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Abstract 

 

‘Sustainable development’ implies that a stable relationship between human 

activities and the natural world is possible such that the prospects of future 

generations do not diminish. Can this really be achieved in our urban centres where 

social and economic issues are often the driving force behind development and 

communal at the expense of comprehensive environmental issues? Geoscience 

information has traditionally been under-utilised in planning and development, 

because all too often its relevance and significance is misunderstood or 

underappreciated. However, this is starting to change. Using case studies from 

London and the Thames Gateway Development Zone, this paper discusses how 

technological developments, such as improvements in GIS technologies and 3D 

modelling software, are driving this turnaround. The paper also considers the impact 

of organisations not sharing ground investigation geodata and knowledge about 

anomalous ground conditions across London, the huge benefits that data sharing 

can offer and how lessons learned in this study can be applied to other urban 

centres. The paper will  show that within the environmental ecosystem, if one 

component part is misunderstood, then developing sustainably without 

compromising future needs will be difficult, if not impossible, to achieve. In London, 
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difficult ground conditions cost developers time and money through project overruns 

and expensive engineering solutions. A more sustainable solution is in improving our 

understanding of the relationship between the geology (lithology) and its properties 

(physical, chemical or hydrological characteristics). We will show that for the urban 

underground to be fully utilised throughout Europe, the lack of development policies 

for the subsurface needs to be addressed. For a subsurface development policy to 

be written, stakeholders will need to regard the urban underground as 

environmentally sensitive, just as it does for the surface.  
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1. Introduction  

The European continent is the most urbanised continent with over 75% of its 

population living in urban centres, which occupy just 10% of the total land area 

(UNEP 2006). Urbanisation and its effects are therefore of significant importance to 

the continued social and economic development of the European Union. London is 

one of the most densely populated cities in Europe, with only Copenhagen, Brussels 

and Paris having higher densities (UNEP 2006). The London Plan (2008) predicts 

that the total population of London (currently at 8.2 million) will rise by 900,000 by the 

year 2016 (greater than the current population of Leeds). Furthermore, current 

projections for the years after 2016 show that London’s population will continue to 

grow. A basic requirement for a city's continued growth is the availability of land, raw 

material and groundwater. Stanner and Bourdeau (1995) estimated that 2% of 

agricultural land is lost every 10 years due to urbanisation in Europe. This is not just 

due to development but also to land isolation, inefficient re-use of brownfield sites 

and contamination. Urban soils are themselves critical, in that not only do they 

provide green space but they also enhance air circulation, balance humidity levels 

and provide sinks for CO2 etc. Therefore, how do cities like London grow without 

expanding into the existing green belt or encroaching on internal green spaces?  

The unprecedented demand for urban space in London due to population 

growth and a trend towards smaller households puts pressure on housing, transport 

systems and land prices. This has not gone unnoticed: in the Urban Task Force, 

2005 report ‘Towards a Strong Urban Renaissance’, the group examined ways in 

which towns and cities can be revitalised and regenerated. Two key 

recommendations were given: firstly, better land utilisation, including underground 
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space, and secondly the development of systems to encourage the regeneration of 

‘brownfield’ sites. To the east of London is a 40-mile stretch of land along the River 

Thames. This region is an area of contrast, on the one hand containing areas with 

international and national conservation designations such as the Thames and 

Medway Marshes but on the other containing the largest collection of brownfield 

sites in Western Europe. This is a result of the closure of the area’s main industries 

(such as docks, gas works and power plants). With the loss of the region’s main 

employers, the area has also suffered from a high level of unemployment and 

deprivation (NAO 2007). There are approximately 212 major brownfield sites 

amounting to 4,597 hectares of brownfield land (ODPM and Roger Tym and 

Partners, 2002). If all this unused land were used to build houses, there would be 

enough space for 200,000 homes at a moderate density of less than 50 homes per 

hectare, thereby providing London with a solution to its current housing crisis and 

giving the region a chance to rejuvenate itself. "If we are to meet this housing need 

responsibly and sustainably, and provide for continued prosperity, we must seize the 

opportunity offered by this huge area of brownfield land and bring it back into 

productive use ”(ODPM 2005).  

The recognition of the region to the east of London as an area of substantial 

growth potential in the UK was documented in 1995. Its own sub-regional planning 

guidance (RPG9a) was published, and the Thames Gateway Development Zone 

was established. Shortly afterwards, the Department of the Environment, Transport 

and the Regions published a good-practice guide on the role of environmental 

geology in urban regeneration (Thompson et al. 1998). The report suggested ways in 

which economic and environmental initiatives might be complementary. The Thames 

Gateway offered a unique opportunity for the Government to put these ideals into 
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practice. More information on these ideas and the vision behind the sustainable 

community plan for the Thames Gateway is set out in two reports; ‘Creating 

Sustainable Communities: Making it happen: Thames Gateway and the Growth 

Areas’ (ODPM 2003) and ‘Creating Sustainable Communities: Greening the 

Gateway’ (ODPM and DEFRA 2004). These reports paved the way for a raft of 

regeneration programmes and enterprises, including the Single Regeneration 

Budget, which sprung up in support of the Government’s regeneration initiative. 

When better utilisation of urban space is being considered in projects like the 

Thames Gateway, one direction that is often overlooked is that of the underground 

space. Within the Thames Gateway Development Zone, several major subsurface 

infrastructure projects have been and are being undertaken, such as the Jubilee Line 

extension, the Channel Tunnel Rail link and the Thames Tideway project. 

Underground development is considered to be high risk; however, it comes with 

massive advantages (Godard 2004) such as: efficient use of space, thereby relieving 

congested urban areas and preserving urban green spaces; the removal of 

unattractive buildings from the horizon; removing the need for external cladding, 

thereby reducing the material used and costs, and finally using the ground's natural 

ability to insulate and absorb heat and noise. However, as with many other urban 

centres in Europe, London suffers from an historic, uncoordinated proliferation of 

underground developments, which are unlike surface developments, where buildings 

can be demolished, thereby restoring the ground over time back to its original state. 

The underground is a finite resource, whereby every new development puts 

constraints on future developments. Therefore, although the urban underground 

provides a significant resource, the space it provides needs to be managed and 

controlled (Godard 2004). The development of underground space therefore requires 
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a multi-disciplinary approach from urban planners, developers, regulators, architects, 

civil engineers, geotechnical engineers and geologists.  

Within the Thames Gateway Development Zone social and economic needs 

are the main drivers for development. The Government has pledged that by 2016 the 

total number of new houses will rise to 160,000, increasing by almost a quarter the 

number of people living in the region (ODPM 2005). With the speed of development 

taking place, the government facies a major challenges taking into account the 

environmental issues, including geological constraints if sustainable development is 

to be achieved. Can sustainable development be achieved? Within Government, the 

major controlling force behind the development of sustainable communities is the 

Department of Communities and Local Government (CLG). The release in March 

2012 of the National Planning Framework (CLG 2012) sets out the UK Government’s 

planning policy for development within England for the next 3 to 5 years. The 

framework puts sustainable development at the heart of the decision making 

process, setting sustainable criteria for development projects.  

Sustainable development is a widely used term, having many different 

meanings (Hopwood et al. 2005). Put simply it can be defined as a pattern of 

economic development in which resource use balances human needs while 

preserving the environment, such that these needs can be met not only in the 

present, but also for succeeding generations. The concept of sustainable 

development formed from a growing awareness of the global links between 

environmental, socio-economic problems and the future of humanity. The term 

sustainability was used as early as the 1970s (Stivers 1976) but it wasn’t until the 

World Conservation Strategy (IUCN et al. 1980) that sustainable development 

principles started to gain momentum. The Brundtland Commission and report 
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(WCED 1987) recognised that humans depended on the environment, i.e. rather 

than dominating over nature, our lives, activities and society are nested within the 

environment (Giddings et al. 2002). Importantly, the Brundtland report defined 

sustainable development as the ability to meet the needs of the present without 

compromising the ability of future generations to meet their needs (WCED 1987). 

This marked the beginning of a new political and development paradigm, which for 

the first time reconciled the need for economic growth and environmental protection 

(UN 1997). The Brundtland report set out a concept for the integration of policy and 

decision-making in which environmental protection and long–term economic growth 

were not seen as incompatible but complementary. The UK Government’s 

Sustainable Development Strategy ‘Securing the Future’ (2005) sets out to achieve 

just this through five ‘guiding principles’: living within the planet’s environmental 

limits; ensuring a strong, healthy and just society; achieving a sustainable economy; 

promoting good governance, and using sound science responsibly. 

Technological advances being made at the British Geological Survey (BGS), 

including the development of 3D geological modelling are making geoscience 

information more accessible for planners and developers and have enabled the 

British Geological Survey to develop a number of applications to assist with 

sustainable development. In this paper we will demonstrate how technological 

developments, such as improvements in GIS and 3D modelling software, have 

provided new insights into the geology under London. We will discuss the impact of 

organisations not sharing ground investigation geodata and knowledge about 

anomalous ground conditions across London. We will demonstrate that the most 

significant advances in urban geology in London have come about through 
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collaboration and partnerships. Finally we will discuss how the lessons learned from 

this study could be applied to other urban centres.  

2. Anomalous Ground Conditions in London 

The intensity of development in London, coupled with its legacy of contaminated 

ground, demands for drinking water, vulnerability to rising sea levels, storm surge 

and size of population, all drive the need for establishing a geological model upon 

which planners, developers, engineers and insurers can rely (Royse  et al. 2012). 

The infrastructure to support London makes it one of the most intensively 

investigated areas of shallow geology in the UK. However, construction work in 

London continues to reveal the presence of unexpected ground conditions (Royse et 

al. 2012). These anomalies have been discovered commonly on a local site specific 

scale but, due to the pressures of commercial work, are often recorded in 

confidential records with no further work to explain them. Before we consider the 

impact of geology on the development of London in the 21st Century, we should look 

briefly at the geology of the region (for a more detailed description of the geology of 

London, see Royse et al. 2012).  

Formations in London (Table 1) range from Cretaceous (144 to 65 Ma) to 

Quaternary (2 Ma to present day) in age. The Cretaceous Chalk is typically a fine 

grained white limestone. It has a total thickness of between 175 and 200 m and 

generally thins from west to east. Overlying the Chalk is the Palaeogene that 

comprises the Thanet Sand Formation, the Lambeth Group (consisting of the Upnor 

Formation overlain by a complex mix of various facies, attributed to the Reading and 

Woolwich Formations) and the Thames Group, which consists of the Harwich and 

London Clay Formations. Quaternary deposits are encountered throughout the 
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London Basin. These include evidence of ancient river systems and the development 

of the present-day River Thames valley.  

Traditionally, the geology in London has been considered to be ‘relatively simple’ 

(Sumbler 1996). However, from current engineering projects such as the Channel 

Tunnel Rail Link, Thames Water Ring Main (Newman 2009, Skipper  et al. 2009), 

Crossrail (Warren and Mortimore 2003) and the Docklands Light Railway, there is a 

growing body of direct evidence which is challenging traditional concepts on the 

complexity and formation of the London Basin was formed (Royse  et al. 2012). In 

the past, it was thought that the basin was formed during the Pleistocene. Yet work 

by Mortimer and Pomerol (1997) and Mortimer et al. (2011) shows that the Chalk 

was deposited syntectonically over faulted basement blocks and it is these faults that 

controlled both its lithology and thickness. Further evidence has been gathered from 

the alluvial deposits of the River Thames which show multiple structurally controlled 

off-sets and flow patterns (de Freitas 2009). A picture of the London Basin is 

emerging where fault movements occurred throughout the Cretaceous and Tertiary 

periods and have remained active to the present day. It is likely that continued fault 

movement will have divided the basin into sections. It is also probable that each 

section will have moved by different amounts both vertically and horizontally. It would 

follow that no rock unit in London can therefore be relied upon to have lateral or 

vertical continuity. The sudden change in conditions, in particular groundwater 

conditions, which faults can create has significant cost implications, particularly for 

sub-surface developments in London.  

Of all the rock units in London, it is the intense variability of the Lambeth 

Group that gives rise to some of the most complex and challenging ground 

conditions for civil engineering works in London (Page and Skipper 2000). A better 
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understanding of these deposits is critical for many current and future civil 

engineering projects, e.g. the Jubilee Line Extension (Bailey et al. 1999), the 

Channel Tunnel Rail Link (Dyke and Glover 2007) and the development of the 

Crossrail network (Heath 2001). The Lambeth Group are tidal flat deposits and, 

reflecting this depositional environment, contain numerous sand channels. These 

granular sand bodies can produce irregular groundwater flows when encountered 

particularly in tunnels and deep excavations, leading to instability at the tunnel face. 

The most famous case is the construction of the Thames Tunnel designed by Brunel, 

from Rotherhithe to Wapping and competed in 1843 (Hight et al. 2004). The initial 

ground investigation showed a significant thickness of clay, but borings ahead of the 

face demonstrated that the clay was not continuous. There were numerous collapse 

events during the construction phase. The most serious was caused the collapse of 

the overlying Upper Mottled Beds and inundation by river water, resulting in six 

fatalities. Issues with the ground works caused delays and resulted in the tunnel 

taking almost 20 years to complete. 

Much of the Channel Tunnel Rail Link was, and the new Thames Tideway 

Tunnel will, however, be constructed in the Chalk. Although the Chalk itself provides 

a reasonable tunnelling medium, it is the flint bands (which occur in nodular and 

tabular forms) found within the Chalk that form considerable obstructions to ground 

investigations and cause excessive wear to tunnelling equipment. Avoiding these 

layers has substantial advantage in terms of both time and cost overruns (Mortimore 

et al. 2011). Tabular sheet flints can also significantly affect groundwater flows and 

frustrate de-watering if not accounted for (Lord et al. 2002). However, they are very 

difficult to recover during ground investigations and can often only be inferred from a 

zone of core loss.  
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The thickness of river terrace deposits varies considerably within London (Berry 

1979). Some of the largest 'anomalies' have been described as 'Drift Hollows' and 

are associated with an unexpected change in ground conditions, where deep hollows 

that can be up to 500 m wide and more than 60 m in depth are in-filled with disturbed 

superficial deposits and highly weathered bedrock (Ellison  et al. 2004). Engineering 

works have encountered a numbers of these features during foundation excavations 

and in tunnelling projects, for example for the Victoria Line (Berry 1979) and the 

Blackwall Tunnel (Ellison et al. 2004). Hutchinson (1980) has suggested that many of 

these features could have originated as pingos, developed as a result of peri-glacial 

processes. 

Why does such an intensively investigated area still have so many geological 

complexities that are so poorly understood? This is predominantly down to two 

issues: firstly, the fact that the bedrock is buried beneath Quaternary deposits and/or 

the built environment (Royse 2010), and secondly due to a lack of co-ordination and 

data-sharing between the engineering and geological communities (de Freitas and 

Royse 2009). Our ability to predict the impact of the ground on any development 

depends on the conceptual understanding of the subsurface and the effectiveness of 

the of ground investigations, which is ultimately controlled by the geology (Clayton et 

al. 1995). Issues with the interpretation of ground investigations for London can be 

put into three categories: incomplete data, generated by either the sampling regime 

or from drilling losses; erroneous data and finally, by using an oversimplified 

geological framework model. All of these contribute to the biggest risk for 

development projects in London, that of insufficient, inadequate andv incorrectly 

interpreted and modelled data.  
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3. The Solution  

When decisions are made as to the specifications and cost of development 

projects, organisations involved in the design and planning need easy access to a 

myriad of geoenvironmental information (Royse et al. 2009). Data generated by 

several large engineering projects, for example the 2012 Olympics, Jubilee line, 

Crossrail and the Channel Tunnel Rail Link have shown the value in having high 

quality, consistently logged and interpreted boreholes, along with associated 

sampling and testing that is all stored in a standard electronic data format. The 

format used in the UK is called AGS; it provides a medium for the fast electronic 

transfer of geotechnical and geoenvironmental data into a variety of industry 

standard software packages (AGS 2012). The AGS data format is an industry 

standard that has been around since the early 1990s. Unfortunately however, the 

adoption of AGS format is not yet universal. Where adopted, the AGS data format 

has enabled improved communication of geoenvironmental information between 

projects in the commercial sector, as well as allowing data to be transferred directly 

into the British Geological Survey national geotechnical and borehole databases 

(AGS 2012).  

The availability of digital data is a major step forward. However, it is of little use if 

there is no consistency in the descriptions of geological units. Due to the problematic 

nature of the geology of London as described in the section above, the geo-

engineering and geotechnical industry needed a standardised approach to 

lithological and stratigraphical logging within London and the Thames gateway 

(Skipper 2008). Once this was achieved, geoscience professionals were able to start 

to compare geological information between sites and it was at this point that it 

became clear that the conceptual geological model needed to be modified to fit field 



13 
 

observations (de Freitas 2009). The following sections outline the work carried out at 

the British Geological Survey. Each section describes how, by using digital data in 

geospatial modelling packages, it is possible to generate models that link geological 

history to accurate models of ground conditions and hence allow engineers to make 

more reliable predictions of engineering conditions (Royse et al. 2012). 

 

3.1 Detailed property modelling of the Thames Gateway model  

The Thames Gateway (TG) 3D model covers an area of 1800 km2 and has been 

built using GSI3D from over 4,000 boreholes at roughly 2 boreholes per Km2 and 

more than 200 north-south and east-west trending cross-sections (Royse et al. 

2009). The model (Figure 2) was constructed using a generalised vertical section of 

the lithostratigraphy, which, when combined with the generated cross-sections and a 

Digital Terrain model DTM, created a fence diagram of the geology (Royse et al. 

2009). To gain full value from the 3D geological model in the urban environment, bulk 

attribution of the model with engineering, geological and hydrological data was 

undertaken. The 3D model is attributed by assigning property values for each 

geological unit modelled (be that Group, Formation, Member or Bed). Bulk attribution 

provides a simple way of visualising the property characteristics of each geological 

unit modelled and their spatial relationships. The TG model was attributed with 

several datasets, which included engineering, geological classification, groundwater 

productivity and maximum and minimum permeability (Royse et al. 2009). The 

attributed model provided a platform for the integration and visualisation of data from 

diverse sub-disciplines. Considerable insights can be gained from bulk attribution, 

such as thickness of the unsaturated zone, the presence of perched water tables or 

the depth to good foundations. By incorporating a wide variety of hydrogeological 
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information into the 3D geological model, it is possible to improve understanding and 

knowledge of groundwater systems thereby developing a better conceptual 

hydrogeological model for part of the TG (Royse et al. 2009). Further work is under 

way to model the full heterogeneity displayed within real geological systems by using 

voxel-attribution.  

 

3.2 Fault modelling in the London Basin 

As part of a major reassessment of how groundwater will be managed in 

London has been substantially, the groundwater model for London had to be 

updated. For this to be undertaken, a 3D model of the Chalk under London was 

required. The geological modelling had two key objectives: firstly, to ascertain the 

distribution of the six Chalk formations found within the London Basin and secondly, 

to elucidate the structure of the Chalk. One of the major difficulties with determining 

the structure of the Chalk is that the Chalk in London is largely unexposed and 

where it is exposed, it is either covered by superficial deposits (drift) or obscured 

from view due to urban development. Therefore, the project had to rely to a large 

extent on the geologist’s interpretation of the subsurface data and geological 

observations made from the mid 1800s up to the present day. Although few faults are 

indicated on the current published geological maps, there is a growing body of data, 

particularly from recent deeper engineering projects such as the Channel Tunnel Rail 

Link (CTRL) (Harris et al. 1996) that suggests that faults are far more numerous. 

These data are further supported by the mounting evidence that tectonic and sea-

level movement occurred in phases throughout the upper Cretaceous (Evans and 

Hopson 2000, Evans et al. 2003, Mortimore and Pomerol 1987, 1991, Mortimore et 

al. 1998). A methodology was developed that enabled the geologist to apply 
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intuitively his geological knowledge to the 3D model. Therefore, the work-flow 

mirrored the methods used when drafting cross-sections across areas with sparsely 

distributed control data (Royse 2010). It was then possible to pick out areas of 

probable faulting and to achieve a geologically reasonable solution, even in areas 

where the data are sparse or uncertain (Kaufmann and Martin 2008, Lemon and 

Jones 2003). Once areas of faulting were picked out, the faults were then 

generalised into a coherent fault network and, using numerical techniques in 

GOCAD, the grids were smoothed and the model cut by the fault network generated 

(Royse 2010). The resultant model is more consistent with current geological 

observations and, as a consequence, is a closer representation of geological reality 

(Figure 3). For example, the model predicts that the Greenwich fault continues into 

north–east London and that there is faulting to the south of the River Lea. Ground 

investigations, including rotary cored boreholes, carried out as part of the Thames 

Tideway tunnelling project (Newman 2009) have shown that these predictions can be 

substantiated. Further evidence for validation of the modelling methodology has 

come from chalk-cored boreholes from the Thames Water’s Lee Tunnel and Thames 

Water’s Ring Main extension, where site investigations recently reported by 

Mortimore et al. (2011) suggest the presence of a major north–south offset which has 

again been predicted by this model. Current work under way on the production of a 

new hydrogeological model for London has found that, in using the new fault model, 

the resulting groundwater level pattern fits better with groundwater level observations 

made by the Environment Agency (EA 2012)  

The Chalk model has led to a significant reduction in risk for the Environment 

Agency (EA). For example, in the London area, the EA grants licences for 

groundwater abstraction and a critical element of this is to ensure that the resource 
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availability is managed effectively (DTZ  2011). The geological model and the 

associated hydrological modelling provided greater reliability in the measurement of 

water availability. As the EA decisions are risk- based, technical knowledge facilitates 

by up-to-date 3D modelling allows, supporting more informed decision-making. The 

economics of getting the decision making right is clearly evident, as an example, the 

commercial value of having an abstraction licence is between £1 million and £1.5 

million per year for each Ml/d (million litres per day) on its licence. At the moment, 

about 270 Ml/d groundwater abstraction is licensed in London. Therefore, if an extra 

10% were to be granted because of better technical knowledge, this would generate 

27 Ml/d, representing between £27 and £40 million extra income being generated in 

abstraction licensing for commercial business (DTZ 2011). 

 

3.3 3D modelling of the Lambeth Group 

As described above, the Lambeth Group is a complex sedimentary assemblage 

(Knox 1996, Ellison et al. 2004). Although relatively thin (10 to 20 m in total 

thickness), it consists of three formations, divided into distinctive, named lithofacies 

(Ellison 1983; Ellison et al. 1994, 2004). The mainly shallow marine Upnor Formation 

is overlain by the terrestrial Reading Formation which passes into the intertidal 

Woolwich Formation. The Lambeth Group is most complex under central London 

(table 1), where it occurs at shallow depth. Therefore, a clearer understanding of 

these deposits has been crucial in recent major civil engineering projects, particularly 

those involving tunnelling, such as the Jubilee Line Extension (Bailey 1999); the 

Channel Tunnel Rail Link (Dyke and Glover 2007) and the development of the 

CrossRail network (Heath 2001). Over 1,400 digital site investigation borehole logs 

were used to review and modify the lithofacies maps of the Lambeth group (Ellison 
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et al. 1994). These modified maps were then compared with newly modelled 

structures within the London area, as shown by 3D modelling of the Chalk under 

London (Royse 2010, Mortimore et al. 2011).  

In central London, the base Palaeogene forms a structural high, subdividing the 

basin into two halves (Royse 2010, Figure 4). It was found that the Reading 

Formation occurs over the London culmination and to the west. Conversely, the 

Woolwich Formation is found over the London culmination and appears not to be 

present to either side, whereas the Upnor Formation, which consists of green 

glauconitic sands, is found predominantly in the east of the basin. This indicates that 

there was structural control on Lambeth Group deposition, whereby the structural 

high in central London has acted as a barrier, creating different environmental 

conditions in the eastern and western parts of the London Basin. Following on from 

this work, a full 3D model is being developed of the Lambeth Group under central 

London.  

 

3.4 Superficial Hollows and Rockhead anomalies hazard susceptibility model  

Engineering works carried out beneath London have unearthed a number of 

features which exhibit curious characteristics (Hutchinson 1991). These features, 

which can be up to 500 m wide and more than 60 m in depth (Ellison  et al. 2004), 

extend deep into the Chalk bedrock and are in-filled with disturbed superficial 

deposits and highly weathered bedrock (Hutchinson 1991). Failure to identify these 

features can prove costly due to the associated presence of variable ground 

conditions and the potential to act as pathways for contaminant flow. In order to 

provide planners in London with a broad awareness of the potential location of these 

features a hazard susceptibility map was produced by the British Geological Survey 
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(Banks et al. Submitted, Figure 5). A rule-based approach was adopted and four 

criteria were considered: proximity to the river network (within 300m of an existing or 

former river); areas of probable artesian groundwater conditions during the 

Devensian; below the Kempton Park river terrace deposit, and where clay rich 

bedrock units are less than 35 m thick (Banks et al. submitted). These criteria were 

identified on an assessment of information gained from the literature on the probable 

geological processes responsible for the formation of these features. Using ARC  

GIS, it was possible to develop 3 zones: Zone A, where all 4 criteria were met; Zone 

B, where 3 criteria were met and finally Zone C, where just 2 criteria were met. It was 

found that 81% of all known Superficial Hollows and Rockhead anomalies were 

found within Zones A and B (zone A having 52% and zone B containing 29%).  

 

3.5 Decision support tool for contaminant transport in the Lower Lea valley  

Another aspect of sustainable development is the prioritisation and 

remediation of contaminated land. The Initial Screening Tool (IST) was developed by 

the British Geological Survey to enable planners to assess the potential risk to 

ground and surface water due to remobilisation of contaminants by new 

developments, particularly in urban and peri-urban environments (Marchant et al. 

2011). The IST is a custom-built GIS application that improves upon previous 

screening tools (Marchant et al. 2011) through the inclusion of 3D geological data 

and an enhanced scoring methodology tool. This is able to identify, track, map and 

score the potential risk from a source of contamination, along multiple possible 

pathways to potentially susceptible receptors. Furthermore, the IST is able to 

scrutinise the connectivity by generating cone-shaped zones of influence, rather than 

the more traditional method of using circular buffers, thereby attributing features 
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within the direction of flow (Marchant et al. 2012, Figure 6). To provide connectivity 

between pathways and receptors, every surface water feature and aquifer is 

allocated a flow direction, so that potential contaminant migration is modelled only in 

the direction of flow. 3D geological and hydrogeological models have been 

developed for the whole of the Thames Gateway Development Zone (Royse et al. 

2009). It was therefore possible to extract surfaces from given depths and 

incorporate them into the IST to allow for a more detailed analysis of the underlying 

geology. For example, the 3D model is used to identify low permeability interfaces; 

the IST is then able to consider successive formations with depth. A key requirement 

for the IST application was to make the tool simple to use and suitable for scenario 

planning. As a result, all rules and evaluation factors are held in Microsoft Access 

tables, making them straightforward to view and to edit. This gives the user the 

opportunity to investigate the effects of adding, removing or altering rules on the 

eventual outcome.  

 

4. Lessons learned for future Urban Geoscience projects  

  It is clear that geology needs to be considered if sustainable development is 

to be achieved. Failure to understand the implications and the impact of geology on 

any development project will have a significant effect, not only on the initial cost of 

construction but also on the long term maintenance of the structure. Furthermore, 

better geotechnical knowledge assist environmental decision-makers, such as the 

EA, to make more informed decisions. It can be shown that just by improving the 

geological understanding within the groundwater model for London significant 

benefits can be gained (DTZ 2010). In London, past failure to share ground 
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investigation geodata and knowledge about anomalous ground conditions limited the 

evolution of geological models and therefore the model failed to reduce the risk to 

engineering projects of unforeseen ground conditions, with a resultant increase in 

project costs.  

The now-routine electronic capture of ground investigation data and the 

development of standardised data transfer formats such as AGS enable the fast and 

efficient transfer of geo-environmental information. This has given stakeholders in 

London several advantages: firstly, it has provided a way of sharing data that 

eliminates data transfer errors and secondly, it has encouraged better 

communication and collaboration between partners. When this capability has been 

combined with the cost of recreating geo-databases for every major engineering 

project undertaken (Hack 2009, Bonsor et al. 2012), stakeholders within London 

have had the impetus they need to start to share geodata. The value in having 

geoscientific information, therefore, is not in the possession of it, but in its 

amalgamation and interpretation.  

In conjunction with this development has been the improvement in education 

and training of the borehole logging community. Much of the detailed lithological 

research presented in this paper could not have been undertaken if it was not for the 

high quality and consistency of borehole logging carried out in London (Skipper 

2008). A key learning point has been that all borehole loggers (no matter who they 

work for) need to understand the geology that they are recording and the 

significance of what they are describing. To achieve this in London, a training 

programme has been developed which is becoming a requirement for loggers 

working on London geology. This has led to a huge improvement in borehole logging, 
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which, most importantly, has then led to a better understanding of the ground and its 

behaviour.  

Without these improvements to the geological model of London, unrealistic 

ground models and unreliable predictions (Wycisk et al. 2009) would have continued 

to prevail. The geological model serves as a base model from which all further 

models such as hydrological and geotechnical models are developed. If our 

conceptual understanding of the geological model is flawed, it follows that all 

modelling based upon it will also be flawed. It is only when all geo-information is 

collected together that a realistic model can be generated. Data, even when 

collected and presented, as in 3D models, still has to be interpreted, and it is clear 

that London lacked momentum in providing a sound basis for the interpretation of its 

geological data; hence, the anomalies and unexpected situations. To improve 

engineering and hydrogeological decision-making in London, the conceptual model 

needed to be updated, but this couldn’t be achieved until a pathway was developed 

for academics and industry to communicate with one another.  

There has in the past been a disconnection between academics and industry 

(Conway and Waage 2010) and part of the work undertaken by the British Geological 

Survey within London has been to break down those barriers. To develop and 

improve upon the geological model in London and to move forward to produce geo-

datasets tailored to stakeholders needs (such as the superficial hollow and rockhead 

anomalies susceptibility layer), partnerships with national and local stakeholders 

have to be developed. Historically, where research has been funded by national 

funding agencies, it has been the academics who have dominated the research 

agenda, with industrial partners being given minor roles, often on project boards. For 

these new partnerships to work there is a need to develop a much more equitable 
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way of working, with genuine collaboration. To enable this forums and networks need 

to be supported and invested in. In London, the London Basin Forum supported by 

the Geological Society of London fulfils this role (de Freitas and Royse 2010). The 

Forum consists of a mixture of university academics, industry, the Environment 

Agency and the British Geological Survey; it is here, through yearly meetings and 

collaborative research projects, where the transfer of knowledge is taking place. 

In this paper we have shown that, through advances in the ability of 

Geographical Information Systems (GIS) and 3D modelling packages which can 

handle large datasets on a regular desktop PC, it has been possible to change the 

way that geo-environmental information is viewed, manipulated and interpreted. This 

has enabled the construction of the ‘next generation’ of geological models for London 

to start to take place. These models will provide a platform for integrating and 

visualising data from many different sub-disciplines, so allowing a model to portray 

some of the natural heterogeneity of geological systems. As with all models, the 

users must understand the limitations of the data on which they base their decisions 

(such as incomplete data coverage, data density, and erroneous data). This is 

becoming more critical as technological improvements are allowing geoscientists to 

introduce a far greater level of realism into their models.  

Demands for space in the urban environment have resulted in some cities 

spiralling upwards, forming massive skyscrapers. Conversely, the urban 

underground's potential is yet to be fully realised in many cities. There are of cause 

exceptions to this, of which the best example is Montréal  which has probably one of 

the largest underground cities in the world (Mulder et al. 2013).The potential space 

the urban underground could provide for burying car parks, transport networks and 

shopping centres etc. cannot be overlooked (Godard 2002). The possibility therefore 
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exits of a future that would favour compact urban centres, resulting in more 

greenfields at the surface, an improvement in traffic conditions and a reduction in air 

pollution, resulting in a better quality of life. However, space is not the only resource 

that the underground provides us with; for example, cooling and heating systems, 

mineral and water resources. The sustainable utilisation of the urban underground is 

consequently a major challenge for the future.  

Utilisation of the urban underground will necessitate ‘multiple-use’ planning, 

whereby the geological and environmental consequences are coupled with economic 

and social impacts. While rules exist for planning and resource management for 

surface developments, these rules are almost entirely absent for the subsurface 

(Huggenberger and Epting 2011). Mulder et al (2012) highlights this issue further 

stating that currently no county on earth has a legislative policy or management 

scheme in place in which the whole of the subsurface is integrated. This means that 

the interactions between different uses of the underground are at best inefficient and 

at worst could lead to sterilisation of the subsurface for future uses and increased 

subsidence and contamination risks. With subsurface development growing rapidly 

in some cities e.g. Qian and Chen (2007) expect  the Beijing underground to triple in 

size by 2020 resulting in 20-30% of the total floor space within the central urban 

district to be underground, there will be a necessity for suitable planning frameworks 

to be developed. One way of achieving a more integrated planning assessment of 

the subsurface could be by utilising strategic environmental assessment tools 

(Bobylev 2004). This is further supported by Galipeau and Besner, (2003) who found 

that in Montréal successful development of the underground space had been 

achieved due to the integrated approach taken by developers and the positive 

interactions between the private and public sector.   



24 
 

A major stumbling block to the multiple-use of the underground is the lack of 

an urban underground development policy for London. Without this policy, the urban 

underground will continue to be developed inefficiently, leading to significant 

constraints on its use in the future.  The benefits of such policies can be seen in 

Helsinki where since 1984 all underground plans and activities by the city authorities 

and private companies has been coordinated allowing for a Underground Space 

Allocation Plan to be designed by the city planning department and  7 million m3 of 

underground space to be developed (ITA 2000, Chow 2002). An urban underground 

development policy should assess, at a minimum, four resource types: space, 

energy, water and mineral. A key reason for poor progress of such a plan has been 

the failure of all stakeholders to regard the underground environment as a critical 

aspect of policy development within our cities; instead, it is viewed as something that 

is only needed when there is a crisis. One solution could be to use ‘environmental 

mainstreaming’ (Conway and Waage 2010).  Environmental mainstreaming 

encompasses the process by which environmental issues are brought to the 

attention of policy makers on a local and national level. This includes the 

involvement of a wide range of stakeholders during the policy-making process. 

Finally, environmental measures are developed and placed within the policy 

document itself. 

 

5. Conclusions  

Can sustainable development be achieved if geology is ignored?  

Sustainable development can only be achieved if an appreciation of the close 

links between the environment and society are understood (Hopwood et al. 2005). 
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These links are many and varied. In this paper we have shown that even within the 

environmental ecosystem, if one component part is misunderstood or 

misrepresented, then developing sustainably without compromising future needs will 

be difficult, if not impossible, to achieve.  

In London, difficult ground conditions cost developer’s time and money 

through project overruns and expensive engineering solutions. A more sustainable 

solution is in improving our understanding of the relationship between the geology 

(lithology) and its properties (physical, chemical or hydrological characteristics). It 

has been shown that unless the geological model is continually improved upon, it will 

produce unrepresentative ground models and unreliable predictions. Although 

London is one of the most intensively investigated areas of ground in the UK, 

construction work continues to expose unexpected ground conditions. In the past, a 

lack of co-ordination and data-sharing between the commercial sector and the wider 

geological community had meant that the conceptual geological model had not been 

updated. With the engagement of stakeholders through forums and networks, 

equitable partnerships have now been set up and the next generation of geological 

models and decision support tools are now being developed.  

It can be shown, that although advances in 3D modelling and GIS 

technologies have improved the way that geodata can be manipulated and 

displayed, these technological advancements alone have not provided the whole 

solution and should not be viewed as a ‘silver bullet’. Communication and 

collaboration between stakeholders within the urban environment is equally 

important, if not more so. It is only when true engagement between all partners is 

gained that sustainable development can be delivered.  
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Finally, for the urban underground to be fully utilised throughout Europe, the 

lack of development policies for the subsurface needs to be addressed. For a 

subsurface development policy to be developed, stakeholders will need to regard the 

urban underground as environmentally sensitive, just as it does for the surface. The 

subsurface provides a unique but finite resource where, unlike developments on the 

surface that can be demolished and rebuilt, every new development puts constraints 

on future developments. Therefore, not only does the development of the urban 

underground need to be managed but it also requires a multi-disciplinary approach 

to the planning process. 
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Figures  

 

Figure 1: A: Geological sketch map of project area. Adapted from Sumbler (1996) B: 

location map indicating where some of the most recent major infrastructure development 

projects are taking place in London 

 

Figure 2: An illustrative example of a 3D geological model produced for the Thames 

Gateway Development Zone, covering an area from the Thames Estuary to the Lower Lee 

Valley (Olympic park 2012 site). Diagram is displayed at 10 times vertical exaggeration. Key 

to colours used for lithological units are as follows:  peat (brown), alluvium (yellow), river 

terrace deposits (orange) and anthropogenic deposits (grey). Bedrock is composed of 

Palaeogene deposits (orange, blue and pink) underlain by Chalk (green) (adapted from 

Royse et al. 2012). 

 

Figure 3: 3D model of Chalk Group under London (adapted from Royse 2010). Diagram is 

displayed at 10 times vertical exaggeration. Each layer represents a subdivision of the Chalk 
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Group, seaford and Newhaven chalk Formations undivided (light green)arre underlain by the 

Lewes Nodular Chalk Formation (mid green), New pit Chalk Formation (dark green), 

Holywell Chalk Formation (Orange), Zig Zag Chalk Formation (blue)  and finally at the base 

West Melbury Chalk Formation (yellow). Contains Ordnance Survey data © Crown Copyright 

& Database rights 2012. Licence No. 100021290   

 

Figure 4: A: distribution of the Lower Shelly Clay of the Lambeth Group (blue); overlain on 

monochrome shaded relief map of the base of the Palaeogene (adapted from Ford et al., 

2010). Inset is a structure contour plot (red high, blue low) of the base of the Palaeogene 

showing the major fault groups as defined by Royse (2010) and the location of a structural 

high located over central London  

 

Figure 5: Zoned Superficial Hollows and Rockhead anomalies hazard susceptibility map 

(adapted from Banks et al., submitted). Contains Ordnance Survey data © Crown Copyright 

& Database rights 2012. Licence No. 100021290 

 

Figure 6: Modelling Pollutant Linkages using the Initial Screening tool (IST). The diagram 

shows how individual pollutant linkages are established by defining a source zone of 

influence around the source site.  The GIS is then interrogated to establish whether the zone 

of influence intersects either surface water or an aquifer and then whether a susceptible 

receptor is within the zone of influence. In this diagram a pollutant source (a factory) has a 

zone of influence (red) calculated by the GIS system (yellow arrows show direction of fluid 

movement). This zone of influence intersects with a river which provides a pathway between 

the factory and a groundwater aquifer (outlined in light blue). A zone of influence (Red) is 

again generated by the GIS system which establishes that a receptor, (a water well) is 

susceptible to pollution (adapted from Marchant et al. 2011) 
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Table  

 

Table 1: Summary of  the geological strata of  the London Basin adapted  from Ellison et al 

(2004), Skipper (1999) with Chalk Group thickness updated from Royse et al. (2010) 


