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ABSTRACT The bioavailability of metals can be strongly influenced by 21 

dissolved organic carbon (DOC). Wastewater treatment effluents add considerable 22 

quantities of DOC and metals to receiving waters, and as effluent controls become 23 

more stringent advanced effluent treatments may be needed. We assessed the 24 

effects of two types of advanced treatment processes on metal availability in 25 

wastewater effluents. Trace metal availability was assessed using Diffuse Gradients 26 

in Thin Films (DGT) and predicted through speciation modelling. The results show 27 

little difference in metal availability post-advanced treatment. EDTA-like 28 

compounds are important metal complexants in the effluents.  29 
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 31 

There is an increase in regulatory concern in relation to the presence of trace levels 32 

of pharmaceutical and bioactive chemicals entering surface waters from sewage 33 

treatment plants (e.g. UBA 2011). Limit values for some pharmaceutical substances 34 

have been derived (EU Proposal 2011/0429) and limit values are routinely used to 35 

set permits and discharge limits. For water companies this presents considerable 36 

difficulties in terms of achieving the permitted limits. 37 

In order to comply with these revised limits water companies are now considering 38 

advanced treatment options to remove these substances (e.g. Granular Activated 39 

Carbon (GAC) and ozone treatment). Such advanced effluent treatments have been 40 

shown to be effective at reducing effluent concentrations of a variety of 41 

micropollutants (Hollender et al. 2009), but may also have an effect upon the 42 

concentration, form, characteristics and metal binding capacity of the dissolved 43 

organic carbon (DOC) which is present in sewage effluents at high concentrations, 44 
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owing to its removal, alteration or degradation during treatment (Winch et al. 45 

2002). 46 

DOC is known to form complexes with metals which can markedly reduce the free 47 

ion concentration of the metal and mitigate toxicity (Santore et al. 2001). Biotic 48 

Ligand Models (BLMs) for metals take account of interactions between DOC and 49 

trace metal ions, with increasing DOC concentrations typically providing a 50 

significant reduction in the bioavailability of the metal. The protective effect of 51 

increasing DOC is particularly important for copper, zinc, nickel and lead (ICMM 52 

2007).  53 

Therefore, advanced treatments, implemented to remove trace organic substances, 54 

may affect the discharged DOC and result in an increase in the concentration of 55 

bioavailable metals discharged in the effluent. The objective of this study was to 56 

measure and compare the concentration and form of both DOC and metals in 57 

sewage effluents subject to conventional or advanced treatment, with the aim of 58 

providing an initial indication of the effect of advanced treatment on the 59 

concentration and types of DOC and its ability to complex trace metals. 60 

Materials and Methods 61 

Effluents were sampled from five wastewater treatment works (WwTW) in the UK. 62 

Currently, only two UK sites operate the advanced treatments and effluents subject 63 

to both conventional and advanced treatment from these two sites were therefore 64 

included in this assessment. The other three sites all operated conventional 65 

biological treatment processes only and were selected based on their proximity to 66 

the sites employing advanced treatment. Eight effluents (two GAC treated effluents, 67 

one ozone treated effluent and five conventionally treated effluents) were sampled 68 

in total. 69 

One hundred litres of each effluent was sampled from each site and analysed for 70 

dissolved metals, DOC, total EDTA, pH, calcium, conductivity and alkalinity, and 71 

DGT-labile metals. 72 

Trace metal ‘availability’ was considered by both direct measurement of 73 

“available” concentrations using DGT (Davison and Zhang 1994) and by speciation 74 

modelling. 75 

The trace metal speciation in the samples was calculated using both 76 

VisualMINTEQ (V 3.0) and WHAM7. For WHAM7 calculations it was assumed 77 

that 65% of the DOC was present as active fulvic acid, and for Visual MINTEQ 78 

calculations it was assumed that 50% of the DOC was present as active fulvic acid. 79 

The latter assumption used for Visual MINTEQ calculations about the nature of the 80 

DOC is also applied in the biotic ligand models for nickel, copper, and zinc in 81 

surface waters, although its applicability to sewage effluents is unknown. The 82 

assumption of 65% active fulvic acid is derived from experiments on UK surface 83 

waters (Bryan et al. 2002), and again its applicability to sewage effluents is 84 

unknown.  85 

The DGT labile concentrations were calculated according to  86 

 CDGT = CDissolved x    fInorganic + fEDTA x DInorganic + fFA x DInorganic 87 

           DEDTA  DFA 88 

Where CDGT and CDissolved are the predicted metal concentrations measured by DGT, 89 

and the measured dissolved concentration respectively; fInorganic, fEDTA, and fFA are 90 

the fractions of inorganic metal, EDTA bound metal, and fulvic acid bound metal 91 



respectively; and DInorganic, DEDTA, andDFA are the diffusion coefficients of the 92 

inorganic metal species, the EDTA bound metal species, and the fulvic acid bound 93 

metal species, respectively. 94 

Results and Discussion 95 

Table 1 shows the results of the physico-chemical analysis of the effluents. The 96 

effluent samples were relatively similar in their composition in terms of the general 97 

chemistry and supporting parameters, and were neutral to slightly alkaline, with 98 

moderate levels of hardness and DOC. All of the samples contained EDTA at a 99 

concentration greater than 100 μg l
-1

. The DOC concentration of the final effluent 100 

from WwTW A was reduced by approximately 40% by GAC treatment, although 101 

the reduction following GAC treatment at WwTW B was closer to 15%. Ozone 102 

treatment (WwTW B) had a relatively limited effect on DOC concentration (less 103 

than 5% removal). 104 

The concentrations of dissolved cadmium and lead were below the limits of 105 

detection of the analytical technique in all of the effluent samples analysed, but 106 

concentrations of dissolved copper, nickel and zinc were detectable in all of the 107 

effluent samples. The dissolved concentrations are shown in Table 1. The metal 108 

concentrations in final effluents which had not been subject to advanced treatment 109 

showed similar dissolved metal concentrations to the effluent samples from the 110 

same sites which had been subject to advanced treatment. Any differences in 111 

concentration are likely to reflect variations in the influent metal concentration to 112 

the WwTW, rather than any effect of the GAC treatment on metal concentrations. 113 

The stability constants (log values) for the complexes of nickel, copper, zinc, and 114 

calcium with EDTA are 18.56, 18.8, 16.5, and 10.7, respectively. EDTA is 115 

therefore very important in the speciation of the trace metals in these effluent 116 

samples due to the similar molar concentrations of EDTA and the metals. Iron (III) 117 

can also form very stable EDTA complexes, and competition from iron could 118 

reduce the degree of EDTA binding by nickel, copper and zinc, although iron (III) 119 

is very insoluble under these conditions. The speciation of EDTA is summarised in 120 

Table 2 for the sampled effluents, in terms of the percentage of the total EDTA in 121 

the form of each complex. The effect of EDTA complexation on the speciation of 122 

the individual metals is clearly important, although complexation by other ligands 123 

can also be a determining factor. In the case of the effluent samples in the present 124 

study, binding by other ligands, such as fulvic acid, is not expected to be important 125 

for nickel and zinc, although it is expected to play a role in copper speciation (but 126 

to a lesser extent than EDTA, based on the model predictions).  127 

The DGT labile metal concentrations in the effluent samples are shown in Table 1. 128 

The diffusion coefficients of free hydrated metal ions within both water and the 129 

diffusive layer are well defined and it is therefore possible to calculate the “DGT 130 

labile” concentration of metal in the solution from the mass of metal accumulated 131 

in the receptor, the thickness of the diffusion layer, deployment duration, and the 132 

diffusion coefficient of the metal in the diffusion layer.  133 

These concentrations represent the concentration of metal that is available to the 134 

DGT receptor in the samples and may therefore indicate the proportion of the total 135 

metal that is potentially available to exert effects on exposed organisms, or the 136 

relative lability of the different metal complexes. The remainder represents the 137 

concentration of the dissolved metal that is bound to the DOC (or other relatively 138 



stable metal complexes), or is not labile with respect to the DGT devices. The DGT 139 

labile fraction of the metal is typically believed to reflect the concentration of truly 140 

dissolved inorganic metal complexes, but may also include labile organic 141 

complexes of the metals. This fraction may be very similar to the free metal ion 142 

concentration under some conditions, particularly where other inorganic complexes 143 

such as hydroxides or carbonates do not dominate the solution chemistry of the 144 

metal. 145 

Some studies have suggested that for some metals it is not only the free metal ion 146 

that is available for biological uptake, and that some other inorganic metal 147 

complexes can also contribute to toxicity. Several studies have identified a 148 

contribution to toxicity from Cu species other than the free cupric ion (Cu
2+

), and 149 

species such as CuOH
+
 and CuCO3 have been identified as contributing to the 150 

toxicity of dissolved Cu (e.g. Wang et al. 2009). Metal complexes of this nature are 151 

likely to be included in the DGT labile fraction as they may dissociate rapidly when 152 

in contact with the DGT receptor. 153 

Previous studies on EDTA complexes suggest that the EDTA complexes of nickel, 154 

copper and, zinc are not DGT labile. Studies on both nickel and copper using a 155 

different type of device which operated on the same principles (Hong et al. 2011, Li 156 

et al. 2005) have shown that the metal-EDTA complexes are not measured by the 157 

alternative DGT devices. Zinc-EDTA complexes are not labile to measurement by 158 

anodic stripping voltammetry (ASV) and this technique has been shown to give 159 

comparable results to DGT (Meylan et al. 2004). Other studies on copper using the 160 

same type of devices as were used in the present study (Tusseau-Vuillemin et al. 161 

2003, Warnken 2008) have suggested that the metal complexes with EDTA are 162 

DGT labile, but that the amount of metal accumulated by the DGT device from 163 

these complexes is affected by their rate of diffusion across the hydrogel. Both 164 

possibilities are considered in the interpretation of the DGT results. 165 

A comparison between dissolved and DGT labile metal concentrations in the 166 

effluent samples shows that DGT labile concentrations are lower than dissolved 167 

concentrations in all cases. This indicates that metal availability in these effluent 168 

samples is low relative to the dissolved metal levels, and is broadly consistent with 169 

the results of the chemical speciation modelling calculations. Rather higher levels 170 

of available metal, as defined by DGT analysis, were found compared to the 171 

predicted inorganic metal concentrations from speciation modelling. This could be 172 

due to some of the predicted metal complexes being labile with respect to DGT, or 173 

due to competition for binding by either EDTA or other organic ligands from other 174 

trace metals, including iron, which were not taken into account in the model 175 

calculations. 176 

The comparisons between DGT labile and predicted inorganic metal species (using 177 

both Visual MINTEQ and WHAM7) indicate that the DGT devices are measuring 178 

other forms of metal in addition to the truly dissolved inorganic metal species. This 179 

suggests that the most appropriate interpretation of the DGT results should take 180 

account of the different metal species formed and their rates of diffusion through 181 

the hydrogel. The diffusion coefficients of the free metal ions at the deployment 182 

temperature are 4.68 x 10
-6

 cm
2
 s

-1
, 4.33 x 10

-6
 cm

2
 s

-1
, and 4.56 x 10

-6
 cm

2
 s

-1
, for 183 

copper, nickel, and zinc, respectively. While there is relatively little information 184 

available about the diffusion coefficients of metal-EDTA complexes, one study has 185 



reported these values for some metal complexes of EDTA (Furukawa et al. 2007). 186 

Reported diffusion coefficients of the complexes of divalent metals with EDTA 187 

were between 0.68 and 0.83 times those of the metal ions for Co, Sr, Cd, and 188 

UO2
2+

. On average the diffusion coefficients of the EDTA complexes were 0.76 189 

times those of the free divalent metal ions. This information has been used to 190 

estimate diffusion coefficients of metal-EDTA complexes, from the free metal 191 

diffusion coefficients, for the principal metals of interest in this study. 192 

Diffusion coefficients for fulvic acids have been reported previously (Zhang and 193 

Davison 2000) as 1.29 x 10
-6

 cm2 s
-1

, although more recent work (Warnken et al. 194 

2008) suggests that the diffusion coefficients of the metal-fulvic acid complexes 195 

may be larger in the field than they are in laboratory experiments. The diffusion 196 

coefficients of the metal-fulvic acid complexes were assumed not to be dependent 197 

upon the metal. The values of the diffusion coefficients for the different complexes 198 

used for estimating metal uptake by the DGT devices are shown in Table 3. 199 

Estimation of DGT labile metal concentrations was performed using the speciation 200 

predictions from both Visual MINTEQ and WHAM7, and in both cases were found 201 

to be considerably higher than those measured by the DGT devices. Both speciation 202 

models gave closely comparable results for the distribution of metals between 203 

inorganic, EDTA, and fulvic acid species. Calculated DGT concentrations were 204 

close to two times higher than measured DGT concentrations in the majority of 205 

cases. As the diffusion coefficients for the inorganic metal species are well 206 

established, and fulvic acid is not expected to be an important ligand in most of the 207 

effluents this is most likely to be caused by uncertainties in the value of the 208 

diffusion coefficients for the metal-EDTA complexes.  209 

The diffusion coefficients of the metal-EDTA complexes were therefore optimised 210 

for the prediction of the measured DGT results. This resulted in revised diffusion 211 

coefficients of the metal-EDTA complexes which were much closer to those 212 

derived for fulvic acid (Zhang and Davison 2000). The revised diffusion 213 

coefficients were 1.33 x 10
-6

 cm
2
 s

-1
, 1.90 x 10

-6
 cm

2
 s

-1
, and 1.79 x 10

-6
 cm

2
 s

-1
, for 214 

complexes of EDTA with copper, nickel, and zinc, respectively. There was still 215 

relatively poor prediction of the DGT results for zinc in the WwTW E effluent by 216 

both speciation models, and for zinc in the WwTW D effluent by Visual MINTEQ. 217 

In all of these cases the predicted DGT concentrations were considerably higher 218 

than the measured DGT concentrations. This may indicate the possible presence of 219 

larger, more slowly diffusing, metal complexes in these effluents than was 220 

considered by the calculations. 221 

The DGT labile metal concentrations in the final effluents and those which were 222 

also subject to advanced treatments were very similar. The results suggests that 223 

there is no appreciable increase in the availability of trace metals following GAC 224 

treatment, although there may be a very slight increase in the availability of these 225 

three metals following ozone treatment, as measured by DGT. 226 

The fraction of the dissolved concentration which is DGT labile (FDGT) can be 227 

expressed as the DGT labile metal concentration divided by the dissolved metal 228 

concentration. This provides a measure of the relative availability (to the DGT 229 

devices) of the metals in the different effluents. 230 

The advanced treatments considered in the present study have not had an effect on 231 

the available concentrations of nickel, copper, or zinc as measured by DGT. The 232 



fractions of DGT labile metal were relatively similar across all the effluents 233 

sampled, regardless of whether or not they had been subject to advanced treatments. 234 

Summary 235 

The results of this study indicate that free and inorganic metal forms make a 236 

relatively small contribution to the total dissolved metal concentrations in effluents. 237 

EDTA is the most important ligand for all of the metals considered in the sewage 238 

effluents. Fulvic acid binding is only expected to be important for copper (in these 239 

samples). Metal concentrations measured by DGT can be modelled assuming that 240 

all metal species are DGT labile, but the predictions are sensitive to the diffusion 241 

coefficients assumed for the metal EDTA complexes. There is a limited effect of 242 

the advanced sewage treatment processes on the availability of trace metals in the 243 

effluents. EDTA has been shown to be an important complexant in the effluents 244 

themselves, which would result in BLM calculations which are over-protective. As 245 

the effluents are diluted into the receiving waters the concentrations of both metals 246 

and EDTA will, in the majority of cases, be reduced thus reducing the degree of 247 

over protection of any BLM calculations. The receiving waters will, however, 248 

contain DOC which is able to complex dissolved metals, so there will be less 249 

dilution of DOC than there is of the EDTA and metal concentrations. This will 250 

mean that any over protection that might result from performing BLM calculations 251 

for the effluents themselves, due to the presence of EDTA which is not accounted 252 

for in the BLM calculations, will be considerably reduced at the point of 253 

compliance assessment. 254 
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 303 

Table 2 EDTA Speciation of the Bulk Effluent Samples calculated by 304 

VisualMINTEQ (% of total metal concentration) 305 

Sample Ni-EDTA Cu-EDTA Zn-EDTA Ca-EDTA 

Tertiary Treated Effluent: WwTW A 24.7 4.5 43.7 27.2 

GAC Treated Effluent: WwTW A 8.2 0.8 14.4 76.5 

Tertiary Treated Effluent: WwTW B 24.4 6.2 47.0 22.3 

GAC Treated Effluent: WwTW B 16.1 4.8 33.2 45.7 

Ozone Treated Effluent: WwTW B 29.4 4.6 56.6 9.3 

Tertiary Treated Effluent: WwTW C 15.4 8.8 40.3 35.5 

Tertiary Treated Effluent: WwTW D 51.3 8.7 38.1 1.9 

Tertiary Treated Effluent: WwTW E 8.4 56.9 31.5 3.1 

 306 

Table 3 Diffusion Coefficients of Metals and Metal-ligand Complexes 307 

used for DGT Interpretation (cm
2
 s

-1
) 308 

Metal Me2+ Me-EDTA Me-FA 

Cu 4.68 x 10-6 3.56 x 10-6 1.29 x 10-6 

Ni 4.33 x 10-6 3.29 x 10-6 1.29 x 10-6 

Zn 4.56 x 10-6 3.47 x 10-6 1.29 x 10-6 

 309 



 Table 1 Physico-chemical Analysis of Bulk Effluent Samples 310 

 - (mg l
-1

) (mg l
-1

) (μS cm
-1

) 
(mg l

-1
 

CaCO3) 
(μg l

-1
) Dissolved (μg l

-1
) DGT labile (μg l

-1
) 

Sample pH DOC Calcium Conductivity Alkalinity EDTA Copper Nickel Zinc Copper Nickel Zinc 

Tertiary Treated Effluent: 

WwTW A 
7.47 6.05 104 1010 195 208 3.12 9.05 18.7 0.39 2.50 5.59 

GAC Treated Effluent: 

WwTW A 
7.54 3.67 105 1020 105 127 1.09 7.42 14.6 0.27 2.48 5.93 

Tertiary Treated Effluent: 

WwTW B 
7.77 6.33 62.2 823 80.3 215 5.08 10.0 22.1 1.21 5.01 10.44 

GAC Treated Effluent: 

WwTW B 
7.79 5.3 60.8 822 76.3 186 4.45 9.76 22.6 0.80 4.73 9.96 

Ozone Treated Effluent: 

WwTW B 
7.93 6.11 62.6 827 75.9 176 5.07 10.2 24.0 1.60 5.29 11.19 

Tertiary Treated Effluent: 

WwTW C 
7.27 7.62 54.8 840 35.3 307 5.15 6.54 19.3 1.23 2.76 6.52 

Tertiary Treated Effluent: 

WwTW D 
8.14 6.48 105 1020 177 460 2.76 13.0 27.1 0.72 5.80 11.19 

Tertiary Treated Effluent: 

WwTW E 
8.25 6.08 102 883 202 174 23.6 2.90 22.0 7.86 1.25 5.15 

 311 
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