in agreement with 

Theobald et al. (2012) who demonstrated good agreement between the concentration 

predictions of ADMS and LADD for agricultural ground-level area sources. 

The emission estimates derived from the forwards and backwards Ls model are 

significantly different (P<0.05) due to the different assumptions made (constant 

emission rate vs. constant atmospheric concentrations), which affect the way the 

mean emission rate is calculated.   

To test the validity of the first assumption (constant emission rate and varying 

atmospheric concentrations), the forwards simulations were re-run assuming that the 

emission rate during the simulation was dependent on air temperature (T) and wind 

speed (u): 

   uT eeAQ 042.007.0

var  ;        (5) 

where A is a constant and the coefficients for air temperature (0.07) and wind speed 

(0.042) were taken from Zhu et al. (2011) and Søgaard et al. (2002), respectively. The 

variable emission rate was then normalised so that the average emission for each 

measurement period was unity (Figure 7).  The normalised emission rate varied from 
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0.6 to 1.5 throughout the three measurement periods with a ratio of mean day-time 

maximum to mean night-time minimum emission rates of 1.5. Additional simulations 

were also carried out with different ratios of day-time to night-time emission rates up 

to a ratio of 8 (similar to the modelled and measured emission time series for 

Macaroni Penguins on Bird Island in the South Atlantic from Riddick (2012)), in order 

to evaluate the effect of the simulated diurnal variability on the emission estimates 

(Figure 7). 

 

Figure 7: Measured air temperature and wind speed and calculated normalised emission rate 

for sampling period 2.  Three normalised emission rates are shown corresponding to ratios of 

mean day-time maxima to mean night-time minima of 1.5, 4, 8 and 16. 

For the two measurement periods with complete meteorological data (Periods 2 and 

3), the mean emission estimates calculated from these simulations were up to 73% 

larger than the estimates from the constant emission simulations (Figure 8), although 

they were still significantly smaller than those calculated from the backwards 

simulations.  This suggests that the use of a constant emission rate in the simulations 

may underestimate emissions by up to 40%.  Although this introduces substantial 
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uncertainty into the emission estimates, this uncertainty is a similar order of 

magnitude to the uncertainty of the emission estimates of the other methods (Figures 

6 and 8). 

 

 

Figure 8: Penguin breeding pair ammonia emission estimates for measurement periods 2 and 

3 calculated with the forwards Ls model using constant emission rates and emission rates with 

ratios of mean day-time maxima to mean night-time minima of 1.5, 4 and 8. The mean 

emission estimate of the other two models (LADD and ADMS) and the range of emission 

estimates from both of these models are also shown for comparison. 

The fact that the inclusion of a more realistic emission rate gives comparable 

emission estimates to those from the constant emission simulations suggests that the 

constant emission rate assumption is more valid than the assumption of constant 

atmospheric concentrations.  This conclusion is also backed-up by the fact that the 

forwards Ls simulations gave similar emission estimates to the other two models and 

the aerodynamic gradient method. 

 

The aerodynamic gradient method applied here assumes that neutral conditions 

dominated during the measurement periods in order to ignore the stability corrections 
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of Equations 1 and 2.  In order to explore this assumption further, we assessed the 

range of hourly values of the friction velocity (u*) calculated from the hourly 

meteorological data using the method of Holtslag and Van Ulden (1983), taking into 

account stability corrections. For example, during measurement period 2, the 

calculated u* ranged from 0.0046 to 0.54 m s-1, with a 5th-95th percentile range of 

0.012 to 0.30 m s-1 and a median value of 0.137 m s-1. The value of u* calculated for 

neutral conditions and used in Equation 3 to represent the entire measurement period 

(0.131 m s-1) differs by only 5% from the median value of the hourly calculated values, 

indicating that values lower and higher than the neutral value occurred with a similar 

frequency during the measurement period. 

 

With regards to the concentration vertical gradient, it would be expected that during 

the measurement period concentration gradients smaller and larger than the 

measured mean gradient occurred. If the emission estimate were to be calculated on 

an hourly basis using Equation 3 (F = -u* C*), it would not be unreasonable to expect 

that the net effect would be an emission estimate similar to that calculated by 

assuming neutral conditions and the mean concentration gradient, due to cancelling-

out of periods with high and low values of u*. However, this may not be the case due 

to correlation between u* and C*. Without hourly concentration gradient 

measurements it is not possible to evaluate this assumption thoroughly and we 

recommend an evaluation of the effect of different averaging periods on the 

aerodynamic gradient emission estimates as a focus for further work. However, the 

fact that this method gave similar emission estimates to the forwards dispersion 

simulations, suggests that it is a valid assumption. 

 

The best (most robust) estimate of penguin emissions, therefore, can be obtained by 

considering the constant emission simulations of the three forwards dispersion 

models and the aerodynamic gradient method.  For the measurement periods with 
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reliable meteorological data throughout (second and third), the mean emission is 1.1 

g NH3 per breeding pair per day with a 95% confidence interval of 0.4-2.5 g NH3 per 

breeding pair per day.  If the forwards Ls simulations with varying emissions and a 

ratio of 8 between the mean daily maxima and minima are used, the resulting best 

emission estimate is only slightly different (1.3 g NH3 per breeding pair per day with a 

95% confidence interval of 0.4-2.7 g NH3 per breeding pair per day). 

 

4.2. Comparison with bioenergetics model 

The emission estimates obtained agree well with that obtained using the temperature-

dependent bioenergetics model of Riddick et al. (2012), which gives an emission 

estimate for Cape Hallett of 2.0 g NH3 per breeding pair per day for the mean air 

temperature measured during Periods 2 and 3 (-1.5 °C). This is encouraging since the 

inverse modelling approach and the bioenergetics method are completely 

independent estimates using top-down and bottom-up approaches, respectively.  

Based on an in-colony excretion rate of 50 g N per day per breeding pair for Adélie 

penguins (Riddick, pers. comm.), the present results equate to a loss of 1.9% (95% 

confidence interval: 0.6-4.2%) of the excreted guano N. This fractional loss is much 

smaller than the 36% volatilization rate estimated by Blackall et al. (2007) for a 

Gannet colony (Bass Rock) in temperate UK conditions, and points to a high 

temperature dependence of NH3 emission rates (Sutton et al., 2013). Zhu et al. (2011) 

estimated a total loss of 0.12% of N from Adélie penguin guano during five eight-hour 

thawing periods in the laboratory.  However, even after the five thawing periods the 

guano emissions were only reduced by about 50%, suggesting that long term losses 

could be substantially larger. Zhu et al. (2011) did not simulate the effects of varying 

wind speed or the influence of solar radiation, both of which could also affect the 

emission rate.  In addition, total nitrogen content of the guano used in the laboratory 

experiments (1.08-3.60%) was lower than that found by Hofstee et al. (2006) in the 
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surface layer of the Adélie penguin mounds of Seabee Hook (8.9-14.5%), which could 

also explain why the estimated NH3 losses from Seabee Hook were larger than those 

observed by Zhu et al. (2011). 

 

4.3. Uncertainties in the emission estimates 

The calculated uncertainty in the inverse modelling and aerodynamic gradient 

estimates is due to differences between the predictions by the different models as 

well as the uncertainty in surface parameters (roughness length and dry deposition 

parameters) and vertical concentration profiles.    

 

There are other sources of uncertainty, however, the influences of which are more 

difficult to estimate.  For example, the number of breeding pairs in the colony varies 

annually and the 2005/2006 emission estimates were made assuming a colony size 

equal to the last available breeding pair count (39000 breeding pairs in 1998/1999).  

Counts during the last 50 years have varied between 37600 and 66300 breeding 

pairs, peaking in 1987 (Landcare Research, 2000).  During the period between the 

two most recent counts (1991 and 1998), the colony population decreased by an 

average of about 700 breeding pairs per year.  If we assume that the colony 

continued to decrease at this rate between 1998 and 2005, then the colony population 

would have decreased by about 13% during this period.  The assumption of a stable 

colony population, therefore, would result in an underestimate of the emission per 

breeding pair of about 13%.  Uncertainty in penguin numbers at the site is, therefore, 

probably a small source of error compared with other factors. 
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Another assumption made in the above emission estimates with the forwards models 

is that of a constant emission rate.  In reality the emission rate will depend on many 

environmental and biological factors, such as ground/air temperature, wind speed, 

solar radiation, penguin movements and feeding/excretion habits.  With regards to the 

environmental factors, the assumption of a constant emission probably 

underestimates day-time emissions and overestimates night-time emissions due to 

the higher temperatures, wind speeds and solar radiation during the day.   Since 

modelled mean atmospheric concentrations are often strongly influenced by calm 

night-time periods (Theobald et al., 2012), an overestimation of night-time emissions 

will most likely lead to an overestimation of atmospheric concentrations and hence an 

underestimation of the emission rate.  This hypothesis was tested by including time-

varying emissions in the Ls simulations, which suggested that the use of a constant 

emission rate may underestimate emissions by up to 40%. However, although the 

simple emission model used provides more realistic emission estimates than a 

constant value, exactly how realistic this model is remains unclear. The temperature 

dependence of the emission model is taken from the laboratory measurements by 

Zhu et al. (2011) but the temperature range used (4-30 ºC) did not cover that 

observed at Cape Hallett during the measurement periods (-8 to 3 ºC) and so may not 

adequately represent the effects of freezing-thawing cycles on the emission rate. The 

effects of precipitation and/or the moisture content of the penguin guano and colony 

soil surface layer are also not taken into account in the emission model.   The wind 

speed dependence of the simple emission model was taken from the ALFAM 

agricultural slurry spreading model (Søgaard et al., 2002).  Although similar 

processes are responsible, it cannot be assumed that penguin emissions have a 

similar wind speed dependence. 
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The assumption of a spatially homogeneous emission rate is another potential source 

of model uncertainty, since field observations show that the penguin nests are 

actually arranged in several groupings throughout the colony.  However the use of 

multiple measurement locations including some distant from the source should have 

helped to minimise this uncertainty.   

5. Conclusions 

The application of inverse-dispersion modelling and the aerodynamic gradient method 

gave a best estimate of ammonia emissions from an Adélie penguin colony in 

Antarctica of 1.1 g NH3 per breeding pair per day with a 95% confidence interval of 

0.4-2.5 g NH3 per breeding pair per day for periods with a mean air temperature of -2 

to -1 ºC; 

This estimate is in good agreement with that from a bioenergetics model (2.0 g NH3 

per breeding pair per day).  Based on a daily estimated excretion rate of 50 g N per 

breeding pair, the estimates here equate to a volatilization of 1.9% (95% confidence 

interval: 0.6-4.2%) of the excreted nitrogen.  This rate of volatilization is much smaller 

than seen in temperate bird colonies pointing to a substantial temperature 

dependence of NH3 emission.  

Emission estimates calculated from forwards and backwards simulations of the 

Lagrangian stochastic (Ls) model differed significantly due to the different 

assumptions made (constant emission rate and constant atmospheric concentration, 

respectively). Optimisation of the forward simulations with measurements gave the 

closest agreement to the estimates made using other dispersion models and the 

aerodynamic gradient method. 

The forwards and backwards Ls estimates depend on the assumptions of a constant 

emission rate or constant atmospheric concentrations, respectively. The use of an 

empirical emission model in the forwards simulations gave higher emission estimates 
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than the constant emission simulations, although the estimates were not significantly 

different to those obtained from the other forwards models. This suggests that the 

assumption of a constant emission rate is more valid than an assumption of constant 

atmospheric concentrations, in this case study. 

Although the emission rates estimated using these methods contain considerable 

uncertainty due to the assumptions made and the uncertainty of the model input data, 

the results clearly demonstrate how the fraction of excreted N volatilised as NH3 is an 

order of magnitude less in this Antarctic context than previously measured for 

temperate seabird colonies. 

 

 

Appendix 1: Models used, parameterisations and uncertainty analyses 

 

The three atmospheric dispersion models used in this study simulate 

atmospheric dispersion in fundamentally different ways. 

 

ADMS (Atmospheric Dispersion Modelling System) is an ‘advanced’ Gaussian 

dispersion model, where dispersion calculations are based on modified 

versions of the Gaussian plume equation, taking into account vertical profiles 

of boundary layer parameters and continuous stability functions (Carruthers et 

al., 1994).  The model uses hourly meteorological and emission data to predict 

hourly and/or long-term mean atmospheric concentrations and deposition 

rates.   
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LADD (Local Area Dispersion and Deposition) is a statistical Lagrangian model 

that simulates atmospheric dispersion and dry deposition by moving a vertical 

column of air along straight-line trajectories across a grid (Dragosits et al., 

2002).  Model input is in the form of mean wind speed and wind direction 

probabilities for each 10 degree wind sector, and the mean emission rate of 

each grid square. The model outputs mean atmospheric concentrations at 

several heights and mean dry deposition rates to each grid square. 

 

The Lagrangian stochastic (Ls) model of Flesch et al. (2004) simulates 

atmospheric dispersion by following infinitesimal air parcels or ‘fluid particles’ 

as they move through the atmosphere.  A particle trajectory through the 

atmosphere can be thought to be composed of small changes in particle 

position and velocity as a result of atmospheric turbulence.  These changes 

are predicted through the equations of Lagrangian stochastic motion, which 

are used to simulate the transport of gases from an emission source to a 

receptor location (or vice versa).  The model uses hourly (or more frequent) 

meteorological data plus emission data (in forwards mode) or atmospheric 

concentration data (in backwards mode), in order to predict atmospheric 

concentrations or emission rates, respectively. 

 

Model surface parameters 

 

All three dispersion models require an estimate of the aerodynamic roughness 

length (z0) for the domain.  For the rocky land cover where the colony and 

meteorological station were located, z0 was estimated from the wind gust data 
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for the whole of 2005 using the method recommended by the US EPA (US 

EPA, 1987), which uses the empirical relationship of Wieringa (1993).   The 

value of z0 estimated in this way was used for the entire domain for the Ls 

model since only one value of z0 can be used by the model for each 

simulation.  ADMS and LADD, on the other hand, can use spatially varying 

values of z0, corresponding to the different land cover types within the 

modelling domain.  However, this option in ADMS (v4.1) requires the use of 

the complex terrain model option, which imposes limits on the turbulence and 

does not allow the atmosphere to become too stable.  Testing this option in 

ADMS gave emission estimates an order of magnitude larger than the other 

methods (LADD, Ls model and the atmospheric gradient method) and so it 

was concluded that the constant z0 for the entire domain was a more realistic 

approach.  This decision was justified because the core dispersion domain (i.e. 

the colony and the measurement locations around its perimeter) was relatively 

flat; hence a limitation of atmospheric stability in this key part of the domain 

would not be appropriate.  Spatially varying values of z0 were used in LADD, 

which assumes a flat domain.   

 

Land cover classification data were obtained from the Antarctic Digital 

Database by the Scientific Committee on Antarctic Research (ADD 

Consortium, 2000).  The values of z0 used for the different land cover types 

are listed in Table A1.   

 

The simulations of ADMS and LADD also estimated the loss of ammonia due 

to dry deposition, whereas the Ls model cannot simulate this process.   The 
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LADD simulations used land cover-specific values of canopy resistance (Rc) 

(Table A1), whereas ADMS (v4.1) requires a fixed dry deposition velocity for 

the entire domain.  This dry deposition velocity was estimated to be 1×10-3 m 

s-1.  The justification for the use of this value was that the dry deposition rate to 

a non-vegetated rocky penguin colony would be substantially lower than that 

to semi-natural vegetation (with dry deposition velocities of a few mm s-1 under 

high concentration conditions (e.g. Cape et al, 2008).   

 

However, the values of both z0 and dry deposition parameters used in these 

two models are highly uncertain due to the unusual nature of the modelling 

domain and so an uncertainty analysis was carried out assuming 95% 

confidence intervals for z0 and the dry deposition parameters (canopy 

resistance in LADD and dry deposition velocity in ADMS) of ± a factor of three 

and ± a factor of ten, respectively.  The factor of three for the z0 values was 

taken from Hanna et al. (2007), who used a similar estimate of the uncertainty 

of z0 values for the simulation of the dispersion of air pollutants in the Houston 

ship channel area.  The factor of ten for the deposition parameters was chosen 

based on expert judgement due to the lack of information on deposition 

processes for this type of environment.   

 

The values of Rc listed in Table A1 assume that snow- and ice-covered 

surfaces are wet. However, at temperatures below zero this may not be the 

case and the Rc values could be substantially larger, which justifies an 

uncertainty analysis over a large range of values. 
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Log-normal distributions were assumed for the values of z0 and the deposition 

parameters and a Monte Carlo analysis was carried out by randomly sampling 

the two distributions for 100 scenarios for each model and for each 

measurement period.   

 

Table A1: Surface parameters used in the LADD simulations 

Land cover category Roughness length (z0) 
[m] 

Canopy resistance (Rc)      
[s m

-1
] 

Snow-covered rock 0.02
a
 1

b
 

Bare rock (coast) 0.02
a
 1000

b
 

Bare rock (mountains) 2.0
c
 1000

b
 

Ice 0.01
d
 1

b
 

Sea 0.001
e
 0.1

b
 

a
 Calculated in this study 

b
 Expert judgement 

c
 Moderate mountainous areas (Stull, 1988) 

d
 Sea ice z0 range: 0.005 to 0.04 m (Mote and O’Neill, 2000) 

e
 Open water z0 range: 0.0001 to 0.01 m (Richards, 1997) 

 

 

Meteorological data 

 

For the LADD model, the 15-minute wind speed and wind direction data were 

converted to wind roses consisting of the wind direction frequency and mean 

wind speed for each ten degree wind sector for each sampling period.  Hourly 

mean values of air temperature, relative humidity, solar radiation, wind speed, 

wind direction and the standard deviation of the wind direction were used as 

input to ADMS.  The Ls model used hourly mean wind speed and wind 

direction data.   
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To represent the thermal stratification of the atmosphere in ADMS and the Ls 

model, the Monin-Obukhov length (L) was calculated from the hourly values of 

wind speed and solar radiation using the method of Holtslag and Van Ulden 

(1985).  This method is not valid for periods of very stable conditions, for which 

a value of L=10 m was assumed.   
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