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SUMMARY 2. QUALITY OF OBSERVATORY DATA

The ESA Swarm mission will measure magnetic signals from all sources of the || - To aid quality control of global observatory data prior to joint analyses with Swarm data, misfits of spherical

geomagnetic field with unprecedented accuracy. The scientific use of Swarm data is harmonic models can be inspected inthe temporal & spatial domains [1]. -
— This pre-processing and modelling removes all signals that can be modelled, except at high latitudes, and the

greatly enhanced when used in combination with observatory data and indices and misfits represent measurement artefacts on the 0-10 nT scale.

this has mcreas_e_d_ interest in gr_ound base(.j measurements' AS part .Of the Swar..m — Tests using definitive hourly mean data contemporary with the Grsted and CHAMP missions showed that the
Level-2 data activities, plans are in place to distribute such data along with the satellite method was useful for detecting these small artefacts. The plot shows a subset of the misfits: in the
data [1]. Here, we also discuss how observatory data can be used for the geomagnetic south component for observatories between geomagnetic latitudes 58° (top) and 46° (bottom).

Calibration/Validation of Swarm and how observatory data may better constrain the The data used were a combination of definitive and quasi-definitive hourly mean data 2009-2013 spanning

time parameterisation of global field models. the gap between CHAMP and the launch of Swarm.
— High quality data is reflected by values £
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— During the first 6 months of the mission we signal). VALO
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excluded and time series are split to . e A e A
- Advantage is taken of INTERMAGNET and account for unmeasured jumps | "

other efforts in Norway, France & UK to - In addition to being available from HADO _ |

improve the timeliness of quasi-definitive the ESA data centre once the SBLO o W%wwm st P A Tt ol
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— QD data aims to be within 5 nT of definitive the cleaned-up hou.rly mean oa TP
data (averaging on a monthly basis) and observatory data will also be ; | ;
available within 3 months of measurement. regularly updated at MABO

The map shows the observatories ~170 currently operating observatories ftp://ftp.nmh.ac.uk/geomag/smac/AU
producing such data as of December 2013. © 64 producing acceptable quasi-definitive data 2013 X _OBS 2/
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3. GROUND-TRUTHING SWARM DATA FOR CAL/VAL 4. OBSERVATORY DATA & MODEL TIME PARAMETERISATION

- The Calibration/Validation (CalNal) periOd, forming the first 3 months of the Swarm miSSiOn, will be used to confirm — Global geomagnetic field models typ|Ca||y fit tempora| Changes tothe Earth’s core field using order 6 B_Sp"nes

the instruments are operating as expected. _ _ — Spline knot spacings and regularisation varies: CHAOS-3 [2] & GRIMM-2 [3] use 0.5 year spacing and smooth the
- Can Swarm measurements be ground-truthed with QD observatory data to aid the Cal/Val effort? 2nd/3rd time derivative; C’FM2 [4] use 1.2 year knot spacing and smooth by minimising changes to core surface
— The following method will be applied to each satellite during Cal/Val. We will look at how the global results flow

- Using different knot spacings we fit order 6 B-splines to data from 53 observatories in an attempt to
ascertain the optimal knot-spacings and identify whether a minimum spacing is required to fit the data well

— Priortofitting splines, the data are detrended to remove annual and semi-annual signals

a)vary between satellites
b) compare with the results obtained when a similar approach has been applied to CHAMP data.

3a. Approach 3b. Number of passes
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— Seen more clearly when comparing . 5 least0.55-0.70 years are required to adequately fit the field variations.
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