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Abstract 1 

1. The phenology of many species has been shown to shift under climate change. However, 2 

because species respond at different rates, ecological communities may be disrupted leading 3 

to species extinctions and loss of ecosystem services. Hence, there is a need to monitor and 4 

understand phenological change.  5 

2. Population data, gathered by standardised monitoring schemes, can be used to this end. 6 

However, such schemes require significant organisation and financial resources. Distribution 7 

data (georeferenced biological records with dates) are easier and cheaper to collect and may 8 

be an unexploited resource for phenology analyses. This would allow analysis of more taxa 9 

from more regions of the world. However, distribution data are potentially biased due to the 10 

unstandardized behaviour of biological recorders. 11 

3. Here, the ability of distribution data record dates to accurately predict phenology is 12 

investigated by using the British butterfly fauna as a model system. We used the total 13 

number of distribution records per unit time across Great Britain as a proxy for butterfly 14 

abundance. Phenology metrics of mean flight date and flight period length were then 15 

calculated from the resulting abundance-time relationships for each year in a 15-year time 16 

series. These estimates were validated against those generated from a standardised-effort 17 

population monitoring scheme. 18 

4. We analysed 1,078,328 records from 30 British butterflies and found that distribution data 19 

accurately predicted the mean flight date for 22 out of the 30 species tested. Flight period 20 

length was only predicted accurately for seven out of thirty species.  21 

5. We found a non-linear but consistent positive relationship between the accuracy of mean 22 

flight date estimates and sample size (number of records) at both inter- and intraspecific 23 

scales. Our results suggest that a threshold sample size of approximately 6,500 distribution 24 

records (430 per year) is a pragmatic compromise between accuracy and recording effort, 25 
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leading to little loss of accuracy in phenology predictions (an average decrease in accuracy of 1 

2.9 days was observed).  2 

6. The results suggest that distribution data are a potentially useful resource for phenology 3 

research. This may allow practitioners to monitor particular regions and previously 4 

unstudied species relatively cheaply using existing mapping schemes.  5 

 6 

Key Words: Distribution data; biological records; phenology, UK Butterfly Monitoring Scheme, 7 

Butterflies for the New Millenium  8 
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Introduction 1 

During recent decades it has become clear that climate change is having a significant effect on the 2 

phenology of many species (Parmesan 2006; Rosenzweig et al. 2007; Hill, Griffiths & Thomas 2011). 3 

These changes occur in the direction predicted under global warming scenarios (Parmesan 2006) and 4 

are likely to disrupt existing ecological communities as individual species respond at different rates 5 

(Walther et al. 2002; Root et al. 2003; Thackeray et al. 2010). Ultimately, this may lead to 6 

widespread extirpation and extinction (Thomas et al. 2004; Tylianakis et al. 2008; Willis et al. 2008). 7 

The potential for synergism between global change drivers, coupled with long term projections, 8 

makes predicting and monitoring the effects of climate change on phenology a key issue for 21st 9 

century biologists (Balmford et al. 2005; Visser 2008; Miller-Rushing et al. 2010). 10 

A major challenge concerning biodiversity monitoring schemes, many of which are designed to 11 

collect phenology data, is the considerable effort required on the part of professionals and 12 

volunteers to achieve adequate levels of temporal and spatial coverage that will allow large scale or 13 

long term trends to be revealed (Thomas 2005; Fox et al. 2006). This problem is particularly true of 14 

invertebrates, which are often neglected by conservation biologists and funding bodies (Clark & May 15 

2002; Leather 2009), yet is also present in a range of other taxa and geographic regions. Additionally, 16 

it is not expected that different species will adjust their phenology in the same direction or in 17 

response to the same cues (Bale et al. 2002; Visser & Both 2005; Doi, Gordo & Katano 2008), and so 18 

the focus on a small number of charismatic taxa or well-funded regions inevitably ignores the true 19 

scope of phenological change. Furthermore, the consequences of shifting phenologies need to be 20 

understood in the context of concurrent change in other species and environmental variables (Visser 21 

& Both 2005). This point may be particularly salient given that different trophic levels and interaction 22 

partners are known to respond to climate change at different rates (Van Nouhuys & Lei 2004; 23 

Memmott et al. 2007; Both et al. 2009; Thackeray et al. 2010). These unequal phenological 24 

responses are likely to influence species demography and ecosystem processes in novel ways that 25 
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may not be fully understood without data on multiple nodes within the ecological web. 1 

Consequently, we have an incomplete picture of the global phenological response to climate change.  2 

In order to address these gaps in our knowledge, distribution data may prove useful. Distribution, or 3 

‘atlas’, data are spatially and temporally explicit information on a species occurrence and are 4 

commonly used to create regional distribution atlases of specific taxa (Robertson, Cumming & 5 

Erasmus 2010). Distributions are mapped from the presence of at least one recorded occurrence 6 

within a specified grid cell (Araujo et al. 2005). These records may be obtained through the 7 

extraction of museum specimen data (Funk & Richardson 2002), the use of historical records (Hassall 8 

et al. 2007), the submission of casual  species observations or through nationally coordinated 9 

surveys (Harding & Sheail 1992; Fox et al. 2006). Crucially, such data are a record only of species' 10 

presence and, thus, are different from more detailed presence-absence distribution data obtained 11 

from intensive standardised surveys.  12 

Whilst they contain less information than detailed population monitoring data, distribution data are 13 

available for a greater range of taxa and geographic regions and, often for longer time periods 14 

(Thomas 2005; Robertson, Cumming & Erasmus 2010; www.gbif.org). Additionally, it may be 15 

logistically easier to collect meaningful volumes of this data type than adequately standardised and 16 

replicated population estimates. As distribution records have dates attached they can be analysed in 17 

a temporal context. In theory, one might interpret the number of distribution records available for a 18 

species throughout a time-series in an analogous fashion to population abundance data. Both data 19 

types may produce an abundance-time distribution of a species within a year from which phenology 20 

metrics may be drawn.  21 

There has been some interest in the potential of distribution data to reveal phenological patterns 22 

(Hassall et al. 2007; Carroll et al. 2009; Altermatt 2010; Poyry et al. 2011), but no rigorous test of its 23 

utility in such a role. Validation tests are crucial as distribution data are likely to be highly biased in 24 

space and time. In space, data may be influenced by recorder effort (Dennis, Sparks & Hardy 1999), 25 
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the visual apparency of target species (Dennis et al. 2006) and the expected species richness of a site 1 

(Dennis & Thomas 2000).  2 

There are also a number of biases specific to the application of distribution data to phenological 3 

research. These will not be apparent when using distribution data for its original purpose and are 4 

related to the behaviour of biological recorders. Within years there is often a drive amongst 5 

recorders to collect the first record of a species within a year (http://www.butterfly-6 

conservation.org/text/853/first_sightings_2012.html). Recorders may also lose interest in a 7 

particular species as a season progresses and may have renewed interest in unusual late events. 8 

These effects may bias phenology estimates derived from distribution data.   9 

The magnitude and influence of these biases are unknown due to the lack of data on actual recorder 10 

effort and the implementation of standardised collecting protocols. A key strength of distribution 11 

data however, is that their collection is not hampered by adhering to rigorous controls and so spatial 12 

and temporal coverage can be much greater than for standardised surveys. In the UK, for example, 13 

the standardised monitoring scheme for butterflies covers around 1000 active sites. Butterfly 14 

distribution data, on the other hand, covers 3834 unique 10km UK grid squares. The greatest 15 

potential strength of distribution data for phenology research, however, comes from its taxonomic 16 

scope. Distribution data are available for a much wider range of taxa than the Lepidoptera, birds and 17 

bats, which comprise the major population monitoring schemes. Despite the expected shortcomings 18 

in the application of distribution data to temporal research, the question remains over whether any 19 

phenological signal is strong enough to penetrate potential biases and produce reliable estimates. 20 

The British butterfly fauna provides an ideal system within which to answer this question. The UK 21 

has a spatially and temporally extensive butterfly distribution dataset generated by the Butterflies 22 

for the New Millennium (BNM) project (Fox et al. 2006). The aim of the BNM is to map the national 23 

distribution of species and, thus, to assess changes over time. The BNM was launched in 1995 and 24 

has run continuously with three major drives of record collection activity occurring during 1995 – 25 

http://www.butterfly-conservation.org/text/853/first_sightings_2012.html
http://www.butterfly-conservation.org/text/853/first_sightings_2012.html
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1999, 2000 – 2004 and 2005 – 2009. Over 7.5 million records have been collated. The scheme is 1 

operated through a network of volunteers and local co-ordinators who feed data to Butterfly 2 

Conservation. There is also a detailed and pioneering transect monitoring programme for butterflies: 3 

the UK Butterfly Monitoring Scheme (UKBMS) (Fox et al. 2006; Brereton et al. 2011). The UKBMS is a 4 

standardised scheme which has been in operation in some form since 1976. Volunteers undertake 5 

weekly transect walks which generate abundance measures for species on over 1000 sites across the 6 

UK (Brereton et al. 2011). Both these datasets have also played a large role in investigating the 7 

influence of climate change on butterflies (Parmesan et al. 1999; Roy & Sparks 2000; Menendez et 8 

al. 2006; Pateman et al. 2012). 9 

We assume that phenology estimates drawn from UKBMS data will give an accurate baseline against 10 

which BNM estimates may be compared. The UKBMS is designed to detect a range of population 11 

indices, including phenology metrics, and is temporally standardised. It must be remembered 12 

however, that the UKBMS itself is not infallible. Issues concerning the visual apparency of species 13 

may apply to both the UKBMS and the BNM datasets (Dennis et al. 2006). Indeed, the UKBMS fails to 14 

routinely produce population trends for a number of rare or visually unapparent species (Fox et al. 15 

2006).  A further limitation of the UKBMS is that it is spatially and temporally restricted. Although 16 

there are c. 1000 active sites, these may not capture all of the warmest microclimates across 17 

landscapes and, therefore, very early and late individuals may be missed. This is also exacerbated by 18 

the fact that transect monitoring only starts in April and runs until the end of September. 19 

Consequently, an increasing proportion of species flight periods may occur outside of the monitoring 20 

period as phenology shifts with the warming climate. These caveats must be kept in mind when 21 

commenting on the relative accuracy of BNM phenology estimates. 22 

In this study, two standard butterfly phenology metrics, mean flight date and flight period length 23 

(Stefanescu, Penuelas & Filella 2003), are calculated on both datasets for 30 univoltine species over 24 

a 15 year time period. We then compare the ability of BNM distribution data to predict phenology 25 
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estimates from the standardised UKBMS recording scheme. The influence of distribution record 1 

sample size on the relative accuracy of phenology estimates is also investigated and the potential 2 

application of distribution records in phenology monitoring is discussed. Due to the biases that may 3 

be present in distribution data it is expected that flight period length estimates will not be predicted 4 

well by the BNM. This metric is more likely to be sensitive to non-uniform recording effort 5 

throughout a year. Mean flight date estimates are hypothesised to be more robust to these biases 6 

and so are expected to be predicted well by the BNM.  7 

 8 

Methods 9 

DATA COLLECTION AND PREPARATION 10 

BNM and UKBMS data were supplied by the Centre for Ecology and Hydrology and Butterfly 11 

Conservation for the years 1995 – 2009 and the 30 univoltine species given in the appendix. Analyses 12 

were restricted to univoltine species due to the problems involved in calculating the phenology 13 

metrics for multivoltine species (Botham et al. 2008). Multivoltine species have two or more 14 

generations per year which may overlap. This can make the chosen phenology metrics meaningless 15 

as generations cannot always be objectively separated. All UKBMS records present in the BNM were 16 

removed. For both datasets the number of days since April 1st was calculated for each record. The 17 

UKBMS only monitors butterfly populations between April 1st and September 30th each year (Fox et 18 

al. 2006) and so the BNM was also restricted to this time frame to ensure fair comparison. This 19 

filtered and restricted BNM dataset consisted of 1,078,328 records (from 30 species over 15 years). 20 

Data were then aggregated to give an abundance (UKBMS) or record count (BNM) per day for every 21 

year, species and dataset. The phenology metrics of mean flight date and flight period length were 22 

calculated for each species in each year. These correspond to the weighted mean: 23 

   = ∑w /∑w 24 
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and standard deviation: 1 

   =  ∑ w  -   )2)  ∑w/∑ w)2-∑w2) 2 

respectively (Stefanescu, Penuelas & Filella 2003), where   is the number of days since April 1st and 3 

  is the total abundance per day recorded by the UKBMS or the number of BNM records. These 4 

metrics are used as the Gaussian phenology curve is specified by the mean and standard deviation. 5 

Both metrics are also commonly used in the study of phenology (Brakefield 1987; Roy & Sparks 6 

2000; Stefanescu, Penuelas & Filella 2003).  7 

We expect no systematic bias between the phenology estimates of the two datasets. Both schemes 8 

have comparable latitudinal distributions and there does not appear to be a pattern in the degree of 9 

accuracy of estimates through time (see appendix). 10 

TESTING BNM PREDICTIONS 11 

Observed estimates (UKBMS) were compared to predicted estimates (BNM) of each phenology 12 

metric and every species using type II major axis regression. Major axis regression is a more 13 

appropriate method than ordinary least squares regression when there is error present on both the 14 

x and y variables  and the aim is to compare observed to predicted values (Legendre & Legendre 15 

1998). Rather than minimise the sum of squares of vertical residuals as in OLS regression, MA 16 

regression minimises the sum of the squared Euclidean distances of data points to the regression 17 

line. BNM predictions were not considered to be significantly different from UKBMS estimates if 1) a 18 

significant (> 0.05) positive correlation existed between the two, 2) the 95% confidence intervals of 19 

the regression intercept encompassed zero, and 3) the 95% confidence intervals of the regression 20 

slope encompassed 1 (Mesple et al. 1996). Meeting these three criteria indicated that there was a 21 

good match between phenology estimates derived from the BNM and the UKBMS. Significance of 22 

the correlation coefficient was assessed using 999 permutations. Regressions were performed using 23 

the lmodel2 package in R (Legendre 2008).  24 
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 1 

INTERSPECIFIC VARIATION IN THE MISMATCH BETWEEN BNM AND UKBMS PHENOLOGY ESTIMATES 2 

The average absolute value of the difference between the UKBMS and BNM phenology estimates 3 

was calculated. This gave the average mismatch in days of mean flight date for each species. The 4 

95% confidence intervals around these means were also calculated. Sample size was extracted for 5 

each species over the 15 year time period. This is defined as the total number of BNM records for a 6 

given species summed over all years. The average mismatch for each species was then regressed 7 

against their sample sizes, as were the 95% confidence intervals. The absolute value of the 8 

confidence interval was used to represent the potential error above or below the mean. Variables 9 

were log transformed to meet parametric assumptions. This analysis was not performed for the 10 

flight period length estimates due to the poor ability of the distribution data to predict this metric 11 

(see results). Model predictions were compared across species with varying total sample sizes in 12 

order to locate a threshold number of BNM records that 1) did not predict an average maximum 13 

mismatch of greater than five days, 2) was smaller than the majority of species whose BNM 14 

predictions were successful, and 3) was greater than the majority of species whose BNM predictions 15 

did not match those of the UKBMS. An accuracy of at least 5 days was chosen as reported 16 

phenological shifts over similar time periods tend to be larger than this, ensuring that distribution 17 

data could detect phenological changes if they were present (Crick et al. 1997; Roy & Sparks 2000; 18 

Fitter & Fitter 2002). 19 

We tested for phylogenetic autocorrelation in model residuals using Moran I tests with Geary 20 

randomisations in the ade4 R package (Paradis 2006; Dray & Dufour 2007). We used 1000 21 

phylogenetic trees as described in Oliver et al. (2012), using closely related conger species where 22 

molecular sequences were not available for four out of the 24 butterfly species. For none of the 23 

iterations for either model was significant phylogenetic autocorrelation in residuals apparent. 24 



11 
 

INTRASPECIFIC VARIATION IN MISMATCH WITH ALTERED SAMPLE SIZE 1 

Species that were predicted successfully by the BNM and had a sample size greater than the 2 

threshold size determined in the previous section were subsampled to further investigate the 3 

influence of decreased sample size. Subsets of decreasing size were randomly extracted from the 4 

original BNM data for each species. This procedure gave 20 levels of subsampling, decreasing from 5 

100% in 5% increments. This randomisation was repeated 100 times to obtain the average mismatch 6 

in mean flight date and associated 95% confidence intervals for each subsampling level for each 7 

species. These mismatches and absolute confidence intervals were then regressed against the actual 8 

subsample sizes in the same way as described in the previous section. Data organisation and 9 

preparation took place in Microsoft Access and R. All analyses took place in R (R Development Core 10 

Team 2011). 11 

 12 

Results 13 

TESTING BNM PREDICTIONS 14 

Mean flight date: 26 out of the 30 species tested had a significant linear relationship between the 15 

UKBMS and BNM estimates (p<0.05) for mean flight date. Of these, 22 had 95% confidence intervals 16 

of the intercept that included zero and of the slope that included one.  Thus, the yearly predictions 17 

of mean flight date derived from BNM data are not significantly different from the UKBMS dataset 18 

for the majority of the British univoltine species. Figure 1 displays scatterplots and associated 19 

regressions for Anthocharis cardamines (Linnaeus, 1758) and Pyronia tithonus (Linnaeus, 1767), two 20 

example species randomly chosen from those which did not differ from a 1:1 line. Regression details 21 

and plots for all species are given in the appendix and slope estimates are displayed in figure 2.  22 

Flight period length: Seven out of 30 species had a significant linear relationship between the 23 

UKBMS and BNM estimates (p<0.05) for flight period length. All seven had 95% confidence intervals 24 
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of the intercept that included zero and of the slope that included one. This indicates that the yearly 1 

predictions of flight period length from each dataset are divergent for the majority of univoltine 2 

species.  Regression details for all species are given in the appendix. Figure 3 displays scatterplots 3 

and associated regressions for a successfully predicted and unsuccessfully predicted species: A. 4 

cardamines and P. tithonus, respectively. Plots for all species are presented in the appendix.  5 

  6 

INTERSPECIFIC VARIATION IN THE MISMATCH BETWEEN BNM AND UKBMS PHENOLOGY ESTIMATES 7 

Mean flight date: A significant positive linear relationship was found between log average mismatch 8 

between BNM an  UKBMS pre iction  an  log  pecie ’  ample  ize   f = 28, R2 = 0.28, t = -3.27, 9 

p<0.01, figure 4a). The average mismatch in mean flight date estimates decreases exponentially with 10 

increasing sample size. A similar relationship is also seen between the log 95% confidence intervals 11 

of the mean mismatch and log sample size, indicating that the error about mean flight date 12 

estimates also decreases with increasing sample size (df = 28, R2 = 0.43, t = -4.59, p<0.01, figure 4b). 13 

Combined, these results suggest a threshold sample size below which prediction accuracy rapidly 14 

deteriorates. Based on the criteria given above, a threshold of 6,500 records over 15 years predicts a 15 

maximum mismatch (mean mismatch + 95% CI) of 5.03 days. This threshold is also smaller than the 16 

sample sizes of 15 out of the 21 species predicted successfully by the BNM and is larger than six out 17 

of the eight species not predicted successfully by the BNM. The predicted mean mismatch and 95% 18 

CI at this threshold is 3.65 ± 1.38 days.  19 

 20 

INTRASPECIFIC VARIATION IN MISMATCH WITH ALTERED SAMPLE SIZE 21 

Mean Flight Date: By reducing records through subsampling, an increase in the average mismatch 22 

between BNM and UKBMS predictions was observed, alongside an increase in the 95% confidence 23 

intervals. This is consistent with the results from the previous section. For example, A. cardamines 24 
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showed a significant negative relationship between log subsample size and log average mismatch 1 

(df=18, R2=0.64, t=-5.73, p<0.01, figure 5a), as did P. tithonus (df=18, R2=0.87, t=-10.78, p<0.01, 2 

figure 5b). The only exception, was one species, Aphantopus hyperantus (Linnaeus, 1758), which 3 

showed no relationship. Details for all species are presented in the appendix. Species also showed a 4 

negative relationship between the size of the 95% confidence intervals around the mismatch and 5 

subsample size – similar to the interspecific analysis. Pyronia tithonus illustrates the general pattern 6 

of the results (df=18, R2=0.82, t=-9.2, p<0.01). Details for all species are presented in the appendix.   7 

As species were progressively subsampled they showed little increase in mismatch between BNM 8 

and UKBMS predictions of mean flight date whilst sample sizes were above the 6,500 record 9 

threshold. Across the 15 species that had sufficient initial sample size for this analysis the average 10 

increase in mismatch after subsampling to 6,500 records was 2.01 ± 0.28 [SE] days (Table 1). These 11 

increases in mismatch are predicted from the significant linear models described above, but their 12 

magnitude is incredibly small in terms of the number of days of mismatch that may be expected with 13 

smaller subsampling levels. 14 

 15 

Discussion 16 

It appears that distribution data may be useful for predicting phenology metrics. In this study, 17 

distribution data were able to accurately predict the mean flight dates derived from a standardised-18 

effort recording scheme for the majority of univoltine species (22 out of 30 species). Less successful 19 

however, was the prediction of flight period length. In only seven out of 30 species did distribution 20 

data accurately predict flight period. This is in accordance with our hypotheses. Furthermore, this 21 

study has shown that there is a consistent relationship between the degree of mismatch which may 22 

be expected between distribution data and a standardised-effort recording scheme, versus the 23 

number of distribution records being used. This relationship suggests a threshold sample size of 24 
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approximately 6,500 records beyond which prediction accuracy deteriorates rapidly. Below, we 1 

discuss potential reasons for the greater mismatch between the data types in certain cases and the 2 

wider applicability of distribution data in phenology research. 3 

 Firstly, the ability of distribution data to match the UKBMS predictions of mean flight date for the 4 

majority of species tested is remarkable given the temporal biases that are expected to be present 5 

within the BNM dataset. As discussed previously, these are largely related to the uneven distribution 6 

of records throughout time due to specific aspects of recorder behaviour. This study suggests that 7 

either these biases do not exist in a substantial form, or that the phenology signal is strong enough 8 

to be seen through them. Regardless, the results highlight that distribution data are an 9 

underexploited but potentially important resource for phenology research.  10 

Of the eight species whose BNM mean flight date estimates do not match those generated from the 11 

UKBMS, six had a sample size below 6,500. In these cases, a simple explanation of poor sample size 12 

may suffice. At these low sample sizes the potential biases in recorder behaviour may have become 13 

pronounced enough to overcome the strength of the phenology signal.  The issues associated with 14 

rarity may, however, equally be influencing the UKBMS estimates. If this is the case then the 15 

mismatches may be explained by the different magnitudes or directions in which the data types are 16 

influenced by rare species. For example, the UKBMS does not routinely generate population trends 17 

for Carteorocephalus palaemon or Melitaea cinxia. Both of these species are not predicted well by 18 

the BNM and have small sample sizes.  Alternatively, the better geographical coverage and fewer 19 

constraints placed on recorders may mean that the BNM provides a better estimate of phenology for 20 

some species. Further testing of population monitoring methods would be able to differentiate 21 

between these two possibilities.  22 

The BNM does not match the UKBMS estimates for Thymelicus lineola despite a relatively large 23 

sample size of 21,947 records. The reasons for the increased mismatch between the datasets for this 24 

species are unclear and further work investigating patterns of recording and monitoring in relation 25 
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to species traits may go some way to explaining the mismatch between the BNM and the UKBMS. 1 

However, generally speaking, the mean flight dates of widespread and relatively common species 2 

are predicted well by the BNM. 3 

The second key finding of this study is that flight period length is not predicted accurately by the 4 

BNM. For the flight period length analyses, the majority of species (16 out of 30) displayed a 5 

regression slope less than one (see appendix). Whilst most of these slopes were not actually 6 

significant, this trend indicates that the BNM estimates of flight period length tended to be greater 7 

than those of the BMS. This trend can be explained if recorders are oversensitive to a species outside 8 

of its peak abundance period. Individuals that are seen either early or late in the season could attract 9 

a higher number of submitted records due to the novelty or unexpectedness of being sighted. The 10 

flight period length will then be overestimated due to the inflated number of records at the extreme 11 

ends of the flight period. This offers only a tentative explanation for the inability of the BNM to 12 

predict flight period length, yet it is grounded in the temporal biases likely to be present within 13 

distribution data. In addition, the marginally broader latitudinal range of BNM records (appendix 14 

figure 4) and/or a greater range of microclimates sampled by the BNM may lead to greater variance 15 

about the mean and result in greater estimates of flight period length.  16 

Thirdly, our study finds a consistent pattern in the relationship between the average mismatch 17 

between distribution and transect data, and sample size. With decreasing sample size there is a 18 

trend for the average mismatches and their associated 95% confidence intervals to increase at both 19 

inter and intraspecific scales. This is an understandable and expected relationship. The true applied 20 

consequences of this, however, may not be appreciated without reference to the magnitude of the 21 

observed change. There is very little change in the expected accuracy as sample size is decreased 22 

above the threshold of 6,500 records. For example, at its original sample size of 132,647 records A. 23 

cardamines has an average mismatch of 2.26 ± 0.94 days. This increases to a predicted 2.3 ± 0.99 24 

days at a subsample size of 6,500. This is a 95.1% reduction in sample size with an average increase 25 
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in mismatch of 0.04 days and a potential maximum increase of 1.97 days. Similar patterns are seen 1 

for the other subsampled species (Table 1). This fact not only highlights the robust nature of the 2 

methodology, but also its potential use. An average of 430 records per year (the average number of 3 

records from 6,500 records over 15 years) could be an achievable target for a range of widespread 4 

taxa and geographic regions. For example, data from the NBN Gateway suggests that around 60% of 5 

butterfly species, 20% of moths and 50% of dragonflies meet the threshold number of records 6 

(figure 6). These numbers are encouraging but emphasize the continued need for large scale citizen-7 

science schemes, especially if we wish to understand the phenology of less well-studied taxa across 8 

the entire breadth of the ecological web. 9 

Additionally, the possible range over which distribution data estimates may deviate from transect 10 

generated estimates for those species succeeding the 6,500 threshold is on the scale of 7.29 11 

(Satyrium w-album Knoch 1782) to 0.64 days (P. tithonus). This margin of error tends to be below 12 

recorded long term (i.e. several decade) phenological changes for butterflies (Roy & Sparks 2000; 13 

Forister & Shapiro 2003; Stefanescu, Penuelas & Filella 2003), birds (Crick et al. 1997) and plants 14 

(Fitter & Fitter 2002). This suggests that distribution data could play a role in investigating long term 15 

changes. From our analyses, we suggest that species with a total sample size greater than 6,500 16 

records over 15 years (430 per year) should be appropriate for phenology analyses. 17 

Whilst these results are encouraging for the use of distribution data in detecting and monitoring 18 

butterfly phenology, they should not be limited to this taxon. In this study, only a single assumption 19 

has been made regarding the life history of the organisms. This is that the phenology event in 20 

question (e.g. butterfly emergence periods) follows a Gaussian distribution. Such a pattern is 21 

common for a wide range of phenological phenomena, a few individuals are relatively early or late 22 

whilst the majority fall toward the middle. This lack of complicating assumptions makes the 23 

application of distribution data to phenological research easily generalised. A caveat may be that the 24 

behaviour of butterfly recorders is fundamentally different from other biological recorders.  We see 25 
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no strong reasons, however, why this should be the case. In addition, future users of distribution 1 

data in phenological research should limit their work to spatial scales no larger than that used in the 2 

validation tests performed here. We also encourage the use of distribution data at smaller spatial 3 

scales as long as the threshold sample size is reached.  4 

In summary, this study illustrates the utility of using distribution data to predict aspects of a species 5 

phenology. Crucially, mean dates can be predicted well, whilst the range of time over which species 6 

are apparent (flight period lengths in this butterfly example) are not. These mean flight date 7 

predictions are robust and require relatively small sample sizes to achieve adequate levels of 8 

accuracy. This, coupled with the ease with which these types of data may be collected, suggest that 9 

distribution data can make a valid contribution to the continued monitoring and study of phenology 10 

in a range of taxa and locations.  11 
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Tables 1 

Table 1. Estimates for the mismatch in mean flight date between BNM and UKBMS datasets 
using either the original BNM number of records or subsampled to 6,500 records. For the 
subsampled data, estimates of mismatch and 95% confidence intervals in days are calculated 
from log-linear models of mismatch and 95% confidence interval versus subsample size over 
100 iterations. 

 
Average Mismatch ± 95% CI 

 

Species 
Original record 

number 
Threshold record 

number 
Percent reduction 
in record number 

Anthocharis cardamines 2.26 ± 0.94 2.3 ± 0.99 95.1 

Aphantopus hyperantus 2.52 ± 0.47 2.52 ± 0.57 93.72 

Argynnis aglaja 4.31 ± 1.22 4.34 ± 1.3 57.74 

Argynnis paphia 1.65 ± 0.52 1.74 ± 0.63 61.6 

Callophrys rubi 3.4 ± 1.55 3.48 ± 1.57 67.17 

Hipparchia semele 2.45 ± 0.93 2.52 ± 0.96 48.31 

Limenitis camilla 2.13 ± 0.94 2.16 ± 0.96 40.63 

Polyommatus coridon 2.94 ± 1.41 2.94 ± 1.43 41.18 

Maniola jurtina 3.59 ± 1.15 3.61 ± 1.19 97.77 

Melanargia galathea 2.45 ± 0.67 2.47 ± 0.77 82.75 

Favonius quercus 2.25 ± 0.91 2.37 ± 0.96 66.19 

Ochlodes sylvanus 1.24 ± 0.55 1.37 ± 0.61 91.75 

Plebejus argus 6.26 ± 2.49 6.21 ± 2.47 7.3 

Pyronia tithonus 0.55 ± 0.23 0.68 ± 0.29 96.09 

Thymelicus sylvestris 1.21 ± 0.35 1.26 ± 0.47 92.55 

 2 

 3 

 4 

 5 

6 
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Figures  1 

Figure 1. Mean flight date predictions of the BMS plotted against those of the BNM for a) 

Anthocharis. cardamines and b) Pyronia tithonus. Dotted red line marks the 1:1 line. Solid 

black line is the major axis regression line for each species. Dashed lines are 95% confidence 

intervals for the regression slope. 

Figure 2. Slope estimates ± 95% confidence interval for mean flight date regressions. Black 

points indicate species that conformed to a 1:1 line, indicating that distribution data (BNM) 

estimates matched those of the transect data (UKBMS). Grey points indicate species which did 

not conform to a 1:1 line. Species ordered from small to large sample sizes (total number of 

records). Red dashed lines marks a slope value of 1. Confidence intervals not included for those 

species whose mean flight date estimates were not significantly correlated. 
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1 

Figure  3. Flight period length predictions of the BMS plotted against those of the BNM for 

a) Anthocharis cardamines and b) Pyronia tithonus. Dotted red line marks the 1:1 line. Solid 

black line is the major axis regression line for each species. Dashed lines are 95% 

confidence intervals for the regression slope. 

Figure 4. a) Plot of average mismatch in mean flight date estimates between BNM and UKBMS 

datasets in days (m) against sample size (s): The fitted curve is the equation: log(m) = 3.38 – 

0.24*log(s). b) plot of 95% confidence intervals (CI) of the average mismatch against sample 

size: log(CI) = 2.94 – 0.30*log (s). In both plots, each point represents a single species and the 

vertical red dashed line indicates the selected 6,500 record threshold, below which prediction 

accuracy rapidly declines. 
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 1 

Figure 5. Plots of average mismatch in mean flight date estimates between BNM and UKBMS 

datasets in days (m) against subsample size (s) for A. cardamines (panel a; curve equation: 

log(m) = 0.89 – 0.01*log(s); and P. tithonus (panel b; curve equation: log(m) = 0.21 – 

0.07*log(s)). The dashed line refers to the 6,500 record threshold in both plots. 

Figure 6. Barplot to show the percentage of species from 

various taxa that reach the 6,500 record threshold. Data 

obtained from the NBN Gateway (data.nbn.org.uk, accessed 

January 2013). 
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Appendix 

Appendix Table 1. Mean flight date BMS versus BNM regression details for all species. Prediction accuracy indicates whether a 1:1 line is achieved in the 
regression. Prediction accuracy is assessed on the p value of the correlation coeffiecient r (p<0.05), whether the intercept confidence intervals encompass 0 
and whether the slope confidence intervals encompass 1. Sample size is the total number of BNM records between 1995 and 2009. 

Species Intercept 
2.5% CI 
Intercept 

97.5% CI 
Intercept Slope 

2.5% CI 
Slope 

97.5% CI 
Slope r p 

Prediction 
Accuracy 

Sample 
Size 

Anthocharis cardamines -0.89 -7.39 4.72 0.97 0.83 1.13 0.97 <0.01 1:1 132647 

Apatura iris -51.13 -293.86 26.32 1.48 0.74 3.78 0.64 0.01 1:1 2353 

Aphantopus hyperantus -10.98 -25.46 1.74 1.08 0.96 1.22 0.98 <0.01 1:1 103442 

Argynnis adippe 13.83 -30.11 44.93 0.86 0.57 1.28 0.84 <0.01 1:1 2042 

Argynnis aglaja -4.9 -49.5 26.61 1.01 0.71 1.42 0.87 <0.01 1:1 15382 

Argynnis paphia 9.99 -19.37 33.41 0.9 0.7 1.16 0.92 <0.01 1:1 16926 

Aricia artaxerxes -3.85 -44.26 24.75 0.99 0.7 1.4 0.87 <0.01 1:1 4002 

Callophrys rubi 9.97 -37.89 34.88 0.81 0.32 1.75 0.63 0.01 1:1 19796 

Carterocephalus palaemon -155.86 299.49 2.72 3.36 0.89 -3.72 0.31 0.28 - 1100 

Coenonympha tullia -119.61 -453.72 -28.26 2.12 1.18 5.56 0.66 0.01 - 3158 

Erebia aethiops 20.21 -28.44 55.71 0.86 0.58 1.23 0.86 <0.01 1:1 5642 

Erebia epiphron 31.14 -77.12 85.28 0.71 0.18 1.77 0.56 0.03 1:1 1151 

Euphydryas aurinia 34.21 3.1 59.95 0.33 0.03 0.68 0.54 0.04 - 6372 

Favonius quercus -0.28 -51.91 35.42 0.99 0.68 1.44 0.86 <0.01 1:1 19224 

Hesperia comma -130.75 -26654.4 36.83 1.95 0.73 195.67 0.47 0.07 - 2813 

Hipparchia semele -18.49 -156.07 46.81 1.16 0.63 2.28 0.71 <0.01 1:1 12575 

Limenitis camilla -23.08 -61.96 5.34 1.21 0.93 1.58 0.92 <0.01 1:1 10948 

Maniola jurtina -30.62 -85.57 6.69 1.3 0.97 1.79 0.89 <0.01 1:1 292134 

Melanargia galathea 2.27 -15.94 17.77 0.95 0.81 1.13 0.96 <0.01 1:1 37688 

Melitaea cinxia 23.54 -253.22 77.89 0.68 -0.19 5.08 0.44 0.17 - 716 

Ochlodes sylvanus 15.09 -1.94 29.55 0.83 0.68 1.02 0.95 <0.01 1:1 78797 

Plebejus argus -33.71 -114.3 11.29 1.28 0.82 2.09 0.8 <0.01 1:1 7012 

Polyommatus coridon 0.41 -111.42 60.5 0.98 0.51 1.84 0.71 <0.01 1:1 11050 
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Pyronia tithonus 6.19 -9.12 19.76 0.95 0.83 1.07 0.98 <0.01 1:1 166194 

Satyrium pruni -9.16 -60.01 22.24 1.11 0.72 1.73 0.85 <0.01 1:1 1105 

Satyrium w-album -180.54 -1210.19 -40.39 2.73 1.39 12.54 0.58 0.02 - 8715 

Thecla betulae 88.49 -0.56 149.34 0.44 0.01 1.07 0.49 0.07 - 5322 

Thymelicus acteon 34.67 -50.18 84.77 0.74 0.32 1.47 0.66 0.01 1:1 809 

Thymelicus lineola -27.51 -54.48 -5.64 1.23 1.03 1.46 0.96 <0.01 - 21947 

Thymelicus sylvestris -4.22 -20.11 9.69 1.03 0.9 1.17 0.98 <0.01 1:1 87266 

  



3 
 

Appendix Table 2. Flight period length BMS versus BNM regression details for all species. Prediction accuracy indicates whether a 1:1 line is achieved in 
the regression. Prediction accuracy is assessed on the p value of the correlation coeffiecient r (p<0.05), whether the intercept confidence intervals 
encompass 0 and whether the slope confidence intervals encompass 1. Sample size is the total number of BNM records between 1995 and 2009. 

Species Intercept 
2.5% CI 
Intercept 

97.5% CI 
Intercept Slope 

2.5% CI 
Slope 

97.5% CI 
Slope r p 

Prediction 
Accuracy 

Sample 
Size 

Anthocharis cardamines 0.26 -2.86 2.9 0.84 0.68 1.03 0.95 <0.01 1:1 132647 

Apatura iris 707.85 70.66 -55.17 
-

66.34 6.57 -5.46 -0.05 0.85 - 2353 

Aphantopus hyperantus -21.85 54.39 3.88 2.42 0.52 -3.19 0.31 0.26 - 103442 

Argynnis adippe -215.96 99.86 -31.37 13.8 2.81 -5 0.16 0.57 - 2042 

Argynnis aglaja -2.15 -36.7 9.58 0.93 0.27 2.88 0.54 0.04 1:1 15382 

Argynnis paphia -7.48 -97.77 7.48 1.31 0.44 6.52 0.52 0.05 1:1 16926 

Aricia artaxerxes -44.22 94.62 -0.09 3.05 0.82 -3.95 0.31 0.25 - 4002 

Callophrys rubi -133.47 107.18 -19.43 8.43 2.13 -4.87 0.22 0.44 - 19796 

Carterocephalus palaemon 7.5 -1 14.38 0.18 -0.38 0.86 0.21 0.48 - 1100 

Coenonympha tullia -46.86 NA NA 4.01 NA NA 0.06 0.82 - 3158 

Erebia aethiops 4.31 -5.16 10.55 0.38 -0.13 1.16 0.39 0.15 - 5642 

Erebia epiphron 7.61 -0.33 15.02 0.05 -0.6 0.75 0.05 0.85 - 1151 

Euphydryas aurinia 12.09 3.48 20.82 -0.04 -0.24 0.16 -0.12 0.68 - 6372 

Favonius quercus -33.42 69.26 3.11 2.71 0.62 -3.16 0.3 0.27 - 19224 

Hesperia comma 1.94 -3.81 5.85 0.67 0.32 1.18 0.71 <0.01 1:1 2813 

Hipparchia semele -298.06 329.05 -86.27 16.85 5.54 -16.64 0.29 0.3 - 12575 

Limenitis camilla 7.6 -2.82 15.01 0.3 -0.22 1.03 0.32 0.24 - 10948 

Maniola jurtina -1.36 -9.97 4.76 1.05 0.76 1.45 0.88 <0.01 1:1 292134 

Melanargia galathea -36.22 19.29 14.03 3.39 -0.12 -0.49 0.16 0.56 - 37688 

Melitaea cinxia 5.31 -5.87 13.72 0.3 -0.16 0.9 0.46 0.18 - 716 

Ochlodes sylvanus -0.52 -8.46 4.88 0.94 0.62 1.41 0.83 <0.01 1:1 78797 

Plebejus argus -23.46 976.82 -0.74 2.23 0.86 -58.04 0.47 0.08 - 7012 

Polyommatus coridon 271.98 90.18 -170.46 
-

16.29 11.78 -4.75 -0.24 0.38 - 11050 
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Pyronia tithonus -42.14 36.03 4.56 3.75 0.54 -1.62 0.2 0.47 - 166194 

Satyrium pruni 11.36 0.37 -12.85 -0.69 2.73 0.86 -0.32 0.31 - 1105 

Satyrium w-album -32.7 582.72 -2.28 2.26 0.84 -26.45 0.45 0.09 - 8715 

Thecla betulae 13.69 8.96 18.38 0.03 -0.09 0.15 0.17 0.56 - 5322 

Thymelicus acteon 7.93 -0.11 14.68 0.28 -0.04 0.65 0.46 0.09 - 809 

Thymelicus lineola -20.83 93.08 2.32 2.43 0.72 -5.98 0.37 0.17 - 21947 

Thymelicus sylvestris -0.97 -13.42 5.96 0.9 0.45 1.7 0.7 <0.01 1:1 87266 
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Appendix Table 3. Regression details for log average mismatch in days versus 
log subsample size. Subsamples generated through randomisation procedure.  

Species Intercept Slope df R.sq T.val.slope Slope.p 

Anthocharis cardamines 0.89 -0.01 18 0.65 -5.73 <0.01 

Aphantopus hyperantus 0.92 0 18 0.05 1.02 0.32 

Argynnis aglaja 1.59 -0.01 18 0.73 -6.91 <0.01 

Argynnis paphia 1.42 -0.1 18 0.81 -8.68 <0.01 

Callophrys rubi 1.52 -0.03 18 0.82 -9.2 <0.01 

Hipparchia semele 1.65 -0.08 18 0.8 -8.58 <0.01 

Limenitis camilla 1.45 -0.08 18 0.9 -12.63 <0.01 

Polyommatus coridon 1.47 -0.04 18 0.81 -8.62 <0.01 

Maniola jurtina 1.3 0 18 0.48 -4.07 <0.01 

Melanargia galathea 0.99 -0.01 18 0.45 -3.83 <0.01 

Favonius quercus 1.44 -0.07 18 0.88 -11.37 <0.01 

Ochlodes sylvanus 0.7 -0.04 18 0.89 -12.18 <0.01 

Plebejus argus 1.98 -0.02 18 0.6 -5.2 <0.01 

Pyronia tithonus 0.22 -0.07 18 0.87 -10.78 <0.01 

Thymelicus sylvestris 0.39 -0.02 18 0.73 -7 <0.01 
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Appendix Table 4. Regression details for log average mismatch 95% CIs in days versus log 
subsample size. Subsamples generated through randomisation procedure.  

Species Intercept Slope df R2 t p 

Anthocharis cardamines 0.13 -0.02 18 0.84 -9.78 <0.01 

Aphantopus hyperantus 0.1 -0.08 18 0.89 -12.24 <0.01 

Argynnis aglaja 1.09 -0.09 18 0.93 -15.33 <0.01 

Argynnis paphia 1.59 -0.23 18 0.97 -24.78 <0.01 

Callophrys rubi 0.64 -0.02 18 0.63 -5.5 <0.01 

Hipparchia semele 1.09 -0.13 18 0.9 -12.85 <0.01 

Limenitis camilla 0.73 -0.09 18 0.86 -10.63 <0.01 

Polyommatus coridon 0.82 -0.05 18 0.94 -16.13 <0.01 

Maniola jurtina 0.28 -0.01 18 0.77 -7.81 <0.01 

Melanargia galathea 0.55 -0.09 18 0.91 -13.39 <0.01 

Favonius quercus 0.56 -0.07 18 0.82 -9.16 <0.01 

Ochlodes sylvanus -0.14 -0.04 18 0.91 -13.85 <0.01 

Plebejus argus 1.29 -0.04 18 0.9 -12.76 <0.01 

Pyronia tithonus -0.55 -0.08 18 0.82 -9.19 <0.01 

Thymelicus sylvestris 0.31 -0.12 18 0.94 -16.67 <0.01 
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Appendix figure 1.  Mean flight date predictions of the BMS plotted against those of the BNM for all species. Dotted 

red line marks the 1:1 line. Solid black line is the regression line for each species; dashed black lines are the 95% 

confidence intervals around slope estimates. Species in bold with an asterisk (*) fitted a 1:1 line.  
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Appendix figure 2.  Flight period length predictions of the BMS plotted against those of the BNM for all species. Dotted 

red line marks the 1:1 line. Solid black line is the regression line for each species; dashed black lines are the 95% 

confidence intervals around slope estimates. Species in bold with an asterisk (*) fitted a 1:1 line. 
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Appendix figure 3. Slope estimates ± 95% confidence interval for flight period length 

regressions. Black points indicate species that conformed to a 1:1 line, indicating that 

distribution data (BNM) estimates matched those of the transect data (UKBMS). Grey points 

indicate species which did not conform to a 1:1 line. Species ordered from small to large 

sample sizes (total number of records). Red dashed lines marks a slope value of 1. Confidence 

intervals not included for those species whose mean flight date estimates were not 

significantly correlated. 
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Appendix figure 4. Distribution of UKBMS and BNM records with unique northings. a) shows 

raw northings, b) shows log transformed northings.  
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Appendix figure 5. Degree of mismatch between UKBMS and BNM datasets over time. There is 

is no consistent change in the accuracy of mean flight date (a) or flight period length (b) 

estimates through time. This suggests that there is no systematic temporal bias between the 

two datasets.  
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