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Humpback whales (Megaptera novaeangliae) annually undertake the longest migrations 1 

between seasonal feeding and breeding grounds of any mammal. Despite this dispersal 2 

potential, discontinuous seasonal distributions and migratory patterns suggest that 3 

humpbacks form discrete regional populations within each ocean. To better understand 4 

the worldwide population history of humpbacks, and the interplay of this species with the 5 

oceanic environment through geological time, we assembled mitochondrial DNA control 6 

region sequences representing ~2,700 individuals (465bp, 219 haplotypes) and 8 nuclear 7 

intronic sequences, representing ~70 individuals (3,700bp, 140 alleles) from the North 8 

Pacific, North Atlantic and Southern Hemisphere. Bayesian divergence time 9 

reconstructions date the origin of humpback mtDNA lineages to the Pleistocene (880 10 

Kya, 95% posterior intervals 550 – 1,320 Kya) and estimate radiation of current northern 11 

hemisphere lineages between 50-200 Kya, indicating colonization of the northern oceans 12 

prior to the last glacial maximum. Coalescent analyses reveal restricted gene flow 13 

between ocean basins, with long-term migration rates (individual migrants per 14 

generation) of <3.3 for mtDNA and <2 for nuclear genomic DNA. Genetic evidence 15 

suggests that humpbacks in the North Pacific, North Atlantic and Southern Hemisphere 16 

are on independent evolutionary trajectories, supporting taxonomic revision of M. 17 

novaeangliae to three sub-species. 18 

 19 

20 
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1. INTRODUCTION 1 

The humpback whale (Megaptera novaeangliae) is an iconic and globally distributed 2 

migratory species. Within each ocean basin, humpbacks breed and calve in tropical and 3 

subtropical seas during winter, migrating to high latitudes to feed during summer. Despite 4 

an absence of geographical barriers to dispersal, populations show significant genetic 5 

structure between and within ocean basins (1-7) with the strongest restrictions to maternal 6 

gene flow across the equatorial boundary (1, 8). Observations of naturally marked and 7 

genotyped individuals suggest that maternally directed fidelity to both breeding and 8 

feeding grounds may be responsible for this population structure (9-14). Some population 9 

structure has also been identified in the nuclear genome; a recent study using multiple 10 

nuclear introns to survey Atlantic diversity (15) found evidence of population structuring 11 

between the North Atlantic and Southern Hemisphere, but not among breeding and 12 

feeding grounds within the North Atlantic. 13 

 14 

Although phylogenetic reconstructions of mtDNA show evidence of long-term gene flow 15 

between oceans (1), no permanent dispersal between populations in different hemispheres 16 

have been documented. Although seasonal breeding cycles are asynchronous between the 17 

hemispheres, two Southern Hemisphere breeding grounds extend north of the equator: 18 

Ecuador and Costa Rica in the Pacific (16) and Gabon and Guinea in the Atlantic (17, 19 

18), demonstrating that inter-hemisphere movements are biologically possible. 20 

Encounters on common breeding grounds between whales at the end or start of their 21 

respective winter breeding seasons could result in male-mediated gene flow, but genetic 22 

patterns of population structure and haplotype distribution show no evidence of this to 23 

date (7). 24 

 25 

Despite the evidence for limited gene flow between oceans, there has been no recent 26 

taxonomic investigation of humpback whales (19). In 1946, Tomilin (20) proposed 27 

humpbacks in the two hemispheres as subspecies, on the basis of a greater measured 28 

body length in the Southern Hemisphere form. Subsequent investigation (21) found no 29 

significant variation in lengths between oceans and, along with a later review of cetacean 30 

taxonomy (22), concluded that there was insufficient evidence for subspecies. Multiple 31 
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lines of evidence for genetic divergence (22) or the diagnosis of fixed character 1 

differences (23) could be a reason to revisit their status.  2 

 3 

Unlinked nuclear DNA markers provide multiple independent lines of evidence for 4 

reconstructing evolutionary histories of population structuring within species (24). Here 5 

we assess the genetic evidence for humpback global population structure, using the 6 

largest global genetic dataset for this species to date, including eight nuclear loci 7 

(~3,700bp in total length) from more than 70 individuals and mtDNA control regions 8 

from more than 2,900 individuals inhabiting all three ocean basins. We use conventional 9 

frequency and coalescent based population genetic approaches to (i) describe the pattern 10 

and magnitude of organismal (mtDNA) and gametic (nuclear DNA) gene flow between 11 

oceans, and (ii) estimate the time frame of radiation of extant humpback whale lineages. 12 

We consider these patterns of gene flow in the context of the criteria currently recognized 13 

as defining sub-species for cetaceans. 14 

 15 

2. METHODS 16 

(a) mtDNA and nuclear datasets 17 

Sequences spanning 465bp of the mtDNA control region were compiled from North 18 

Pacific (5, 25, n=396), South Pacific and south-eastern Indian Ocean (13, n=804), south-19 

western Atlantic (26, n=48), south-western Indian Ocean (27, n=1,137) and western 20 

North Atlantic (25, 28, n=348) studies. Blue (Balaenoptera musculus) and fin (B. 21 

physalus) whales were used as outgroups in phylogenetic reconstructions (GenBank 22 

AY582748, NC_001321, NC_001601 and AY582748) following (29). Sequences were 23 

aligned by eye in MacClade v4.0 (30). Another mtDNA dataset was assembled from 24 

shorter sequences, allowing greater sample representation from North Atlantic locations 25 

(3, 4, n=246); on alignment these overlapped with the 465bp worldwide dataset by 26 

285bp. Eight nuclear loci (ACT, CAT, CHRNA1, ESD, FGG, GBA, LAC and RHO; 27 

GenBank GQ407914-408186) were phased as described in Jackson et al. (25) for 70-80 28 

humpback whales worldwide (Figure 1). Exonic regions were excluded from analysis. 29 

ModelTest v3.7 (31) was used to determine the Akaike Information Criterion best fitting 30 

model for all datasets, with branch lengths included as parameters (32). 31 
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 1 

(b) Mitochondrial population structure and gene flow 2 

Nucleotide diversity (π) and haplotype diversity (h) were estimated following Nei (33) 3 

using Arlequin v3.1 (34). Differentiation between oceans was estimated using FST and φST 4 

with 50,000 matrix permutations. To correct for multiple substitutions, φST was adjusted 5 

using the Kimura 2-parameter + Γ mutation model (as supported by ModelTest for the 6 

humpback-only dataset). Hierarchical AMOVA tests were conducted to measure 7 

partitioning of variance (1) between oceans, (2) among regions (breeding and feeding 8 

grounds) within oceans, and (3) within regions (Figure 1). Two groupings were 9 

considered; (1) ‘5-oceans’ (North Pacific, South Pacific, North Atlantic, South Atlantic, 10 

Southern Indian Ocean) and (2) three ocean basins (‘3-oceans’: North Pacific, North 11 

Atlantic and Southern Hemisphere).  12 

 13 

The effective population size Θ and numbers of effective female migrants per generation 14 

2Nfmf (equivalent to Nemf) were estimated for both mtDNA datasets, partitioned by 3-15 

oceans and 5-oceans, using the Bayesian inference program MIGRATE-N v3.5.1 (35, 16 

36). Each oceanic partition was sub-sampled to generate computationally tractable 17 

datasets containing 150 and 200 animals. Sampling was stratified within each ocean basin 18 

or ocean so that roughly equal numbers of samples were randomly selected from each 19 

breeding or feeding ground. Analyses were run with four Markov chains and gamma 20 

distributed priors on 2Nfmf (range 0-20 for 3 oceans, 0-100 for 5 oceans) and Θ (range 0-21 

0.1). The heating scheme was set to temperatures 1.0, 1.5, 3.0 and 100,000.0. Analyses 22 

were conducted with 100 replicates, with 10,000 steps recorded every 100 generations 23 

and 50% burn-in, totalling 50 million retained parameter values. 24 

 25 

 (c) Mitochondrial phylogeny and divergence times 26 

A phylogeny of mtDNA control region sequences was reconstructed in Mr Bayes v4.0 27 

(37) using a HKY+Γ model of sequence evolution (as supported by ModelTest for 28 

humpback whales plus outgroups). Analysis was conducted for 25 million generations 29 

(sampling every 1,000 generations), with 10% discarded as burn-in and split frequencies 30 

monitored for convergence. Posterior parameter distributions were examined using 31 
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TRACER v1.5 (38).  1 

 2 

To estimate within-species divergence times, a humpback-only dataset was analysed in 3 

BEAST v1.7.4 (39), containing 150 individuals from each of the 5 oceans, chosen by 4 

stratified random sub-sampling as above. Since humpback whales exhibit complex sub-5 

structure, we tested the fit of three coalescent models: expansion, logistic and constant 6 

size, and to strict and relaxed lognormal clock rates. Analyses were run for 25 million 7 

generations. Bayes Factors were calculated in TRACER to determine the best fitting 8 

population model. We imposed a strict clock with a rate of 3.94% bp-1 million years 9 

(MY)-1 for the humpback control region as determined by phylogenetic approaches (25). 10 

To assess the impact of assumed substitution rate we repeated the analysis using a higher 11 

rate of substitution (mean 14.9% bp-1 MY-1), as estimated by Ho et al. (40) for bowhead 12 

whales using ancient DNA sequences. 13 

 14 

(d) Neutrality and population expansion 15 

Tajima’s D (41, 42) and Fu’s Fs (43) were estimated to test for selection (versus 16 

population neutrality) worldwide, and for haplotype clades within each ocean basin. 17 

Mismatch distributions were generated to test null hypotheses of population expansion 18 

for the Southern Ocean basin and for the three Northern Hemisphere mtDNA clades 19 

using Arlequin (34), with 1,000 bootstrap replicates.  20 

 21 

(e) Nuclear diversity, structuring and gene flow 22 

Nuclear heterozygosity was estimated for phased alleles and sequences (π), and. FST and 23 

φST estimates of differentiation between oceans and ocean basins were measured with 24 

50,000 permutations in Arlequin. We used Jombart’s Discriminant Analysis of Principal 25 

Components (DAPC, 44) in the R package adegenet to evaluate the level of support for 26 

different numbers of distinct genetic clusters (K=1 to K=20) in the absence of a priori 27 

ocean divisions. DAPC can discriminate complex patterns like hierarchical clustering or 28 

stepping stone structures- realistic possibilities since humpbacks exhibit fidelity to 29 

multiple migratory routes between various breeding and feeding areas. Sequential K-30 

mean clustering was applied to find the best-supported cluster size. All 21 principal 31 
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components (PCs) were retained initially. We then applied the discriminant function 1 

dapc, which constructs synthetic variables in order to maximise variation between, and 2 

minimise variation within, each cluster group. After inspecting the cumulative variance 3 

retained by the principal components, the a-score was used to calculate that 5 PCs are 4 

sufficient to characterise population structure. Based on these discriminant functions, 5 

posterior probabilities of membership to each of the three ocean basins (North Atlantic, 6 

North Pacific and Southern Hemisphere) were calculated for each individual and within 7 

each ocean basin.  8 

 9 

Population differentiation and partitioning of allelic variance was calculated: (1) within 10 

individuals, (2) among individuals within three ocean basins, and (3) among individuals 11 

between three ocean basins, using the standard AMOVA test in Arlequin (45). For this 12 

we included only individuals for which >75% of intronic loci had been sequenced. 13 

Effective population size for each ocean basin and effective numbers of migrants were 14 

co-estimated using MIGRATE-N (35, 36) with gamma distributed priors ranging 15 

between 0-0.1 and 0-20, respectively. Analyses were conducted for 100 replicates, with 16 

10,000 steps recorded every 1,000 generations and 50% removed as burn-in, totalling 500 17 

million parameter values retained. 18 

 19 

Extended nuclear DNA sequences (including intronic and exonic sequences described in 20 

25) were aligned with a selection of Balaenopteridae (blue, fin and Antarctic minke 21 

whales, B. bonaerensis) in MacClade (30). Patterns of allelic divergence between 22 

humpback, blue and fin whales were calculated using statistical parsimony networks with 23 

program TCS v1.21 (46). 24 

 25 

3. RESULTS 26 

The mtDNA control region sequences (length 465bp) were compiled for 2,733 27 

individuals worldwide (2,979 individuals at length 285bp). This corresponds to 1.3 mega-28 

bases (Mb) of data. The eight nuclear loci corresponded to 3.7 kilo-bases (Kb), yielding 29 

140-160 alleles per locus, a total dataset size of 663Kb (Table 1).  30 

 31 
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(a) Mitochondrial diversity and phylogeny 1 

Within the 465bp mtDNA control region dataset we found 85 variable sites, resolving 2 

219 haplotypes worldwide. The 285bp dataset contained 78 polymorphic sites, resolving 3 

209 haplotypes. In both cases, a number of sites have undergone multiple substitutions 4 

(‘hits’). At these mutational hotspots, phylogenetic signal may be diminished by the noise 5 

created by multiple mutations (including back-mutations). Nearly all haplotypes in the 6 

465bp dataset were private to an ocean basin, with only one haplotype shared between 7 

the North Atlantic and Southern Hemisphere and two shared between the North Pacific 8 

and Southern Hemisphere. Control region sequences showed no fixed ‘diagnostic’ 9 

substitutions unique to each ocean basin.  10 

 11 

Total worldwide nucleotide diversity π was 2.14% for the 465bp dataset. Ocean basin 12 

estimates of π were similar to those obtained in previous studies (1, 7): 1.13% in the 13 

North Pacific, 1.97% in the North Atlantic and 2.48% in the Southern Hemisphere 14 

(Supplementary Tables 1, 2). The 285bp control region dataset yielded higher global π 15 

(4.16%) because most variable sites in the 465bp dataset fall within the 285bp fragment. 16 

A similar pattern was observed for oceanic population size Θ, which was similar for both 17 

northern oceans at 285bp consensus length (0.009) but lower for the North Atlantic at the 18 

465bp length (0.004) compared to the North Pacific (0.007), probably as a consequence 19 

of more limited geographic sampling of the 465bp dataset.  20 

 21 

The Bayesian majority-rule phylogeny (Ts:Tv=43.4, α = 0.136) of the 465bp haplotypes 22 

supported the grouping of humpback mtDNA control region sequences into 4 previously 23 

recognised clades (Supplementary Figure 1; 1, 13). The largest clade is ‘CD’ (96% 24 

Bayesian posterior probability support, PP), which contains haplotypes from all oceans 25 

and includes a haplotype shared across the Pacific equator. The next largest (‘IJ’, 82% 26 

PP) includes haplotypes from all oceans except the north Pacific, and one haplotype 27 

shared across the Atlantic equator. The smallest clade, ‘SH’ (89% PP) includes only 28 

Southern Hemisphere haplotypes. A fourth ‘AE’ clade contains mostly North Pacific 29 

haplotypes, but fell as a basal polytomy. The 285bp dataset expands the haplotypic 30 

diversity of the North Atlantic ‘IJ’ clades (Table 1) and increases support for ‘IJ’ (100% 31 
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PP), while providing weak support for clade CD (72% PP), and none for SH and AE, 1 

likely due to a reduction in variable sites (Supplementary Figure 2). The phylogenetic 2 

interrelationships among clades are not consistent and weakly supported. This may be 3 

due to saturation of the control region obscuring true signal, or rapid radiation of clades 4 

close to the origin of the present day humpback mtDNA lineages.  5 

  6 

Bayes factors (BF) supported the constant size model over other growth models (BF > 4). 7 

Using the phylogenetically derived substitution rate (Figure 2), the median root age was 8 

880 Kya (95% PI 55-132 Kya). Northern ocean clades diverged from the Southern 9 

Hemisphere subsequently, with the earliest North Pacific clade radiating 170 Kya (95% 10 

PI 14-80 Kya) followed by a second radiation 70 Kya. The earliest North Atlantic clade 11 

radiated 87 Kya (95% PI 1.200-146 Kya), followed by subsequent radiation of two extant 12 

clades c. 55 Kya and 38 Kya. As the imposed molecular clock did not include any 13 

variance, however, these values provide only broad guidance rather than representing the 14 

full range of uncertainty. Using the ancient DNA-derived bowhead rate, the median root 15 

age was 232 Kya (95% PI 137-346 Kya) with the earliest northern ocean radiation (AE 16 

clade, North Pacific) dated to 47 Kya (95% PI 21-90 Kya) and the North Atlantic 17 

radiations ranging from 14-23 Kya (data not shown).  18 

 19 

(b) Neutrality and population expansion 20 

The null hypothesis of population equilibrium was rejected by Fu’s FS for the Southern 21 

Hemisphere and North Atlantic ‘IJ’ haplotype clade (Supplementary Table 4), suggesting 22 

that both populations expanded in the past. For the Southern Hemisphere the SSD test for 23 

spatial (but not sudden) expansion was rejected, suggesting humpbacks may have 24 

undergone a sudden expansion in this ocean. For the ‘IJ’ clade, the test for sudden 25 

expansion was rejected, so this clade may have instead undergone a spatial expansion. 26 

Alternatively, true history may have involved more complex expansion scenarios not 27 

captured by these tests.  Spatial and sudden population expansions were rejected for the 28 

North Atlantic ‘CD’ clade, which is estimated to diverge into the North Atlantic more 29 

recently than the ‘IJ’ clade. Test statistics do not support long-term expansion of any 30 

North Pacific clades. 31 



 10 

 1 

(c) Mitochondrial oceanic differentiation and gene flow 2 

The hierarchical AMOVA showed strong differentiation among oceans (Supplementary 3 

Table 4). Greater differentiation was found between the three ocean basins (28% and 4 

10% of total molecular and haplotypic genetic variation respectively) than between five 5 

oceans (18% molecular, 6% haplotypic), suggesting that gene flow has been more 6 

restricted between inter-hemispheric oceans than across the Southern Hemisphere oceans 7 

(Supplementary Table 5). Molecular differentiation was greater than haplotypic 8 

differentiation in both cases, indicating that substantial genetic divergence as well as drift 9 

has been occurring between the three ocean basins (47). The level of overall molecular 10 

differentiation between five oceans was similar to that between individual breeding and 11 

feeding populations (around 18% of total variation), suggesting similar genetic 12 

divergence at both spatial scales, and in both cases much lower divergence than that seen 13 

at the inter-basin scale. 14 

 15 

The greatest population differentiation was found between the Northern Hemisphere 16 

oceans (mtDNA 465bp FST = 0.18, φST = 0.51 for 465bp mtDNA). Similar differentiation 17 

was found between the North Pacific and the three Southern Hemisphere oceans (all φST ≈ 18 

0.35; Table 2, Supplementary Table 6). Nucleotide differentiation of roughly half this 19 

magnitude was estimated between the North Atlantic and the three Southern Hemisphere 20 

oceans (φST = 0.16-0.18). This may be because the North Pacific clade ‘AE’ diverged 21 

from the Southern Hemisphere earlier than the North Atlantic clades (Figure 2). 22 

Differentiation among oceans of the Southern Hemisphere was two orders of magnitude 23 

weaker (Supplementary Table 6), with varying levels of differentiation between Southern 24 

Hemisphere oceans (Rosenbaum et al. submitted). 25 

 26 

Coalescent estimates of maternal gene flow between ocean basins were low (Figure 3). 27 

Gene flow (immigrants per generation) was slightly higher from the Northern 28 

Hemisphere to the Southern Hemisphere (~3 Nemf), with wider confidence intervals and 29 

an upper 95% boundary up to 8.5, compared to Southern Hemisphere movements into the 30 

North, with mean values of 0.6 – 1.1 Nemf and an upper 95% boundary of <2.8 (Table 3). 31 
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The 5-ocean analysis showed a similar pattern of restricted gene flow across the equator, 1 

but gene flow between the Southern Hemisphere oceans (Supplementary Table 6) was so 2 

high that Nemf values were truncated by the maximum upper boundary of the prior, 3 

indicating little restriction to migration flow.  4 

 5 

(d) Nuclear diversity and networks 6 

The numbers of alleles at each intron ranged from 2 (GBA) to 10 (RHO). A total of 50 7 

variable sites were identified across the entire dataset, of which six were 8 

insertions/deletions. Heterozygosity varied from 0.01 (LAC) to 0.22 (RHO). Within-9 

ocean nucleotide diversity (π) ranged thirty-fold across nuclear loci, from 0.00% (LAC) to 10 

1.32% (RHO). Average worldwide genomic π was 0.22%. Within ocean basins, mean π 11 

diversity was 0.09% in the North Pacific, 0.16% in the North Atlantic and 0.12% in the 12 

Southern Hemisphere (Table 1).  13 

 14 

Most common alleles were found in similar frequencies among the three oceans 15 

(Supplementary Figure 3). A number of region-specific (‘private’) alleles were found in 16 

the Southern Hemisphere but there were no fixed or diagnostic differences. One highly 17 

divergent actin allele (48) is widely distributed and relatively common. This allele is 18 

equidistant between fin and humpback whale clades (average distance to these is 0.012-19 

0.013), while average distance within the humpback clade is 0.006. The allele could 20 

represent an ‘ancestral’ balaenopterid lineage which originated prior to the evolutionary 21 

radiation of humpbacks and which might be under selection, considering the absence of 22 

closely related alleles. Alternatively the allele could be divergent due to past genetic 23 

introgression from other balaenopterids, e.g., by hybridization. CAT and ESD were 24 

strongly differentiated from nearest neighbours (8 and 19 mutation steps respectively 25 

from humpback whales). For other loci, the distance to outgroups was less than or equal 26 

to the maximum distance between alleles within humpbacks. Divergences among 27 

balaenopterids are therefore low for most loci, reflecting a slow mutation rate (25) and 28 

possibly also inter-species introgression (e.g. 49).  29 

 30 

(e) Nuclear oceanic differentiation 31 
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A weaker pattern of oceanic differentiation was seen in the nuclear dataset, compared to 1 

mtDNA (Supplementary Tables 8 and 9), with overall FST=0.12 between the 3 ocean 2 

basins. When the Southern Hemisphere was partitioned into south-eastern Indian Ocean 3 

and South Pacific regions, this reduced to FST=0.06. Levels of differentiation between 4 

Northern Hemisphere oceans (combined nuclear FST = 0.15) were similar in magnitude to 5 

those obtained for mtDNA, while differentiation between the two northern oceans and 6 

Southern Hemisphere was much weaker (combined nuclear differentiation from North 7 

Pacific and North Atlantic was FST = 0.05 and 0.09 respectively, Table 2). No significant 8 

FST or φST differentiation between the south-eastern Indian and South Pacific oceans was 9 

detected by any nuclear loci.  10 

 11 

DAPC analyses yielded 6-9 clusters as a good fit to the dataset. In each repeat analysis 12 

over K=6-9, a Southern Hemisphere-only cluster and predominantly North Atlantic 13 

cluster were stably recovered. Probabilities of membership within each ocean were all 14 

over 70% when 5 PCs were used (Supplementary Figures 4 and 5).  15 

 16 

Coalescent estimates of Θ across loci (Supplementary Table 10) revealed a pattern of 17 

lower diversity in the Northern Hemispheres and higher diversity in the Southern 18 

Hemisphere. Coalescent migration rates between ocean basins (Figure 3) were slightly 19 

lower than those obtained from mtDNA, but in a very similar magnitude range, with 20 

upper percentiles <4 migrants per generation. Similarly to mtDNA, gene flow into the 21 

Southern Hemisphere was greater than gene flow into the North Atlantic, but unlike 22 

mtDNA there was fairly symmetrical nuclear gene flow estimated between the North 23 

Pacific and Southern Hemisphere.  24 

 25 

 26 

4. DISCUSSION  27 

Genetic diversity- cultural maintenance? 28 

Our diversity metrics reveal higher mtDNA nucleotide genetic diversity in humpbacks 29 

than other baleen whales (50-54), with comparable levels only found in the southern right 30 

whale (55). High nucleotide diversity may reflect large ancestral population sizes (53), or 31 
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may be driven by strong population structuring and restricted gene flow between 1 

populations. For humpback whales and southern right whales (55), mtDNA haplotype 2 

frequencies show marked differences between breeding/calving grounds. Photo-3 

identification and genetic evidence suggests that this is driven by maternal fidelity to 4 

natal breeding grounds (e.g., 12), so this behaviour may be the major driver influencing 5 

high global mtDNA diversity levels. In contrast, nuclear genetic diversity of humpbacks 6 

by ocean basin is lower than comparable estimates in Antarctic minke whales (15), but 7 

similar to levels estimated for gray whales (54), suggesting that humpbacks and gray 8 

whales may have had smaller past population sizes or a greater loss of diversity as a 9 

consequence of population bottlenecks due to whaling.  10 

 11 

Gene flow of baleen whales across the equator 12 

Strongly significant mtDNA differentiation of humpbacks in each of the world’s ocean 13 

basins indicates that extensive genetic drift and mutational divergence has occurred 14 

between populations. However much more divergence has occurred between inter-15 

hemispheric ocean basins, suggesting that each basin is isolated by equatorial barriers to 16 

movement. Our inter-population divergence levels are consistent with previous analyses 17 

finding significant differentiation and sometimes also divergence between breeding 18 

populations (13, 27), but here we demonstrate that humpback divergence between ocean 19 

basins is an order of magnitude greater, strong enough even to drive population 20 

differentiation in slowly evolving nuclear intronic genes. Recent worldwide analyses of 21 

fin whale mitogenomes also showed strong population divergence between the North 22 

Pacific, North Atlantic and Southern Ocean, suggesting similar restrictions to trans-23 

equatorial gene flow for fin whales (56). Levels of mutational divergence (φST), between 24 

the North Pacific and North Atlantic humpbacks are equivalent to divergence between 25 

right whale species inhabiting the Southern Hemisphere and North Atlantic ocean basins 26 

(51). However in contrast with right whales, no diagnostic mtDNA or nuclear sites have 27 

been identified between the two Northern Hemisphere oceans in this study for humpback 28 

whales.  29 

 30 
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Two types of gene flow have been measured in this study– gametic (from nuclear DNA) 1 

and female-mediated organismal (from mtDNA). If gene flow occurs as a result of 2 

whales from the two hemispheres mating at the extreme edge of their wintering seasons, 3 

such exchange would only be detected using nuclear genes since females remain in their 4 

natal hemispheres. Estimates of gene flow from the Southern to the Northern Hemisphere 5 

are similar for both nuclear and mtDNA (<1.6 migrants per generation), suggesting that 6 

both organismal and gametic exchange is infrequent and is not sex-biased (e.g., R~1, 57). 7 

The low migration rates reported here could be a consequence of regular, low level 8 

genetic exchange, or no regular exchange but occasional pulses of migrants over time, 9 

possibly as a consequence of unusual oceanographic or environmental conditions. 10 

Surprisingly, female-mediated gene flow is slightly higher than biparental gene flow 11 

across the Atlantic equator. Females crossing the equator are more likely to produce 12 

offspring than males (since males compete for mates), so this may be the driving 13 

mechanism. This suggests migration across the equator may have been more influential 14 

in determining Atlantic gene flow than mating on common wintering grounds (which 15 

would not be reflected in mtDNA gene flow).  16 

 17 

In all cases, southward migration across the equator was higher, though not significantly 18 

so, than northward migration. Oceanic shifts in temperature shifted upwelling centres 19 

during periods of glacial expansion, which may have reduced available habitat in many 20 

Northern Hemisphere areas (e.g., 58, 59). This reduction may have led to southward 21 

shifts in humpback distribution both on feeding grounds and possibly also breeding 22 

grounds, increasing the chance of southward gene flow.  23 

 24 

Oceanic subspecies? 25 

Reeves et al. (22) recommended that the ranking of subspecies be used to “embrace 26 

groups of organisms that appear to have been on independent evolutionary trajectories 27 

(with minor continuing gene flow), as demonstrated by morphological evidence or at 28 

least one line of appropriate genetic evidence”. We consider that oceanic populations of 29 

humpback whales meet these criteria. Two lines of genetic evidence support an 30 

independent evolutionary trajectory for humpback whales in the three ocean basins: 1) 31 
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differentiation and divergence of mtDNA, reflecting low organismal gene flow; and 2) 1 

differentiation of multiple nuclear DNA loci, reflecting reproductive isolation.  2 

 3 

(1) Mitochondrial DNA control region data shows strong divergence between ocean 4 

basins, with only 3 haplotypes shared between the ocean basins in the 465bp dataset. 5 

Although there are no diagnostic sites, nor reciprocal monophyly of haplotypes between 6 

ocean basins, coalescent-based measurements of inter-oceanic gene flow by females are 7 

<1 migrant per generation between some oceans with a maximum of <4 migrants per 8 

generation. 9 

 10 

(2) Nuclear DNA shows evidence of differentiation of allele frequencies and mutational 11 

divergence, although no diagnostic differences between ocean basins are present. The 12 

latter is unsurprising considering the slow rates of mutation estimated for these loci 13 

(0.05%/MY, 25). However nuclear loci can be used to assign individuals to ocean basins 14 

(>70%), and estimates of nuclear (bi-parental) gene flow are <1 whale per generation 15 

between some oceans and a maximum of <2 migrant whales per generation in all 16 

comparisons, despite the relatively slower rate of genomic drift compared to mtDNA. 17 

These low rates suggest that populations in different ocean basins have been 18 

reproductively isolated, as well as isolated by maternal traditions within oceans. 19 

 20 

Based on our results, and given the potential revision into oceanic subspecies, we propose 21 

the following names: M. n. kuzira (Gray, 1850) for the North Pacific, M. n. novaeangliae 22 

(Borowski, 1781) for the North Atlantic and M. n. australis (Lesson, 1828) for the 23 

Southern Hemisphere (60).  24 

 25 

Pleistocene divergence and expansion  26 

While the radiation of current worldwide humpback lineages lies within the Pleistocene, 27 

more precise dates remain uncertain. Phylogenetic substitution rates (25) place these 28 

divergences within the timeframe of the last million years, with colonisation of the 29 

northern oceans by modern mtDNA lineages within the last 200,000 years. Relative clade 30 

ages suggest that modern lineage divergence into the North Pacific came earliest- the 31 
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‘AE’ clade is estimated to radiate c. 175,000 years ago, but diverges over 500,000 years 1 

ago from other haplogroups.  Multiple significant incursions are then made into both 2 

northern oceans in the last 100,000 years, once into the North Pacific and at least twice in 3 

the North Atlantic. Only in the North Atlantic ‘IJ’ clade is there evidence for northern 4 

population expansion; the data indicate a spatial (slow advance) expansion, rather than a 5 

rapid radiation, suggesting that this clade may have been the first to expand into the 6 

North Atlantic, possibly after retreating ice in the past. This is consistent with reports that 7 

the North Atlantic ‘IJ’ haplotype clade is more broadly distributed across the North 8 

Atlantic than the ‘CD’ clade (3, 7). Differences in female reproductive success may 9 

however also influence clade patterns in this ocean basin (e.g., 28). 10 

 11 

Despite the low mtDNA diversity of North Pacific humpbacks (1, 5), analyses of 12 

divergence times suggest an early split of the North Pacific ‘AE’ clade from other 13 

humpback lineages worldwide, estimating the earliest divergences within the ‘AE’ group 14 

>150,000 years ago. Population expansion metrics show no signs of a radiation, although 15 

none is rejected either. The low diversity of this clade may therefore be driven by non 16 

age-related factors. Prolonged periods at small population size may increase apparent 17 

population divergence due to genetic drift, although humpback whale substitution rates 18 

are low (25) so this effect would have to persist over many thousands of years. It has 19 

been suggested that whaling led to the reductions in genetic diversity currently observed 20 

in other matrilineal species such as right whales (55, 61) and bowheads (62). A recent 21 

bottleneck due to whaling, and/ or deeper historical factors (such as reduction of feeding 22 

areas during glacial periods) are possible explanations.  23 

  24 

There is a general debate over whether phylogenetic substitution rates are biased 25 

downwards when considering within-species radiations (e.g., 63). No calibrations within 26 

the species are available to test whether this is the case for humpback whales. Applying a 27 

within-species rate derived from bowhead whales via ancient DNA (40) yields much 28 

more recent divergence times among humpback clades. If such rates turn out to be more 29 

accurate, the timeframe of radiations would be much more recent, with for example the 30 

North Atlantic ‘IJ’ clade estimated to c. 55,000 years before present. A more 31 
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representative collection of mitogenomic sequences (e.g., 25) and additional estimates of 1 

population-level humpback mutation rates are required to resolve this uncertainty. Sea 2 

surface temperatures and ice sheet reconstructions of the last glacial maximum (LGM) 3 

suggest that in the North Atlantic the Norwegian Sea was reliably free of ice during the 4 

summer months (64) whereas the Gulf of Maine and Scotia Shelf regions show evidence 5 

of grounded ice reaching to the continental shelf edge during that period, c. 21-22,000 6 

years ago (58). Refugia in the eastern North Atlantic may therefore have been more 7 

extensive, although it is also possible that primary foraging areas were just shifted south 8 

during LGM periods. In the western North Pacific, cores from the Sea of Okhotsk suggest 9 

sea ice cover may have been perennial during the LGM (59), but data from areas to the 10 

east is patchy. Confidence intervals on our population expansion statistics are broad and 11 

do not exclude the possibility of post-LGM re-colonization, but considered in concert this 12 

evidence suggests de novo colonisation of the northern oceans by humpbacks after the 13 

LGM (>12,000 years ago) is unlikely and that humpback persistence in these regions has 14 

a much longer history. 15 

 16 
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Figure legends 1 
 2 
Figure 1. Worldwide distribution of humpback whale mtDNA source locations. 3 
Wintering regions (circles), feeding grounds (crosses) and migratory routes (gray 4 
circles) are shown. Double circles show nuclear DNA source locations. Double-5 
lined boxes denote ocean-basin groupings. 6 
 7 
Figure 2. Bayesian chronogram of divergence and radiation of humpback 8 
mtDNA haplogroups (465bp), identified as ‘CD’, ‘AE’, ‘IJ’ and ‘SH’ (following 9 
1, 13). North Atlantic clades are red, North Pacific clades are blue, and Southern 10 
Hemisphere clades are unshaded. Dashed lines show 95% posterior estimates of 11 
key divergence times.  12 
 13 
Figure 3. Posterior distributions of migration rates (Nem) between ocean basins 14 
from MIGRATE. MtDNA posteriors in black (465bp solid, 285bp dashed) 15 
represent mtDNA gene flow Nemf. NuDNA posteriors (red) represent nuclear 16 
gene flow (Nemf+m). Prior distribution = dashed gray.17 
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Table 1. Basic diversity estimates of nuclear genomic and mtDNA control region sequences used in this study. 1 
 ACT CHRNA1 GBA CAT LAC RHO ESD FGG Introns CR 465 CR 285 

# chromosomes (2n) 550 158 158 140 146 156 140 142 170 2733 2979 
Length (bp) 474 306 118 422 334 122 661 1008 3445 465 285 
# polymorphic sites 11 3 1 3 3 5 11 13 50 85 78 
# indels 1 0 0 0 0 2 2 1 6   
Alleles: North 
Atlantic 3(0) 2(0) 1(0) 2(0) 1(0) 10(4) 5(0) 4(1) 

 
22(21) 41(38) 

Alleles: North 
Pacific 4(1) 2(0) 2(1) 2(0) 2(1) 6(0) 5(1) 6(3) 

 
19(17) 18(16) 

Alleles: Southern 
hemisphere 7(3) 3(0) 1(0) 4(2) 3(2) 7(0) 7(2) 3(0) 

 
181(178) 153(148) 

Total # alleles 8 3 2 4 4 10 8 7  219 209 
Obs Heterozygosity 0.2418 0.0971 0.0127 0.1762 0.0137 0.2237 0.1286 0.0607 0.1983 0.9846a 0.9828a 

Standard deviation 0.2389 0.0073 0 0.2561 0 0.0790 0.1517 0.1256 0.1758 0.0006 0.0006 
π 0.0061 0.0010 0.0001 0.0013 0.0000 0.0132 0.0023 0.0008 0.0022 0.0214 0.0416 
SD 0.0035 0.0011 0.0006 0.0012 0.0002 0.0087 0.0015 0.0006 0.0012 0.0108 0.0208 
DLP 465 and 285 refer to the two mtDNA datasets, ‘Introns’ shows statistics summed over all intronic loci. Numbers in parentheses 2 
represent alleles private to each ocean basin. Levels of nucleotide diversity (π) and their standard deviations (S.D.) are reported. a 3 
Haplotype diversity is reported for the control region dataset. 4 
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Table 2. Inter-ocean genetic differentiation of humpback whales at nuclear loci and the 465bp mtDNA control region 1 
 Southern Hemisphere North Pacific North Atlantic 
 mtDNA nuDNA mtDNA nuDNA mtDNA nuDNA 
SH 0.0248 0.0016 0.3193 0.0451 0.1613 0.0990 
NP 0.0858 0.0400 0.0113 0.0009 0.5164 0.1516 
NA 0.0926 0.0610 0.1755 0.1030 0.0197 0.0016 
FST and φST measures are shown below and above the diagonal respectively. Within-ocean diversity of each locus (π) is shown in the 2 
shaded diagonal (Tajima-Nei corrected pair-wise distances for introns, Kimura 2-Parameter correction for mtDNA control region 3 
sequences, α = 0.1364). Bold text indicates values significant at p < 0.05 after Bonferroni correction. 4 
 5 
 6 
 7 
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 1 
Table 3. MIGRATE Nem coalescent estimates of gene flow between ocean basins 2 

 3 

 nuDNA (4Nemf+m) is divided 4 for comparability with mtDNA. P. P. refers to posterior probabilities.  4 
 5 
 6 
 7 

 8 

9 

  Southern hemisphere (SH) North Atlantic (NA) North Pacific (NP) 
  Mean 95% P.P. Mean 95% P.P. Mean 95% P.P. 
465bp From SH   0.87 0.00-2.08 0.69 0.00-1.85 
 From NA 3.26 0.00-8.15   0.40 0.00-1.25 
 From NP 2.98 0.00-8.28 0.26 0.00-0.85   
285bp From SH   1.07 0.00-2.71 0.72 0.00-1.81 
 From NA 3.87 0.00-9.20   0.33 0.00-1.03 
 From NP 3.27 0.04-7.81 0.31 0.00-0.99   
nuDNA From SH   0.82 0.00-2.08 1.51 0.00-3.59 
 From NA 1.04 0.00-2.54   0.58 0.00-1.60 
 From NP 1.65 0.00-3.84 0.92 0.00-2.40   
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Figure 2. 2 
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Figure 3. 2 
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