
Copyright © 2013 John Wiley & Sons, Ltd. 

This version available http://nora.nerc.ac.uk/504455/ 
 
 
NERC has developed NORA to enable users to access research outputs 
wholly or partially funded by NERC. Copyright and other rights for material 
on this site are retained by the rights owners. Users should read the terms 
and conditions of use of this material at 
http://nora.nerc.ac.uk/policies.html#access  
 
 
This document is the author’s final manuscript version of the journal 
article, incorporating any revisions agreed during the peer review 
process. Some differences between this and the publisher’s version 
remain. You are advised to consult the publisher’s version if you wish 
to cite from this article. 
 
The definitive version is available at http://onlinelibrary.wiley.com 
 
 

    
 
 
Article (refereed) - postprint 
 
 

Sheppard, Lucy J.; Leith, Ian D.; Mizunuma, Toshie; Leeson, Sarah; Kivimaki, 
Sanna; Cape, J. Neil; van Dijk, Netty; Leaver, David; Sutton, Mark A.; Fowler, 
David; van den Berg, Leon J.L.; Crossley, Alan; Field, Chris; Smart, Simon. 
2014. Inertia in an ombrotrophic bog ecosystem in response to 9 years' 
realistic perturbation by wet deposition of nitrogen, separated by form. 
Global Change Biology, 20 (2). 566-580. 10.1111/gcb.12357  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Contact CEH NORA team at  
noraceh@ceh.ac.uk 

 
 
 

The NERC and CEH  trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and 
other countries, and may not be used without the prior written consent of the Trademark owner. 

http://nora.nerc.ac.uk/504455/
http://nora.nerc.ac.uk/policies.html#access
http://onlinelibrary.wiley.com/
http://dx.doi.org/10.1111/gcb.12357
mailto:nora@ceh.ac.uk


1 
 

Inertia in an ombrotrophic bog ecosystem in response to nine years’ 1 

realistic wet N perturbation, separated by form 2 

LUCY J SHEPPARD*, IAN D LEITH*, TOSHIE MIZUNUMA†, SARAH LEESON*, 3 
SANNA KIVIMAKI*, J. NEIL CAPE*, DAVID LEAVER*, DAVID FOWLER*, LEON JL 4 
VAN DEN BERG$, ALAN CROSSLEY!, CHRIS FIELD+, SIMON SMART** 5 

Centre for Ecology & Hydrology Edinburgh, Bush Estate, Penicuik, EH26 0QB, 6 

 †University of Edinburgh, School of Geosciences, West Mains Rd, Edinburgh, EH9 3JN 7 

! ACrosstech, Deanfoot Rd, West Linton, Peeblesshire, EH46 7AU, UK 8 

+ John Dalton Building, Manchester Metropolitan University, Chester St, Manchester M1 9 

5GD 10 

$ Department of Aquatic Ecology & Environmental Biology, Radboud University Nijmegen, 11 
Heyendaalseweg 135 6525 AJ Nijmegen, The Netherlands 12 
 13 

 ** Centre for Ecology & Hydrology, Lancaster, 14 

 15 

ljs@ceh.ac.uk 16 

(T) 0044(0)131 445 8530 17 

(F) 0044 (0) 131 445 3943 18 

Running head: Resilience of bog vegetation to wet N inputs 19 

Research paper 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

mailto:ljs@ceh.ac.uk


2 
 

Abstract 30 

Wet N deposition occurs in oxidised (nitrate) and reduced (ammonium) forms, in proportions 31 
that vary spatially with source and topography. Whether one form drives vegetation change 32 
more than the other is widely debated, as we lack corroboratory field evidence. We have 33 
manipulated N form in wet deposition to an ombrotrophic bog, Whim, for nine years. 34 
Ammonium and nitrate were provided in rainwater spray as NH4Cl or NaNO3 at 8, 24 or 56 35 
kg N ha-1 y-1, plus a rainwater only control, via an automated system coupled to site 36 
meteorology. Cover of key species fluctuated considerably, displaying temporal increases, 37 
declines or both, independent of N.  Detrimental N effects were observed in sensitive non-38 
vascular plant species, with higher cumulative N loads leading to more damage at lower 39 
annual doses, but overall the effect on moss cover was small. Cover responses to N, both 40 
form and dose were species specific, and mostly dependent on N dose. Some species were 41 
generally indifferent to N form and dose, Eriophorum vaginatum, Erica tetralix, while others: 42 
Pleurozium schreberi > Cladonia portentosa > Sphagnum capillifolium were dose sensitive.  43 
Calluna vulgaris showed a preference for higher N as reduced N and Hypnum jutlandicum 44 
for oxidised N. However, after nine years, the magnitude of change from wet deposited N on 45 
overall species cover (HOF model) is small, indicating only a slow decline in key species. 46 
Differences in soil N availability were similarly muted and rarely, directly related to species 47 
cover. Ammonium caused most N accumulation and damage to sensitive species at lower N 48 
loads, but toxic effects also occurred with nitrate. Generic N form effects were absent, 49 
making ecosystem specific critical load separation by form problematic. However, we 50 
recommend implementing the lowest value of the critical load range where communities 51 
include sensitive non-vascular plants and ammonium dominates wet deposition chemistry. 52 

 53 

Key words: ammonium, cover, Calluna, chronology, critical loads, growth, nitrate, peatland, 54 
Sphagnum capillifolium.  55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 



3 
 

Introduction 67 

Globally, evidence exists of detrimental effects of enhanced reactive N deposition on plant 68 

species composition (Clark & Tilman, 2008; Bobbink et al., 2010). Although reactive N is a 69 

key plant nutrient (Marschner, 1995) its availability varies across different habitats. Plants 70 

have evolved different, specialized strategies and traits appropriate to their natural N 71 

environments (Raven et al., 1992). Increasing N availability causes species that have evolved 72 

traits or strategies to exploit an enriched N supply to replace N conservative N users (Aerts, 73 

1990; Steubing & Fangmeier, 1991). Such species replacements can lead to loss of 74 

specialized communities and ecosystems, e.g. heathland transformed into grassland in the 75 

Netherlands (Bobbink & Heil, 1993). However, reactive N deposition is not simply N, but 76 

comprises two chemically different forms, oxidised and reduced N.  77 

Enhanced reactive nitrogen (N) deposition is a consequence of rising global emissions of 78 

nitrogen oxides NO and NO2, (NOy) from fossil fuel combustion (Dignon & Hameed, 1989) 79 

and reduced N (NHx) from agriculture to meet the growing demand for energy and food. 80 

Reactions in the atmosphere produce nitric acid and particulate and aqueous NO3
-, the main 81 

NOy components of wet deposition. Wet deposition of reduced N comprises fine particulate 82 

ammonium (NH4
+) salts or aerosols of acidic gases which have a relatively long atmospheric 83 

residence time, 4 to 15 days, and when removed by precipitation contribute to N deposition in 84 

remote ecosystems, after long-range transport (Asman et al., 1998). Proportions of NH4
+ and 85 

NO3
- ions in precipitation, like the ecosystems they deposit to, vary spatially reflecting the 86 

non-uniform distribution of their sources and topography (RoTAP, 2011). Evidence of the 87 

respective effects of reduced and oxidised nitrogen to (semi) natural habitats is urgently 88 

needed in order to support targeted emission control in either fields of agriculture and energy 89 

sectors of both (Bobbink & Hettelingh, 2011, RoTAP, 2011). Similarly, there is a pressing 90 

need to establish whether N critical loads (CLN) should be separated by form, as we lack 91 
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comparable evidence on which to judge whether one or other form is more damaging and 92 

under what circumstances (Bobbink & Hettelingh, 2011, RoTAP, 2011). Very few studies 93 

have addressed the importance of the form of reactive N in wet deposition (e.g. Paulissen et 94 

al., 2004; van den Berg et al., 2008) and none have studied these effects in the field at low 95 

background N deposition and for a extended (>5 y) period. Due to the fact that many species 96 

show unimodal response curves to nutrient additions it is necessary for field N-manipulation 97 

studies to: 1. Start from a clearly defined point on the response curve, 2. Be maintained long 98 

enough to fully capture the N response and 3. Avoid sites with background N loads that may 99 

have already pushed the ecosystems onto the falling side of the curve (Sverdrup et al., 2013). 100 

Ours is an ongoing study of the effects of N form on species cover that has been running for 101 

more than a decade at a relatively N clean site. 102 

Semi-natural ecosystems that rely on atmospheric inputs for most of their nutrient supply e.g. 103 

ombrotrophic bogs and peatlands are considered to be particularly at risk from enhanced N 104 

deposition (Bobbink & Hettelingh, 2011). Much of the component vegetation e.g. mosses, 105 

Sphagnum species and lichens are described as nitrophobes (N sensitive) and their presence 106 

has formed the basis for setting CLN in many ecosystems (Bobbink & Hettelingh, 2011).  107 

There is a significant literature (Berendse et al., 2001; Limpens et al., 2003; Bragazza et al., 108 

2004;  Gunnarsson et al., 2004, 2008; Paulissen et al., 2004;  Bobbink & Hettelingh, 2011) 109 

detailing adverse effects of enhanced N deposition on Sphagnum species, the main peat 110 

forming moss (van Breeman, 1995) which can change the nature and function of bogs. There 111 

is a pressing need to establish the extent of N driven changes in species cover on peatlands 112 

because of their importance for the global C balance, the link between vegetation and 113 

greenhouse gas emissions and the implications for up-scaling (Joabsson et al., 1999; Gray et 114 

al., 2013). Thus, we manipulated wet N deposition to an ombrotrophic bog, expecting to 115 

rapidly initiate contrasting effects on the cover of key species, provide corroboratory 116 
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evidence on the importance of N form and a long term assessment of N effects on a much 117 

valued ecosystem.  118 

Our experiment addressed some key concerns on field N manipulation experiments, namely: 119 

1) background N (ca. 8 kg N ha−1 y−1) deposition at the Scottish site is relatively low by 120 

European standards (apart from northern latitudes); 2) the simulation of wet deposition is 121 

highly realistic, being coupled to meteorology (Phoenix et al., 2011); 3) the duration of the 122 

experiment has been sufficient to characterise the N response curves. Monitoring control 123 

plots enabled us to put N driven changes into the context of the underlying natural dynamics 124 

of species cover change, and the role of climate in determining what is present when 125 

observations are made, an influence that is very difficult to account for in one off surveys.  126 

Here we report the results of nine years’ application of oxidised and reduced N using a 127 

unique and highly realistic delivery system on the cover of key peatland species growing on 128 

an ombrotrophic peatland.  129 

Aims 130 

1. Demonstrate the long-term consequences of different N forms in wet deposition on 131 

the cover of key components of an ombrotrophic bog, peatland, at a site with 132 

relatively low ambient N deposition, using a ‘real world’ treatment regime.  133 

2. Establish whether changes in the proportions of different species can be related to 134 

cumulative (averaged over the most recent assessment period) treatment effects on 135 

soil pH and N availability, soil water nitrate and ammonium.  136 

3. Address the significance of N form in N deposition and implications for separating 137 

CLN by form. 138 

Methods 139 
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Site   140 

Whim bog is located in the Scottish Borders, at 282 m a.s.l, 3°16′ W, 55°46′ N, on 3-6 m 141 

deep peat. No active management for at least 70 years has left a very uneven aged Calluna 142 

vulgaris stand (hereafter shortened to Calluna) with plants ranging from mature to degenerate 143 

(Gimingham, 1972). The peat is very acid, with a pH ca. 3.4 range 3.27-3.91 (H2O), 10 % 144 

base saturation and low in available P and K (Table S1). The vegetation conforms best 145 

(Mizunuma, 2008) to NVC M19 and repeats in heterogeneous mosaics with hummocks 146 

dominated by Calluna and Sphagnum capillifolium, hollows with Sphagnum fallax and 147 

Sphagnum papillosum and cyperaceous graminoid species of Eriophorum. The most common 148 

species on this bog, Calluna, E. vaginatum, S. capillifolium, Hypnum jutlandicum, 149 

Pleurozium schreberi and Cladonia portentosa occur widely on similar habitats through the 150 

northern hemisphere (Gore, 1983). 151 

Treatments 152 

The treatments, replicated in 4 plots, are supplied at three doses of N: 8, 24 and 56 kg N ha−1 153 

y−1, in addition to the total ambient deposition of ca.8 kg N ha−1 y−1, as either oxidised N in 154 

NaNO3 or reduced N in NH4Cl, referred to as NoxY and NredY respectively, where Y 155 

represents the annual dose applied excluding ambient deposition, e.g. Nox56. Treatments 156 

provide 10% additional rainwater, collected on site (Sheppard et al., 2004a, 2008), which 157 

dilutes the N concentrate to 0.57, 1.71 or 4.0 mM corresponding to 8, 24 and 56 kg N ha−1 158 

y−1. The treatment is pumped through 100 m of pipe to a spinning disc sprayer at the centre of 159 

each 12.8 m2 plot. Application is automatic when weather conditions permit: sufficient 160 

rainfall, air temperature > 0 oC and wind speed < 5 m s-1, coupling application to real world 161 

conditions with a realistic frequency, ca. 120 applications y-1. Six metre buffer strips separate 162 
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the plots. Treatment commenced in June 2002 and has been maintained throughout the year 163 

when temperatures exceed those likely to cause freezing.  164 

Meteorological variables are measured at 1 or 15 minute frequencies (Sheppard et al., 2004a; 165 

Leith et al., 2004). Annual wet-only N deposition varies with rainfall amount in the range 4.6 166 

to 6.2 kg N ha-1y-1 with dry deposited NH3 < 3 kg N ha-1 y-1. Rainfall, temperature and water 167 

table data (Table 2S) are presented for the periods, 2002-2004, 2004-2007, 2007-2009, 2009-168 

2011 between species cover assessments. 169 

Cover assessments 170 

The protocol for estimating species cover change was detailed in Sheppard et al., (2011). 171 

Three permanent quadrats (0.25 m2) in each plot included the most common species and, 172 

where possible, represented most species in the plot, although often in different proportions. 173 

Percent cover data for these three quadrats were averaged to provide a plot value. The same 174 

two recorders made all the assessments. In most cases the sum of the cover exceeded 100%, 175 

due to the multi-layering of the vegetation. Calluna was separated into green shoot cover 176 

(Calluna green), dead shoot cover and fallen litter. In 2011, cover was also estimated for all 177 

species in the whole-plot (12.8 m2) by the same two recorders.  178 

Growth, N concentrations and vitality assessments 179 

Shoot growth of Calluna was measured in 2011, post growing season, on 24 shoots per plot, 180 

removed at three positions on eight compass points for up to five years, retrospectively. Ten 181 

capitulum of S. capillifolium, per plot, were removed in both October 2006 and November 182 

2011, cleaned, dried and weighed for comparison. Extension growth of H. jutlandicum and P. 183 

schreberi was measured between March 2008 and March 2009. Three rectangles of plastic 184 

mesh were placed over areas of the respective mosses and anchored down. These were 185 
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removed after one year by cutting below the mesh. The area covered by the moss was 186 

estimated and 10 moss stems were measured, dried and weighed. The remaining moss was 187 

dried and weighed. N was measured on the dried samples using a CN analyser. Length and 188 

weight per cm in 2009 are presented. N was also measured in cleaned, dried, ground samples 189 

of current year Calluna and E. tetralix shoots, apices of C. portentosa and green leaves of E. 190 

vaginatum harvested at the end of the summer in 2009. Visible damage to non-vascular plants 191 

was assessed subjectively (Sheppard et al., 2011) in all plots. Winter damage to Calluna 192 

following the cold winter and hot dry spring in 2009/2010 was scored in October 2010 as the 193 

percentage of dead grey shoots (Sheppard et al., 2011) per plot. 194 

Soil pH and soil water nitrate and ammonium 195 

In each plot, pH was measured in a 2/1 (v/v) mixture (1 h) of deionised water and peat 196 

originating from one peat sample per plot, cored down 10 cm below a shallow layer of 197 

pleurocarpous moss. Measurements started in 2006 and between 7 and 16 measurements 198 

were made between quadrat assessments: 2006-2007, 2007-2009, 2009-2011. Soil pore water 199 

nutrients (NH4
+ and NO3

-) were sampled using rhizon suction samplers (Eijkelkamp, The 200 

Netherlands), comprising a 6 cm reinforced porous tube, incorporating a 0.45 µm filter, at 0-201 

10 cm depth, again below pleurocarpous moss. NO3
- and NH4

+ concentrations were 202 

measured by ion chromatography, with a detection limit of 0.018 mg N L-1.  203 

Data analysis 204 

Cover and growth data were tested for normality (Bartletts test and residual plots) and 205 

appropriate transformations (log10, arcsin, square-root) were made if required. A two-way 206 

generalized model was used to separate the effects of N dose (both forms combined) and 207 

form (all doses combined), with post hoc tests (Tukey) to separate the interactions (N form x 208 

dose) where justified. Separate comparisons were made for individual years. All analyses 209 
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were undertaken with Genstat (GenStat Release 12.1, ©2009; VSN International Ltd, 210 

Harpenden, UK). Significance is indicated when p values were < 0.05. Statistically 211 

significant chronological changes are summarised in Table 4S. Because of the between plot, 212 

treatment variability in species cover at the start of the experiment, the number of treatments, 213 

in order to demonstrate chronology and simplify presentation, the data are represented as % 214 

cover with trend lines fitted, linear or polynomial (R2 > 0.7) (Fig. 1S) and difference from the 215 

start with error bars. HOF models (Huisman et al., 2003), which show individual plot values, 216 

were used to analyse the time response. These were fitted to express the shape of the species 217 

cover response over the 9 years of the experiment. Our expectation was that, if they occurred, 218 

responses would be either monotonic changes in cover or a form of hump back response. 219 

Hence fitted models varied from a horizontal line to a unimodal skewed response and 220 

comprised five forms of increasing complexity and number of parameters. Models were fitted 221 

using the R package ‘gravy’ (Oksanen, 2004; 2005). Assessment of the best model fit was 222 

based on AIC values and permutation testing (see Table 5S). We applied HOF model fitting 223 

to the untransformed cover data for each species and each N treatment including controls. 224 

Quantifying the effects of N treatment on soil chemistry and species cover change 225 

N treatment could drive change in species cover via changes in soil chemistry, altering the 226 

favourability of conditions for each species where cover would decline or increase through 227 

direct effects on growth or indirectly via competition with neighbours. In addition it is 228 

possible that N deposition might directly affect the growth of a species because of 229 

physiological effects not mediated via change in soil chemistry. Foliar uptake by mosses and 230 

ericaceous shrubs can be quite significant (Bates et al., 2002; Bobbink & Heil, 1993). Path 231 

analysis was used to quantify the direct effect of each N treatment on species cover as well as 232 

simultaneously estimating any indirect effects via change in soil chemistry and highlight 233 

changes in soil chemistry not so far linked to cover change but with the potential to do so. A 234 
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model specifying all possible directed relationships was tested for the Nox plots and 235 

separately for the Nred plots (Fig. 1). The same control data was used in each model. Each 236 

species with sufficient observations was tested separately. Analyses were applied to two 237 

cover-derived response variables; plant species cover in 2011, and also to the linear slope of 238 

change in cover over nine years. We used the average of 2009-2011 pH and soil solution N 239 

chemistry data as being the most appropriate to represent the cumulative effect of N load. 240 

Slope coefficients were based on arcsin square root transformed cover data then centred to 241 

zero and standardised to unit standard deviation within each treatment across years. Cover 242 

data in 2011 were also centred to zero mean and unit standard deviation across all treatments 243 

and plots. The resulting standardised regression coefficients and path coefficients can be 244 

interpreted as effect sizes of the magnitude of change in terms of standard deviational units 245 

following Cohen (1988) where values >0.2 and <0.8 are medium effects and >0.8 are 246 

considered large effects.  247 

The path analysis model was written in the Bayesian analytical software OpenBUGS 248 

software version 3.2.1. (http://www.openbugs.info/w/). A Bayesian treatment was adopted as 249 

this allowed us to estimate all regression parameters and indirect effects in one analysis while 250 

also coping with relatively small sample sizes. Two data values were missing and the 251 

Bayesian approach allows these to be estimated by drawing from the posterior predictive 252 

distribution of each covariate in the model (Gajewski et al., 2006). 253 

Estimating indirect effects tested the hypothesis that species cover response was linked to N 254 

load via change in soil chemistry. As is normal in path analysis, indirect effects were 255 

computed as the product of the standardised regression coefficients for each component path 256 

(Grace, 2000). Hence if beta1 is the standardised regression coefficient expressing the effect 257 

of N load on soil pH and beta2 is the coefficient for the effect of soil pH on species cover 258 

then the indirect effect of N load on species cover is the product of beta1 and beta2. The 259 

http://www.openbugs.info/w/
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significance of this term can be readily tested by repeatedly sampling its value from the 260 

posterior distribution and counting how many times the estimate is greater or less than zero. 261 

The mean of the repeated draws of these binary values gives the required exact probability 262 

value for the data. Significance tests of regression parameters were performed in the same 263 

manner (Table S6). 264 

Results 265 

Changes in species cover 266 

Pre treatment cover was highly variable with seven-fold differences in non-vascular plant 267 

cover (Fig. 1S). With no N addition, species cover changed by up to 100% over the nine 268 

years, exhibiting mostly increases, Calluna, H. jutlandicum, declines, P. schreberi, S. 269 

capillifolium, E. vaginatum or both, E. tetralix (plateaued 2007). Up to 2007, conditions 270 

appeared to favour the two most common ericoids and most species except P. schreberi. N 271 

additions tended to amplify the direction of these responses, except for S. capillifolium which 272 

decreased its cover at N doses above N8, irrespective of N form (Fig. 1S). The two 273 

pleurocarpous mosses that dominated non Sphagnum moss cover, showed opposite responses 274 

to N: H. jutlandicum increased with N dose and Nox; P. schreberi decreased with N dose, 275 

especially Nred. C. portentosa cover declined with N addition, but because control values 276 

were so low (Fig. 1S) it was difficult to assess whether N was the only cause. Only Calluna 277 

cover changed significantly as a result of N inputs, but only with Nred in 2007. Increases in 278 

dead Calluna foliage and litter were significant from 2004 (Fig. 1S). Dead shoot cover 279 

increased in N56 treatments and litter cover especially showed significant increases with 280 

Nred, all doses, but smaller, non significant increases with Nox. 281 

Vaccinium oxycoccus, V. myrtillus and Empetrum nigrum occurred in too few plots for 282 

statistical analysis. High N56 increased cover in all three ericoids. E. tetralix which 283 
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represented < 1% to 10% cover, showed a short –term positive N response, most noticeable 284 

with Nred, 3-4 fold increases significant in 2007 (Fig. 1S). E. vaginatum, green leaves, 285 

comprised ca. 25% of the cover, were relatively unresponsive to N form and dose although 286 

cover tended to decline, the opposite of Calluna (Fig. 1S).  Dead and green leaves of E. 287 

vaginatum and Calluna dominated the higher plant cover (40-68%).  288 

Cover fluctuations from the start are shown in Fig. 2. Several Sphagnum species grow on site: 289 

S. capillifolium, S. russowii, S. papillosum and S. fallax, but only S. capillifolium, sometimes 290 

in combination with S. russowii and ‘lumped’ as S. capillifolium, occurred in all plots. In 291 

control plots S. capillifolium cover showed small increases which were reversed after 5 years 292 

(Fig. 2). N56 had significantly reduced S. capillifolium cover within 5 and N24 within 7 years 293 

(Figs 1S & 2), although Nred8 continues to outperform controls (Fig. 2). Over time the 294 

differences between N doses became less significant, as the reductions in cover at lower 295 

doses ‘caught up’ with higher doses.  296 

H. jutlandicum cover fluctuated in control plots (Fig. 2), but within two years of treatment, 297 

there was a positive Nox effect (p = 0.054). By 2011 these increases represented 92%, 61%, 298 

189% for Nox 8, 24 and 56 respectively, but only 35%, 21%, 103% for equivalent Nred 299 

additions. P. schreberi displayed a rapid, acute sensitivity to N: within 2 years the linear 300 

decline with Nred56 in P. schreberi was significant, compared with 9 years for No56 (Fig. 2). 301 

Effects of ≤ 24 kg Nred were not significant, despite the 9 year cumulative dose for Nred24 302 

exceeding the 2 year Nred56 dose. In the N treatments, especially Nred P. schreberi cover in 303 

2004 was relatively low by comparison with subsequent years (Fig. 1S). C. portentosa cover 304 

varied hugely across treatment plots, being quite extensive on the drier hummocks but sparse 305 

in wetter plots and absent from 3 sets of control quadrats, compromising the statistics. By 306 

2011 C. portentosa had almost disappeared from the Nred56 and Nox56 treatments (Fig. 1S). 307 
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Percent species cover was quantified at the plot level, 12.8 m2 in 2011 to corroborate the 308 

quadrat data (Fig. 3). Among the ericoids: Calluna, E. nigrum, V. oxycoccus and V. myrtillus 309 

covers were significantly (p=0.042) lower with N56 but showed no significant effect of N 310 

form (p= 0.414) (Fig. 3). Neither N dose nor form affected graminoid cover, predominantly 311 

green and dead leaves of E. vaginatum. Moss cover was significantly higher in the N8 and 312 

Nox plots (Fig. 3), largely reflecting H. jutlandicum. Cover of Sphagnum (all species) and S. 313 

capillifolium alone, was lower the higher N dose, where there was also more dead, and with 314 

Nred but not significantly so. C. portentosa cover reflected how much of the plot sat above 315 

the water table, some plots had very high initial covers of 20-25 %, masking the treatment 316 

effects. The N56 plots started with more typical cover (2-5 %) and C. portentosa has 317 

disappeared from three of the Nred56 plots and two of the Nox56 plots.  318 

Quantifying the shape of the species’ cover response curves – HOF model 319 

Most treatments induced no change in species cover and no deviation from control plots (Fig. 320 

4). Hence the best fitting model in 21 out of 42 possible responses was an intercept-only 321 

horizontal line (Table 5S). There were too few positive non-zero values to fit a model to P. 322 

schreberi and results summarise those already described: Nred56 rapid decline with 323 

consistent declines in Nred24 and Nred8, but only Nox56 (Fig. 4). E. vaginatum also declined 324 

over time in all three Nred treatments and in the Nox8 treatment.  H. jutlandicum increased 325 

significantly over time with Nox8 and Nox56 but no significant changes with Nred (Fig. 4). 326 

In all three Nred treatments E. tetralix showed a significant but small hump, peaking ca. 5 y. 327 

Calluna showed positive responses in all treatments but the magnitude was not significantly 328 

different from the controls (Fig. 4). These HOF models confirm the relatively small 329 

magnitude of the cover changes over 9 years. 330 

Nox versus Nred effects on difference in cover 331 
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Comparing cover increases or decreases relative to the start on a 1 : 1 plot of Nox versus 332 

Nred, R2 = 0.69; Nred change R2 = 0.85 * Nox change R2 – 0.50 (Fig. 5) illustrates the 333 

relative effects of N form. Relatively, form and dose effects are quite small, < 20% difference 334 

in species cover, except for Calluna, up to + 40 %. Despite nine years elapsing, the 335 

magnitude of N driven cover change has been small, except for P. schreberi which has gone 336 

from the Nred56 quadrats. 337 

Cumulative dose effects 338 

Where N dose significantly changed species cover, e.g. for S. capillifolium and P. schreberi 339 

(Table S2) relationships with cumulative N load were investigated (Fig. 6). Once the 340 

cumulative Nred load exceeded 200 kg N, S. capillifolium cover decreased, but the rate of 341 

decrease was small. Nred load explained 42% of variation in cover (p =0.02). There was no 342 

relationship between change in cover and cumulative Nox load (p = 0.46) although the effect 343 

of Nox was generally negative. P. schreberi was negatively affected by N at all N doses, 344 

appearing more N sensitive than S. capillifolium and halving its cover for a smaller N load 345 

(Fig. 6). Both cumulative Nox and Nred loads explained significant amounts of the cover 346 

changes in P. schreberi: Nox = 78%, p = 0.0001 and Nred = 53%, p = 0.007. The form 347 

effects were significantly different (p = 0.05) with Nred causing the largest cover reductions. 348 

Shoot extension 349 

Shoot elongation was measured to indicate whether cover changes were related to growth. In 350 

2011 there was a significant positive dose response and effect of Nred on Calluna shoot 351 

extension (Table S3). Nred56 increased shoot extension significantly more than Nox56 (post 352 

hoc tests).  In 2010, N addition also increased shoot extension (p = 0.067), especially as Nred 353 

(p = 0.075) but there were no significant treatment effects in 2009, 2008 and 2007. Shoot 354 

extension suggests Nred56 is still favouring Calluna growth. H. jutlandicum growth data 355 



15 
 

contradicted the cover changes: N dose reduced shoot length weight (p= 0.03) and there was 356 

no N form effect (Table S3). For P. schreberi N dose significantly reduced both weight per 357 

unit length and shoot extension.  Neither N form nor N dose significantly affected S. 358 

capillifolium capitulum weights in 2006 or 2011 (Table S3). In 2006, capitulum weights were 359 

larger with ≤ 24 kg N ha-1 y-1, but by 2011 only the N8 addition maintained that positive 360 

trend.  361 

Visible damage 362 

In October 2010, 30% of Calluna shoots were grey and dead (Sheppard et al., 2011) in N56 363 

plots, with a significant (p = 0.04) effect of N dose (Table S3). A subjective visual scoring of 364 

health (Sheppard et al., 2011) showed that P. schreberi and H. jutlandicum were not visibly 365 

damaged, scoring 5 = no visible damage, in all but one treatment Nred56 (4.7). Some damage 366 

was seen on S. capillifolium but the scores exceeded 4. C. portentosa showed most damage in 367 

the N56 plots, especially with Nred.  368 

Foliar N 369 

The N status of all species responded positively and significantly to N dose. Mostly % N was 370 

higher with Nred (Fig. 7, most points above the 1 : 1 line). The difference between Nred and 371 

Nox was largest at the highest N dose. Among the vascular plants the increases in %N were 372 

modest, the largest increases in % N occurred among the non-vascular plants which were 373 

more N sensitive. 374 

Meteorology, soil pH and soil water nitrate and ammonium 375 

Between 2002 and 2011 mean air temperature got colder, reflecting two very cold winters 376 

(10/11, 11/12) down to 7 oC. RH has remained relatively constant, between 88 and 91 %, 377 

likewise the water table at 10 cm below the surface, once recovered from the 2003 drought 378 
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and cumulative rainfall. Pre treatment pH values measured in all plots varied by 0.2 pH units 379 

(3.45 and 3.65). By 2011 pH’s in the Nox plots, were up to 0.4 units higher depending on the 380 

N dose, whereas pH’s in Nred remained similar to control plots but ca. 0.1 units less acid than 381 

2002. Between 2009 and 2011 NO3-N concentrations were relatively low, < 0.15 mg L-1 but 382 

exceeded control values. N additions significantly increased soil water NO3-N 383 

concentrations, but there was no distinguishable trend with time. Differences in the form of N 384 

applied had no significant effect on NO3-N concentrations. In control plots mean soil water 385 

NH4-N concentrations were low ca. 0.7 mg L-1. Nox treatments increased soil water NH4-N 386 

concentrations, but not in relation to dose, whereas Nred treatments increased NH4-N 387 

concentrations in proportion to dose. NH4-N concentrations with Nox were two-threefold 388 

smaller than with Nred and were lowest in controls and highest with Nred56.  389 

Relating N treatment effects on soil chemistry and species cover using Path analysis 390 

Direct effects on species covers: Medium sized positive and negative effects of increasing 391 

loads of Nox were detected for H. jutlandicum and P. schreberi covers in 2011 respectively 392 

(Fig. 8). Medium sized negative effects of Nred load were seen for cover of H. jutlandicum, 393 

P. schreberi and S. capillifolium. Increasing Nred load had a significant positive effect on 394 

final Calluna cover (Fig. 8). For linear cover change between 2002 and 2011(Fig. 9), there 395 

was only one direct effect: E. tetralix, positive for Nox. Direct effects on soil chemistry 396 

with no transmitted effect on species cover: The only direct effect on soil water chemistry 397 

that was not subsequently linked to species cover was a positive relationship between 398 

increased NH4
+ concentrations and Nred dose (Fig. 8). Indirect effects on final cover in 399 

2011: Nox load increased pH, positive effect, which decreased P. schreberi cover, large 400 

negative effect (Fig. 8). By contrast, increasing Nox had a large positive effect on final H. 401 

jutlandicum cover via a positive effect on soil pH (Fig. 8). Increasing Nox load also had a 402 

medium sized negative effect on P. schreberi cover in 2011 via its’ positive effect on soil 403 
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water NH4
+ (Fig. 8). An indirect negative effect of increased Nred on E. vaginatum cover 404 

was also detected via its’ positive  effect on NH4
+ concentrations, but the exact Bayes p-value 405 

indicated a 90% rather than 95% chance of a credible relationship (Fig. 9). 406 

Significant effects of soil chemistry variation on species cover were also found that were not 407 

in turn associated with N treatment. These can either reflect lack of statistical power given the 408 

noise in the data compared to signal or, they highlight background relationships related to 409 

ecological variation in the habitat over time that were independent of the experimental 410 

treatments (Figs 8 & 9). Path analysis confirmed that significant differences in the relatively 411 

small cover changes could be attributed to changing amounts of applied N. Moreover it 412 

demonstrated that both Nox and Nred caused detectable effects, and that most of the strong 413 

negative effects were linked to Nred. 414 

Discussion 415 

Importance of this long-term study at Whim bog: capturing a time series to detect resilience 416 

By tracking cover change at ca. two year intervals we have demonstrated considerable 417 

amplitude within direction of change trends in cover, highlighting the uncertainties that can 418 

affect ‘one off’ evaluations. The results highlight difficulties in demonstrating whether an N 419 

response is increasing, stagnating or declining in the absence of a chronology of 420 

measurements e.g. the hump back response E. tetralix. Combining assessments of growth, 421 

cover change and foliar N concentrations attributes change to N directly and from growth 422 

measurements understand what, if any, physiological processes are being affected or whether 423 

cover changes just reflect competition for resources. For the mosses increases in cover were 424 

sometimes associated with morphological changes that implied reduced C assimilation and a 425 

decrease in overall mass, which could become a problem for the future (Armitage et al., 426 

2012). The study also highlights the lack of generic responses to both N dose and form e.g. 427 
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Hypnum moss increasing whereas Pleurozium declined rapidly and Sphagnum in a 428 

constrained way, the former to Nox and the latter to Nred but also Nox. Through path 429 

analysis we have clearly demonstrated that N can induce change but based on the HOF 430 

models we see that the magnitude of change over nine years is small by comparison with the 431 

control. Effects of N form were also clear among sensitive species, with the strongest 432 

negative effects associated with Nred which caused highest foliar N concentrations. 433 

However, given that the keystone Sphagnum was also negatively impacted by Nox, both 434 

would need to controlled to protect peatlands. 435 

It appears that a hallmark of the subtlety of realistically applied N deposition effects is that 436 

impacts are played out largely via adjustment of the competitive relations of the mix of 437 

species present. N effects on Calluna, especially litter fall and associated moss species 438 

suggest a key role for the dominant species in responding to elevated N and in turn shaping 439 

conditions for subordinate species. 440 

In terms of understanding the mechanisms of damage our results caution against over-441 

interpreting short term, high dose studies that elicit damage but where such impacts do not 442 

represent realistic ecosystem trajectories over realistic time scales. Although our 2011 whole 443 

plot assessment did not take into account differences in species cover at the start, the trends 444 

supported the permanent quadrat data, and in reality the influence of start cover was not 445 

significant after five years. Despite the halving of cover, most plots remain > 10 % covered in 446 

S. capillifolium indicating slow rates of change and inferring this keystone species is 447 

relatively resilient to N impacts. Significant form effects on change in species cover were rare 448 

except for P. schreberi where Nred was most detrimental.  449 

Consequences of different N forms in wet deposition on the cover of key components of an 450 

ombrotrophic bog 451 
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Assuming that this ombrotrophic bog relies on deposition for nutrients, we had expected N 452 

deposition to change species proportions within the vegetation.  The non–vascular plant 453 

components have no cuticle and take up nutrient ions over their entire surface, rendering 454 

them both vulnerable but also effective competitors for N deposition until they saturate 455 

(Bates, 2002). Saturation of this moss filter in peat bogs (Lamers et al., 2000; Curtis et al., 456 

2005) allows mineral N to leak into pore water and soil, where it can be accessed by vascular 457 

plant roots. Use of this additional N by the vascular over-storey to increase its cover has 458 

caused the disappearance of moss and Sphagnum (Cornelissen et al., 2001; Nilsson et al., 459 

2002; Bubier et al., 2007). But our data show this is not the only N induced scenario, 460 

especially in the absence of competition for light.  461 

In an earlier paper (Sheppard et al., 2011) we reported highly detrimental, visible effects of 462 

elevated N deposition as dry deposited ammonia (NH3) at equivalent N doses to those used in 463 

this paper, which eradicated S. capillifolium and also the over-storey, arguably through  NH3 464 

toxicity (Krupa, 2003). We suggested that some of the reported N sensitivity of Sphagnum 465 

species, such as S. capillifolium, could reflect exposure to elevated NH3 concentrations, 466 

especially in areas where agriculture dominates the landscape. The data reported here support 467 

that idea indicating that, in the absence of N induced eutrophication and ensuing competition 468 

effects, the sustainability of S. capillifolium is more resilient to wet N deposition than 469 

previously inferred and, based on the curvilinear relationship with cumulative N load, that S. 470 

capillifolium can adjust to high wet N inputs. The relative proportions of species in this 471 

peatland plant community dominated by unmanaged degenerate Calluna, E. vaginatum and 472 

under-storey moss have yet to be destabilised by realistic applications of wet N deposition 473 

separated by form.  474 

Why is Whim vegetation resilient to enhanced wet N deposition nine years on? There are 475 

characteristics of this study that could have modified the responses: 1. Method of treatment 476 
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application: Unlike many N manipulation studies (Phoenix et al., 2012) N additions at Whim 477 

were automated, enabling them to be coupled to rainfall, facilitating frequent small N inputs 478 

at concentrations more closely resembling those in wet deposition to relatively large plots 479 

(less edge effect). We would not expect this treatment scenario to cause artefacts associated 480 

with high concentrations / doses (Pearce & van der Wal, 2008). 2. Recent manipulation 481 

studies applied Nox and Nred combined as NH4NO3, which may cancel out or restrict some 482 

effects we have seen since they affect pH differently both within the plant and the soil 483 

(Raven, 1988), and have no associated counter ions to influence the impact (Evans et al., 484 

2008). However, on balance, one might expect NH4NO3 deposition studies to be less, not 485 

more damaging. 3. Our study has run three times longer than most and has thus been 486 

impacted by the potential for climate interactions e.g. 2003 drought (Carfrae et al., 2007) 487 

which can exacerbate N effects (Carroll et al., 1999; Sheppard et al., 2008). But this would 488 

be expected to reduce, not increase resilience. 4. The vegetation composition at Whim is 489 

typical of NVC M19 (Rodwell, 1991), but the Calluna is old and unmanaged, and may not be 490 

capable of significantly growing its’ over-storey and depleting light to the under-storey 491 

sufficiently to exclude photosynthesis, as happened with Labrador tea (Ledum 492 

groenlandicum) at Mer Bleue (Bubier et al., 2007; Juutinen et al., 2010). Also, Calluna only 493 

covered 40 ~ 60 % of the plots so even the significant increase in fallen litter may not have 494 

impacted all areas occupied by Sphagnum and the bottom 30 cm or so of stems from > 60 % 495 

of Calluna plants were devoid of greenery.  496 

Implications 497 

This long-term study has demonstrated that an intuitively N sensitive ecosystem can resist 498 

destabilising changes from significant N inputs, such that the cumulative impacts of N 499 

deposition have yet to be fully played out. The flattening of the response of S. capillifolium to 500 

cumulative N load implies some sensitivity but much more tolerance than has been implied 501 
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from surveys (Smart et al., 2010). Our results suggest that once the initial effects of Nox have 502 

manifest themselves additional N makes very little difference, whereas for Nred increasing 503 

the N load perpetuates the slow decline. However, even nearly a decade may not be sufficient 504 

time to capture response curves given between species interactions. Generally among 505 

responders, species level impacts represented slight, negative net effects. Our results 506 

reinforce the importance of running manipulations for realistically long time scales to show 507 

whether negative N responses are linear of curvilinear and when, if, positive responders 508 

become negative. In the absence of these response curves our predictions of N impacts on 509 

bogs may be over stated.  510 

 511 

The results challenge the value of short term experiments or where unrealistic concentrations 512 

are applied, since they may either generate responses that do not represent long term impacts 513 

in resistant ecosystems or fail to find effects because insufficient time has elapsed. However, 514 

these effects should be seen in the context of the 150 years or more of heightened N loading 515 

prevalent across much of Britain (Fowler et al., 2004). Thus the experiment tries to replicate 516 

the start of the trajectory of perturbation but even here we must acknowledge background 517 

deposition and so cannot rule out effects present prior to the start of the experiment that have 518 

predisposed the site to respond in the way it has. The possibility of non-linear change 519 

occurring in the future is highlighted by the two positive impacts of Nox and Nred on NH4
+.  520 

These changes in soil water chemistry were linked with subsequent negative impacts on P. 521 

schreberi cover in 2011 and in E. vaginatum cover change between 2002 and 2011, but it is 522 

possible that further species-level impacts have yet to happen. In this respect, soil chemical 523 

change may be the fore runner of further changes in community structure. Similarly, the 524 

positive direct effect of Nred on Calluna growth could lead to earlier realisation of 525 

degenerate phases and subsequent gap formation. Such gaps can then trigger the expansion of 526 
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nitrophilous grasses favoured by elevated N load and a better lit ground layer although 527 

expansion of E. vaginatum, given its sensitivity to NH4
+, might depend on nitrification rates 528 

(Heil & Diemont, 1983). Replicating these cascade effects under realistic scenarios requires 529 

long-term experiments that enable such subtle interactions to play out. As we have seen, 530 

changes in dwarf shrub dominance and the unnatural acceleration of their growth cycles, leaf 531 

fall will also impact lower storey plants. 532 

Were effects driven by changes in soil chemistry? 533 

Biomass assessments, together with nutrient concentrations in 2009, inferred most N should 534 

be in the soil (Sheppard et al., 2013) and we used soil pore water chemistry as the sensitive 535 

indicator (Sheppard et al., 2008) for the path analysis. Both soil water N chemistry and soil 536 

pH varied spatially and temporally, representing the difference between deposition and the 537 

biological activity of the various sink strengths: mosaics of plant assemblages of which no 538 

two are identical. Interestingly, although NO3
- concentrations were dose dependent in the 539 

Nox treatments, the concentrations appeared to vary too little for this to come through in the 540 

path analysis unlike NH4
+ concentrations in the Nred treatments. Overall, changes in pore 541 

water N chemistry appear to have been too small to strongly affect cover: intuitively we 542 

would expect direct effects on vascular plant cover only, in reality no relationships were 543 

identified for Calluna, or E. tetralix that were mediated via soil water N or even pH. There 544 

was a positive effect of Nred on NH4
+ concentrations that was related to the decline in E. 545 

vaginatum. However, we suggest this is implemented through enhanced competition from 546 

Calluna in the Nred treatments (Marschner, 1995; Nordin et al. 2006).  Pretreatment cover of 547 

green E. vaginatum was negatively related (r2= -0.86 *) to Calluna cover. 548 

Non-vascular plant cover did however, relate to soil chemistry: 2011 cover of H. jutlandicum 549 

and P. schreberi in Nox plots with soil pH (+ve) or soil water NH4
+ (-ve) respectively, 550 
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although the link with soil water NH4
+ is counter intuitive. This ion was not included in the 551 

Nox treatment: perhaps N transformations (ammonification, nitrification) are occurring 552 

within or on the vegetation, producing ions in proportions that mirror those in soil water? N 553 

fixation and methanotroph activity is known to occur within this layer (DeLuca et al., 2002; 554 

Raghoebarsing et al., 2005; Larmola et al., 2010). P. schreberi is sensitive to NH4
+ (Solga et 555 

al., 2005). However, mosses have no roots and these mosses occupy niches above the water 556 

table, so would not come into direct contact with soil water N concentrations. Possibly the 557 

linkage reflects a proxy, working through competition effects which we did not explicitly test 558 

for. However, although Calluna cover and litter increased with N addition, possibly lowering 559 

PAR below that needed for P. schreberi to survive under Calluna (Scandrett & Gimingham, 560 

1989), and the moss was often buried under litter and ‘hidden’ from view, this effect was 561 

most pronounced in Nred plots. P. schreberi decline was shown clearly in the HOF model for 562 

Nox56 and path analysis did indicate medium negative treatment effects not mediated 563 

directly via soil water chemistry, the mechanism however, remains unclear. 564 

Manninen et al. (2011) reported effects of the wet N treatments on S. capillifolium capitulum 565 

pH at Whim, and we have similar (unpublished data) for H. jutlandicum and P. schreberi, 566 

replicating those described here for soil, ie. Nox increased pH.  Given pH controls many 567 

physiological processes (Raven, 1988; Marschner, 2005) we suggest that the positive 568 

relationship with pH for H. jutlandicum reflects a more alkaline physiological optimum.  569 

We have not measured large increases in soil N availability over this 9 year period which is 570 

consistent with the absence destabilising changes in proportions of the key component 571 

species (Sheppard et al., 2012). 572 

Sensitivity to N form in non-vascular plants 573 
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Nordin et al., (2006) concluded, from a similar manipulation of N form in boreal forest, that 574 

Nred caused moss to decline through N accumulation, which didn’t occur with Nox. Tissue N 575 

data (see also Solga et al., 2005) suggests P. schreberi cannot tolerate large ( > 30%) 576 

increases in its N status; in the Nox56, Nred24 and Nred56 plots, percent N increased by 55, 577 

49 and 109 % over the control, respectively.  Taking into account growth and leaf N 578 

concentrations, and the response to the cumulative N load our results show P. schreberi is 579 

damaged by both N forms, but via different mechanisms: Nox via a combination of increased 580 

pH and N accumulation and Nred through greater N accumulation. Nred56 caused damage 581 

earlier and for a lower cumulative dose than Nox56, but for long-term protection of N 582 

sensitive bryophytes both N forms should be controlled.  583 

Lichens take up and use both N forms equally efficiently (Crittenden, 1989; 1998). Visible 584 

damage was most conspicuous in C. portentosa with Nred56, which consistently caused 585 

elevated N concentrations (Hogan et al., 2010) and its’ disappearance from 3 of the 4 Nred56 586 

plots. Such damage fits the classic phytotoxicity chain response: reduced growth, NH4
+ 587 

accumulation and ensuing cellular injury e.g. leaky membranes (Krupa, 2003). However, Nox 588 

was also toxic (Hauck, 2010). NO3
- has to be converted to NO2

- then NH4
+, both potentially 589 

toxic ions, in order to be assimilated (Glime, 2007). If there is insufficient energy, C 590 

skeletons or enzyme activity available, these ions can be toxic (Hauck, 2010). Bleaching 591 

commensurate with usnic acid breakdown and loss of protection from light damage (Munzi et 592 

al., 2009) was recorded in both Nred and Nox plots, together with lower Fv/Fm values 593 

indicating reduced photosystem II activity (Sheppard et al., 2004b).  In addition, prior to 594 

bleaching, algal colonization was observed, reducing light to the phycobiont impairing C 595 

assimilation (James, 1973; Hauck, 2010). 596 

S. capillifolium prefers acid bogs (Brown & Bates, 1990), where NH4
+ dominate pore water 597 

(Hemond, 1983) and is used more effectively than NO3
- for growth, because of the energy 598 
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needed to move excess NO3
- into the vacuole to avoid toxicity (Touffet, 1971). Both N forms 599 

providing N24 or N56 decreased S. capillifolium cover, and were associated with significant 600 

increases in amino acids in 2006 (de Lange I. unpub), indicating excess NH4
+ (Ohlson et al., 601 

1995; Nordin et al., 2000). Twenhoven (1992) also reports low NH4
+ concentrations 602 

stimulating S. fallax growth, whereas NO3
- decreased the abundance of both S. fallax and S 603 

magellanicum. Nox56 may also have compromised the acid base balance, increasing S. 604 

capillifolium capitulum pH by 0.5 units (4.57 control, 5.04 Nox56, 4.51 Nred56) (Kivimaki, 605 

2011; Manninen et al., 2011). Not all negative effects of Nox on S. capillifolium were direct, 606 

stimulation of H. jutlandicum cover (+50%) meant that some S. capillifolium was overgrown 607 

and shaded by H. jutlandicum. For this peatland community the increase in plant pH 608 

associated with Nox appears to be quite deleterious and its impacts continue. In 2011 the 609 

negative effect of Nox on S. capillifolium was almost significant (p=0.096) corresponding to 610 

a medium size effect (-0.4 compared with -0.62 for Nred).   611 

N form and CLN setting 612 

Overall Nred was more damaging to nitrophobic non-vascular plants than Nox. But this study 613 

shows that Nox can also damage such plants. However, increasing N deposition, as NH4
+ or 614 

NO3
-, to the canopy of this acid peatland vegetation caused few significant changes in species 615 

cover, after 9 years, over and above the evolving changes in control plots. In the NH4
+ 616 

sensitive species, P. schreberi, the annual 56 kg Nred ha-1 significantly decreased cover 617 

before the equivalent Nox input. In S. capillifolium and Cladonia NH4
+ also decreased cover 618 

faster than NO3
-, but not significantly. Calluna preferred Nred and H. jutlandicum Nox but 619 

other species were insensitive to N form. Thus the main components of this single ecosystem 620 

differed in their responses to N form, but CLN’s are applied at the ecosystem level, making it 621 

difficult to apply form based CLN’s.  622 
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Knowledge of potential eutrophication responses of species growing at a given site to either 623 

Nox or Nred could indicate an additional risk from N deposition reflecting the dominant N 624 

form. N form could be used as a moderator for establishing which end of the CLN range is 625 

appropriate for a site. It would be prudent to set the CLN at the low end of the published 626 

range of N deposition when site contains sensitive non-vascular plants, the input is 627 

predominantly in the damaging form, or where ecosystems contain vascular plants with 628 

nitrophilic characteristics and Nox dominates deposition. 629 

A further aspect of the N form CL debate to be considered concerns the interaction between 630 

N form and soil chemistry. Post deposition these N forms are interchangeable, both in the 631 

plant and in the soil through enzyme mediated conversions that depend heavily on pH 632 

(Stevens et al., 2011). The significance of these transformations will depend on the 633 

ecosystem and the ratio of reduced to oxidised N in precipitation but require further 634 

evaluation (Stevens et al., 2011).  635 

Other drivers influence species cover  636 

Species cover in the control plots did not remain static. Species responses in control plots 637 

indicate other factors e.g. the environment or just the age dynamics and competitive balance, 638 

homeostasis, within the community are actively shaping vegetation cover at Whim, which has 639 

not been managed for at least 60 years. To what extent these factors have exacerbated or 640 

suppressed treatment responses is not clear. 641 

 In 2009, the cover of most species irrespective of treatment dipped, coinciding with 25% 642 

higher rainfall the preceding year. The higher rainfall may have reduced CO2 diffusion, and 643 

PAR was ca. 15 % lower than in other years. By 2011 cover had recovered. In 2003, Whim 644 

bog, like most in Europe (Gerdol et al., 2008), experienced an exceptional, prolonged 645 

drought, which caused short-lived adverse effects in S. capillifolium (Carfrae et al., 2007), 646 

reversed by the following wet autumn / winter, and undetectable in 2004 cover. P. schreberi 647 
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too appears to prefer damp conditions judging from 2004 cover values, post 2003 drought, 648 

which were lower than expected, but recovered as rainfall increased through the course of the 649 

study. Climatic driven changes appear to be more transient, than those associated with N 650 

deposition. 651 

Conservation Implications: indicator species  652 

P. schreberi and C. portentosa appear to be strongly nitrophobic and unlikely to be present, 653 

or of very limited occurrence, at sites where ambient inputs exceed 24 kg N ha-1y-1. Thus 654 

their absence from environmentally suitable sites could indicate high N deposition levels. In 655 

peatlands however, water table height also determines species presence and absence 656 

(Lindsay, 2010) so such environmental factors must also be accommodated within N 657 

deposition indicators. Non responding species, tolerant of or indifferent to N deposition and 658 

its effects without long-term or significant cover changes were also identified. Some ericoids 659 

fell into this category e.g. E. tetralix, V. oxycoccus and E. nigrum. None of the species in the 660 

wet deposition plots, from either the graminoids or ericoids can be described as true 661 

nitrophiles. However, we saw (Sheppard et al., 2011) that once competition from Calluna 662 

was removed E. vaginatum displayed its nitrophilic characteristics (Redbo-Torstensson, 663 

1994; Wiedermann et al., 2007). Many grasses, even though they have low Ellenberg values, 664 

behave as nitrophiles and up regulate their growth capability in eutrophicated environments at 665 

the expense of small forbs with similar Ellenberg values e.g. Molinia caerulea (van den Berg 666 

unpub.). M. caerulea readily capitalizes on increased NH4
+ e.g. the Netherlands during the 667 

1990s, where it replaced E. tetralix, transforming wet Ericion tetralicis heathland into 668 

grassland (Bobbink et al., 1998; Aerts & Bobbink, 1999). However, though present nearby, it 669 

has not moved into plots at Whim. Although graminoids exist naturally as low N index 670 

plants, a significant cover of such species should be seen as cause for concern given their 671 

capacity to respond to N eutrophication.  672 
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 957 

Figure headings 958 

Fig.1 Path diagram illustrating possible causal/correlative relationships between experimental 959 

treatments, soil chemistry and species abundance at Whim Bog.  960 

Fig. 2 Difference in mean cover, +/- standard error, from mean plot quadrats pretreatment 961 

cover (2002), after 2y (2004), 5y (2007), 7y (2009), 9y (2011) of Calluna,  Erica tetralix, 962 

Eriophorum vaginatum, Sphagnum capillifolium, Hypnum jutlandicum, Pleurozium schreberi 963 

and Cladonia portentosa in response to wet deposited oxidised N, nitrate (NaNO3) or 964 

reduced N, ammonium (NH4Cl) at 8, 24 or 56 kg N ha-1y-1 or wet only (control) = Nox8, 965 

Nox24, Nox56 or Nred8, Nred24 or Nred56 respectively. 966 

Fig. 3 Percent cover of functional groups: ericoids, graminoids, moss excluding Sphagnum, 967 

Sphagnum species and sensitive species: S. capillifolium and C. portentosa in response to N 968 

dose 8, 24 or 56 kg N ha-1y-1 or wet only (control) and form : oxidised N, nitrate (NaNO3) or 969 

reduced N, ammonium (NH4Cl) in whole plots assessed in September 2011. Dose was 970 

significant for ericoids, moss and C. portentosa, p=0.042, 0.014 and 0.008 respectively; form 971 

was significant only for moss p=0.009. 972 

Fig. 4 HOF model response curves for the major species present in experimental plots. Plant 973 

cover change over time was fitted to wet deposited oxidised N, nitrate (NaNO3) or reduced 974 

N, ammonium (NH4Cl) at 8, 24 or 56 kg N ha-1y-1 = nox8, nox24, nox56 or nred8, nred24 or 975 

nred56 respectively or wet only = con. On the x axis the time gradient 1 to 5 refer to 976 

assessments in 2002, 2005, 2007, 2009 and 2011 respectively. The y axis, response, 0.2 is 977 

equivalent to 20 % cover etc. The colour of the fitted response refers to the different model 978 

fits outlined in the text. Cv = Calluna, Et =  Erica tetralix, Ev = Eriophorum vaginatum, Scap 979 

= Sphagnum capillifolium, Hj = Hypnum jutlandicum and Ps =  Pleurozium schreberi. 980 
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Fig. 5 Difference in cover from the start (2002) for the most common species growing on 981 

Whim bog receiving oxidised N (Nox) or reduced N (Nred) plotted against each other. The 982 

closer points are to the 1:1 solid line the more similar the response to reduced and oxidised N.  983 

Fig. 6 Relationship between the cumulative N load and the relative cover change from the 984 

start in 2002, for Pleurozium schreberi (Ps black squares) and Sphagnum capillifolium (Sc 985 

grey triangles), the species showing only negative responses to N deposition as Nox (solid 986 

symbols) and Nred (open symbols). Nred and Nox both caused large reductions in S. 987 

capillifolium (grey lines) cover but the effect of Nox was worse than Nred at low loads < 280 988 

kg N whereas at higher loads Nred caused larger reductions, however the  but for P. schreberi 989 

(black lines) the effects of Nred were consistently (p < 0.05) worse than those of Nox. 990 

Fig. 7 Percent N in current years’ growth of lower plants, Hj = Hypnum jutlandicum, Sc = 991 

Sphagnum capillifolium, Cp = Cladonia portentosa and Ps = Pleurozium schreberi receiving 992 

N, as either Nox or Nred. %N values sitting above the one to one line indicate higher 993 

concentrations occur when the N is applied as Nred. 994 

Fig. 8 Path diagram showing statistically significant relationships between Nox and Nred 995 

treatments, soil chemistry averaged over 2009-2011 and final species cover measured in 996 

2011. Numbers on the vertices are regression coefficients based on analysis of centred and 997 

standardised data and can be interpreted as effect sizes. 998 

Fig. 9 Path diagram showing statistically significant relationships between Nox and Nred 999 

treatments, soil chemistry averaged over 2009-2011 and cover change between 2002 and 1000 

2011 measured as the linear slope of cover versus year of recording. Numbers on the vertices 1001 

are regression coefficients based on analysis of centred and standardised data and can be 1002 

interpreted as effect sizes. 1003 
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Fig. S1 Percent cover responses of key species in permanent quadrats since 2002 1004 

(pretreatment) up to 2011, growing on Whim bog and treated with wet deposited nitrate 1005 

(NaNO3) or ammonium (NH4Cl) at 8, 24 or 56 kg N ha-1y-1or wet only (control) = Nox8, 1006 

Nox24, Nox56 or Nred8, Nred24 or Nred56 respectively. (Cv gr = Calluna green shoots; Cv 1007 

dea = Calluna dead brown shoots; Calluna lit = Calluna litter; En = Empetrum nigrum; Vo = 1008 

Vaccinium oxycoccus; Et = Erica tetralix; Vm = V. myrtillus; Sc = Sphagnum capillifolium; 1009 

Hj = Hypnum jutlandicum; Ps = Pleurozium schreberi; Ev = Eriophorum vaginatum; Cp = 1010 

Cladonia portentosa). Linear or polynomial (unimodal) trendlines describe the response. 1011 
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