
Introduction
Watters et al. (2013) describe a spatially resolved 

stochastic simulation model representing one prey 
and target species, its natural predators and a fishing 
fleet. Its authors developed this model to provide 
advice to CCAMLR on the spatial allocation of the 
Antarctic krill catch limit for the Scotia Sea and 
southern Drake Passage (Statistical Subareas 48.1 
to 48.3). As such, they configured the model to 
represent the krill stock, its predators and fishery 
within the small-scale management units (SSMUs) 
proposed by Hewitt et al. (2004) (Figure 1). During 
its development, this model was variously referred 
to as KPFM, KPFM2 and Foosa in Watters et al. 
(2005; 2006; 2008a), Hill et al. (2007a, 2007b) and 
Plagányi (2007). This paper follows Watters et al. 
(2013) and Hill (2013) and refers to it simply as 
‘the model’.

The model incorporates only ecosystem com-
ponents and interactions considered directly 
important to the focal species and therefore 

resembles a minimum realistic model (Plagányi, 
2007). Nonetheless, in its simplest form it requires 
50 distinct inputs (18 point values, 29 vectors 
and 3 matrices). In the 15 SSMU–four predator 
configuration developed by Watters et al. (2013), 
it required 2 311 separate inputs for each of four 
alternative scenarios (Table 1). The word scenario 
here means a mathematical representation of a 
hypothesis about ecosystem dynamics consisting 
of a model and its inputs (sensu Rademeyer et al., 
2007). This reference set of alternative scenarios 
brackets key uncertainties about ecosystem opera-
tion that were identified by CCAMLR scientific 
working groups (SC-CAMLR, 2005, 2006, 2007a). 
These uncertainties concern the movement of 
krill between areas and the sensitivity of predator 
reproduction to variations in krill abundance. The 
alternative scenarios were an essential part of the 
evaluation of competing methods for spatially allo-
cating the catch, known as catch allocation options 
(Hewitt et al., 2004; Hill et al., 2007a; Plagányi and 
Butterworth, 2012). 
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Abstract

There is a global need to develop strategic frameworks for assessing uncertainty in 
ecosystem dynamics models. Such models have been used within CCAMLR to evaluate 
options for managing the Antarctic krill fishery in the Scotia Sea and southern Drake 
Passage. The model analysed here required 2 311 input values for each of four scenarios and 
produced 68 output statistics. Small perturbations to input values affected output statistics 
indicating the status of predator groups more than they affected statistics indicating the 
status of the target stock or the fishery. Output statistics were most sensitive to a parameter 
controlling predator recruitment through pre-recruit mortality. A parameter mediating the 
effect of a forcing function on krill recruitment, which was used to condition the model 
on past dynamics, was also important, and some of the parameter estimates resulting from 
conditioning were unstable. This highlights the tension between the parameter stability 
benefits of well-constrained models and the use of model conditioning to identify plausible 
alternative hypotheses in data-poor situations. Apparent sensitivity is a function of both 
input values and output statistics. Clearer specification of ecosystem-based management 
objectives would help to identify the important statistics for consideration when assessing 
uncertainty in ecosystem dynamics models.
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Watters et al. (2008a; 2009; 2013) considered 
four types of output statistic which correspond 
to the goals of ecosystem-based management as 
defined by McLeod and Leslie (2009): ecosystem 
productivity, health, resilience and services. These 
objectives are also consistent with CCAMLR’s con-
servation principles and commitment to rational use 
(Table 2) (Grant et al., 2013). The output statistics 
were illustrative as there was no information avail-
able to the modellers about appropriate reference 
points or levels of aggregation (i.e. the combination 
of the modelled area- and taxon-specific abundance 
trajectories that the reference points apply to). In 
total, Watters et al. (2013) generated 68 statistics, 
including one each for krill (productivity) and 
fishery performance (services) and two (health 
and resilience) for each of 33 SSMU- and taxon-
specific predator groups.

Plagányi (2007) commented that accounting for 
key uncertainties, within a strategic and practical 
framework, has lagged unsatisfactorily behind 
other aspects of ecosystem model development for 
marine living resource management. Link et al. 
(2012) noted that this lack of attention to uncer-
tainty means that ecosystem dynamics models 
lack the credibility of single species models, but 
identified CCAMLR’s use of ecosystem dynamics 

models, as described in Hill et al. (2007a, 2007b), 
as an example of good practice for addressing sev-
eral types of uncertainty. The effort of CCAMLR’s 
scientific working groups to evaluate alternative 
model structures (SC-CAMLR, 2005, 2006, 2007a, 
2007b, 2008) was an important part of this good 
practice. However, conventional model evaluation 
also includes analysis of the model’s sensitivity to 
uncertainties in inputs. Such analysis identifies the 
relative contribution of uncertainty in each input 
to variability in model outputs, and provides an 
objective basis for targeting data collection and 
modelling effort to reduce uncertainty. 

The current contribution describes a local 
sensitivity analysis to assess the effect of changes 
to model inputs on the output statistics used by 
Watters et al. (2008a; 2009; 2013). A local sensitiv-
ity analysis varies one input at a time, maintaining 
all others at their representative values, and is dis-
tinct from a global analysis which varies all inputs 
simultaneously but independently (Cariboni et al., 
2007). The contribution also assesses the output 
response to values across the feasible ranges of 
selected inputs, including the key uncertainties rep-
resented in the four alternative scenarios. It assesses 
these responses across the rather complex analysis 
process that includes initialisation, conditioning, 

Table 1: Summary of the types of model input specified by Watters et al. (2013) to generate each
of their four reference models. The components column specifies the number of separate
model components (prey, fishery and four predator taxa) that the input is specified for. 

Category Type Parameters Length1 Components Seasons Total 

Arguments2 Point values 11    11 
General Point values 7    7 
SSMU Vectors 2 18   36 
Predators – general Vectors 4 15 4  240 
Predators – seasonal Vectors 10 15 4 2 1200 
Krill – general Vectors 2 18 1  36 
Krill – seasonal Vectors 4 18 1 2 144 
Catch Vectors 1 15 1 2 30 
Threshold density Vector 1 15 1  15 
Available fraction Vector 1 18 1  18 
Time series1 Vectors 4 38 1 2 304 
Foraging Matrices 1 18 4 2 144 
Movement Matrices 1 18 1 2 36 
Competition Matrix 1 18 5  90 
1 Vector or matrix length is the number of relevant modelled areas, except for time series where it 

is the number of relevant modelled years (although the model can also resolve seasons shorter 
than a year)

2 There are, in fact, 29 arguments for the main function. Eleven of these are numerical arguments 
that affect model structure and parameterisation. The remaining arguments identify input objects 
and control outputs, and the number of Monte Carlo trials.  
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multiple simulations and data processing. As it was 
necessary to repeat the initialisation stage many 
times, this contribution includes a revised initiali-
sation that allows automation. The objectives are: 
(i) to inform users of the model and the advice that 
it provides about the sensitivity of this advice to 
input parameters and the stages of the analysis pro-
cess, including the choice of output statistics; (ii) to 
objectively evaluate the key uncertainties identified 
in SC-CAMLR (2006, 2007a) and; (iii) to help 
identify the requirements of a strategic framework 
for assessing uncertainty in ecosystem dynamics 
models.

methods
Previous use of the model to  
provide management advice

The appendices that accompany Watters et al. 
(2013) describe the model in detail (see also Watters 
et al., 2005; 2006; 2008a). The model is available 
for download as an [R] package with accompany-
ing documentation from http://swfsc.noaa.gov/
aerd-kpfm. The current analysis also made exten-
sive use of [R] (R Development Core Team, 2012). 

Figure 1 summarises the spatial, temporal and 
trophic structure, and data inputs and outputs in the 
current implementation of the model, which largely 
reproduces that of Watters et al. (2013).

Following guidance from CCAMLR’s scien-
tific working groups (SC-CAMLR, 2005, 2006, 
2007a, 2007b, 2008), Watters et al. (2008a, 2008b, 
2009, 2013) applied the following risk assessment 
approach to advise on krill catch allocation options: 

(a) Define plausible values for the model inputs 
based on a review of the literature and expert 
knowledge (Hill et al., 2007b). 

(b) Identify a small number of key uncertainties 
and define plausible extreme values for the rel-
evant inputs (SC-CAMLR, 2006, 2007a).

(c) Develop a set of alternative parameterisations, 
each containing all of the inputs required to 
implement a scenario. There were four param-
eterisations, combining two sets of alternative 
values for movement parameters (significant 
krill movement between SSMUs versus no 
krill movement) and two sets of alterna-
tive value for predator resilience parameters 

Table 2: Model output statistics, with the relevant text and article numbers from the Convention on the 
Conservation of Antarctic Marine Living Resources in brackets. Each statistic indicates the probability
of a specific undesirable outcome. The predators group comprises four component taxa: fish, penguins,
seals and whales. 

Statistic Definition Components Spatial resolution 

Productivity 
(II.3(a) prevention of decrease in 
the size of any harvested 
population to levels below those 
which ensure its stable 
recruitment) 

Probability that krill abundance 
falls below 20% of median 
abundance at beginning of fishing 
period. 

Krill Whole model 

Health
(II.3(b) maintenance of the 
ecological relationships between 
harvested, dependent and related 
populations) 

Probability that the abundance of 
the relevant component is <75% of 
the abundance in equivalent 
no-fishing trials at the end of the 
fishing period. 

Predators SSMU 

Resilience 
(II.3(c) prevention of changes or 
minimisation of the risk of 
changes in the marine ecosystem 
which are not potentially 
reversible over two or three 
decades) 

Probability that the abundance of 
the relevant component is <75% of 
the abundance in equivalent 
no-fishing trials at the end of the 
recovery period. 

Predators SSMU 

Services
(II.2 the term ‘conservation’ 
includes rational use) 

Average proportion of allowable 
catch that is not caught. 

Fishery Whole model 
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(reproductive success is proportional to for-
aging success versus reproductive success is 
relatively insensitive to foraging success) 
(SC-CAMLR, 2007a; Hill et al., 2007a, 2007b; 
Watters et al., 2008b). 

(d) Identify plausible dynamics for the modelled 
taxa (except fish, for which there was insuffi-
cient information) for the period 1970 to 2006 
based on data and expert opinion (SC-CAMLR, 
2007a, 2008; Hill et al., 2008).

(e) Initialise the models for 1970 by setting organ-
ism abundances consistent with the plausible 
dynamics and adjusting krill recruitment 
parameters and boundary area krill abundance 
so that, in each SSMU, krill gains through 
recruitment and import balance losses through 
predation and export over a year (Watters et al., 
2008b). Krill dynamics are not explicitly rep-
resented in the boundary areas which notion-
ally exist outside the SSMUs. Nonetheless 
boundary area krill abundance can be specified 
to serve as a source of krill imported into 
SSMUs.

(f) Adjust the values of selected taxon-specific 
parameters defining predator recruitment 
dynamics (Sp for seals, J for penguins and Rp 
for all species except fish: Table 3) to optimise 
the fit to past ecosystem dynamics, and produce 
a reference set of alternative scenarios. This 
process is known as conditioning (Rademeyer 
et al., 2007). The four input parameterisations 
led to four alternative scenarios (Watters et al., 
2008b).

(g) Perform multiple stochastic simulations of 
40 years nominally beginning in 2007 and par-
titioned into 20 years of fishing, using a can-
didate catch allocation option and a specified 
allowable catch, followed by 20 years without 
fishing (SC-CAMLR, 2007a; Watters et al., 
2008a).

(h) Extract output statistics to compare the can-
didate catch allocation options (SC-CAMLR, 
2008; Watters et al., 2008a). 

Modifications to the initialisation process  
and input data

The current analysis used largely the same inputs 
as Watters et al. (2013) (steps (c) and (d) of the risk 
assessment approach) and replicated steps (e) to (h) 

to generate output statistics, but there were two key 
differences. Firstly, the analysis used a single basic 
parameterisation, with representative average val-
ues, which required some adjustments to the input 
data in step (c). Secondly, an algorithmic approach 
replaced the ad-hoc balancing of initial krill losses 
and gains in step (e).

The ‘movement linear’ scenario, one of the 
four reference scenarios produced by Watters et al. 
(2013), was the basis for the step (a) input values 
in the current analysis. This analysis introduced a 
new scalar, µ: a multiplier with range (0,1) of the 
‘movement linear’ movement matrices (Tables 3 
and 4 in Hill et al., 2007b), which describes the 
maximum plausible movement of krill between 
model areas. The representative average value for 
µ was 0.5. φ is a shape parameter determining the 
proportion of adults that breed for a given level 
of prey consumption. The representative average 
value of φ was 0.685, midway between the values 
0.37 and 1 explored by Watters et al. (2013). 

The algorithmic approach to balancing krill 
losses and gains allows automation of risk assess-
ment steps (e) to (h) but requires additional 
constraints. It also allows the introduction of 
another new scalar, d: a multiplier of the year-
specific krill abundances in the boundary areas 
chosen by Watters et al. (2013: their Table B15) 
which was assigned a representative average value 
of 1 and used to explore the sensitivity of output 
statistics to the assumptions about krill abundance. 
The parameter symbols in the description of the 
approach are the same as those used in Watters et 
al. (2013). Subscript i refers to the spatial units of 
the model, SSMUs (i = 1 to 15) and boundary areas 
(i = 16 to 18). Subscript t applies to state variables 
and refers to time-steps. In Watters et al. (2013), 
time-steps were implemented as seasons within 
years. The current description uses the notation 
1970(1) refers to the combination of year (1970) 
and season (1 = summer), and the notation 1970 
indicates the sum of values across the two seasons 
in a year. Subscript s denotes season (1 = summer, 
2 = winter) and applies to parameters, some of 
which had different values in each of the two 
seasons (Table 1).

The following assumptions apply:

(i) For each SSMU, the adult abundance that pro-
duces half of maximum recruitment, βi,s, had 
an arbitrarily low value of 1 000. This produces 
a relatively flat stock-recruit relationship with 
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recruitment, Ri,t, approximately equal to the 
user-defined maximum, αi,s, when stock abun-
dance Ki,t >> βi,s.

(ii) The seasonally resolved parameter αi,s was 

0 for season 2. Consequently, all modelled 

recruitment directly depends on its value in 

season 1, αi,1.

(iii) The krill stock in each SSMU was in steady 

state in 1970:

,1971(1) ,1970(1)i iK K=   (1)

(iv) Initial krill abundances in the boundary areas 
(K16,1970(1) to K18,1970(1)) were the values used 
by Watters et al. (2013). 

(v) Krill recruitment in SSMUs 13–15 was 0.

(vi) Krill density in each SSMU in 1970 was twice 
that in 2000:

,2000(1)2
,1970(1) ,2000(1)2= = iB

i i wK K  (2)

 where Bi,2000(1) is an empirically derived esti-
mate of krill biomass in SSMU i in summer 
2000 and w is the mean mass of an individual 
krill.

Table 3: Parameters included in the sensitivity analysis. The table gives the notation used for these parameters
in the current study, and the more complex corresponding notation used in the appendices of Watters
et al. (2013). The predators group comprises four component taxa: fish, penguins, seals and whales. 

Notation 
here 

Notation in 
Watters et al. 

(2013) 

Description Component Range1 

φ φk,i,s  Shape parameter determining the proportion of 
adults that breed for a given level of prey 
consumption.2 

Predators3 0.37 to 2.7 

Rp Rpeakk,i,s
 Maximum recruitment when all adults breed. Predators3,4  

Sp Speakk,i,s 
 Adult abundance that produces maximum 

recruitment. 
Predators3,4  

J Jphi Shape parameter determining the relationship 
between pre-recruit foraging success and pre-
recruit mortality. 

Predators3,4 0 to 1.07 

M , ,k i sM   Instantaneous rate of natural mortality Predators3  
θ ,i s  Scalar that mediates environmental effects on krill 

recruitment. 
Krill  

β βi,s Adult abundance that produces half of maximum 
recruitment. 

Krill  

α αi,s Maximum recruitment. Krill  
w iw  Average mass of an individual krill. Krill  
d  Multiplier of the krill abundances in the three 

boundary areas chosen by Watters et al. (2013). 
Krill  

µ  Multiplier with range (0,1) of the movement 
array. Changes to this parameter allow 
exploration of degrees of movement between the 
two extremes of no-movement and maximum 
movement examined by Watters et al. (2013).2 

Krill (via 
environment) 

0 to 1 

κ κk,i,s Krill density at which predators achieve half of 
maximum potential per-capita consumption. 

Predators  

*
, ,k i sQ  Maximum per-capita potential consumption. Predators  

1 Range is specified only for the parameters analysed in Figures 6 to 8. 
2 The parameter specifies one of the key uncertainties identified by WG-EMM. 
3 The parameter was also perturbed at the taxon scale. 
4 The parameter was adjusted (for selected taxa) during conditioning. 
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Watters et al. (2013) also made assumptions (i) 
to (v). Assumption (vi) is consistent with, but more 
specific than, that of Watters et al. (2013), who 
assumed that overall krill density in 1970 was dou-
ble that in 2000. Assumption (iii) allows analytical 
estimation of αi,1 as follows:

The delay difference equation describing krill 
dynamics in the model can be written as 

, 1 , , , 1 , ,i t i t i t i t j t ji tj i
K K S R K T+ + ¹

= + +å  (3)

where Ri,t+1 is the recruitment of krill; 

( ), , ,expi t i t i j sj i
S Z v ®¹

= - -å  (4)

is the proportion of the krill stock in SSMU i at the 
beginning of time-step t that remains in i at the end 
of the time-step; and 

( )( )

,
,

, ,

, ,1 exp

j i s
ji t

j t j h sh

j t j h sh

v
T

Z v

Z v

®

®

®

=
+

- - -

å
å   (5)

is the number of krill that arrive in i from area j i¹  
during time-step t. ,j i sv ®  is the instantaneous rate 
of movement from area i to area j and h j¹  is the 
set of all areas except j. 

, , , ,0 2i t i t i t i tZ M M F= + +   (6)

is the total instantaneous mortality rate consisting 
of predation mortality, M2i,t, fishing mortality Fi,t 
and natural non-predation mortality, M2i,t.

Following Watters et al. (2013) both M0i,t and 
Fi,t were 0 in 1970, therefore 

,1970
,1970 ,1970

,1970
2 ln 1 i

i i
i

Q
Z M

K

æ ö÷ç ÷ç= =- - ÷ç ÷ç ÷÷çè ø

å
  (7)

where ,1970iQå  is total krill consumption by 
predators in SSMU i (Q is summed across multiple 
predator taxa). 

Equation (3) can be rewritten as

, 1 , , ,1 , ,1i t i t i t i j t ji tj
K K S K Tα+ ¹

= + +å   (8)

using assumptions (i) and (ii) ( , ,1i t iR α» ) and 
solved for αi,1 using assumption (iii):

( ),1 , , , ,1
1i i t i t j t ji tj

S K K Tα
¹

= - -å .  (9)

Local sensitivity analysis

A local sensitivity analysis varies one input 
value at a time to assess its effect on model output 
statistics. In the model, there are many more inputs 
than parameters as the latter can apply to different 
taxa, areas and time-steps, taking a different value 
for each (Table 1). It was beyond the scope of the 
current analysis to vary every taxon- and SMMU-
specific input separately, so some were varied 
simultaneously (see ‘Controlling complexity and 
inputs considered’).

The sensitivity of an output statistic, p, to a sin-
gle input, a, is its rate of change, p

a
¶
¶

, when other 
inputs are held constant. Sensitivity is usually cal-
culated as a linear response to a small perturbation 
in a.

The analysis used the following numerical 
approximation:

( ) ( ) ( )* *
*

1.01 0.99

2

p a p a
p a

-
D =   (10)

where a* is the average value of a. Each output 
statistic (Table 2) is a probability and *( )p aD  is 
therefore an estimate of the linear change in the 
probability, p, of an undesirable outcome as a result 
of a 1% change in a. A positive value of *( )p aD  
indicates that an increase in a leads to an increase 
in the probability of an undesirable outcome. It was 
necessary to use a small perturbation (as opposed 
to, say, 10%) as many of the perturbed inputs con-
trol strongly nonlinear functions.

Each of the values *(1.01 )p a  and *(0.99 )p a  were 
calculated using steps (e) to (h) of the risk assess-
ment approach described above. Perturbations 
were applied to the inputs supplied in step (e). Each 
data point in Figures 2 to 4 summarises the results 
of 1 001 Monte Carlo simulations but, because 
of resource constraints, the further investigations 
summarised in Figures 4 to 7 used 101 Monte Carlo 
simulations per data point (see Watters et al., 2013, 
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Appendix C for implications). Table 3 lists the 
parameters considered in the sensitivity analysis, 
which includes the new scalars, µ and d. The rep-
resentative average values for each parameter were 
taken from Watters et al. (2013, their Tables B4 
to B18) except, as described above, for µ, φ and d.

Further analysis

Further analyses considered the output 
responses across the plausible range of input values 
for selected inputs. The scalar µ was given input 
values in the range 0 to 1 where 0 is equivalent to 
the no-movement parameterisations and 1 is equiv-
alent to the maximum movement parameterisations 
of Watters et al. (2008a, 2008b, 2009, 2013). Input 
values for the shape parameter φ were in the range 
0.37 to 2.70, which includes the linear (φ = 1) and 
hyperstable (φ = 0.37) relationships evaluated by 
Watters et al. (2013) as well as the hyperdepleting 
(φ = 2.70) relationship identified in SC-CAMLR 
(2006) (Figure 7). The analysis used the same input 
value of φ simultaneously for all relevant SSMU 
and taxon combinations. Values for the shape 
parameter J are specified in step (c) for most taxa, 
but are estimated for penguins in step (d). The 
analysis considered the effects of J for seals in the 
range 0 to 1.07. 

Controlling complexity and  
inputs considered

Watters et al. (2013) used 2 006 input values per 
scenario (this total does not include time series) and 
assessed four catch allocation options at a range of 
allowable catches, producing results in terms of 
68 output statistics. This implies 545 632 combi-
nations of output statistic, p, and perturbed input, 
a, each of which gives a vector of responses at 
different allowable catches. The current analysis 
included the following simplifications to make it 
tractable: 

(i) The analysis considered two allowable catch 
levels: 11% and 100% of the modelled pre-
cautionary catch limit. The former represents 
CCAMLR’s operational krill catch limit, 
or trigger level, which is 11% of the cur-
rent precautionary catch limit (Conservation 
Measure 51-01: CCAMLR, 2011).

(ii) The analysis considered three of the catch 
allocation options, namely ‘Catch’, where the 

allocation was proportional to the total reported 
catch in each SSMU between the 2002/03 
and the 2006/07 fishing seasons; ‘Demand’, 
where the allocation was proportional to the 
consumption requirements of predators, calcu-
lated within the model; and ‘Stock’ where the 
allocation was proportional to the biomass of 
krill, calculated within the model. 

(iii) Each taxon-specific health or resilience output 
statistic is the arithmetic mean of the ≤15 rel-
evant taxon-and-SSMU-specific statistics. 

(iv) All SSMU-specific values for a given param-
eter were perturbed simultaneously.

(v) All taxon-specific values for a given predator 
parameter were initially perturbed simulta-
neously. Further analysis considered taxon-
specific perturbation of five of the seven 
predator parameters, but used only the higher 
allowable catch and the ‘Demand’ catch allo-
cation option.

results
Comparison of initialisation methods 

Table 4 compares SSMU-specific estimates 
of αi,1, the maximum krill recruitment, from the 
current study with those of Watters et al. (2013). 
Watters et al. (2013) estimated higher values for 
coastal SSMUs in Subareas 48.1 and 48.2 with the 
movement case than with the no-movement case, 
indicating that modelled movement causes a net 
loss of krill from these SSMUs. In oceanic SSMUs 
in these subareas, movement causes a net gain of 
krill. In the current study, values for the movement 
case were higher for oceanic SSMUs than were 
those of Watters et al. (2013), whereas the rest were 
lower. This more uniform set of values is due to the 
simultaneous balancing of krill losses and gains in 
all SSMUs. The differences for Subarea 48.3 are 
due to the contrasting assumptions of zero recruit-
ment in the current study and finite recruitment in 
that of Watters et al. (2013).

In the no-movement case, krill recruitment sim-
ply balances losses due to predation mortality. The 
differences between values from the current study 
and Watters et al. (2013) were mainly smaller than 
for the movement case. However, the two initialisa-
tion approaches are clearly not equivalent.
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Sensitivity analysis 1:  
Simultaneous perturbation

This section describes results from perturbation, 
simultaneously across taxa and SSMUs, of inputs 
for parameters with SSMU-specific values (e.g. w) 
or SSMU-and-taxon specific values (e.g. J). There 
were differences between output statistics in the 
magnitude and direction of the maximum response 
and the input parameters that were most influen-
tial. These characteristics also varied between 
catch allocation options and allowable catches. The 
productivity statistic was insensitive to all pertur-
bations. The services statistic was the only output 
that was sensitive to all relevant perturbations. It 
was most sensitive to the parameter Q̂, although the 
magnitude of the response was never greater than 
0.0029 (meaning that a 1% perturbation to the input 
changed the estimated risk by 0.29%), and was not 
consistent across allowable catches or catch allo-
cation options (Figure 2). The strongest responses 
by taxon in the health statistic ranged from 0.0005 
for whales to –0.1642 for penguins, and the strong-
est responses in the resilience statistic ranged from 
0.0041 for fish to –0.1570 for penguins (Figures 3 
and 4). 

There was no change in the output statistic in 
41% (297) of 720 perturbation-response combi-
nations (Table 5). The perturbation produced a 

negative response (i.e. reduced the probability of 
an undesirable outcome) in 235 of the sensitive 
combinations and a positive response (increased 
the probability) in 288. The response was greater 
than the perturbation in 14% (103) of the combina-
tions.

The health and resilience responses for whales 
were insensitive to most (66 and 50 of 72 respec-
tively) perturbations while the responses for fish, 
penguins and seals were sensitive to over half of 
the perturbations (Figures 3 and 4). The health 
response for penguins and seals and the resilience 
response for penguins and whales included changes 
>0.01 in the estimated probability of an undesirable 
outcome. The health and resilience responses for 
penguins included changes >0.1.

Penguin responses were frequently sensitive 
to the parameter θ. The relationship was complex 
with both positive and negative responses depend-
ing on the combination of allowable catch, catch 
allocation option and response statistic. The full set 
of parameters that produced a response >0.05 in 
penguins (in descending order of response) were: 
J, θ, M, κ, φ, Rp, μ and Sp. The set of parameters that 
produced a response >0.05 in seals (in descending 
order of response) were: μ, κ, w, φ, Rp, J, M and Sp. 
There were no responses >0.05 for other taxa.

Table 4: Comparison of SSMU-specific values for the krill recruitment parameter αi,1 (units: 1013 krill) estimated in
the current study and Watters et al. (2013). 

SSMU Subarea Movement  No-movement  Average movement 
(Watters et al., 

2013) 
(Current study) (Watters et al., 

2013) 
(Current study) (Current study) 

µ = 1 µ = 1 µ = 0 µ = 0 µ = 0.5

1 (oceanic) 48.1 0.173 0.450 1.730 0.680 0.422 
2 48.1 2.066 0.549 0.356 0.359 0.471 
3 48.1 1.449 0.285 0.106 0.107 0.233 
4 48.1 0.924 0.337 0.176 0.222 0.306 
5 48.1 1.864 0.448 0.213 0.255 0.384 
6 48.1 1.370 0.482 0.228 0.232 0.372 
7 48.1 1.453 0.584 0.215 0.244 0.480 
8 48.1 2.715 0.964 0.724 0.742 0.864 
9 (oceanic) 48.2 0.000* 0.443 2.391 2.309 0.904 
10 48.2 3.505 0.893 0.065 0.065 0.759 
11 48.2 2.300 0.514 0.089 0.109 0.446 
12 48.2 3.085 0.842 0.261 0.327 0.699 
13 (oceanic) 48.3 0.001 0.000 3.063 0.000 0.000 
14 48.3 0.006 0.000 0.600 0.000 0.000 
15 48.3 0.003 0.000 0.280 0.000 0.000 

* Value at higher precision: 8.967  108 
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Table 6 illustrates how perturbation of the param-
eter J for penguins affected the post-conditioning 
estimate of that parameter. A 2% difference in ini-
tial values produced up to 182% difference in the 
final estimates (in SSMU 15).

Taxon-specific perturbation

This section describes results from individual 
perturbation, by parameter and taxon, of input val-
ues for parameters with SSMU- and taxon-specific 
values (e.g. J). These results are specifically for the 
‘Demand’ catch allocation option and allowable 
catch at the precautionary catch limit. 

Responses >0.1 occurred in penguin health 
and resilience responses. Changes >0.05 occurred 
in the seal health response, and changes >0.01 
also occurred in the whale resilience responses 
(Figure 5). The main changes in penguin resilience 
and health were negative responses to perturbations 
in J and M for penguins and a positive response 
to perturbations in φ for penguins. Penguins also 
responded (change >0.01) to perturbations in fish 
parameters (Rp, φ and M). Seals and whales only 
responded (change >0.01) to perturbations to their 
own parameters (Rp and φ respectively).

Further analysis 

The results showing the responses to a wider 
range of values for the parameters µ, φ and J (the 
latter specifically for seals) are specifically for the 
‘Demand’ catch allocation option and allowable 
catch at the precautionary catch limit. Figures 6 
to 8 show the responses relative to the maximum 
response for that taxon-specific response statistic, 

so the absence of a relationship with the perturbed 
variable does not necessarily mean that the statistic 
is insensitive, just that sensitivity does not change 
with the level of perturbation.

The constraints on krill recruitment in SSMUs 13 
to 15 in the revised initialisation have implications 
for the case µ = 0 where it is impossible to main-
tain krill populations in these SSMUs without an 
influx of krill from other areas. Figure 6 includes 
results for µ = 0, but this is not a plausible rep-
resentation of the current ecosystem. The produc-
tivity statistic was insensitive to changes in µ. The 
remaining statistics generally suggest a transition 
from high risk with low movement to low risk with 
high movement, as the model increasingly replaces 
explicit losses with imports from boundary areas. 
However, the pattern for penguins is noisy but 
implies increasing risk with increasing movement.

The risks to whales, seals and fish increased 
with increasing values of φ while the risk to the 
fishery (services) declined slightly (Figure 7). 
Watters et al. (2008a, 2009, 2013) explored values 
≤1, whereas the greater risks were for values >1. 
The services statistic was relatively insensitive 
to φ and the response in penguins was apparently 
unstructured. The health and productivity statis-
tics for other predators had monotonic responses 
to φ with a variety of forms from quasi-linear to 
asymptotic. 

Increasing J for seals increased the risk to 
seals, but all of the other statistics were insensitive 
to variations in the values of this taxon-specific 
parameter. 

Table 5: Responses to a 1% perturbation in each of the listed parameters. Each cell indicates the number of
responses in the stated range. The 60 responses for each parameter include all combinations of the
10 output statistics, three catch allocation options and two allowable catch levels. 

Response 
min.  

Response 
max. 

d µ θ β w κ M J φ Rp Sp

–0.18 –0.1 0 0 4 0 0 1 0 5 6 2 0 0 
–0.1 –0.01 0 7 4 0 7 10 8 6 2 6 6 1 
–0.01 –0.001 5 7 5 0 6 2 11 7 3 1 8 7 
–0.001 0 17 10 13 2 9 9 8 5 8 6 5 6 
0 0 29 22 21 54 23 22 21 19 24 19 22 21 
0 0.001 6 4 8 4 7 7 7 9 12 11 4 8 
0.001 0.01 3 9 2 0 7 8 5 7 2 12 10 8 
0.01 0.1 0 1 3 0 1 1 0 2 3 3 5 9 
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discussion
The response to perturbations in inputs var-

ied with output statistic, catch allocation option 
and allowable catch. The most influential inputs 
affected parameters involved in the conditioning 
process and the most sensitive output statistics 
were those measuring the health and resilience of 
penguin and seal populations. The analysis high-
lights the need to explore uncertainties when the 
available data do not provide strong constraints.

Modification of Watters et al.’s (2013) initiali-
sation processes was necessary to facilitate this 
analysis and should be useful in future applications 
of the model. The input parameterisation in the 
current analysis was a single set of representative 
average values and the outputs were aggregated by 
taxa, whereas Watters et al. (2008a, 2008b, 2009, 
2013) and Hill (2013) used four parameterisations 
including extreme values for some parameters, 
and presented their results by taxa and SSMU. 
Consequently, the current results are a general sen-
sitivity analysis for the model, based on the struc-
ture and parameterisation of Watters et al. (2013), 
but not a specific sensitivity analysis of that study. 

The algorithmic approach to balancing krill 
losses and gains required the introduction of addi-
tional constraints to ensure that there were more 

specified data than unknown parameters and thereby 
reduce the risk that the variability in the data would 
cause unstable or unreasonable estimates (Williams 
et al., 2002). The chosen constraints on recruitment 
in SSMUs 13 to 15 (South Georgia and the north 
Scotia Sea) are consistent with the well supported 
hypothesis that the krill population in this area is 
not self-sustaining (e.g. Tarling et al., 2007).

The model was designed to explore a range of 
hypotheses about ecosystem operation. In the catch 
allocation option evaluation process, the alternative 
scenarios were developed by conditioning the model 
on sparse and uncertain data on past ecosystem 
dynamics that provided limited evidence for esti-
mating the free parameters (Watters et al., 2008b; 
Plagányi and Butterworth, 2012). The current study 
demonstrates the relative instability in some of 
the resulting estimates (Table 6), with the conse-
quence that the penguin response to variability in 
some other parameters was apparently unstructured 
(Figures 6 and 7). Watters et al. (2008b) noted that 
the reference set of scenarios encapsulates a diverse 
and detailed range of hypotheses about ecosystem 
processes, and these scenarios were accepted as 
plausible by SC-CAMLR (2008). There is ten-
sion between the ideal of a well constrained model 
which produces stable parameter estimates, and the 
need to explore plausible alternative hypotheses in 
data-poor situations. However, there is an obvious 

Table 6: Example of the interactions between perturbation and
conditioning. Ja, Ja–1% and Ja+1% are the re-estimated
(post-conditioning) values of J (controlling the effect
of prey availability on pre-recruit mortality) for
penguins based on average, average – 1%, and
average + 1% input values for the same parameter. 

SSMU Ja+1% Ja+1%/Ja Ja Ja–1%/Ja Ja–1%

1      
2 3.68 68% 5.43 106% 5.74 
3 19.14 71% 26.82 56% 14.94 
4 11.43 121% 9.46 58% 5.46 
5 4.87 49% 9.90 39% 3.83 
6 2.84 85% 3.33 86% 2.88 
7 5.62 132% 4.25 137% 5.83 
8 3.16 81% 3.92 84% 3.28 
9      
10 6.18 128% 4.83 107% 5.16 
11 2.86 111% 2.58 105% 2.72 
12 2.32 98% 2.37 145% 3.44 
13      
14 20.79 153% 13.59 109% 14.81 
15 7.42 218% 3.40 77% 2.63 
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strategy for resolving this tension, which is to eval-
uate the hypotheses that the model has generated.

Responses that were greater than the perturbation 
were relatively rare (14%) in the sensitivity analysis, 
and the distribution of negative and positive effects 
was near symmetrical. This suggests that despite 
the relative instability of parameters estimated 
during conditioning, the overall process used for 
evaluating catch allocation options was stable. 
Small perturbations to the following parameters 
were influential: the instantaneous natural mortality 
rate for predators (M); the krill density at which 
predators achieve half of maximum consumption 
(κ); the parameter mediating environmental effects 
on krill recruitment, which was used to control 
krill dynamics in the conditioning process (θ); the 
maximum recruitment when all adult predators 
breed (Rp); the shape parameter controlling the 
relationship between predator pre-recruit foraging 
success and pre-recruit mortality (J); and the shape 
parameter controlling the relationship between 
predator consumption and reproductive output (φ). 
Although the latter was one of the key uncertainties 
identified by CCAMLR’s working groups, this 
analysis suggests that output statistics were less 
sensitive to these uncertainties than to those 
affecting predator mortality and feeding success 
and those influencing the conditioning process. 
However, Figures 6 and 7 suggest that greater 
changes in inputs representing these putative key 
uncertainties, on the scale of those considered by 
Watters et al. (2008a, 2008b, 2009, 2013), can 
change the probability of an undesirable outcome 
by over 80%. 

The variability in response between output sta-
tistics is important. The model is one of a growing 
number of ecosystem dynamics models developed 
to provide advice on the management of human 
activities in marine ecosystems (Plagányi, 2007). 
Modellers need to translate complex results into a 
simple form that provides the appropriate informa-
tion to stakeholders and decision makers. Link et al. 
(2012) identified unclear management objectives 
as one of the main uncertainties affecting this inter-
action. In the absence of quantitative objectives for 
krill predators, Watters et al. (2013) used illustra-
tive output statistics. Hill (2013) demonstrated how 
the choice of such statistics can bias the evaluation 
of candidate management measures. More clarity 
about management objectives should provide bet-
ter guidance about appropriate output statistics. 

This, in turn, should allow objective assessment of 
whether sensitivity significantly influences critical 
outputs.

Models that incorporate inter-specific interac-
tions typically have many more parameters than 
the single species models still used to evaluate 
management plans for many of the world’s com-
mercially harvested species. This increase in model 
complexity is necessary to enhance the ability of 
models to capture critical characteristics that are 
relevant to ecosystem operation and to manage-
ment objectives. However, increasing complexity 
also leads to accumulation, and possible multipli-
cation, of uncertainties and increased difficulty in 
interpreting results (e.g. Fulton et al., 2003; Raick 
et al., 2006; Plagányi, 2007; Hill et al., 2007a). A 
strategic and practical framework to account for 
uncertainties should therefore be developed as a 
matter of priority (Plagányi, 2007). The current 
analysis highlights some of the considerations that 
should inform such a process:

Firstly, model outputs result from interactions 
between inputs, model structure, further elements 
of the analysis process such as conditioning, the 
simulated management measure, the simulated 
state variables, and the statistics used to summarise 
them. Ideally, a strategic framework should also 
include global sensitivity analysis, to capture the 
interactions between parameters (Ginot et al., 2006; 
Plagányi, 2007). This suggests that there is a need 
to identify a limited set of model output statistics, 
or underlying state variables, that are useful both 
for assessing model sensitivity and for providing 
management advice. Link et al. (2012) suggested 
that ecosystem models should produce reference 
points used by management. Model outputs for the 
evaluation of catch allocation options for Antarctic 
krill have been available for several years but man-
agement reference points exist only for the target 
stock and not for its predators (Hill, 2013). The 
illustrative reference points in Table 2 provide a 
starting point for the dialogue between modellers, 
managers and other stakeholders that will be neces-
sary to identify management reference points.

Secondly, the outcomes of formal sensitivity 
analysis and expert scrutiny might be different, as 
indicated by their different evaluations of the rela-
tive importance of the parameters describing the 
key uncertainties identified by SC-CAMLR (2006, 
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2007a). Both of these processes have a role to play 
in a strategic framework, but it is essential to coor-
dinate them.

Thirdly, the use of the model to evaluate catch 
allocation options illustrates the tension between 
the ideal of well-constrained models and the real-
ity of ecosystem-based management problems in 
which data are sparse, structure is complex and 
uncertainty is rife (Hill et al., 2007a; Plagányi, 
2007; Link et al., 2012). This sort of model can help 
to identify plausible hypotheses that are consistent 
with the available data. This is important for charac-
terising uncertainty, and it can guide data collection 
to reduce these uncertainties. However, the param-
eter estimates underlying these hypotheses may be 
unstable. A strategic framework must consider the 
implications of under-constrained models.

Finally, CCAMLR’s evaluation of catch alloca-
tion options compared the results from two model 
structures (Plagányi and Butterworth, 2012; Watters 
et al., 2013) using a common suite of output statis-
tics. This comparison was a pragmatic attempt to 
deal with the uncertainty that arises because differ-
ent model structures can give different predictions 
(Hill et al., 2007a). This comparison was a form 
of sensitivity analysis for the effects of model 
structure (and any further assumptions that differ 
between models) on output statistics. A strategic 
framework should consider good practice in such 
multi-model comparisons (Hill et al., 2007a). 

conclusion
CCAMLR currently aims to develop feedback 

management for Antarctic krill, and it has an obli-
gation to consider the effects of all fisheries on 
related and dependent species. This implies an 
increasing need to use ecosystem dynamics models 
to inform decision-making and therefore an expec-
tation that its Members will continue to develop, 
test and evaluate such models. It is in CCAMLR’s 
interests to build on the evaluation work of its 
scientific working groups and develop a strategic 
framework for assessing uncertainty in ecosystem 
dynamics models that includes sensitivity analysis. 
The apparent sensitivity of models varies with the 
chosen output statistic, and the assessment of catch 
allocation options for Antarctic krill illustrates that 
the development of models can progress faster than 
managers are able to identify their requirements. 

There is a need for greater communication between 
modellers, managers and other stakeholders to 
identify appropriate model outputs.
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Figure 2: Wheel plots showing the response of the services output statistic to 1% perturbations to inputs. 
Each sector represents the response to a perturbation affecting the parameter indicated in the key. 
The filled fraction of the sector indicates the magnitude of the response, scaled to a maximum of 
0.0029 (meaning that a 1% perturbation to the input changed the estimated risk by 0.29%) when 
the whole sector is coloured. A white line through a sector indicates a negative response and no 
line indicates a positive response. Plots are arranged in columns by catch allocation option and 
rows by allowable catch.
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Figure 3: The response of the health output statistic to 1% perturbations to inputs 
(see Figure 2 for key and further explanation). Values are scaled to a 
maximum of 0.1642. Plots are arranged in columns by predator taxon 
and rows by allowable catch and catch allocation option. A white line 
through a sector indicates a negative response and no line indicates a 
positive response.
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Figure 4: The response of the resilience output statistic to 1% perturbations 
to inputs (see Figure 2 for key). Values are scaled to a maximum of 
0.1571. A white line through a sector indicates a negative response and 
no line indicates a positive response. 
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Figure 5:  The response of the resilience, health and services output statistics to 1% 
perturbations to inputs affecting predator-specific parameters, for allocation 
option 2 with allowable catch = precautionary catch limit. Values are scaled 
within output statistics to maxima of 0.1316 (health), 0.1291 (resilience) and 
0.0007 (services). A white line through a sector indicates a negative response 
and no line indicates a positive response.
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Sensitivity of statistics in a krill–predator–fishery ecosystem dynamics model

Figure 7:  The response of the resilience, health and services output statistics to changes in inputs affecting the parameter 
φ, controlling the shape of the relationship between prey consumption and the proportion of adults that breed. All 
values are risk relative to the maximum risk for that line. The first panel shows how the parameters φ and J work 
in the model to scale predator demographic groups (the proportion of adults that breed and the proportion of 
potential recruits that survive) to foraging success (Q/Qmax, meaning realised prey consumption as a proportion 
of maximum potential prey consumption). The vertical reference lines show the minimum value considered in 
perturbations of φ (0.37) and the maximum value considered in perturbations of J (1.07) (Figure 8).
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