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Abstract

Climatic fluctuations may significantly alter the taxonomic and biochemical composition of phytoplankton blooms and
subsequently phytodetritus, the food source for the majority of deep-sea communities. To examine the response of abyssal
benthic communities to different food resources we simulated a food sedimentation event containing diatoms and
coccolithophorids at Station M in the NE Pacific. In one set of experiments we measured incorporation of diatomC and coccoN
into the macrofauna using isotopically enriched 13C-diatoms and 15N-coccolithophores. In a second experiment we
measured incorporation of C and N from dual-labelled (13C and 15N) diatoms. The second experiment was repeated 2
months later to assess the effect of seasonality. The simulated food pulses represented additions of 650 – 800 mg C m22

and 120 mg N m22 to the seafloor. In all cases rapid incorporation of tracer was observed within 4 days, with between 20%
and 52% of the macrofauna displaying evidence of enrichment. However, incorporation levels of both diatomC and coccoN
were low (,0.05% and 0.005% of the added C and N). Incorporation of labelled diatoms was similar during both June and
September suggesting that the community was not food limited during either period. We found no evidence for selective
ingestion of the different food types in the metazoan fauna suggesting that macrofauna do not have strong preferences for
diatom vs. coccolithophore dominated phytodetrital pulses. C:N ratios from both experiments suggest that the metazoan
macrofauna community appear to have higher C demands and/or assimilation efficiencies compared to N. Concomitantly,
the foraminifera preferentially selected for diatomN over coccoN, and we suggest that this may be related to foraminiferal
requirements for intracellular nitrate. These experiments provide evidence that abyssal faunal feeding strategies are in part
driven by an organism’s internal stoichiometric budgets and biochemical requirements.

Citation: Jeffreys RM, Burke C, Jamieson AJ, Narayanaswamy BE, Ruhl HA, et al. (2013) Feeding Preferences of Abyssal Macrofauna Inferred from In Situ Pulse
Chase Experiments. PLoS ONE 8(11): e80510. doi:10.1371/journal.pone.0080510

Editor: Martin Solan, University of Southampton, United Kingdom

Received June 6, 2013; Accepted October 3, 2013; Published November 26, 2013

Copyright: � 2013 Jeffreys et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Natural Environment Research Council Grant (UK) awarded to UW and the National Science Foundation (US) and the David
and Lucile Packard Foundation awarded to KLS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rachel.jeffreys@liv.ac.uk

¤ Current address: Marine Ecological Surveys Ltd, Bath, Somerset, United Kingdom

Introduction

The abyssal seafloor is a vast ecosystem covering ,54% of the

Earth’s surface [1]. Abyssal communities are energy limited and

rely on the input of particulate organic matter (POM) produced

through photosynthesis in the surface waters for food [2,3]. A

portion of the flux of POM is deposited at the seafloor as large

aggregates of intact phytoplankton cells known as phytodetritus

[4,5], and a tight coupling between this external food source and

abyssal benthic community structure and functioning has been

documented [6–8]. Recent time-series data from two abyssal

observatories have revealed that climate-driven variations in food

supply in terms of its timing and magnitude, has resulted in broad

changes in both community structure and ecosystem functioning

[9–11].

Energy limitation at abyssal depths (.4000 m) has led to a

reduced standing stock of macrofaunal organisms when compared

to smaller size classes i.e. bacteria and meiofauna [12]. In spite of

this the macrofauna are an important facet of abyssal communi-

ties. Macrofauna can influence organic matter processing, burial

and nutrient cycles through feeding processes [13,14], bioturba-

tion [15,16] and remineralization [17]. More recently macrofau-

nal activity (e.g. grazing and microhabitat destruction) has been

linked to lower incorporation of labelled carbon by bacteria

[18,19].

Given the connectedness of climate to deep sea systems and that

macrofaunal communities are known to be sensitive to changes in

food supply [7,9,20], the importance of understanding feeding

preferences/resource selection and the consequences for biogeo-

chemical processes in the deep sea is increasing. Macrofauna

respond within 36 hours to phytodetritus deposition by ingestion

and bioturbation [21–24]. Pulse chase experiments have demon-

strated that macrofauna can dominate the incorporation of

labelled carbon [25–27]. These experiments also show differential

utilization of phytodetritus and nutrients between macrofaunal
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taxa [21,28–30]. Similarly, lipid distributions of deep-sea poly-

chaetes show selective ingestion of fatty acids and sterols indicative

of microalgae [31,32]. In shallower waters, pulse-chase experi-

ments have shown that macrofauna are capable of selecting for a

particular type of microalgae, i.e. ice algae over phytoplankton

[33,34]. In the deep sea little is known about macrofaunal resource

selection. While macrofauna have been shown to have long-term

variations in functional group abundances in polychaetes, for

example, the links to food supply remain unclear [35].

The long-term abyssal monitoring site ‘Station M’ in the NE

Pacific provides a good setting to study macrofaunal resource

selection. Benthopelagic coupling has been studied in detail at

Station M since 1989 [10,36]. The macrofauna are known to

respond to pulses of phytodetritus and climate-driven changes in

food supply [9,20,30]. This study aims to test the hypotheses: (1)

that macrofauna will preferentially select for a particular type of

phytodetritus (2) uptake of simulated phytodetrital pulses varies

seasonally and, (3) that processing of phytodetritus by macrofauna

will be dictated by internal biochemical (i.e. C and N) demands.

The results are discussed in the context of macrofaunal community

and food web structure.

Materials and Methods

Study site
Station M (34u509 N, 123u009 W) is located at a water depth of

ca. 4100 m in the Northeast Pacific. This site is located at the base

of the Monterey deep-sea fan, ,220 km west of Point Conception,

California. An overview of the biology, chemistry and oceanog-

raphy of Station M are given in Smith and Druffel [37]. Fluxes of

particulate organic carbon (POC) and particulate total nitrogen

(PTN) are generally highest during the spring and autumn months,

reaching up to 25 mg C m22 d21 and 3.4 mg N m22 d21,

respectively (50 metres above bottom, m.a.b.) and display high

inter-annual variability [36,38,39]. Detrital aggregates are present

at the seafloor from June to December, with highest occurrences

observed during the months of September and October [40].

Detrital aggregate organic carbon (OC) at the seafloor can reach

peaks of 161 mg C m22 with aggregates having OC and TN

values ranging from 5 to 110 mg OC g21 and 2 to 13 mg N g21,

respectively [40,41]. This study took place within the US EEZ on

the US RV Western Flyer cruise PULSE 52 (5th–10th June 2007) and

PULSE 53 (17th–24th September 2007). The experiments and

sampling were conducted as part of a routine sampling event and

no specific permission was needed for this sampling. The

experiments and sampling did not involve vertebrates or any

endangered/protected species.

Cultivation of labelled food sources
The centric diatoms Thalassiosira weissflogii, Chaetoceros mullerri

and Skeletonema costatum (Coscinodiscophyceae) and the coccolitho-

phore Emiliania huxleyi (Prymnesiophyceae) were chosen as food

sources as they have been observed both in the California current

spring bloom and within detrital aggregates sampled at the

seafloor at Station M [42,43]. Algae were cultured in artificial

seawater using L1 medium [44] at 16uC (light:dark = 16:8; salinity

= 35; pH = 7.8 to 8.2; duration = 21 days; [45]. The artificial

seawater medium inoculating the T. weissflogii, C. mullerri and S.

costatum was amended with 13C-bicarbonate (99% atom %

enriched NaH13CO3, Cambridge Isotope Laboratories). Similarly,

the medium inoculating E. huxleyi and S. costatum was amended

with 15N-sodium nitrate (98% atom enriched Na15NO3). Algae

were harvested by centrifugation (1500 rpm at 16uC for 15 mins)

and washed 3 times in an isotonic solution to remove excess label.

Algae were flash frozen using liquid nitrogen, N2(l) to reduce cell

damage and then lypholized. Cell sizes and the biochemical

composition of the amended food sources are given in Table 1.

Three different diatom species were used in these experiments,

which may present difficulty in comparing experimental data.

However, the biochemical composition of these three genera, are

known to be similar [46] and we feel comparisons between

diatoms (including the three species used) and coccolithophorids

are justified.

Experimental design
Isotopically labelled food choice experiments were conducted in

situ using a prototype of the Oceanlab spreader mesocosms

[19,21]. Each spreader consisted of a transparent acrylic tube

(diameter: 29 cm, height 50 cm) with a centrally fixed cartridge of

isotopically labelled food sources, which is released by depressing

an elastically tensioned plunger. Spreaders were deployed by the

ROV Tiburon, releasing known doses of isotopically labelled

phytodetritus onto replicate 0.066 m22 areas of the seafloor.

During June 2007 three spreaders were deployed containing a

slurry of C. mulleri and E. huxleyi representing an addition of 0.8 g

C m22 and 0.12 g N m22, equivalent to ,40% and 58% of the

annual POC and PTN flux, at the seafloor (Experiment 1). The

fourth spreader was deployed containing the dual labelled diatom

S. costatum slurry, here an addition of 0.7 g C m22 and 0.12 g N

m22, equivalent to ,35% and 58% of the annual POC and PTN

flux, respectively was applied to the seafloor (Experiment 2).

Following this during September 2007 four replicate spreaders

were deployed containing a suspension of the diatom T. weissflogii,

representing an addition of 0.65 g C m22, equivalent to 34% of

the annual POC flux at the seafloor.

Spreaders were deployed on undisturbed areas of the seafloor

and after any resuspended sediment had settled the experiments

commenced. Experiments were terminated after four days and

sub-sampled using 70 mm diameter push cores recovered by the

ROV. Three pushcores from each spreader were retrieved in June

and a single core from each spreader in September. Cores for

macrofaunal analyses were sectioned 1 cm intervals to 5 cm in

June and at 0–2 cm and 2–5 cm in September. In order to

compare data between seasons we combined data obtained

Table 1. Biochemical composition of algal cultures used in this study.

Species Cell Size (mm) C (%) 13C (atom %) N (%) 15N (atom %) C:N

Chaetoceros muelleri 4–10 11.1 14.8 2.0 0.4 5.6

Emiliania huxleyi 4–10 7.7 1.1 0.9 7.0 8.5

Skeletonema costatum 4–10 13.8 21.7 2.6 4.6 5.3

Thalassiosira weissflogii 6–10 19.8 48.8 n.d. n.d. n.d.

doi:10.1371/journal.pone.0080510.t001
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(abundance, biomass, label incorporation) from the 1 cm intervals

in June to 0–2 cm and 2–5 cm for comparison with September.

Background/control push cores were taken close to the spreaders

at the start of the experiments to provide natural stable isotope

values of the macrofauna and sediments (n = 8 in June and n = 3

for September).

Sampling procedures and isotope analyses
Sectioned cores were wet-sieved through a 250 mm mesh, using

filtered seawater and fixed in buffered 4% formaldehyde solution.

Sections were sorted under x12 and x20 magnification. Macro-

fauna were identified to phylum/sub-phylum and polychaetes to

the lowest taxonomic level i.e. genus or species and abundances

were recorded. Macrofauna were rinsed in Milli Q water placed in

tin cups and dried at 60uC. Organisms containing calcareous parts

were decalcified in double boated silver cups with 2 M HCl and

dried as above. Cores for sediment isotopes were lyophilised prior

to analysis. Lyophilised sediments were decarbonated by addition

of excess 1 M HCl, incubated for 24 h at 30uC in an acid-fumed

environment and dried to constant weight.

Macrofaunal and sediment total C and N contents and isotopic

ratios were determined using a Flash EA 1112 Series Elemental

Analyser connected via a Conflo III to a DeltaPlus XP isotope

ratio mass spectrometer (Thermo Finnigan). Isotope ratios were

calculated with respect to CO2 and N2 reference gases injected

with each sample. Isotopic values of gases were directly referenced

against IAEA reference materials USGS40 and USGS41 (both

L-glutamic acid), both certified for d13C (%VPDB) and d15N (%air

N2). The C and N content of the samples were calculated from the

area output of the mass spectrometer calibrated against the

National Institute of Standards and Technology (NIST) standard

reference material 1547 peach leaves, which was analysed with

every batch of ten samples. Long-term isotope measurement

precisions relative to a quality control standard (milled flour) were:

total C = 40.360.42%, d13C = 225.560.29%, total N = 1.76

0.04% and d15N = 0.36760.0002% (mean 6 SD, n = 200).

Isotope ratio data were expressed in d units (%) and used to

estimate faunal 13C and 15N uptake and incorporation.

Owing to natural variation observed in the natural abundance

stable isotopic data in both this study and that of Sweetman &

Witte [30], fauna from the experiments were considered to be

enriched in 13C and 15N when their isotopic composition was

.214% and .20%, respectively. Nematodes and foraminifera

had high natural d15N values and were considered to be enriched

in 15N if their isotopic composition was .25%. Foraminifera also

had isotopically heavy natural d13C values and were therefore

considered to be enriched in 13C when their signatures were

.25%.

Enrichment of 13C or 15N in macrofauna was calculated as

excess above natural abundance levels and is expressed as specific

uptake: Dd= (dsample – dbackground). Specific uptake is a qualitative

measure of label uptake based on isotope ratio data. Incorporation

of 13C and 15N into faunal biomass is a quantitative measure [23]

and was calculated as the product of the excess atom % of 13C or
15N (difference in atom %13C or 15N between sample and

background) and C or N content (expresses as unit weight): 13C or
15N incorporation (unit wt13C or 15N) = (atom% 13Csample or
15Nsample – atom % 13Cbackground or 15Nbackground) 6 (unit wt C or

N of organism). Incorporation of 13C or 15N was then adjusted to

account for algal labeling, yielding total C or N uptake: uptake

(unit wt C or N) = 13C or 15N incorporation/15 atom % (for 13C

labelled diatoms) or 7 atom % (for 15N labelled coccolithophores).

The data used in the incorporation and biomass specific

calculations are given in Tables S1 to S3.

Unfortunately, d15N analysis was not conducted on the

polychaetes from Exp. 2. Only the elemental C and d13C values

were determined on fauna from September.

Data analyses
The multivariate community data on major groups (standard-

ized fourth root transformed, Bray-Curtis similarity was used to

calculate resemblance) was analysed by means of non-parametric

permutational (9999 permutation) ANOVA (PERMANOVA),

[47,48] to assess differences between controls and experimental

cores, between seasons and between sediment layers. The data set

was analysed using a 3-factor mixed model design factors:

Treatment (experiment or control) - fixed Season - fixed and

Sediment Depth - fixed in PERMANOVA+ for PRIMER. For the

experimental data each organism analysed represented a data

point in the matrices.

Isotope data from the June experiments were analysed in

PERMANOVA. Models were run on normalized fourth root

transformed, Euclidean distance similarity matrices. The d13C and

d15N tracer incorporation data from the two experiments (Exp. 1

diatomC and coccoN; Exp.2 diatomC and diatomN) was analysed by

using mixed model designs to assess (1) if there were differences in

incorporation of C and N between Exps.1 and 2, (2) if there were

differences in the incorporation of C and N between taxa and (3) if

there were differences in incorporation between sediment layers.

Model factors include: Experiment - fixed, Taxonomic group -

fixed and Sediment Depth - fixed. The taxonomic groups analysed

in the model included: Foraminifera, Nematoda and Crustacea.

The data were classified into two sediment layers: 0 to 2 cm and 2

to 5 cm.

The response of the polychaetes to the food choice experiments

were examined by means of a 2 factor mixed model to assess (1) if

there were differences in the incorporation of C and N at the

family level (2) if there were differences in incorporation between

sediment layers. Model factors include: Polychaete family - fixed

and Sediment Depth - fixed. Differences between polychaete

feeding type - fixed were analysed separately in a 1-factor model

with unrestricted permutation of the raw data. Differences in

Table 2. Results from multivariate 3 factorial PERMANOVA analyses.

Factor Density Biomass Biomass C

p value pseudo-F1,46 p value pseudo-F1,29 p value pseudo-F1,25

Treatment 0.117 2.2778 0.053 3.2267 0.1755 1.6925

Season 0.0812 0.0812 0.0268 4.0815 0.1175 2.0502

Sediment depth 0.0002 10.52 0.0335 3.6924 0.1976 1.617

Differences in density (ind. m22), biomass (mg m22 dry weight) and biomass C (mg C m22) between core types, season and sediment depth.
doi:10.1371/journal.pone.0080510.t002
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polychaete d13C tracer incorporation between the two experi-

ments were analysed by means of a 1-factor model, experiment -

fixed with unrestricted permutation of the raw data.

The same data analysis procedures were carried out in

PERMANOVA on both the biomass specific incorporation results

and on the natural abundance C:N ratios, d13C and d15N values of

the fauna from the control cores.

Univariate data, e.g. sediment 13C values and incorporation

of diatom carbon during the September experiments were

tested for normality and eveness (Shapiro-Wilk’s and Levene’s

Figure 1. Vertical distribution of: macrofaunal metazoan abundance during (a) June and (b) September; macrofaunal biomass (mg
dry weight m22) during (c) June and (d) September; macrofaunal biomass (mg C m22) during (e) June and (f) September; and
macrofaunal biomass (mg N m22) during (g) June. Bars represent means 61 standard deviation, n = 20 for June and 7 for September.
doi:10.1371/journal.pone.0080510.g001

Feeding Preferences of Abyssal Macrofauna
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tests, respectively). If the data met these assumptions differences

between factors e.g. taxon or sediment depth were tested for

using a one-way analysis of variance was used (ANOVA) and if

the data were not normally or evenly distributed then a

Kruskal-Wallis or a Mann-Whitney U-test was applied.

Figure 2. Relative proportions of abundance, biomass (dry weight), biomass C and biomass N of polychaete families in (a) June and
(b) September. Relative proportions of abundance, biomass (dry weight), biomass C and biomass N of polychaete feeding types in (c) June and (d)
September. Relative proportions of abundance, biomass C and biomass N of polychaete species in (e) June.
doi:10.1371/journal.pone.0080510.g002

Feeding Preferences of Abyssal Macrofauna
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Results

Macrofaunal assemblage
Description of the macrofaunal community structure at Station

M was based upon specimens recovered from both background

and experimental cores (n = 20 for June and n = 7 for September)

and each core was treated as a single replicate. There was no

significant difference in the macrofaunal density, biomass dry

weight or biomass C normalised to m2 between background cores

and the experimental cores from each spreader (Table 2). There

was no significant difference in density (ind. m22) between seasons

(Fig. 1a & 1b, Table 2). There were significant differences in

density between sediment depths (Fig. 1a & 1b, Table 2). Simper

analyses revealed, foraminifera and crustaceans were responsible

for ,38% and 19% of the variation in density between sediment

depths, respectively. The majority (,80%) of foraminifera were

located at 2–5 cm, whilst 58% of crustaceans were located in the

upper 2 cm of the sediment (Fig. 1a & 1b). Macrofaunal biomass

(dry weight mg m22) did vary significantly between both seasons

and horizons (Fig. 1c &1d, Table 2). Foraminifera and molluscs

accounted for 32% and 26% of the seasonal variation and 34%

and 25% of the variation between sediment depths. There were no

significant differences in biomass C between seasons or sediment

depths (Fig. 1e & 1f, Table 2).

The foraminifera were numerically dominant representing

.70% of the community. The majority of foraminifera in the

samples were agglutinated and calcareous species e.g. Globobulimina

and Cyclammina. The nematodes represented ,10% of the total

macrofaunal community. Crustaceans were the dominant meta-

zoan macrofaunal group followed by the polychaetes accounting

for .70% and ,15%, of the metazoan density respectively.

Conversely, the polychaetes were the dominant taxon in terms of

biomass C and N (Fig. 1e, &1g).

A total of 23 polychaete species were identified from the June

experiments. Polychaete families were numerically dominated by

the Cirratulidae and Paraonidae (Fig. 2a & 2b). Dominant species

within the cirratulids were Aphelochaeta spp. and Monticellina siblina

Figure 3. Natural stable isotopic signatures of sediments and macrofauna at Station M, (a) d13C in % (b) d15N in % and (c) C:N ratios,
dotted line represents C:N ratio of POM flux at 50 m.a.b. and solid line represents C:N ratio of surface sediments. Data are means (61
standard deviation) from a series of 8 pushcores. For the sediments and foraminifera black symbols represent surface samples (0–2 cm) and grey
symbols represent sub-surface samples (2–5 cm).
doi:10.1371/journal.pone.0080510.g003

Table 3. Results from multivariate 2 factorial PERMANOVA analyses.

Factor d13C d15N C/N

p value pseudo-F4,50 p value pseudo-F4,35 p value pseudo-F4,28

Taxonomic group 0.001 26.979 0.00225 3.3417 0.0001 12.948

Sediment depth 0.0014 16.303 0.00226 6.3059 0.0181 6.9236

TG vs. SD 0.0001 46.561 0.7744 0.44278 0.0947 2.2668

Differences in d13C and d15N signatures and C/N ratios between taxonomic groups (TG) and sediment depths (SD).
doi:10.1371/journal.pone.0080510.t003

Feeding Preferences of Abyssal Macrofauna
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(Fig. 2e). The dominant genus within the paraonids was Aricidea

spp.. In terms of biomass cirratulids and paraonids were still

important but a few families with large-sized individuals became

significant contributors to total biomass C and N e.g. Tricho-

branchidae and Hesionidae (Fig. 2a).

Polychaetes were classified into feeding types according to

Fauchald and Jumars [49], and were dominated by surface deposit

feeders (SDF; Fig. 2c & 2d) and subsurface deposit feeders (SSDF).

In terms of biomass C and N SDF were the most important group

followed by SSDF. Surface deposit feeding polychaetes were

Figure 4. Mean incorporation mg C m22 or mg N m22 (±1 standard deviation) of (a) diatomC from Exp. 1 in June; (b) diatomC from Exp. 2
in June; (c) diatomC from September; (d) coccoN from Exp. 1; (e) diatomN from Exp. 2. Vertical distribution of (f) phytoC and (g) phytoN. In plots f
and g, dark grey bars represent incorporation from Exp. 1, light grey bars represent incorporation from Exp. 2 and white bars represent mean
incorporation of tracer from September. Note the data presented from Exp. 2 in June represents total incorporation mg C m22 or mg N m22. Number
of replicates in Exp. 1 = 3 and Exp. 2 = 1 and September = 3.
doi:10.1371/journal.pone.0080510.g004

Feeding Preferences of Abyssal Macrofauna

PLOS ONE | www.plosone.org 7 November 2013 | Volume 8 | Issue 11 | e80510



represented by the cirratulids, spionids and trichobranchids. The

subsurface deposit feeders contained paraonids and capitellids.

Predator/scavengers included hesionids, dorvilleids, lumbrinerids

and syllids.

Background isotope levels and food web structure
The natural abundance d13C, d15N values and C:N ratios of

sediments and fauna are summarised in Fig. 3. No significant

difference in the isotopic composition of the sediments was

observed between depths (Figs. 3a, 3b; d13C Mann-Whitney U

test: p = 0.245; d15N F1,6 = 0.801, p = 0.405). There was no

significant difference in faunal d13C composition between June

and September (Mann-Whitney U-test: p = 0.981) and so data in

Fig. 3a include d13C values of fauna from both June and

September. Faunal carbon and nitrogen isotopes exhibited wide

ranges in values, particularly within the foraminifera. The majority

of consumers were enriched in 13C and 15N compared to surficial

sediments (Fig. 3a, 3b).

Values of d13C were significantly different between taxonomic

group and sediment depth and these factors interacted (Fig. 3a,

Table 3). Pairwise comparisons (Table S4) revealed that

polychaetes were significantly enriched in 13C compared to

crustaceans and nematodes in both sediment depths i.e. 0–2 cm

and 2–5 cm. Foraminiferans were significantly enriched in 13C

compared to all taxa in the 2–5 cm sediment layer. Foraminifera

in surface sediments were significantly depleted in 13C compared

to deeper sediments (PERMANOVA p = 0.002, t = 9.39, unique

perms = 700). Deeper living crustaceans were significantly deplet-

ed in 13C compared to surface dwellers (p = 0.001, t = 9.3932,

unique perms = 1287).

There were significant differences in d15N values between

taxonomic groups and sediment depth (Fig. 3b, Table 3.) Pairwise

comparisons revealed that polychaetes were significantly enriched

in 15N compared to crustaceans and foraminifera. Fauna found

deeper in the sediment were significantly lighter compared to those

in the upper 2 cm (mean d15N = 13.463.9% for 0–2 cm and

11.463.0% for 2–5 cm). There were significant differences in C:N

ratio between taxonomic groups and sediment depth (Fig. 3c,

Table 3). Pairwise comparisons revealed that foraminifera had

significantly higher C:N ratios than all other taxa (Table S5).

Fauna in the upper 2 cm of the sediment had lower C:N ratios

than those living deeper (mean C:N = 4.761.5 for 0–2 cm and

7.965.2 for 2–5 cm).

Macrofaunal response to different food sources
Incorporation of phytodetrital C and N. Rapid ingestion

of label occurred in all experiments. During June in Exp. 1,25%

and 20% of the animals analysed had incorporated 13C and 15N,

respectively. In Exp. 2,52% and 42% of the animals analysed

had incorporated 13C and 15N, respectively. During September

,49% of the animals analysed had incorporated 13C. No

significant difference in label incorporation between taxonomic

groups (foraminifera, nematoda and crustacea) was evident (Fig. 4,

for June see Table 4; for September including all groups, Kruskal-

Wallis: p = 0.218). Significant differences were noted between

sediment depths in June (Table 4), .75% of algal carbon and

nitrogen was incorporated in the upper 2 cm of the sediment

(Fig. 4f–g). No significant difference in algal carbon incorporation

was noted in September (Mann-Whitney U-test: p = 0.067, Fig. 4f–

g). There was no significant difference in incorporation of diatom

carbon between June (Exp. 2) and September (Mann-Whitney U-

test: p = 0.413; Fig. 4b & 4c).

The PERMANOVA model results (based on label incorpora-

tion in crustaceans, nematodes and foraminiferans) indicated no

significant difference between the two experiments in June (Fig. 4a,

b, d&e Table 4). There was no correlation between the

incorporation of diatomC and coccoN in Exp. 1 (rs = 0.957,

p = 0.05) or between diatomC and diatomN in Exp. 2 (rs = 0.393,

p = 0.05). Consequently, in Exp. 1, there was no significant

difference between the proportion of diatomC and coccoN incorpo-

rated by the macrofaunal community as a whole (C = 0.0126

0.004% and N = 0.00860.001%; F1,4 = 2.581, p = 0.183).

Taking into account all taxa, in Exp. 1 incorporation of diatomC

and coccoN was not significantly different between taxonomic

groups (Fig. 4a & d, Table 4). Significantly greater amounts of

both diatomC and coccoN (.95%) were assimilated in the upper

2 cm of sediment (Fig. 4f & 4g, Table 4). No significant differences

were noted between polychaete families or feeding types

(PERMANOVA p = 0.227 and p = 0.8997, respectively).

It was only possible to compare incorporation of diatomC by the

polychaetes between the two experiments. There were marginal

differences in polychaete incorporation of diatomC between these

two experiments (Fig. 4a & 4b; Table 4). In Exp. 1 Terebellides

stroemii was responsible for ,87% of the diatomC assimilated by the

polychaetes, whilst in Exp. 2. Aricidea spp. and Prionospio sp.

assimilated ,49% and 48% of diatomC, respectively.

Biomass specific incorporation of phytodetrital C and

N. The biomass specific incorporation did not differ significantly

between Exp. 1 and Exp. 2 in June (Fig. 5, Table 5). However,

differences in biomass specific incorporation of phytodetritus

between taxonomic groups and also between sediment depths

were significant (Fig. 5, Table 5). There was a significant two-way

interaction between experiment and taxon (Table 5). Pairwise

comparisons revealed that in Exp. 2 Foraminifera had significantly

higher biomass specific incorporation of diatomC and diatomN

compared to nematodes (p = 0.034, t = 2.7171) and crustaceans

(p = 0.016, t = 2.7236; Fig. 5b, 5e). Foraminifera had significantly

higher biomass specific incorporation of diatomN (Exp. 2) compared

Table 4. Results from multivariate PERMANOVA analyses.

Factor Exp. 1 and 2 Exp 1 Polychaetes

p value pseudo-F2,49 p value pseudo-F4,45 p value pseudo-F1,21

Experiment 0.7298 0.31504 - - 0.0046 4.4408

Taxonomic group 0.2977 1.2663 0.4655 0.95774

Sediment depth 0.0034 7.1032 0.0045 6.3689

Differences in incorporation of 13C and 15N labelled phytodetritus in Exp. 1 and 2 between: experiments, taxonomic groups and sediment depths. Differences in
incorporation of 13C labelled diatoms and 15N labelled coccolithophores in Exp. 1 between: taxonomic groups and sediment depths. Differences in incorporation of 13C
labelled diatoms between polychaetes in Exp 1 and 2.
doi:10.1371/journal.pone.0080510.t004
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to coccoN (Exp. 1: p = 0.039, Fig. 5d & 5e). In Exp. 1 there were no

significant differences in biomass specific incorporation of diatomC

and coccoN between taxonomic groups (Fig. 5a & 5d; p = 0.232,

t = 1.9953). Biomass specific C incorporation of the polychaetes

was not significantly different between experiments, families or

feeding types (p = 0.071, p = 0.783 and p = 0.918, respectively,

Fig. 5a & 5b). There was no significant difference in biomass

specific incorporation of diatom C between June (Exp.2) and

September (Mann-Whitney U-test: p = 0.801; Fig. 5b & 5c). No

significant differences between taxonomic groups were noted in

biomass specific incorporation of diatom C in September (Kruskal-

Wallis: p = 0.333; Fig. 5c). There was no significant difference in

biomass specific incorporation of diatom C between sediment

depths in September (Mann-Whitney U-test: p = 0.059; Fig. 5f).

C:N Stoichiometry. Absolute incorporation C:N ratios in

June (Exps. 1 and 2) ranged from 2.3 to 367 (Fig. 6b & 6e).

Figure 5. Mean biomass specific uptake mg C mg21 or mg N mg21 (±1 standard deviation) of (a) diatomC from Exp. 1 in June; (b)

diatomC from Exp. 2 in June; (c) diatomC from September; (d) coccoN from Exp. 1; (e) diatomN from Exp. 2. Vertical distribution of biomass
specific uptake of (f) phytoC and (g) phytoN. In plots f and g, dark grey bars represent incorporation from Exp. 1, light grey bars represent incorporation
from Exp. 2 and white bars represent mean incorporation of tracer from September. Note the data presented from Exp. 2 in June represents total
biomass specific uptake mg C mg21 or mg N mg21. Number of replicates in Exp. 1 = 3 and Exp. 2 = 1 and September = 3.
doi:10.1371/journal.pone.0080510.g005
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Biomass specific C:N ratios ranged from 0.23 to 45.54 (Fig. 6c &

6f). The largest ranges in somatic C:N ratios were seen in the

foraminifera (Fig. 6d). As a result of the small number of organisms

that simultaneously ingested 13C and 15N phytodetritus we were

unable to test for significant differences in absolute incorporation

and biomass specific C:N ratios. Somatic C:N ratios from both

control and experimental cores were not significantly different

(Table 5). Significant differences were observed in somatic C:N

ratios between taxonomic groups (Table 5). Foraminfera had

higher C:N ratios than all other taxa (Figs. 3c, 6a, 6d; Table 5).

Discussion

Macrofaunal assemblage
Fluxes of POC and PTN to the seafloor were both reaching

seasonal highs leading up to and during this study (Fig. 7).

Concomitantly, estimates of macrofaunal densities were high but

comparable to estimates made by Drazen et al. [20], when

particulate fluxes were of a similar magnitude (12 –18 mg C m22

d21 at 600 m.a.b.) and exceeded estimates made by Sweetman

and Witte [30] during a period of low particulate flux (,8 mg C

m22 d21 at 600 m.a.b.). The macrofaunal community at Station

M during this study may not be food limited as natural food inputs

via particulate organic matter flux are at or near the seasonal high.

Faunal biomass (relative to C and N) was comparable to estimates

for the Whittard canyon and Indian margin [19,21]; both of the

aforementioned study sites are environments sustained by an

abundance of organic matter.

Food availability can influence community composition [9].

Community composition (in terms of density) during this study

resembled the community described by Drazen et al. [20] and

Sweetman and Witte [30]. Switches in the dominant taxonomic

groups with respect to biomass were noted in the community

composition between periods of high (this study) and low [30] food

availability, as well as over longer time scales [9].

The biomass of the foraminifera increased between June and

September and significant inputs of POC were observed at Station

M from May to September (Fig. 7), which may have been

responsible for this increased biomass. Foraminifera are known to

respond rapidly to inputs of fresh POC through reproduction and

growth [3,50,51].

The polychaete community composition is also further evidence

of high food availability at Station M during June 2007. The three

dominant families, Cirratulidae, Paraonidae and Spionidae are

known to be opportunistic and respond quickly to organic

enrichment [28,52].

Macrofaunal feeding preferences
Macrofaunal stable carbon isotope ratios indicate that the basal

food resource is organic C originating from the particulate flux.

Macrofaunal d13C values closely mirrored those of the sediments

and previous measurements on POC [53]. This can be confirmed

by the ingestion of labelled phytodetritus in the experiments.

Faunal incorporation of labelled phytodetritus in all experi-

ments was low ,0.005%, and in agreement with previous pulse

chase experiments at Station M [30]. At the time of this study

Station M did not appear to be food-limited and so the low

incorporation of labelled phytodetritus may be a result of satiation

of the macrofaunal community or provide evidence of dependence

on semi-labile detritus, as demonstrated for the PAP macrofaunal

community [54]. The majority of labelled phytodetritus was

incorporated in the upper 2 cm of the sediment, in agreement with

previous pulse chase studies at abyssal sites and demonstrating that

surface deposit feeding community is relatively more important in

the processing of OM in abyssal settings than the deeper dwelling

fauna [29,30]. A conspicuous facet of the macrofaunal community

at Station M is the opposing zonation of the metazoans and the

forminifera. This suggests that the surface dwelling metazoans may

play a more substantial role in OM processing at Station M, results

from the diatom only treatment support this.

In the diatom treatments incorporation of label by the

metazoan macrofauna was an order of magnitude higher

compared to the mixed algal treatment. This discrepancy may

be a result of experimental design as we were unable to trace the

amount of coccoC incorporated by the fauna in the mixed algal

treatment. Foraminiferal incorporation of carbon was also

comparable during both sampling periods. The response of the

foraminifera in this study was muted compared to the response

observed by Enge et al. [55], at the same site and to foraminifera

in other areas e.g. the Indian and Pakistan margins, Sagami Bay

[27,56,57]. The study of Enge et al. [55] considered foraminifera

larger than 250 mm and macrofaunal foraminifera are known to

exhibit a retarded response to phytodetritus when compared with

smaller foraminifera [58]. Despite the retarded response the

proportion of carbon processed by the foraminifera compared to

metazoans was high, up to 46% and 90% of the C added in June

and September, respectively and is in agreement with previous

studies in the N. Atlantic [26,59]. The majority (.70%) of tracer

uptake was observed in foraminifera in the top 2 cm of sediment,

this suggests that: (1) surface dwelling foraminifera are important

in carbon processing or (2) deeper dwelling foraminifera migrate in

the sediment towards the added food source. Migration of

foraminifera towards simulated food pulses has been reported

previously; by Nomaki et al. [57] and Koho et al. [51]. This seems

likely given that the majority of foraminifera in terms of density

and biomass were concentrated at 2–5 cm.

Macrofaunal d15N values differed between taxonomic groups

indicating that fauna were feeding at different trophic levels and

that there is a degree of niche separation between taxon at Station

M. Assuming a trophic enrichment factor of 2.2% to 3.4%
[60,61], foraminifera appear to feed both on relatively depleted

POM at the base of the food web and more degraded material.

Nematodes and crustaceans were more enriched in 15N as has

been previously observed at the Porcupine abyssal plain [62],

indicating that they either feed at a higher trophic level or on other

food sources e.g. degraded POM or bacteria. Crustaceans are

known to prey on foraminifera [63]. Whilst, some studies have

shown that nematodes have been shown to preferentially feed on

Table 5. Results from multivariate 3 factorial PERMANOVA
analyses.

Factor Biomass Specific C/N ratios

p value pseudo-F2,49 p value pseudo-F4,93

Experiment 0.6869 0.37233 0.7712 0.22633

Taxonomic
group

0.0093 3.9875 0.0001 18.98

Sediment
depth

0.0011 9.9486 - -

EXP vs. TG 0.0026 3.0641 - -

Differences in biomass specific incorporation of 13C and 15N labelled
phytodetritus in Exp. 1 and 2 between: experiments, taxonomic groups and
sediment depths. And results from multivariate 2 factorial PERMANOVA
analyses. Differences in somatic C:N ratios of macrofauna between: controls and
experiments (EXP) and taxonomic groups (TG).
doi:10.1371/journal.pone.0080510.t005
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Figure 6. C:N ratios from experimental cores (a) Somatic C:N ratios from Exp. 1; (b) Absolute incorporation C:N ratios from Exp. 1;
(c) Biomass specific C:N ratios from Exp.1; (d) Somatic C:N ratios from Exp. 2 (e) Absolute incorporation C:N ratios from Exp. 2. (f)
Biomass specific C:N ratios from Exp. 2. Solid black line represent C:N ratios of added diatom tracer and dashed black line represent C:N ratios of
added coccolithophorid tracer.
doi:10.1371/journal.pone.0080510.g006
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bacteria [64,65], there is also evidence that nematodes do not

select for bacterial food sources [66]. Further to this, d13C values

of nematodes mirrored those of the sediments, suggesting a

sedimentary food source. The enrichment of 15N in the nematodes

at Station M could result from predation, which has been recently

observed in Arctic nematodes [67]. Polychaetes and molluscs were

at the apex of the macrofaunal food web at Station M and the

associated large ranges in d15N values suggests a degree of

omnivory in their diets [68].

There was no difference in incorporation of labelled phytode-

tritus between the metazoan taxonomic groups during the pulse

chase experiments. This is a surprising result given the taxonomic

differences in metazoan macrofaunal feeding strategies evident

from the natural abundance d13C and d15N values. Closer

inspection of the polychaete species in this study reveals a

community of highly selective deposit feeders e.g. Terebellides

stroemii, Prionospio spp., Tharyx kirkegaardi and Aricidea spp.. Evidence

from the food web analysis and pulse chase experiments indicates

that there is a high degree of plasticity in polychaete feeding

strategies at Station M in agreement with the findings of

Sweetman and Witte [30].

Dual labelling multiple food sources allows for direct appraisal

of selectivity of the macrofaunal community for specific algae

when present simultaneously e.g. Herman et al. [69]. As a result of

our labelling techniques food sources were significantly enriched in
13C and 15N compared to non-labelled food sources (Table 2),

therefore the isotope mixing model approach used by Herman et

al. [61] was not appropriate here. Station M is a food-limited

environment, receiving significant food inputs once a year

following a spring phytoplankton bloom. We suggest that if the

suspected selectivity among algal food sources is indeed important,

it may only be evident during certain times. Phytodetritus is

usually present at Station M during late Summer and early

Autumn. We did not find evidence of metazoan macrofauna

selecting for a particular type of phytodetritus at Station M. In our

experiments the proportions of diatomC and coccoN incorporated by

the macrofaunal community in the mixed feeding experiments

were similar. Futhermore, there was no significant difference in the

incorporation of C or N between the mixed feeing experiments or

the diatom only treatment and uptake of C and N was not

correlated (section 3.3.1.). This suggests that macrofauna do not

select for a particular type of phytoplankton when phytodetritus is

readily available. Results from the diatom only treatment revealed

that metazoans were not incorporating C and N simultaneously

(Table S2), suggesting that organism stoichiometry must be

considered when interpreting experimental isotope tracer data.

Macrofaunal C:N Stoichiometry
Taxonomic differences in C:N ratios were observed at Station

M, foraminifera having the highest C:N ratios indicating that

foraminifera may have a higher demand for C and/or have higher

C assimilation efficiencies. This is not a surprising result given that

foraminifera grow and reproduce over short temporal scales in the

presence of phytodetritus [3,50,51]. In this study somatic C:N

ratios of metazoans ranged from 3 to 9, a single nematode had a

value of 12. Faunal demands for C and N are driven by energy

requirements for somatic growth and reproduction and are

balanced against excretion of nitrogenous waste [70]. Somatic

tissues of marine invertebrates are dominated by protein and

somatic C:N ratios follow those of amino acids i.e. ranging from

1.5 to 9 [71]. Most marine invertebrates exhibit C:N ratios

ranging from 3 to 8, e.g. [63,71,72]. Organisms adapt their

feeding strategies in order to maintain nutrient consumption at an

optimum level in order to achieve stoichiometric homeostasis

[73,74]. In doing so, the resulting C:N ratios observed in

organisms are often species-specific being regulated by a species

physiology [70].

Figure 7. Particulate fluxes at Station M from January to December 2007. Filled circles and open triangles represent the carbon and
nitrogen fluxes respectively. Grey-filled squares represent the C/N ratio of flux material. Solid and dashed lines represent flux material from sediment
traps moored 600 m.a.b and 50 m.a.b., respectively. There is no data available from the 50 m.a.b. trap from August to November.
doi:10.1371/journal.pone.0080510.g007
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Based on incorporation of tracer, these experiments suggest that

faunal demand and/or assimilation of C is higher than for N. In the

dual-labelled diatom treatment incorporation of C by metazoans

and foraminifera was an order of magnitude higher than for N

(,0.05% of added C was incorporated compared to 0.004% for N).

Our results are in agreement with those for the Indian margin,

where in an experiment tracing the fate of dual labelled (13C and
15N) diatoms, more C was processed relative to N [21]. However,

the phytoC:phytoN ratios for biomass incorporation coupled to the

somatic C:N ratios demonstrate a preference for N as has been

shown by Hunter et al. [21]. The higher phytoC:phytoN ratios for

absolute assimilation compared to the lower biomass specific ratios

may indicate preferential consumption/assimilation of carbon rich

molecules such as carbohydrates and lipids as has been previously

observed in shallow water corals, calanoid copepods and deep-sea

foraminifera [75–77]. Furthermore, ammonotelic organisms may

rapidly excret phytoN resulting in higher absolute assimilation ratios

in the fauna [21].

The surface dwelling foraminifera had depleted natural

abundance d13C values indicating that they feed at the base of

the food web on phytodetrital aggregates. Concomitantly, deeper

dwelling foraminifera (2–5 cm) were enriched in 13C indicating

either preferential utilisation of isotopically light cellular fatty acids

during periods of low food availability. Preferential utilisation of

isotopically light cellular fatty acids during periods of low food

availability (fasting/starvation) can lead to enrichment in 13C by

up to 4% [78–80]. Utilisation of cellular fatty acids by deeper

dwelling foraminifera would not explain the large differences in

d13C values observed here. Large isotopic shifts have been

observed in both autotrophic and heterotrophic bacteria [81,82]

and ingestion of bacteria utilizing the reverse tricarboxylic acid

pathway can lead to enrichment in 13C [83–85]. The large ranges

in d13C of foraminifera observed in this study are consistent with

the ranges for the calcareous and agglutinated foraminifera at

Station M during September 2007 [55].

We suggest from the results presented here and previous

observations [3,51], that foraminifera colonize phytodetrital

aggregates and use nitrate in respiration at Station M. Forami-

nifera also had higher biomass specific incorporation of N

compared to other taxonomic groups. Consumption of POM is

proportional to faunal biomass [86]. At the Indian margin

foraminifera have also been shown to incorporate algalN in tracer

experiments [56]. The foraminifera preferentially selected for

diatoms over coccolithophorids and were the only group to show

evidence of preferential selection. Foraminifera may require

higher levels of organic N from phytodetritus in order to catabolise

this food source and fuel intracellular denitrification or to build up

reserves of intracellular nitrate for respiration. Recently forami-

nifera have been shown to carry out complete intracellular

denitrification de novo and in the presence of endobionts, in a wide

range of environments [87–89]. Storage of intracellular nitrate

within foraminiferal vacuoles is known to result in intracellular

d15NNO3 values ranging from 12% – 42% [87,92]. Foraminiferal

d15N values in this study ranged from 6.6% to 20.1%, with three

of these values being .12%, which suggests that some forami-

nifera at Station M may be accumulating intracellular nitrate.

Nitrate respiration has been observed in phytodetrital aggre-

gates at Station M and was attributed to bacteria [90]. A number

of mechanisms for nitrate accumulation in foraminifera have been

suggested, these include: transport of nitrate into cells from

surrounding porewaters, intracellular production of nitrate, or

obtaining nitrate from symbiotic nitrifying bacteria [89]. It is

possible that foraminifera at Station M could produce intracellular

nitrate via decomposition of phytoN to yield NH4
+, which is then

converted to nitrate via denitrification either de novo or in the

presence of bacterial symbionts. However, we are not aware that

this process has been observed in foraminifera to date. Alterna-

tively, foraminifera may assimilate nitrate from surrounding

porewaters, which could have been produced by decomposition

of phytoN by bacteria or fauna to yield NH4
+, which is then

converted to nitrate by nitrifying bacteria. Koho et al. [91] have

demonstrated that foraminifera collect nitrate both in the presence

and absence of oxygen, and that foraminifera migrate towards

favourable conditions i.e. towards free nitrate and or oxygen. If

this is the case at Station M, it might account for the observed

foraminiferal distributions. Nitrate storage/respiration in forami-

nifera has also recently been proposed as a transport mechanism

for nitrate in sediments [89,92]. Our data suggest that foraminifera

are important players in nitrogen cycling in abyssal environments

and could facilitate the transport of nitrogen through the

sediments. However, further work is required to determine the

role of foraminifera in both organic and inorganic nitrogen cycling

at Station M.
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