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ABSTRACT

The Atlantic meridional overturning circulation (AMOC) is a crucial component of the global climate

system. It is responsible for around a quarter of the global northward heat transport and contributes to

the mild European climate. Observations and numerical models suggest a wide range of AMOC variability.

Recent results from an ocean general circulation model (OGCM) in a high-resolution configuration (1/48)
suggest the existence of superinertial variability of the AMOC. In this study, the validity of this result in

a theoretical framework is tested. At a low Rossby number and in the presence of Rayleigh friction, it is

demonstrated that, unlike a typical forced damped oscillator (which shows subinertial resonance), theAMOC

undergoes both super- and subinertial resonances (except at low latitudes and for high friction). A dimen-

sionless number Sr, measuring the ratio of ageo- to geostrophic forcing (i.e., the zonal versus meridional

pressure gradients), indicates which of these resonances dominates. If Sr� 1, the AMOCvariability is mainly

driven by geostrophic forcing and shows subinertial resonance. Alternatively and consistent with the recently

published 1/48 OGCM experiments, if Sr � 1, the AMOC variability is mainly driven by the ageostrophic

forcing and shows superinertial resonance. In both regimes, a forcing of61K induces anAMOCvariability of

610 Sv (1 Sv [ 106m3 s21) through these near-inertial resonance phenomena. It is also shown that, as ex-

pected from numerical simulations, the spatial structure of the near-inertial AMOCvariability corresponds to

equatorward-propagating waves equivalent to baroclinic Poincar�e waves. The long-time average of this

resonance phenomenon, raising and depressing the pycnocline, could contribute to the mixing of the ocean

stratification.

1. Introduction

The Atlantic meridional overturning circulation

(AMOC) is a baroclinic circulation that, on zonal av-

erage, can be schematically described as a northward

surface flow above a deep equatorward recirculation

(S�evellec and Fedorov 2011). Because of the existence

of stratification (mainly controlled by temperature; i.e.,

warm water on top of cold water), this baroclinic circu-

lation transports heat northward. As they are trans-

ported northward, surface waters exchange heat with

the atmosphere, warming the northern region of the

NorthAtlantic (Gagosian 2003). This process contributes

to the climate of this region and partially explains the

mild climate of Europe [a shutdown of the AMOC could

cool down Europe by 1–3K; Stouffer et al. (2006)].

AMOC variability spans a wide range of time scales.

For example, the reorganization of the AMOC has

been identified as a source of millennial-scale variability

(Broecker et al. 1990; McManus et al. 2004) through the

Dansgaard–Oeschger events (Bond et al. 1997). Signif-

icant work has also been done on the Atlantic multi-

decadal oscillation and its link to the AMOC (Kushnir

1994; Delworth and Mann 2000; Frankcombe et al.

2008). On shorter time scales, recent observations of the

AMOC have shown substantial sub- and interannual

variability at 26.58N (Cunningham et al. 2007). While

the seasonally averaged AMOC mean and standard

deviation are 17.4 6 4.9 Sv (1 Sv [ 106m3 s21) between

April 2004 and April 2011 (McCarthy et al. 2012), the

intra-annual variability has a peak-to-peak range of
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30 Sv. From an oceanic perspective, this variability can

be classified in two categories: the endo- and exogenous

paradigms. In the endogenous paradigm, the source of

the variability is internal ocean processes (e.g., Dijkstra

and Ghil 2005). In the exogenous, the variability comes

from an oceanic response to external perturbation,

variability, or noise (e.g., Frankignoul and Hasselmann

1977). Although useful, this view is still an academic

separation and the truth probably lies in the middle.

For example, an internal mode of variability could be

enhanced or partially sustained by an external forcing

(S�evellec et al. 2009). Recently, Blaker et al. (2012)

showed the existence of superinertial variability of

the AMOC in a high-resolution (1/48) OGCM. This

variability is associated with equatorward-propagating

waves exceeding 30 Sv of peak-to-peak amplitude

(Fig. 1). This wave solution corresponds to positive

and negative disturbances propagating along the pyc-

nocline. Their work also suggests that this near-inertial

variability is a response to surface momentum forcing,

placing this study in an exogenous paradigm. The au-

thors also suggest that this AMOC variability is nearly

invisible to AMOC-observing systems such as Rapid

Climate Change–Meridional Overturning Circulation

(RAPID-MOC) at 26.58N (Hirschi et al. 2003; Rayner

et al. 2011).

Given this important limitation, we choose to apply

a theoretical framework to confirm the existence of this

variability. Starting from the typical set of primitive

equations, at a low Rossby number and with Rayleigh

friction for viscosity, wewill demonstrate that theAMOC

shows a superinertial resonance. Here, we consider den-

sity as the main forcing of the velocities. We assume that

near-inertial variability exists in the density field and

look at the AMOC response to these disturbances. With

this assumption, we make the problem simpler as we no

longer have to solve the full nonlinear problem arising

through the advection–diffusion equation of density. Our

approach has to be regarded as a first step toward a

more general understanding. In this configuration,wewill

demonstrate that the zonally averaged momentum

equations, and thus the AMOC, show optimal responses

at sub- and superinertial frequencies (at least at high

latitudes or for low friction). The former is induced by the

geostrophic forcing (the east–west density difference),

whereas, as suggested by Blaker et al. (2012), the latter

derives from the ageostrophic driver of the AMOC (the

zonally averaged meridional density gradient; Fig. 1). To

FIG. 1. Temporal and spatial characteristics of near-inertial variability in a 1/48OGCM [Nucleus for European Modelling of the Ocean

(NEMO)ORCA025; see Blaker et al. (2012), for further details]. Vertical velocities in theNorthAtlantic (mday21) are shown (a) at 2-km

depth and (b) as a vertical section along 558W, indicated by the black line in (a). (c) The strength of the AMOC and its components at

26.58N are shown. The total AMOCCAMOC is split in to four terms: the Florida Strait componentCFS, the Ekman componentCEkman, the

geostrophic componentCGeo, and the ageostrophic componentCAgeo, the latter controlling the near-inertial variability. Time series show

4-hourly mean model output spline interpolated onto a 30-min grid.
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measure the dominant resonances we introduce a di-

mensionless number Sr, which is the ratio of ageo- to

geostrophic forcing, and which indicates the dominating

resonance. We will also show that this near-inertial var-

iability is associated with an equatorward propagation of

baroclinic Poincar�e waves for regions away from the

pycnocline slope.

The structure of the paper is as follows. In section 2,

we describe the set of equations and the theoretical

model configuration. In section 3, we show the existence

of resonance in the AMOC. We also show that this

resonance is sub- or superinertial when driven by the geo-

or ageostrophic forcing of the AMOC, respectively. The

propagating features associated with this variability are

described in section 4, where we introduce an idealized

setting for our equations (a 1.5-layer shallow water

model). Discussion, conclusions, and directions for fu-

ture work are given in section 5.

2. The set of equations and model configuration

The theoretical model consists of a flat bottom rect-

angular basin representing the North Atlantic (from

y0 5 108N to y1 5 708N). The depth of the ocean H 5
4500m and its zonal extentW5 4000 km. However, as it

will be demonstrated, the locality of the result and our

approach means no assumptions regarding the basin

shape or the topography are required. The rotation rate

varies to represent the curvature of the earth (Fig. 2). In

general, we will consider this ocean with stratification

due to the density field. However, because our goal is

not to solve the steady state, or the asymptotic solution,

we do not need to explicitly consider the stratification

(except in section 4, where reduced gravity is defined).

Description of the asymptotic solution can be found in

Sijp et al. (2012). We also refer the reader to Kawase

(1987) and Johnson and Marshall (2002), who described

how such a steady state is achieved.

To represent this model and given the large scale of

the AMOC, we neglect the nonlinear terms in the mo-

mentum equation (Ro � 1, where Ro is the Rossby

number, measuring the ratio of inertial to Coriolis terms

in the momentum equations). The viscosity will be

specified by Rayleigh friction in the horizontal mo-

mentum equations. Furthermore, we use the hydrostatic

approximation, a linear equation of state, and prescribe

nondivergence. This set of equations, described by

Salmon (1998) as the noninertial ocean dynamics, can be

mathematically described in Cartesian coordinates by

›tu2 f y52
1

r0
›xP2 �u , (1a)

›ty1 fu52
1

r0
›yP2 �y , (1b)

›zP52rg , (1c)

r5 r0[12a(T2T0)1b(S2S0)], and (1d)

›xu1 ›yy1 ›zw5 0, (1e)

where x, y, and z are the three spatial coordinates; r0,T0,

and S0 are reference density, temperature, and salinity;

a is the coefficient of thermal expansion; b is the coef-

ficient of haline contraction; f is the Coriolis parameter;

� is the linear friction coefficient; T is the temperature; S

is the salinity; P is the pressure; r is the density; and u, y,

and w are the zonal, meridional, and vertical velocities

(see Table 1 for parameter values).

In this set of equations, a friction term should be retained

in the vertical momentum balance: ›zP 5 2rg 2 r0lw,

where l is the vertical friction coefficient (Salmon 1998).

FIG. 2. Configuration of the idealized basin where x, y, and z are

the zonal, meridional, and vertical coordinates. The zonal width

is W, the depth is H, the local Coriolis parameter is f, and the lat-

itude of the south- and northward boundaries are y0 and y1, re-

spectively (see Table 1 for parameter values).

TABLE 1. Parameter values of the model.

y0 108N Southern basin boundary

y1 708N Northern basin boundary

H 4500m Total ocean depth

W 4000 km Zonal basin extent

g 9.8 s22 Acceleration due to gravity

r0 1027 kgm23 Reference density

� 1, 2, 5, 10 3 1025 s21 Linear friction coefficient

h 1000m Zonally averaged pycnocline depth

DT 24K Temperature difference

DS 1.2 psu Salinity difference

a 2 3 1024K21 Thermal expansion coefficient

b 7 3 1024 psu21 Haline contraction coefficient
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This term is fundamental to allow boundary conditions

such as no heat flux (›nr5 0, where n is the coordinate of

the direction normal to the local boundary) together with

rigid boundary (un5 0, where un is the velocity normal to

the local boundary). Thismeans that, at the boundary, the

vertical velocity would be important to balance the

pressure gradient: ›nwjn50 5 ›z›nPjn50/(lr0). In the ab-

sence of this vertical friction, the no heat flux and rigid

boundary condition necessarily imposes the pressure to

be adjusted all along the boundary (›nPjn50 5 0). In

a closed basin, this filters out AMOC dynamics [for

a more extensive discussion and numerical integrations,

we refer the reader to the study of Huck et al. (1999)].

However, to the first order, and because we will not pre-

scribe heat transfer at the horizontal boundaries, one could

neglect this friction term and apply the hydrostatic ap-

proximation: ›zP 5 2rg.

3. Resonance of the AMOC

a. Zonal averaging

Applying the hydrostatic approximation to the verti-

cal derivative of the two horizontal momentum equa-

tions leads to

[ f 21 (›t 1 �)2]›zu5 f
g

r0
›yr1

g

r0
(›t1�)›xr and (2a)

[ f 21 (›t 1 �)2]›zy52f
g

r0
›xr1

g

r0
(›t 1 �)›yr . (2b)

We first define the zonal average of any variableX such

that X5 1/W
Ð xE
xW

X dx, where dx is the zonal unit co-

ordinate,W5 xE2 xW is the zonal basin extent, and xE and

xW are the east and west zonal boundary limit of the basin,

respectively. Applying this zonal averaging, (2b) becomes

[›2t 1 2�›t 1 ( f 21 �2)]›zy5
fg

Wr0
(rjx

W
2 rjx

E
)

1
g

r0
(�1 ›t)›yr . (3)

This equation corresponds to a second-order non-

autonomous differential equation.

Given the linearity of this equation, we split the solution

in two terms: a geostrophic (keeping only the first term on

the right-hand side, which drives the geostrophic part of

the AMOC) and ageostrophic (keeping only the second

term on the right-hand side, which drives the ageostrophic

part of the AMOC) part. This leads to two equations:

[›2t 1 2�›t 1 ( f 21 �2)]›zyg5
fg

Wr0
(rjx

W

2 rjx
E

) and

(4a)

[›2t 1 2�›t 1 ( f 21 �2)]›zya5
g

r0
(�1 ›t)›yr , (4b)

where the indices g and a on the meridional velocities

indicate whether the geo- or ageostrophic part of the

right-hand side of (3) has been kept, respectively (so that

y5 yg 1 ya).

We use this last set of equations to study the AMOC

response to disturbances in the density field. This ap-

proach simplifies the problem, preventing us from

solving the full nonlinear problem arising through the

advection–diffusion equation of density. However, it has

to be regarded as a first step toward a more general

understanding, which is partially developed in section 4.

To test the AMOC response to density field variation,

we assume that the density field can be split into a time-

mean and a time-varying component following a sinu-

soidal oscillation: r5 rm 1 ry cos(Vt), where rm is the

time-mean density, ry is the intensity of the time variation

of density, and V is the angular frequency of this density

variation; and rjxW 2 rjxE 5 (~r)5 ~rm 1 ~ry cos(Vt), where

~r is the east–west density difference, ~rm is the time-mean

density difference, and ~ry is the intensity of time variation

of the density difference. In general, the density field

varies over a range of frequencies. Here, we restrict the

density variation to a single frequency to determine how

each individual frequency stimulates the AMOC.

Because of the linearity of (4a) and (4b), the general

solutions can be split into three solutions (Sg,a
m ,Sg,a

i ,

andSg,a
y ), depending on the characteristics of the density

field: ~r5 ~rm or r5 rm, ~r5 0 or r5 0, and ~r5 ~ry cos(Vt)

or r5 ry cos(Vt) (where Sg,a
m is the shear due to time-

mean density, Sg,a
i is shear due to initial condition, and

Sg,a
y is the shear due to time variation of the density field

using the geo- or ageostrophic forcing, respectively).

The general solution of (3) is the superposition of all the

components: S 5 Sg 1 Sa with Sg,a 5Sg,a
m 1Sg,a

i 1Sg,a
y ,

where Sg,a 5 2W›zyg,a.

b. The geostrophic solution

Using (4a), the solution of the time-mean density

field (rjxW 2 rjxE 5 ~rm) can be obtained as an asymptotic

(t / 1‘) solution. It corresponds to

Sg
m 5 2 f

g

r0
~rm . (5)

This relates the shear to the meridional density gradient

in a similar way to the thermal wind equation. Given

that this equation is constant in time, this expression is

a solution of (4a) at any time (not only asymptotically).

This result is equivalent to the classical formulation
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of the strength of the AMOC used by Hirschi and

Marotzke (2007), in the context of RAPID-MOC.

The response to the initial conditions can be obtained

by setting the forcing, the right-hand side of (4a), to

zero:

[›2t 1 2�›t 1 ( f 21 �2)]Sg
i 5 0. (6)

Applying a solution of the form of an exponential:

Si 5S0
i exp(gt) (where S0

i is the amplitude of the wave

and g is time evolution characteristic), we obtain

g2 1 2�g1 ( f 21 �2)5 0. (7)

Here, g admits two solutions: g6 5 2� 6 if. Thus,

the general solution of the shear due to initial condi-

tions is

Sg
i 5 e2�t[C1 cos( ft)1C2 sin(ft)] , (8)

where C1 and C2 are two constants set by the initial

conditions. This corresponds to a damped oscillation of

e-folding time scale 1/� and of period 2p/f. This is the

adjustment of the momentum equation to the steady

state due to an initial disturbance. In the absence of

time-dependent forcing (›t~r5 0), the general solution

would be Sg
m 1Sg

i , where the unknown of Sg
i is given by

the initial conditions.

The response of the shear to time-varying density

forcing follows the equation

[›2t 1 2�›t 1 ( f 2 1 �2)]Sg
y 52f

g

r0
~ry cos(Vt) . (9)

This equation has a solution of the form of

Sg
y 5

fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2V2 1 (�21 f 22V2)2

q g

r0
~ry cos(Vt) . (10)

The most general solution of (4a) being the addition

of the three components: Sg 5Sg
m 1Sg

y 1Si. In the rest

of the study, we focus primarily on the variable part (i.e.,

Sg
y). We will describe how the vertical shear responds to

the different forcing frequencies.

This solution shows that the amplitude of the response

depends on the frequency of the forcing as expected

from a forced damped oscillator (Fig. 3).

Now that we have an expression for the response of

the shear, we estimate the forcing frequency leading to

the maximum response. For that we apply ›VAg 5 0,

where Ag is the amplitude of the shear response driven

by the geostrophic variability (i.e., ~ry), that is, the con-

stant part in (10). This leads to

Vg
R 5 f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

�
�

f

�2
s

, with f $ � , (11)

where Vg
R is the resonance angular frequency for the

geostrophic forcing (the angular frequency for which

the shear response is maximum; gray lines in Fig. 3). If

f , �, there is no resonance (i.e., the resonance angu-

lar frequency goes to infinity). The independence of

the resonance angular frequency owing to geostrophic

forcing in (11) to both the width and total depth of the

basin makes it particularly suited for comparison with

the realistic GCM of Blaker et al. (2012). The amplitude

of the resonance suggests that a variability of 61K

induces an AMOC response of 610Sv (56AgjVg
R
h2,

where h5 1000m is the typical zonally averaged pycno-

cline depth).

This last expression shows a resonance at subinertial

frequency (Vg
R , f ), typical of a forced damped oscilla-

tor. This cannot explain the superinertial variability

shown by Blaker et al. (2012). However, Blaker et al.

(2012) show that in their model this superinertial be-

havior is an ageostrophic process (Fig. 1). As we will

demonstrate in the next section, including the second

term on the right-hand side of (3), leading to (4b), is

crucial for the appearance of resonance at the super-

inertial frequency.

c. The ageostrophic solution

As described previously, the time-mean solution

(r5 rm) of (4b) can be obtained as an asymptotic (t /
1‘) solution. It corresponds to

Sa
m 52

�

f 21 �2
gW

r0
›yrm . (12)

This relates the shear to themeridional density gradient,

in a similar way to a frictional balance. Given that this

equation is constant in time, this expression is a solution

of (4b) at any time (not only asymptotically).

Because the response to initial conditions could be

obtained by setting the forcing, the right-hand side of

(4b), to zero, the solution is Si 5Sa
i 5Sg

i . In the absence

of time-dependent forcing (›tr5 0) the general solution

would be Sg
m 1Sa

m 1Si, where the unknown of Si is

given by the initial conditions.

The response of the shear to temporally variable

density forcing follows the equation

[›2t 1 2�›t 1 ( f 21 �2)]Sa
y

52
g

Wr0
(�1 ›t)›yry cos(Vt) and (13)
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52
g

Wr0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�21V2

p
›yry cos(Vt1f) , (14)

where f is the phase delay between the density forcing

and the shear response. This phase delay could be esti-

mated exactly, but it is not needed for the purpose of

this particular study. This equation has a solution of the

form of

Sa
y 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�21V2

4�2V21 (�21 f 2 2V2)2

s
gW

r0
›yry cos(Vt1f) .

(15)

The most general solution of (4b) is the addition of the

three components: Sa 5Sa
m 1Sa

y 1Si. In the rest of the

study, we focus primarily on the variable part (i.e., Sa
y).

We will describe how the vertical shear responds to the

different forcing frequencies.

This solution shows that the amplitude of the response

depends on the frequency of the forcing (Fig. 4).

Another interesting feature of the ageostrophic re-

sponse is that unlike a typical forced damped oscillator,

the amplitude of the forcing also depends on the forcing

frequency, because of the ›t term in (4b). This obviously

modifies the response. In other words, whereas from

a typical forced damped oscillator we should expect

a resonance at the subinertial frequency, we will dem-

onstrate that our response is optimal at a superinertial

frequency (V . f).

Now that we have an expression for the response of

the shear, we estimate the forcing frequency leading to

the maximum response. For that we apply ›VAa 5 0,

where Aa is the amplitude of the shear response driven

FIG. 3. Amplitude of the vertical shear response following (10) as a function of latitude and forcing period (2p/V).

(a)–(d) Four different values of the friction coefficient (� 5 1, 2, 5, and 10 3 1025 s21) are shown. Typical density

variations are set to ~ry ; 23 1022 kgm23 (i.e., 1K). The gray lines represent the max response for each latitude and

thus the resonance periodVg
R from (11) as a function of latitude. The dashed white line indicates the inertial period.
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by the ageostrophic variability (i.e., ›yry), that is, the

constant part in (15). This leads to

Va
R 5 f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 4

�
�

f

�2
s

2

�
�

f

�2

vuut
, with f $ fc , (16)

whereVa
R is the resonance angular frequency (the angular

frequency forwhich the shear response to the ageostrophic

term is maximum; gray lines in Fig. 4), and fc is a cutoff

frequency such that f 2c 5 (221
ffiffiffi
5

p
)�2. This cutoff fre-

quency indicates that below a certain latitude (depending

on friction), there is no resonance (i.e., the resonance an-

gular frequency goes to infinity). The independence of the

resonance angular frequency from ageostrophic forcing in

(16) to both the width and total depth of the basinmakes it

particularly suited for comparison with the realistic GCM

of Blaker et al. (2012). The amplitude of the resonance

suggests that a variability of 61K induces an AMOC

response of610Sv (56AajVa
R
h2, where h5 1000m is the

typical zonally averaged pycnocline depth).

We use this analytical expression to check if the res-

onance is super- or subinertial (i.e., if Va
R . f or Va

R , f ,

respectively). To do so, we calculate the condition for an

inertial resonance (Vi
R 5 f , whereVi

R is the resonance

angular frequency such that it is exactly inertial). We

found the condition f 5 �/
ffiffiffi
2

p
.

To summarize our results on the resonance of the

vertical shear of the zonally averaged meridional ve-

locity, we found three regimes depending on the latitude

(and thus f) for a given friction. The resonance

d is superinertial for f . �/
ffiffiffi
2

p
,

d is subinertial for �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
221

ffiffiffi
5

pp
# f , �/

ffiffiffi
2

p
, and

d does not exist for f , �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
221

ffiffiffi
5

pp
.

At the edge between the first two regimes, for f 5 �/
ffiffiffi
2

p
,

the resonance is exactly inertial. In the case of low

friction (� , f, such as we expect in the ocean, and

FIG. 4. As in Fig. 3, but for (15). Typical density variations are set to W›yry ; 23 1022 kgm23 (i.e., 1K). The

resonance period (Va
R) is derived from (16).
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thus in the 1/48OGCM), the resonance is superinertial

(Fig. 4b).

d. Geostrophic versus ageostrophic solutions

To determine if the resonance is super- or subinertial

at least at high latitudes or for low friction, we have to

compare the geo- and ageostrophic results [i.e., (10)

versus (15)]. Assuming that the forcing frequency is

on the order of the inertial frequency (i.e., V 5 f), we

can define a dimensionless number, the shear resonance

Sr, measuring the ratio of the geo- to ageostrophic terms:

Sr5W›yry/~ry . Thus, at high latitudes or for low friction,

d if Sr � 1, the geostrophic forcing dominates and the

resonance is subinertial, and
d if Sr � 1, the ageostrophic forcing dominates and the

resonance is superinertial.

In their 1/48 OGCM experiment, Blaker et al. (2012)

show that, at all latitudes, the superinertial resonance is

associated with the ageostrophic term (Fig. 1), which is

consistent with our result (Fig. 5).

Note that in the 1/48 OGCM the effective friction de-

pends on the latitude because the grid is nonuniform

(i.e., isotropic Mercator; Madec and Imbard 1996). For

example, the extent of the zonal and meridional dis-

cretization is bigger at low latitudes. This corresponds to

lower effective friction, that is, a smaller equivalent

Rayleigh friction coefficient near the equator. This is

also consistent with our findings. Between 208 and 308N,

the 1/48 OGCM behaves as the theoretical solution with

� 5 5 3 1025 s21. Below 208N, the OGCM behaves like

� 5 2 3 1025 s21 (Fig. 5). At higher latitudes, the sen-

sitivity of the solution to the friction intensity is weak and

comparison becomes highly speculative. However, con-

sistency between the numerical model and theoretical

analysis remains.

On the limits of high Reynolds number (Re � 1, i.e.,

friction is negligible), both geo- and ageostrophic forc-

ings lead to inertial resonance. In other words, in higher-

resolution models than the one used in Blaker et al.

(2012), or in the real ocean, we could expect a resonance

close to the inertial frequency.

4. Propagation of the AMOC variability

We next consider the spatial propagation of the AMOC

variability for regions away from horizontal density

gradients (i.e., outcropping regions).

FIG. 5. Period of the max amplitude response of the vertical shear for the geo- (black lines)

and ageostrophic (gray lines) terms following (11) and (16), respectively. Solid lines represent

the result for � 5 2 3 1025 s21, the gray lines in Figs. 3b and 4b, respectively. Dashed lines

represent the result for �5 53 1025 s21, the gray lines in Figs. 3c and 4c, respectively. The thin

black line indicates the inertial period. The crosses denote the AMOC variability period from

the 1/48 OGCM experiments by Blaker et al. (2012).
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We simplify the general set of equations given in (1).

For this, we will not consider a general stratification but

a 1.5-layer shallow water model (Pedlosky 1979). In this

setting, the motion is purely baroclinic and the density

gradient is limited to the jump between an upper layer and

a motionless deep layer. This system can be described as

›tuu 2 f yu 52g0›xh2 �uu and (17a)

›tyu 1 fuu 52g0›yh2 �yu , (17b)

where uu and yu are the vertically averaged zonal and

meridional velocities in the upper layer, respectively;

h is the thickness of the upper layer; and g0 5 gDr/r0 is
the reduced gravity, where Dr is the density difference

between the upper and lower layers. Using the linear

equation of state for seawater, this density difference

can be decomposed in terms of temperature and salinity

as Dr/r0 5 2aDT 1 bDS, where DT and DS are the tem-

perature and salinity differences, respectively (parameter

values are given in Table 1).

Applying the same procedure as in the previous sec-

tion to get the zonal average, we find for the meridional

velocity component:

[›2t 1 2�›t 1 ( f 21 �2)]yu5
fg0

W
(hjx

E
2 hjx

W
)

2 g0(›t 1 �)›yh . (18)

The form of this equation is similar to (3), and yu will

thus have the same solution as shown in the previous

section. However, in this section, we will combine this

equation with the nondivergence to show the existence

of propagating features in the zonally averaged velocity

(i.e., the AMOC).

Using (1e) in a zonally averaged form (›yy1 ›zw5 0,

wherewe assume solid boundary at the east andwest of the

basin),we canwrite thenondivergence in theupper layer as

›th5 h›yyu , (19)

where we assume w
��
z50

5 0 (i.e., rigid-lid approxima-

tion, filtering out the external gravity waves).

Combining (18) and (19), we obtain

[›2t 1 2�›t 1 g0h›2y1 g0›yh›y1 ( f 21 �2)]yu

5
fg0

W
(hjx

E
2 hjx

w
)2 �g0›yh . (20)

In this section, we assume that we are away from the

outcropping of the pycnocline (so that ›yh5 0 and hjxW 5
hjxE). A consequence of this assumption is that we do not

consider the forcing—the right-hand side of (20). In the

ocean, these two processes are strongly coupled, because

the production of pycnocline slope variation (eddies) is

likely to occur where there is high level of potential en-

ergy (i.e., a strong slope of the pycnocline). Unlike the

previous section that shows the response of the shear to

variation in the density, in this section we will simply

study the free propagation of the induced variability. In

this context, (20) becomes

[›2t 1 2�›t 1 g0h›2y1 ( f 21 �2)]yu 5 0. (21)

Applying a solution of the form of exp(gt) exp(iky),

we find g6 52�6 i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 1 c2k2

p
, where c56

ffiffiffiffiffiffiffiffiffiffi
g0h

q
. Two

typical length scales appear: the Rossby deformation

radius Rd 5
ffiffiffiffiffiffiffiffiffiffi
g0h

q
/f and the e-folding propagation radius

Rp 5
ffiffiffiffiffiffiffiffiffiffi
g0h

q
/�. We can also define the angular frequency

of the wave as v56f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 (kRd)

2
q

. From this wave

equation, we can determine the phase and group ve-

locities (cp 5 v/k and cg 5 ›kv, respectively):

cp 56c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

1

(kRd)
2

s
and (22a)

cg56
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11 1

(kR
d
)
2

r , (22b)

The independence of the Poincar�e waves phase velocity

in (22a) to both the width and total depth of the basin

makes it particularly suited for comparison with the

realistic GCM of Blaker et al. (2012).

These solutions have two limits. For short wave-

lengths (Rd� 1/k), the propagation is nondispersive and

follows internal gravity waves (cg 5 cp 5 c). For long

wavelengths (Rd � 1/k), the wave follows the inertial

waves and they are dispersive with cg5 0 and cp56f/k.

In the study of (Blaker et al. 2012), the waves are

generated around 408N in regions of intense eddy ac-

tivity with a typical wavelength of 58. The crests of this

wave should thus propagate southward with a velocity,

typical of internal gravity wave, of roughly 12.5m s21.

They should then slow down reaching roughly 4.8m s21

at 208N. The slowdown is due to the decrease in the

Coriolis parameter as the wavemoves southward, and as

a consequence the waves feel the gravity wave regime

more intensely. These theoretical wave velocities (Fig. 6)

are consistent with the propagation of the near-inertial

wave described in the OGCM (Blaker et al. 2012) taking

roughly 15 days for a crest to go from 408 to 108N.

At the equator, the Poincar�e waves are equivalent to

nondispersive internal gravity waves. In this regime,

they can cross the equator at a constant speed set solely
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by the stratification intensity. This behavior is consistent

with new experiments (not shown) using the same 1/48
OGCM as Blaker et al. (2012).

5. Conclusions

Although the existence of near-inertial variability in

high-resolution ocean and coupled ocean–atmosphere

models was determined by Fox et al. (2000) and Komori

et al. (2008), its influence on the AMOC was only re-

cently demonstrated byBlaker et al. (2012), who showed

that the associated AMOC fluctuations can locally ex-

ceed 40 Sv (Fig. 1; whereas the long-time average is

about 22.5 Sv). The authors showed that this variability

is characterized by its superinertial signature and is as-

sociated with equatorward-propagating waves. From

their experiments it is deduced that this high-frequency

variability is an oceanic response to wind forcing, plac-

ing this variability in an exogenous paradigm. It was

suggested by the authors that this variability is almost

invisible to contemporary AMOC-observing systems

(e.g., RAPID-MOC; Hirschi et al. 2003; Rayner et al.

2011). This current impossibility of testing such behavior

against observational data stresses the importance of

a theoretical study to validate the possibility of a super-

inertial response of theAMOC to external disturbances.

In this study, we use the momentum equations for

small Rossby number (Ro � 1, neglecting nonlinear

advective terms) where viscosity is parameterized by a

Rayleigh friction term. The other assumptions are the

hydrostatic approximation and nondivergence. With this

set of equations, we find a second-order nonautonomous

differential equation for the vertical shear of the zonally

averaged meridional velocity (S52W›zy). The forcing

part of the differential equation is controlled by the

density field (›yr and rjxW 2 rjxE).With this assumption,

we study how near-inertial variability in the density field

can force an AMOC response. Our approach cannot

explain how these density disturbances appear in the

ocean, though we note that Blaker et al. (2012) have

shown that this near-inertial variability takes its source

in the wind variability. As mentioned earlier, our study

should be considered as a first step toward a more gen-

eral understanding.

Assuming that each forcing term can be split into a

time-mean and an oscillatory component (of angular

frequency V), the general solution for the shear can be

split into three parts: (i) one due to the initial conditions,

FIG. 6. Phase and group velocities [cp (solid lines) and cg (dashed lines), respectively] of the

Poincar�e waves for a 58 wavelength as a function of latitude. These results follow the analytical

expression of (22), where a negative value of these curves is also a possible solution. The crosses

denote the phase velocities from the 1/48 OGCM experiments by Blaker et al. (2012).
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(ii) one due to the time-mean forcing, and (iii) one due

to the oscillatory forcing. From this decomposition, we

found an analytical solution for the variable part of the

shear.

Using this analytical solution, we were able to find two

optimal forcing frequencies (i.e., frequencies for which

the shear shows the maximum response intensity).

Which of these frequencies dominates is determined by

the form of the forcing term of the AMOC, that is, geo-

versus ageostrophic. If the forcing is mainly controlled

by the geostrophic term, the ocean shows subinertial

resonance, like typical frictional systems. However, if

the forcing is dominated by the ageostrophic term, the

resonance frequency reveals a striking result. The ocean

shows a superinertial resonance (except at low latitudes

and for high friction). This is a direct consequence of the

shear being forced not only by the stratification but also

by its time derivative. This last result is consistent with

a high-resolution OGCM analysis (Blaker et al. 2012),

where the AMOC shows superinertial resonance that

the authors relate to the ageostrophic term. In both ca-

ses, the amplitude of the resonance suggests that a vari-

ability of 61K induces an AMOC response of 610 Sv.

This is almost 10 times as big as a direct geostrophic

response (i.e., without retaining the accelerating terms

in the horizontal momentum equations).

In the last part of the study, we used a 1.5-layer shal-

low water model to test the propagation of the vari-

ability. We demonstrate that, away from isopycnal

outcropping (where the waves are generated in a high-

resolution OGCM), anomalies propagate southward as

baroclinic Poincar�e waves. This means that these waves

will cross the equator at a constant speed (set solely by

the stratification intensity) as nondispersive internal

gravity waves.

To synthesize, Poincar�e waves, generated in the out-

cropping region of the North Atlantic and propagating

southward, are able to stimulate an intense response of

the AMOC through sub- or superinertial resonance (for

geo- or ageostrophic forcing, respectively).

The existence of resonance, and therefore of high

vertical velocities, raising and depressing the pycnocline

could yield breaking waves and be a source of mixing.

Also, the Poincar�e waves, which travel on a basin scale,

could transport mass and energy away from the source

of disturbance (potentially redistributing the energy

input by the wind). These are the subject of ongoing

research. In a recent study, near-inertial gravity waves

were parameterized in a climate model and were found

to deepen the ocean mixed layer by up to 30% (Jochum

et al. 2013).

Several other high-resolution ocean and coupled

GCMs (e.g., Fox et al. 2000; Komori et al. 2008) have

been shown to reproduce this near-inertial variability.

However, none of these studies have examined the in-

fluence of the waves on the time-mean ocean circulation.

We will extend the work presented in this paper and test

our theory with other high-resolution and coupled

GCMs in a future study.
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