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Abstract 31 

 32 

The lignocellulosic perennial grass Miscanthus has received considerable attention as a 33 

potential bioenergy crop over the last 25 years, but few commercial plantations exist globally. 34 

This is partly due to the uncertainty associated with claims that land use change (LUC) to 35 

Miscanthus will result in both commercially viable yields and net increases in carbon (C) 36 

storage. To simulate what the effects may be after LUC to Miscanthus, six process-based 37 

models have been parameterised for Miscanthus and here we review how these models 38 

operate. This review provides an overview of the key Miscanthus soil organic matter models 39 

and then highlights what measurers can do to accelerate model development. Each model 40 

(WIMOVAC, BioCro, Agro-IBIS, DAYCENT, DNDC and ECOSSE) is capable of 41 

simulating biomass production and soil C dynamics based on specific site characteristics. 42 

Understanding the design of these models is important in model selection as well as being 43 

important for field researchers to collect the most relevant data to improve model 44 

performance. The rapid increase in models parameterised for Miscanthus is promising but 45 

refinements and improvements are still required to ensure model predictions are reliable and 46 

can be applied to spatial scales relevant for policy. Specific improvements, needed to ensure 47 

the models are applicable for a range of environmental conditions, come under two 48 

categories: 1) increased data generation and 2) development of frameworks and databases to 49 

allow simulations of ranging scales. Research into non-food bioenergy crops such as 50 

Miscanthus is relatively recent and this review highlights that there are still a number of 51 

knowledge gaps regarding Miscanthus specifically. For example, the low input requirements 52 

of Miscanthus make it particularly attractive as a bioenergy crop but it is essential that we 53 

increase our understanding of the crop’s nutrient re-mobilisation and ability to host N-fixing 54 

organisms in order to derive the most accurate simulations.  55 
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Introduction 56 

 57 

Interest in the C4 perennial grass Miscanthus as a renewable energy source has grown 58 

significantly over the last two decades. Miscanthus has great potential for large scale 59 

deployment as a bioenergy crop, used either for electricity generation in power stations, or as 60 

a future renewable source of bioethanol (Heaton et al., 2008; Karp and Richter, 2011). It is 61 

native to South and East Asia, but has been shown to often produce high yields without 62 

fertiliser input across Europe and North America, and is tolerant to a range of climatic 63 

conditions (Clifton-Brown et al., 2004; Dohleman and Long, 2009; Strullu et al., 2011; 64 

Poeplau and Don, 2013). If Miscanthus plantations are established for bioenergy purposes, 65 

land use change (LUC) is inevitable and the influence that LUC has on soil carbon stocks and 66 

greenhouse gas (GHG) emissions is a key component of assessing sustainability within a 67 

bioenergy context. Carbon (C) accounting as a site management practice is becoming 68 

increasingly important (Borak et al., 2013) and consequently models need to become better in 69 

representing the full C cycle. Modelling of C dynamics in terrestrial ecosystems will 70 

undoubtedly become more comprehensive over time, but we are currently limited, not by our 71 

knowledge of the processes governing C transfer, but rather by the availability of reliable 72 

field data and high resolution large spatial datasets to test that understanding. This empirical 73 

data can be used to either validate the processes that govern a model’s simulation, or to verify 74 

the model's outputs and predictions. Therefore, a lack of validation data also means a lack of 75 

verification data, thereby creating questions about uncertainty quantification of current 76 

simulations. 77 

 78 

Modelling studies consistently report an increase in soil C stocks after LUC from most 79 

different land uses into Miscanthus (Don et al., 2012; Mishra et al., 2012) but empirical 80 
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studies of LUC to Miscanthus show mixed results: some show a notable increase in topsoil 81 

soil C stocks each year (Hansen et al., 2004) whereas others report no significant increase 82 

(Schneckenberger and Kuzyakov, 2007; Zimmermann et al., 2012; Zatta et al., 2013) or 83 

various changes including reductions (Poeplau and Don, 2013). Consequently, this 84 

discrepancy needs to be addressed so accurate predictions can be made about the 85 

environmental impacts of the LUC and the C budgets associated with Miscanthus plantations. 86 

Such uncertainties have helped contribute to the limited establishment of Miscanthus and it is 87 

imperative that before wide-scale deployment is undertaken, model outputs are verified by 88 

robust and wide-ranging field data. These empirical data are also needed to underpin 89 

validation of the mechanistic aspects of models predicting biomass yields and ecosystem C 90 

dynamics, with improved validation leading to reduced uncertainty. 91 

 92 

Validating model processes and verifying their outputs is particularly difficult for emerging 93 

non-native crops, like Miscanthus, as relevant field data is scarce. Current literature 94 

highlights that a lack of field data has limited 1) effective model parameterisation, 2) the 95 

quantification of model uncertainty, 3) inter-model comparisons and 4) the eventual 96 

application of Miscanthus models (Clifton-Brown et al., 2007; Miguez et al., 2009; Hastings 97 

et al., 2009b; VanLoocke et al., 2010; Cuadra et al., 2012; Miguez et al., 2012; Surendran 98 

Nair et al., 2012). 99 

 100 

The last decade has seen a rise in the number and sophistication of mechanistic models 101 

capable of simulating C dynamics of Miscanthus plantations, but there are still aspects of 102 

these models that can be improved. These include, but are not limited to, the longevity of soil 103 

C stocks and specifically newly sequestered soil C (Dondini et al., 2009), C losses and gains 104 

from roots, shoots and leaves individually (Foereid et al., 2004; Amougou et al., 2011), 105 
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nutrient remobilisation and associated N-fixation (Eckert et al., 2001; Cadoux et al., 2012; 106 

Keymer and Kent, 2013) and the increased uncertainty when scaling up simulations to larger 107 

spatial scales (Pogson, 2011). A number of applicable models have recently been reviewed 108 

by Surendran Nair et al. (2012), providing detailed model descriptions of how the models 109 

simulate biomass production and soil water, nutrient and C cycle dynamics for bioenergy 110 

crops in general. However, in this review, we focus the discussion only on models that have 111 

been parameterised and validated for Miscanthus simulations and specifically what 112 

measurements are required to improve model performance regarding soil C aspects of the C 113 

cycle. In addition to two models (WIMOVAC and Agro-IBIS) also discussed by Surendran 114 

Nair et al. (2012), we review four other models suitable for Miscanthus C studies (BioCro, 115 

DayCent, DNDC and ECOSSE). Further, we briefly discuss the current databases available 116 

for use with the models described and possible frameworks that may encourage and 117 

accelerate model development. 118 

 119 

Identifying existing models parameterised for Miscanthus 120 

 121 

A literature search was performed to identify existing C budget models that fulfilled all of 122 

five criteria. Models were required to be: 1) mechanistic in design, 2) parameterised and 123 

validated for Miscanthus plantations, 3) capable of both predicting crop yields and soil C 124 

dynamics, 4) published in a peer-reviewed journal or conference proceedings and 5) report 125 

outputs validated against field data. Mechanistic models were specifically chosen to allow 126 

greater flexibility when simulating the impacts of future climatic scenarios and changing 127 

environmental conditions. Similarly, mechanistic models are more transferable to the larger 128 

geo-spatial scales that policy decisions are often created for. Consequently, mechanistic 129 

models can play an important role in deciding whether Miscanthus is an appropriate crop for 130 
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geographically distinct regions (i.e. their climate and soil properties). Additionally, the ability 131 

for the models to simulate both yields and soil C dynamics was required because assuring the 132 

commercial viability of a Miscanthus plantation, and assessing its impact on net C emissions, 133 

are essential parts of a landowner choosing to establish Miscanthus over a more conventional 134 

crop. 135 

 136 

We identified five crop growth models parameterised for Miscanthus: WIMOVAC (Miguez 137 

et al., 2009), BioCro (Miguez et al., 2012), Agro-IBIS (VanLoocke et al., 2010), DayCent 138 

(Davis et al., 2010) and DNDC (Gopalakrishnan et al., 2012). In addition, the ECOSSE 139 

model (Smith et al., 2010a) is included as it is currently being adapted to simulate C budgets 140 

in a Miscanthus plantation (Jones et al., 2011). Of these models, WIMOVAC, BioCro and 141 

Agro-IBIS were originally created to simulate biomass production but have more recently 142 

had soil biochemistry and soil C incorporated in their simulations. Conversely, DayCent, 143 

DNDC and ECOSSE were all principally designed to simulate belowground nutrient cycling 144 

and have only included more complex plant growth routines recently. 145 

 146 

Considerations for Miscanthus model selection 147 

 148 

There are many factors to consider regarding model selection and here we highlight the key 149 

considerations for modelling Miscanthus C dynamics. We group these considerations into 150 

four categories: 1) model parameters, 2) scale, 3) inputs and 4) verification of model outputs. 151 

The models presented vary greatly in their approach to simulate the same ultimate outputs. 152 

For example, DayCent uses a continuous phonological development curve to allocate C 153 

assimilated into five pools of biomass (Davis et al., 2010), whereas Agro-IBIS applies three 154 

discrete development stages to calculate crop growth and partitions the C into three pools of 155 
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biomass (VanLoocke et al., 2010). Both approaches are valid but there are advantages and 156 

disadvantages to each which are discussed during Section 2 of this review. The general 157 

characteristics of each of the six models reviewed here are summarised in Table 1.  158 

 159 

Model parameters 160 

 161 

The research objective for a model may be to quantify a set variable but it is possible that the 162 

chosen model a) lacks the desired output (i.e. change in C stocks) or b) does not describe the 163 

output at the soil depth and/or timescale required (i.e. monthly change to the active soil C 164 

fraction/change in C at a certain soil depth increment). Therefore, early consideration of the 165 

models’ functionality is required to match expectations for use. As an example, WIMOVAC 166 

would be unsuitable to evaluate temporal variation between soil CO2 emissions and soil C 167 

content as the model calculates C losses by assuming a fixed fraction is lost and, relative to 168 

total C accumulation, C losses will always be the same. 169 

 170 

It is worth noting that the model parameters that determine many aspects of C transfer within 171 

the system (e.g. C assimilation, growth rates of the crop and SOM turnover rates) may change 172 

depending on the genetic variation of the Miscanthus species. The models discussed here 173 

have been parameterised and verified for Miscanthus giganteus and/or Miscanthus sinesis, 174 

but a number of genetic variants are being trialled in the UK to improve biomass production 175 

in less-than-optimal climatic conditions (Clifton-Brown et al., 2008; Robson et al., 2011). 176 

Studies indicate that it is possible that different genetic variants may respond differently to 177 

abiotic stresses (Borzęcka-Walker et al., 2008). Similarly, it is plausible that litter quantity 178 

and quality will vary, influencing C inputs to the soil. Consequently, to accurately simulate 179 
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crop growth and associated ecosystem C dynamics from these new variants, the existing 180 

models may need to be re-parameterised when sufficient field data is available. 181 

 182 

Inputs 183 

 184 

As well as considering the desired outputs for a model it is also important to ensure that the 185 

required data inputs to the model are readily available. All of the six models reviewed require 186 

inputs of site soil properties (Table 2) meaning if this data is unavailable for the desired 187 

resolution (see section 1.2.3. Scale) the model outputs may not be reliable. Similarly, five of 188 

the six models are able to interpolate daily inputs of known site characteristics when 189 

additional data are unavailable, whilst DayCent can only interpolate monthly inputs. 190 

Consequently, certain models will be more appropriate than others depending on the research 191 

question. The input data available to a modeller is an important consideration when choosing 192 

a model just as is the importance of ensuring any new data collection meets the demands of 193 

the chosen model. Therefore, knowing the input requirements of relevant models is an 194 

essential part of selecting the most appropriate model. Table 2 lists both the essential and 195 

optional inputs of each model, therefore simplifying the model comparison when choosing. 196 

For a model to operate to the highest attainable degree of accuracy, all required and optional 197 

inputs are suggested. 198 

 199 

Scale 200 

 201 

If a model has been created to operate at a certain spatial scale, the assumptions made, and 202 

conclusions that can be drawn, may not be valid at different spatial scales. Similarly, if high 203 

resolution temporal outputs are required, some models are able to interpolate this data while 204 



9 
 

others are not. All of the models discussed in this review operate at high temporal resolutions 205 

(daily time step or more frequently) but there is a greater variation among them with regards 206 

to the geo-spatial scales they were originally designed to operate at (see Table 1). Many of 207 

the models require site-specific conditions as inputs to drive the simulations, meaning that 208 

using information from a single site to represent a larger area will likely be an oversimplified 209 

approximation, resulting in unreliable projections. However, recent studies that attempt to 210 

upscale the models to large geo-spatial regions indicate reliable simulations can be driven 211 

with current databases. For example, MISCANFOR (Hastings et al., 2009a) - a mechanistic 212 

model designed to simulate Miscanthus biomass production - has been successfully used to 213 

simulate Miscanthus growth over 25 km grids using a number of different datasets for 214 

meteorological inputs and soil characteristics (Hastings et al., 2009b; Pogson, 2011; Pogson 215 

et al., 2012; Pogson et al., 2013). The model outputs were then related to geographic 216 

information system (GIS) maps at European and global scales with good agreement against 217 

empirical field data. 218 

 219 

The MISCANFOR model uses many of the same inputs of soil and meteorological data that 220 

the six models reviewed in this paper do, therefore indicating that each may cope with 221 

upscaling with similarly accurate outputs using the same datasets. That said, at present there 222 

is no robust dataset for soil C stocks at high spatial resolution and without this dataset models 223 

can only provide part of the ecosystem C budget. It is worth noting that generally, the fewer 224 

inputs required to drive the model, the easier the model will be to scale up to represent larger 225 

areas due to the limited number of databases available, but the less mechanistic the model, 226 

the less transferable its simulations are over large geo-spatial regions. Therefore, when 227 

applying a model to large spatial scales, some trade off will always occur between the 228 

datasets available and the inputs required by a model to achieve the highest accuracy 229 
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simulations. Most of the six models reviewed here have only been validated extensively at 230 

site scales. However Agro-IBIS is a dedicated dynamic global vegetation model (DGVM), 231 

and therefore is likely to be the most straightforward if the simulation of LUC, to and from 232 

other plant functional types, is required over ecosystem scales. 233 

 234 

Verification of model outputs 235 

 236 

At the field or plot scale, verifying a model’s reliability requires independent experimental 237 

verification data from the same location (Smith & Smith, 2007). However, since one of the 238 

main purposes of modelling is to upscale beyond measurement capacities (space and time), 239 

model verification through field data is often not possible. Therefore it is important to ensure 240 

that model outputs have been verified within a range of conditions to reflect the sites and land 241 

uses under consideration. Although the models reported in this review have been validated 242 

for various site conditions, there may be additional variables not included, or those described 243 

ineffectively. For example, Davis et al. (2010) found that parameters controlling the DayCent 244 

model's N-cycling simulation were insufficient for simulating Miscanthus growth at sites in 245 

Illinois, USA. Further experimentation concluded that the plant, or microbial symbioses, 246 

were fixing N which was, in turn, influencing yields. Consequently the DayCent model was 247 

calibrated to describe N-fixation differently, accounting for the experiment’s findings. 248 

Overall, since Miscanthus propagation is relatively recent, there is likely to still be much we 249 

do not know, particularly with regards to the retranslocation of nutrients after the crop’s 250 

growth phase (Beale and Long, 1997; Beuch et al., 2000) and potential N-fixation from the 251 

crop’s association with N-fixing organisms (Keymar and Kent, 2013). This emphasises the 252 

importance of researchers collecting targeted field data that can be used to accelerate model 253 

development and validation (Zhang et al., 2010; Surendran Nair et al., 2012).  254 
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Models parameterised for Miscanthus 255 

 256 

The six models identified share a number of similar internal components and represent many 257 

of the same ecosystem processes, albeit in different ways or with different levels of 258 

complexity (Table 1). For example, all of the models simulate plant growth, but only 259 

DayCent calculates Net Primary Productivity (NPP). The other models estimate C 260 

assimilation based on solar interception and Miscanthus-specific photosynthetic efficiency. 261 

Although the outputs from the models are similar, there are differences in how the C 262 

dynamics are simulated and allocated to plant biomass or soil C pools. In this section we give 263 

an overview of the six Miscanthus models and suggest the field data most relevant for 264 

improving model performance. Much of the discussion of model improvement is focussed on 265 

validating predictions of changes to soil C, nutrient translocation and N-fixation — the 266 

aspects of Miscanthus modelling where increased empirical data and improved understanding 267 

will have the greatest benefit on future simulations. 268 

 269 

Selected model descriptions 270 

 271 

WIMOVAC and BioCro 272 

 273 

First created as a generic crop growth model (Humphries and Long, 1995), WIMOVAC was 274 

parameterised for a Miscanthus plantation in England, UK and shown to realistically simulate 275 

biomass production at a number of discrete sites with varying climatic conditions across 276 

Europe (Miguez et al., 2009). More recently, a new version of WIMOVAC named BioCro 277 

has been developed; this is written in the programming language C, with an interface to work 278 

with it using the statistical package R. BioCro has since been used to simulate Miscanthus 279 
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biomass production across the contiguous United States (Miguez et al., 2012). Both versions 280 

represent biophysicochemical processes in detail and operate at an hourly time step, with 281 

some processes and state variables updated sub-hourly (e.g. C assimilation) (Humphries and 282 

Long, 1995). Parameterised for Miscanthus, the models follow a phenological growth routine 283 

comprising six development stages in accordance with the typical growth phases of grasses 284 

reported by Cao and Moss (1997): emergence, juvenile, induction, post-induction, flowering 285 

and post-flowering (Miguez et al., 2009). Progression through these stages is controlled by 286 

thermal time, or degree days (DD) and the growing season is defined as being from the last 287 

frost of the spring to the first frost of the autumn in accordance with Price et al. (2004).  288 

 289 

Both models are calibrated for C4 photosynthesis and use the biochemical approach of 290 

Collatz et al. (1992) for simulating the photosynthetic potential of the crop. Here, they 291 

calculate gross photosynthesis as a function of leaf temperature, intercellular CO2 partial 292 

pressure, and incident solar radiation. WIMOVAC and BioCro define the light extinction 293 

coefficient (k) using the sunlit and shade classes defined by Norman (1980) but applying an 294 

additional parameter to describe the ellipsoid arrangement of leaves (Miguez et al., 2009; 295 

Miguez et al., 2012). Further, the models divide the canopy into ten layers and compute the 296 

radiative conditions for each. The canopy function in BioCro can also be used to obtain 297 

information about assimilation, transpiration and conductance at different canopy levels. 298 

Biomass production is then simulated and allocated to four pools (leaf, stem, rhizome and 299 

root) according to fixed partitioning parameters specific to the phenological stage. Although 300 

WIMOVAC and BioCro are similar in many ways, biomass partitioning coefficients are 301 

handled differently, with BioCro capable of applying negative coefficients for all biomass 302 

pools. Additionally, one specific difference concerns the magnitude of C translocation away 303 

from the rhizome during the emergence and juvenile stages: WIMOVAC uses coefficients of 304 



13 
 

-0.1 and -0.08, respectively, whereas BioCro uses -0.0008 and -0.0005 for the earliest two 305 

stages, respectively. Further, BioCro has been modified to ensure positive and negative 306 

allocation coefficients sum to zero. Both models also separate the respiration associated with 307 

crop growth from respiration associated with crop maintenance, using a constant related to 308 

the plant structure (Miguez et al., 2009). 309 

 310 

In addition to C allocation within the crop biomass, C dynamics are also simulated for soil 311 

pools. The models separate soil C into active, slow and passive pools according to those of 312 

CENTURY (Parton et al., 1993). C losses from gaseous emissions and leaching are also 313 

accounted for by both models (Humphries and Long, 1995; Miguez et al., 2012). The models 314 

only account for mineralisation and immobilisation of nitrogen (N) thereby providing 315 

necessary information about N availability, but not a full account of the N budget. Similarly, 316 

soil water routines and the hydrological sub-model include only variables for the most 317 

important processes (Table 1). Since Miscanthus biomass production has been shown to be 318 

influenced greatly by water availability (Clifton-Brown and Lewandowski, 2000; Heaton et 319 

al., 2004; Richter et al., 2008; Oliver et al., 2009), it is worth noting that both WIMOVAC 320 

and BioCro use an empirical water stress response function based on that of Boyer (1970) but 321 

also accounting for the system’s energy balance and present growth phase. This function 322 

reduces stomatal conductance through a linear relationship to leaf water potential and soil 323 

moisture content, then alters biomass partitioning to roots when the Miscanthus-specific 324 

average daily plant water potential is below a fixed threshold value (Long et al., 1998). 325 

However, neither of the models account for stem death during periods of extended water 326 

stress (Miguez et al., 2009). 327 

 328 
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WIMOVAC and BioCro are very detailed mechanistic models, defining biophysiochemical 329 

interactions by the underlying processes. This makes both models advantageous in their 330 

transferability since the underlying processes do not change over spatial or temporal scales 331 

but disadvantageous when noting the substantial amount of data required to initialise the 332 

model for a specific site (Miguez et al., 2012). As a result, both models rely heavily on data 333 

published in only a few studies (e.g. Beale and Long, 1995; Beale et al., 1996; Naidu et al., 334 

2003). Consequently, to improve WIMOVAC or BioCro the most beneficial data would be 335 

that which could verify model outputs under environmental conditions discrete to those 336 

already reported. Intra-annual measurements of CO2 uptake rates and leaf area index (LAI), 337 

along with biomass accumulation in the four pools represented by the models would ensure 338 

validation of the key parameters influencing C assimilation as well as verification of the 339 

model’s outputs for biomass production and partitioning. A greater understanding of this 340 

partitioning can help us to know when is the right time to harvest aboveground biomass, 341 

maximising the landowner’s profits for a given year and acknowledging that inter-annual 342 

variability can influence Miscanthus yields by 10-25% (Price et al., 2004; Christian et al., 343 

2008). Typically, Miscanthus is harvested in early spring as the combustion quality of the 344 

biomass is higher and specifically the moisture content of the biomass is lower 345 

(Lewandowski and Kicherer, 1997; El Bassam and Huisman, 2001; Lewandowski and Heinz, 346 

2003; Lewandowski et al., 2003a). Unfortunately, since neither WIMOVAC nor BioCro 347 

currently simulate moisture content of the crop biomass, they cannot be used to predict the 348 

optimum harvest time with regards to moisture content. However, using a sorption model, 349 

such as the modified Oswin model used by Arabhosseini et al. (2010), coupled with the air 350 

temperature and relative humidity parameters already included within WIMOVAC or 351 

BioCro, moisture content for Miscanthus could be estimated depending on the environmental 352 

conditions of a specific site for a specific year. Unlike the issue of biomass moisture content, 353 
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quantifying Miscanthus’ unique properties regarding nutrient retranslocation and N-fixation 354 

is not so easily resolved within the models. That said, both models have had multisite 355 

validation and been verified against a number of sites across the USA, indicating that the 356 

current parameterisation and calibration of the models is at least accurate within the range of 357 

environmental conditions present in this region. However, empirical data regarding soil C 358 

stocks are still scarce and therefore to date there is no literature citing WIMOVAC or BioCro 359 

being used to simulate changes in soil C from sites discrete to those used to parameterise or 360 

initialise the models. 361 

 362 

Agro-IBIS 363 

 364 

Agro-IBIS is a DGVM and unlike the other models in this review, is calibrated to use grid-365 

based simulation techniques to function at large spatial scales. The original model (Foley et 366 

al., 1996) was designed to apply the same agroecological rationales from models operating at 367 

a site scale but draw conclusions about the growth and management of crops at scales often 368 

required for policy making (Kucharik, 2003; Kucharik and Byre, 2003). VanLoocke et al. 369 

(2010) parameterised Agro-IBIS for Miscanthus and reported both the default and new values 370 

for any altered internal parameters. The model does not employ Miscanthus-specific 371 

phenological development stages but rather the model retains three stages that have been used 372 

successfully to simulate maize biomass production: budburst, senescence and dormancy. 373 

Although this is a generalisation of the phenology for the given plant functional type, many 374 

aspects of biomass production are similar for maize and Miscanthus (Dohleman and Long, 375 

2009), and Agro-IBIS adjusts parameters to affect the timing of these events accordingly 376 

(VanLoocke et al., 2010). 377 

 378 
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The Miscanthus version of Agro-IBIS uses the specific leaf area (SLA) approach (Adam et 379 

al., 2011) to estimate total leaf area for the crop, assigning a constant value according to 380 

Dohleman and Long (2009). The light extinction coefficient (k) is then estimated according to 381 

incident radiation, surface albedo, leaf area and leaf orientation (Kucharik and Byre, 2003; 382 

Cuadra et al., 2012). Further, the incidence of diffuse and direct radiation is determined at 383 

canopy level for near-IR and visible wavelengths (Foley et al., 1996; Kucharik et al., 2000). 384 

Gross C assimilation is then calculated using the approaches described by Farquhar et al. 385 

(1980) and later simplified and adapted for C4 photosynthesis by Collatz et al. (1992). C is 386 

then partitioned into stem, root and leaf pools according to variable partitioning parameters 387 

within the model: initially, 80%, 10% and 10% of the C assimilated is allocated to the leaf, 388 

stem and root pools, respectively, but by the end of the growing season this changes to 10%, 389 

80% and 10%, respectively (VanLoocke et al., 2010). 390 

 391 

Agro-IBIS contains two major sub-models besides those to simulate land-atmosphere 392 

interactions and vegetation dynamics: a belowground C and N module and a solute transfer 393 

module. The model represents soil C in three discrete pools and includes both gaseous C 394 

losses and those from leaching. These are coupled with N cycling, including four processes to 395 

define N availability (Table 1). Soil water availability is controlled by a number of factors 396 

including canopy interception, surface runoff and evapotranspiration. Each is calculated for 397 

the area based on climate inputs and soil properties with the largest spatially explicit dataset 398 

being the limiting factor (Kucharik et al., 2000). The model allows for stress from leaf 399 

temperature extremes and limited water availability; when given thresholds are exceeded, 400 

gross C assimilation and stomatal conductance are modified to simulate the impact of that 401 

stress (Mu et al., 2007). 402 

 403 
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As a DGVM, Agro-IBIS was designed to operate at large spatial scales to predict the impacts 404 

of LUC on C budgets but, to date, published simulations are confined to sites in Illinois, USA 405 

where good agreement between simulated and observed values for leaf photosynthesis, LAI 406 

and latent heat flux were observed (VanLoocke et al., 2010). Although the Miscanthus-407 

specific values used for parameterising Agro-IBIS have been validated successfully in 408 

Illinois, additional field data from a wider range of environmental conditions would ensure 409 

that the parameter values used are universal when Miscanthus is grown in other locations. 410 

Datasets that report LAI, SLA, maximum rubisco activity and measures of maturity in DD 411 

would be the most beneficial to verify accompanying yield data given these are key drivers of 412 

simulated biomass production. That said, as long as conditions of simulated sites are within 413 

the limits of those found at the validated sites in Illinois, the new predictions made by Agro-414 

IBIS are likely to have similar degrees of uncertainty as those reported by VanLoocke et al., 415 

2010. Published literature (e.g. Kucharik, 2003; Twine and Kucharik, 2009; Sacks and 416 

Kucharik, 2011) for Agro-IBIS has focussed on evaluating its accuracy at simulating 417 

harvestable biomass production and a lack of field data has limited verifying model 418 

predictions of belowground biomass and soil C sequestration. DGVMs and next generation 419 

earth system models such as JULES (Alton et al., 2007, Hughes et al., 2010) will play an 420 

increasingly important part in deciding whether a crop is appropriate for a location, as policy 421 

decisions are often based on regions or whole countries, and not individual sites. 422 

 423 

DayCent 424 

 425 

DayCent is an adaptation of the comprehensive ecosystem model, CENTURY, but with a 426 

daily timestep. The DayCent version was originally reported by Parton et al. (1998) as a way 427 

of producing more reliable simulations of GHG fluxes because they respond rapidly to 428 
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abiotic factors, and since has been applied to different native and managed systems 429 

encompassing a wide range of environmental conditions (Del Grosso et al., 2005; Del Grosso 430 

et al., 2008; Gathany and Burke, 2012). The DayCent model has been calibrated and 431 

parameterised for Miscanthus, altering N-fixation routines according to the findings by Davis 432 

et al. (2010). Model outputs from this version of DayCent were verified against 433 

measurements in the work. The model does not represent the phenological development 434 

stages specific to Miscanthus but rather uses a growth response routine according to abiotic 435 

factors and water/nutrient availability (Del Grosso et al., 2001). This allows DayCent to 436 

generate accurate simulations without needing additional inputs about the processes involved 437 

in C assimilation. 438 

 439 

NPP is estimated by DayCent according to species-specific relationships of plant growth to 440 

soil and air temperature, soil water availability and nutrient availability (Del Grosso et al., 441 

2001). For Miscanthus, Davis et al. (2010) parameterised DayCent using empirical data from 442 

Europe and Illinois, USA, (Beale and Long, 1995; Clifton-Brown and Lewandowski, 2000; 443 

Heaton et al., 2004; Cosentino et al., 2007; Heaton et al., 2008) to form plant growth 444 

parameters. This resulted in simulations being possible in alternate locations where only data 445 

for climate and basic soil properties are available (Table 2). Net growth is then partitioned 446 

into five plant components (leaves, branches, large wood, fine roots and large roots) as a 447 

function of soil water and soil nutrient functions with the most limiting factor (temperature, 448 

water, nutrients) having a direct constraint on biomass production (Parton et al., 1993). By 449 

avoiding measurements of radiation use efficiency (RUE), light extinction coefficient (k) and 450 

other factors controlling C assimilation, DayCent reduces the number of potentially sensitive 451 

parameters that can influence net growth. This simplicity can be considered an advantage 452 

over more mechanistic models and because the processes that influence water, nutrient and 453 
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temperature stress are still represented internally, DayCent remains a fully resolved model 454 

when predicting biomass accumulation. 455 

 456 

Separate from the plant production sub-model, DayCent features routines to describe coupled 457 

soil water and soil temperature modules, plant decomposition, SOM and trace gas emissions 458 

(Table 1). Modelled processes and outputs of DayCent have been validated and verified a 459 

number of times since its inception, but Davis et al. (2010) reported significant findings 460 

regarding additional N-fixation, required when the model was parameterised for Miscanthus. 461 

These results highlight the importance of a Miscanthus model including aspects of the N 462 

cycle to ensure the annual demands of the plant are simulated accurately. Following biomass 463 

production in the five plant biomass pools, DayCent predicts the amount and quality of plant 464 

residue supplemented to the surface and soil, also simulating the plant’s influence on the soil 465 

environment (Lee et al., 2012). This makes DayCent the most comprehensive of the models 466 

described here when it comes to C dynamics representing plant and soil interactions. Within 467 

the same simulation plant biomass decomposition is calculated, adding C to and transferring 468 

C between three conceptual pools in the SOM module: active, slow and passive. Each of 469 

these represent different turnover times of the SOM ranging from months and years to 470 

centuries and millennia. In addition to these represented C dynamics, nitrogen, phosphorus 471 

and sulphur exchange is also cycled through the model, accounting for a number of key 472 

processes (Del Grosso et al., 2001; Table 1). 473 

 474 

Since CENTURY was developed in the late 1980s, the model or parts of its structure have 475 

been used frequently to simulate C and N dynamics, but only recently has the model been 476 

parameterised for Miscanthus. The only published study validating the Miscanthus iteration 477 

of DayCent is contained within the inaugural paper and is constrained to field data from 478 
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Illinois, USA, due to the article’s scope (Davis et al., 2010). However, employing the 479 

framework and parameter values used by Davis et al. (2010), there is no reason why model 480 

outputs could not be verified for different plantations at numerous other sites (e.g., those 481 

reported in Clifton-Brown et al., 2001a; Danalatos et al., 2007; Christian et al., 2008). Data 482 

mining from these studies could prove to be very useful when considering model 483 

development, and although the framework of DayCent has been validated numerous times, 484 

there is still room for improvement regarding Miscanthus simulations (Davis et al., 2010): the 485 

models were not initially designed to simulate the nutrient retranslocation from aboveground 486 

to belowground plant biomass (e.g. Heaton et al., 2009) that makes Miscanthus a particularly 487 

attractive bioenergy crop. Similarly, Davis et al. (2010) estimated that Miscanthus can host 488 

N-fixing organisms that can provide up to 25 g N m-2 each year - a significant amount for any 489 

given land use (Stewart, 1975). Having empirical data to validate this estimate, and the 490 

degree of retranslocation, such as the studies by Keymar and Kent (2013) and Heckathorn 491 

and DeLucia (1994), respectively, can help model development to ensure simulations are 492 

accurate based on specific site conditions. 493 

 494 

DNDC 495 

 496 

Originally designed to simulate trace gas emissions and soil C and N dynamics (Li et al., 497 

1992), the DNDC model was later calibrated to represent crop growth routines as well as the 498 

soils they grow on (named Crop-DNDC; Zhang et al., 2002). More recently, DNDC was 499 

parameterised for Miscanthus (Borzecka-Walker et al., 2012; Gopalakrishnan et al., 2012). 500 

Most aspects of the DNDC model run a daily time step but due to considerable diurnal 501 

variation the soil climate and denitrification sub-models operate at hourly time steps. All 502 

adaptations of the DNDC model include a plant growth module but the more basic versions 503 
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simply calculate biomass accumulation according to a generalised crop growth curve using 504 

thermal time units. However, the versions parameterised for Miscanthus use the mechanistic 505 

Crop-DNDC routines allowing crop growth to respond to climatic conditions and soil 506 

biogeochemistry. Crop-DNDC simulates crop growth using nine phenological development 507 

stages based on those included in CERES models (Ritchie, 1991). Although the original 508 

Crop-DNDC structure was applicable for Miscanthus, Gopalakrishnan et al. (2012) noted the 509 

conclusions drawn about N-fixation from Davis et al. (2010) and calibrated the DNDC model 510 

accordingly, changing the model’s default N fixation index from 1 to 3. It is worth noting that 511 

within the model, the fixation index is intended to represent N-fixation of the crop directly 512 

and not associated organisms, although successful use of this model parameter suggest it may 513 

at least help provide accurate yield simulations of Miscanthus (Borzecka-Walker et al., 2012; 514 

Gopalakrishnan et al., 2012). 515 

 516 

Crop-DNDC calculates gross photosynthesis using LAI according to Spitters (1986) and 517 

gross crop respiration according to McCree (1979) and Penning de Vries et al. (1989). The 518 

respiration is then subtracted from gross photosynthesis to estimate net C assimilation 519 

available for growth. Atmospheric CO2 concentration, air temperature and the canopy profile 520 

are all considered when calculating photosynthetic rates, as are water and nitrogen stress 521 

factors (Zhang et al., 2002). C is then allocated to stem, leaf, grain and root state variables 522 

based on the phonological stage, with more C allocated to stems later in the growing season. 523 

Although not initially designed for accurate estimates of crop growth, the adaptations to 524 

DNDC now allow accurate simulations after parameterisation using the model’s ‘Crop 525 

Creator’ module. Using this module, Gopalakrishnan et al. (2012) was able to apply 526 

Miscanthus-specific parameters to achieve good agreement of model outputs with measured 527 

field data. The changed parameters and values used are reported in their paper. 528 
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 529 

The DNDC model comprises of six sub-models to simulate crop growth, soil climate, 530 

nitrification, denitrification, decomposition and fermentation. Each of these sub-models are 531 

coupled so each effects the other and specifically allowing C and N dynamics to be balanced 532 

within the system. Although DNDC has most regularly been used to simulate trace gas 533 

emissions (e.g. Cai et al., 2003; Levy et al., 2007; Abdalla et al., 2010), the processes 534 

governing C dynamics into and between the state variables are equally detailed. Stems, leaves 535 

and roots senesced from the crop growth sub-model enter the decomposition sub-model and 536 

are allocated to one of three pools: very labile litter, labile litter and resistant litter. The C is 537 

moved to microbial and then humad pools before eventually reaching the passive humus 538 

pool. For each of these transfers, specific decomposition rates are applied and at each step 539 

trace gas emissions are also calculated (Li et al., 1994; Li, 2000). 540 

 541 

The DNDC model has been used frequently since its inception but only recently has the 542 

model been parameterised and tested to simulate the C and N dynamics of a Miscanthus 543 

plantation. There are two publications reporting DNDC used to simulate Miscanthus growth 544 

but both focus mainly on the nitrogen losses and trace gas emissions associated (Borzecka-545 

Walker et al., 2012; Gopalakrishnan et al., 2012). Consequently it is difficult to review the 546 

model performance for ecosystem C budgets, but both papers report good agreement between 547 

modelled and measured values of crop yield. Confidence in this agreement can also be drawn 548 

from the different locations simulated; the Gopalakrishnan et al. (2012) paper simulated 549 

yields in Illinois, USA, whereas Borzecka-Walker et al. (2012) simulated Miscanthus 550 

plantations in Poland, where annual precipitation was roughly half that of the sites in Illinois. 551 

The DNDC model represents soil processes mechanistically and in a lot of depth, and is 552 

therefore particularly good at improving our understanding of how Miscanthus plantations 553 
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may influence key issues regarding the crop’s sustainability criteria (e.g. net change in soil C, 554 

GHG emissions and N dynamics). Each of these were simulated and reported by Borzecka-555 

Walker et al. (2012) with interesting results that suggest soil type has a significant impact on 556 

potential soil C storage, net global warming potential and soil N balance, but not on yield. 557 

However, these simulations were only valid for the site modelled as there is not sufficient 558 

field data to initialise the model at different Miscanthus sites. The model requires inputs of 559 

each of the SOM pools in kg C kg-1 soil and few datasets include this information; soil 560 

fractionation to relate measured soil C fractions to conceptual modelled pools is a relatively 561 

recent aspect of this research. However as fractionation data becomes more readily available, 562 

DNDC’s SOM module outputs can be validated for a range of sites and conditions with 563 

added confidence given the successful simulations performed by Borzecka-Walker et al. 564 

(2012). An additional aspect of the DNDC model that makes it particularly attractive is its 565 

integration with GIS databases (e.g. Pathak et al., 2005; Tang et al., 2006). This allows many 566 

of the model outputs to be scaled up across larger regions as long as there is sufficient high 567 

quality input data to drive the simulations. 568 

 569 

ECOSSE 570 

 571 

The ECOSSE model (Smith et al., 2010a) was developed to simulate highly organic soils 572 

from concepts originally derived for mineral soils in the RothC (Jenkinson and Rayner, 1977; 573 

Jenkinson et al. 1987; Coleman and Jenkinson, 1996) and SUNDIAL (Bradbury et al. 1993; 574 

Smith et al. 1996) models. Following these established models, ECOSSE is primarily 575 

designed to simulate belowground C and N dynamics but has more recently been coupled 576 

with an updated version of the MIAMI model (Leith, 1972) to calculate NPP. ECOSSE uses 577 

a pool type approach, describing soil organic matter (SOM) as pools of inert organic matter 578 
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(IOM), humus (HUM), biomass (BIO), resistant plant material (RPM) and decomposable 579 

plant material (DPM). All of the major processes of C and N turnover in the soil are included 580 

in the model, but each of the processes is simulated using only simple equations driven by 581 

readily available input variables, allowing it to be developed from a field based model to a 582 

national scale tool, without high loss of accuracy. ECOSSE differs from RothC and 583 

SUNDIAL in the addition of descriptions of a number of processes and impacts that are 584 

important in organic soils, but not relevant in the mineral arable soils that these models were 585 

originally developed for. More importantly, ECOSSE differs from RothC and SUNDIAL in 586 

the way that it makes full use of the limited information that is available to run models at 587 

national scale. In particular, measurements of soil C are used to interpolate the activity of the 588 

SOM and the plant inputs needed to achieve those measurements. Any data available 589 

describing soil water, plant inputs, nutrient applications and timing of management 590 

operations are used to drive the model and so better apportion the factors determining the 591 

interpolated activity of the SOM. However, if any of this information is missing, the model 592 

can still provide accurate simulations of SOM turnover, although the impact of changes in 593 

conditions will be estimated with less accuracy due to the reduced detail of the inputs (Smith 594 

et al., 2010b). 595 

 596 

The total plant inputs of C are assumed to be given by the NPP. If this is known, it can be 597 

entered as an input by the user, otherwise, NPP is entered as zero and the plant inputs are 598 

estimated using the MIAMI model (Leith, 1972). The N inputs from the plant to the soil are 599 

calculated using standard C:N ratios for the different land uses. The C:N ratios of simple land 600 

use classes, such as arable, grassland, forestry and semi-natural, are initially all set to 10. As 601 

an alternative, in the site specific version of the model, the plant inputs of C and N can be 602 

calculated from the expected yield as described by Bradbury et al. (1993). The plant input of 603 
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C is given as a function of the crop yield modified by empirical parameters, specific to each 604 

crop or plant type. The plant input of N is calculated from the amount of N taken up in above 605 

ground plant biomass. 606 

 607 

The rates of decomposition modelled by ECOSSE are important determinants in the 608 

modelling of soil N and N2O emissions, as the soil N content follows the decomposition of 609 

SOM (Bell et al., 2012). The rate of SOM decomposition in the model is modified by 610 

temperature, soil water content, plant cover and soil pH. Decomposition rate is also 611 

dependent on how SOM is proportioned into the different SOM pools. Following the 612 

approach used in the RothC model (Coleman and Jenkinson, 1996), the IOM pool does not 613 

undergo decomposition; the C in this pool does not take part in soil processes either due to its 614 

inert chemical composition or its protected physical state. The HUM pool decomposes 615 

slowly, representing material that has undergone stabilization due to earlier decomposition 616 

processes. The BIO pool decomposes more rapidly and represents material that has 617 

undergone some decomposition but is still biologically active. The DPM and RPM pools are 618 

composed of undecomposed plant material, the DPM pool being readily decomposable while 619 

the RPM pool is more recalcitrant. The ratio of DPM to RPM defines the decomposability of 620 

the plant material that is added to the soil. Values for the ratio of DPM to RPM for the 621 

different land uses are standard as used in RothC, although these can be changed within 622 

ECOSSE for a specific instance of a land use type (e.g. Miscanthus). 623 

 624 

In ECOSSE, soil layers are divided into 5 cm layers. Each layer is filled with water until it 625 

reaches field capacity, when it then drains to the layer below, or evaporates from the 626 

uppermost layer. ECOSSE differs from many other soil models, as it is able to simulate how 627 

decomposition will respond to soil water contents above field capacity. The model assumes 628 
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that decomposition is at its maximum at field capacity, but is slowed by water limitation 629 

below field capacity, and oxygen limitation above field capacity. When the water content is 630 

above field capacity the decomposition rate falls linearly, and at saturation it is only 20% of 631 

that at field capacity (Smith et al., 2010a). Under aerobic conditions, the decomposition 632 

process results in gaseous losses of CO2; under anaerobic conditions losses as methane (CH4) 633 

dominate. The N content of the soil follows the decomposition of the SOM, with a stable C:N 634 

ratio defined for each pool at a given pH, and N being either mineralised or immobilised to 635 

maintain that ratio. Nitrogen released from decomposing SOM as ammonium (NH4+) or 636 

added to the soil may be nitrified to nitrate (NO3-). C and N may be lost from the soil by the 637 

processes of leaching (NO3-, dissolved organic C (DOC), and dissolved organic N (DON)), 638 

denitrification, volatilisation or crop offtake, or C and N may be returned to the soil by plant 639 

inputs, inorganic fertilizers, atmospheric deposition or organic amendments. 640 

 641 

The ECOSSE model has already been validated and applied spatially to simulate land-use 642 

change impacts on SOC and GHG emissions (Smith et al., 2010a,b) and to simulate soil N 643 

and N2O emissions in cropland sites in Europe (Bell et al., 2012). Smith et al. (2010a,b) 644 

reported the estimate in Scottish soil C stocks and changes using ECOSSE. The results of this 645 

work reported that, despite the uncertainties in the input data and the measurements used to 646 

evaluate the model, the simulated values show a high degree of association with the 647 

measurements in both total C and change in C content of the soil. Over all sites where land-648 

use change occurred, the average deviation between the simulated and measured values of 649 

percentage change in soil C was less than the experimental error (11% simulation error, 53% 650 

measurement error). This suggests that the uncertainty in using this model for the national-651 

scale simulations will be ~11%. Bell et al. (2012) reported the first test of the ECOSSE 652 

model at predicting N2O emissions from arable soils in Europe, indicating that although 653 
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further modifications are required in the form of predictions on a daily time-step, the model is 654 

currently predicting such fluxes with a greater degree of accuracy than other available 655 

methods of quantification which can then be used to estimate emissions on a large scale. The 656 

parameterisation and evaluation of ECOSSE to simulate soil C and GHG emissions under 657 

Miscanthus and short-rotation forestry is currently on-going and the results are in preparation 658 

for publication.  659 

 660 

Alternatives to mechanistic crop models 661 

 662 

In addition to the models that fulfil our original selection criteria there are other relevant 663 

models which satisfy a subset of our criteria. Alternatives include empirical models (Heaton 664 

et al., 2004; Richter et al., 2008), soil-only models (Dondini et al., 2009), plant growth only 665 

models with no soil C components (Clifton-Brown et al., 2000; Hastings et al., 2009a) and 666 

those where no peer-reviewed literature exists supporting the models’ validities for 667 

Miscanthus specifically (e.g. EPIC (Williams et al., 1989) reported by Zhang et al. (2011) 668 

and JULES (Hughes et al., 2010). 669 

 670 

Empirical models are excellent simple predictors when estimating how a known set of 671 

conditions will influence a specific variable, and are likely to provide more accurate 672 

predictions than mechanistic alternatives, since they are built solely around field observations 673 

and not the biogeochemical processes that define plant growth or C transfer. However, this 674 

also means empirical models require a large amount of field data from individual sites, and 675 

their simulations cannot be used to predict the system’s response to environmental variation. 676 

Heaton et al. (2004) and Richter et al. (2008) used observed Miscanthus yields and 677 

accompanying site conditions (i.e., soil type, growing degree days, average precipitation) to 678 
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create empirical models capable of simulating different scenarios of available N, air 679 

temperature and water availability. Their model outputs correlated well with observed values 680 

and using known site conditions across larger spatial areas each was able to predict potential 681 

yields and how they would be affected by changes in N-availability, air temperature and 682 

water availability. While informative for this purpose, the models are less suitable for 683 

understanding why yields vary. Furthermore, creating similar empirical models to simulate 684 

the response of other variables of interest (e.g. soil C) is unlikely to be successful, due to the 685 

number of factors that drive change in those variables and the lack of field data for 686 

Miscanthus. 687 

 688 

Soil-only models that describe the belowground C dynamics of Miscanthus plantations can 689 

predict changes to soil C stocks over time but by definition do not include any plant growth 690 

routines and so lack information when considering the total ecosystem C budgets. Primarily, 691 

RothC (Coleman and Jenkinson, 1999) has been the chosen model to simulate soil C 692 

dynamics beneath Miscanthus plantations (Dondini et al., 2009; Hillier et al., 2009; Poeplau 693 

and Don, 2013). This process-based model is similar to the SOC sub-models included in 694 

DayCent, WIMOVAC, BioCro and Agro-IBIS, and like these models, their outputs come 695 

with considerable uncertainty due to limited validation data for Miscanthus plantations under 696 

a wide range of environmental conditions. That said, the work done by Dondini et al. (2009) 697 

and Poeplau and Don (2013) is taking great steps to help reduce the associated uncertainty 698 

and continued investigation into the size of measurable soil C pools using fractionation 699 

techniques will provide the information regarding initial pool sizes that is essential for 700 

accurate simulations of soil C dynamics. 701 

 702 
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Just as soil-only models do not include plant-growth routines, models like MISCANMOD 703 

(Clifton-Brown et al., 2000) and MISCANFOR (Hastings et al., 2009a) do not include sub-704 

models to describe soil C dynamics. Both MISCANMOD and MISCANFOR have been used 705 

to simulate Miscanthus productivity across the UK and Europe using a number of databases 706 

for required inputs (Clifton-Brown et al., 2004; Hastings et al., 2009b; Pogson et al., 2012). 707 

More recently, MISCANFOR was also used to predict Miscanthus yields globally and relate 708 

them to potential energy generation accounting for land use, cost and carbon restrictions 709 

(Pogson et al., 2013). The crop growth routines used in these Miscanthus-specific models 710 

have regularly been proven to be accurate within a wide range of environmental conditions 711 

but the model's lack of soil C pools make it of limited use when requiring information about 712 

the full ecosystem C budget. Consequently, coupling such models with those that describe 713 

other aspects of the C cycle may allow for accurate simulations without developing a whole 714 

new model. 715 

 716 

The EPIC model (Williams et al., 1989) is a mechanistic model that is reported to have been 717 

parameterised for Miscanthus and showed a good correlation between field data and model 718 

output (Zhang et al., 2011). However, no further detail is given by the Zhang et al. (2011) 719 

paper. Similarly the JULES model (Met Office, 2013) was used by Hughes et al. (2010) to 720 

simulate Miscanthus production and calculate payback times for different regions globally, 721 

based on the assumption that 50% of NPP is available to offset fossil fuel emissions. The 722 

JULES model is essentially a land-atmosphere energy transfer model but it includes 723 

TRIFFID, a DGVM much like Agro-IBIS. Although the Hughes et al. (2010) study reports 724 

parameterisation of the JULES simulation, and the values used, there is no discussion of its 725 

validation against field data. Therefore the reliability of its predictions cannot be assessed or 726 

the uncertainty quantified. That said, the study integrates the JULES model with the global 727 
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climate impacts model, IMOGEN, to simulate the impact of IPCC Special Report Emissions 728 

Scenarios (Hughes et al., 2010). After validation from field data encompassing a range of 729 

environmental conditions, this is the right approach to predicting how beneficial Miscanthus 730 

plantations may be in different regions. 731 

 732 

A simple semi-mechanistic model created to estimate C sequestration rates under Miscanthus 733 

plantations was reported by Matthews and Grogan (2001) over a decade ago but has not since 734 

been further developed. The model by Matthews and Grogan (2001) uses solar radiation, the 735 

light extinction coefficient (k) and LAI to estimate biomass production and partitions this 736 

according to the values reported by Himken et al. (1997). In this way it is very similar to a 737 

number of mechanistic models that have been developed for bioenergy crops since (see 738 

Surendran Nair et al., 2012). Each of the plant and soil values required to parameterise 739 

Matthews and Grogan's model were taken from published field data and decomposition was 740 

estimated using decay rates that adhere to first-order kinetics. The model was based on mass-741 

balance principles but did not have data from a Miscanthus plantation to verify its 742 

predictions. Instead, it used parameters specific to a woodland site to verify outputs against 743 

field data, reporting a good correlation between observed and simulated values. Since the 744 

model does not include environmental variables such as precipitation or air temperature, it is 745 

not capable of simulating different climatic scenarios. However, if model predictions can be 746 

verified, a sensitivity analysis could reveal how changing LAI or the proportion of plant 747 

biomass allocated belowground (i.e. changes that may occur in genetic variants) may impact 748 

soil C sequestration rates. 749 

  750 
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Future modelling of Miscanthus plantations 751 

 752 

Empirical data beneficial for improving model performance 753 

 754 

Each of the models described have their own advantages and disadvantages dependent on the 755 

research objective, input data availability and the required outputs (at appropriate temporal 756 

and spatial scales). Overall, there is an increasing number of datasets becoming available to 757 

aid model improvement, inter-model comparisons and uncertainty quantification. That said, 758 

certain aspects of the Miscanthus C cycle remain poorly quantified due to a lack of 759 

experimental data and in particular, parameters describing belowground biomass and root 760 

turnover. These scarcely-quantified model parameters are the crux of defining how much C is 761 

sequestered in the soil and also of changes in stable soil C stocks that can help offset the C 762 

emissions associated with energy generation from Miscanthus biomass. Another important 763 

area which requires attention relates to the assigned splitting ratios in SOM modules. These 764 

dictate how much C is allocated to the stable or labile soil pools, which in turn determines 765 

how long the C is predicted to stay in the soil. To relate these conceptual labile or stable 766 

pools of C used by the models to measurable pools, soil fractionation is possible using 767 

physiochemical procedures, such as that suggested by Zimmermann et al. (2007). To date 768 

there are only two published studies relating soils beneath Miscanthus plantations to SOM 769 

pools (Dondini et al., 2009; Poeplau and Don., 2013). Both studies suggest that an increase in 770 

total SOC during the lifetime of a Miscanthus plantation is likely, but their estimates of 771 

change in stable soil C pools vary considerably. If full C accounting is desired to satisfy 772 

cradle-to-grave life-cycle analyses (LCAs) it is essential to accurately predict soil C 773 

sequestration rates using stable isotope techniques as used by Dondini et al. (2009) and 774 

Poeplau and Don (2013). 775 
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 776 

Validating model predictions has principally been achieved through comparison with young 777 

commercial Miscanthus plantations (e.g. Case et al., 2013; Zimmermann et al., 2013) or field 778 

trials (e.g. Christian et al., 2008; Borzecka-Walker et al., 2012). However these do not 779 

address issues of optimal crop rotation length, nor do they necessarily reflect the same site 780 

conditions experienced by an old (10+ years) commercial plantation of considerable size. 781 

This is particularly true for field trials where continued disturbance and different plant 782 

densities can influence final yield (Lewandowski et al., 2000; Lewandowski et al., 2003b). 783 

Consequently, the importance of continuing to monitor existing commercial plantations 784 

cannot be underestimated if we are to ensure model predictions are accurate throughout the 785 

entire lifecycle of a Miscanthus plantation. The few larger and older plantations that have 786 

been studied indicate that yields can vary greatly depending on climatic conditions during 787 

each year and that Miscanthus plantation yields become less commercially viable after 20 788 

years of continual harvesting (Clifton-Brown et al., 2001b; Khanna et al., 2008). It is 789 

therefore reasonable to assume other aspects of the C cycle (i.e. soil C sequestration and 790 

GHG emissions) may be interacted upon by changes in crop productivity. Since Miscanthus 791 

is a relatively recent addition to land owner's establishment options there are few studies in 792 

Europe or North America that report how the LUC to a commercial sized plantation affects 793 

the site's C budgets (e.g. Zimmermann et al., 2012). To ensure the mechanistic relationships 794 

represented by the model simulations are accurate for the LUC and management for both 795 

normal and extreme conditions, we need additional field data. 796 

 797 

Databases and frameworks for Miscanthus model development  798 

 799 
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Comprehensive datasets from single field sites are needed to 1) better quantify model 800 

uncertainty and 2) allow for model comparison. With the advances in database technology 801 

and ease of electronic communication for data sharing, such exchanges are becoming more 802 

achievable and recently online databases have been created (e.g. LeBauer et al., 2010). 803 

Sensitivity and uncertainty analyses of the models can help identify where data collection 804 

needs focus to best reduce uncertainty; however, for all process-based models, uncertainty 805 

can come from inputs, model structure or observations (Smith et al., 2012a). Due to the 806 

number of sources of uncertainty and limited data availability at present, uncertainty 807 

quantification is rarely addressed by the literature that report Miscanthus simulations. That 808 

said, LeBauer et al. (2013) were able to provide estimates of how much model uncertainty is 809 

due to individual model parameter values by using a Bayesian meta-analysis with available 810 

species-specific data. Although, their study uses the specific example of switchgrass, the tool 811 

they report and use (the Predictive Ecosystem Analyzer; PEcAn) is just as applicable to 812 

Miscanthus. PEcAn can therefore be used with the six models reported here to identify which 813 

model parameters contribute most to uncertainty, providing much more information than 814 

simple sensitivity analyses. 815 

 816 

In addition to data availability limiting model development, a comprehensive framework is 817 

lacking around which the different crop models can be developed from site-scales up to 818 

regional, or even continental, scales. This is arguably the most important aspect of future 819 

model development, since model outputs are the best predictions we have to inform policy 820 

decisions. Since governmental policies are often a major driver of LUC, and occur over large 821 

geographical scales, a key requirement before Miscanthus plantations are established is the 822 

implementation of an integrative computational framework (Zhang et al., 2010). This 823 

framework should 1) compile comparable, and spatially explicit, input data; 2) execute model 824 
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simulations and report outputs that are consistent with each other; 3) prepare unambiguous 825 

visualisations of the findings. Surendran Nair et al. (2012) suggest that such a framework 826 

should include a GIS for reprocessing spatial datasets (e.g., Zhang et al., 2010) and an 827 

efficient platform upon which to perform model simulations and powerful post-processing 828 

analysis of model predictions (e.g., Nichols et al., 2011) — thereby allowing simple 829 

comparisons between biomass production/C dynamics and geographic features/climate data 830 

to be visualised. Model adaptations of MISCANFOR to simulate Miscanthus biomass 831 

production over GIS datasets for Europe (Pogson, 2011; Pogson et al., 2012) and globally 832 

(Pogson et al., 2013) are good examples of how upscaling existing models may be the fastest 833 

way of forming reliable predictions over larger spatial areas. Similarly, it is worth specifically 834 

mentioning the framework outlined by Zhang et al. (2010). This was able to extract input 835 

information from text files for use in the EPIC model (Williams et al., 1989) and overlay 836 

results against GIS maps. Validated outputs from simulations running under frameworks such 837 

as this are promising indicators of how model development may progress in the near future. 838 

 839 

Implementing an ecosystem model over large geo-spatial regions requires the most 840 

appropriate input databases for site characteristics, such as soil type and climatic variables. 841 

Most ecosystem models use similar driving data. Recent applications of Miscanthus models 842 

at UK (Hastings et al., 2013), European (Hastings et al., 2009) and global levels (Pogson et 843 

al., 2013) demonstrate that appropriate datasets exist at a range of spatial scales to run energy 844 

crop soil models. Smith et al., (2012b) recently reviewed spatial datasets available for 845 

modelling soil C change at regional to global scales.  846 
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Conclusions 847 

 848 

In the coming years, a drive toward renewable sources of energy and commitments to reduce 849 

national CO2 emissions are likely to increase interest in bioenergy crops such as Miscanthus, 850 

and therefore may induce considerable LUC around the world. With land resources 851 

diminishing and concerns for food security increasing, it is a major concern that any LUC 852 

that does occur is appropriate and the most effective land use for a given area. Process-based 853 

models are valuable tools for addressing this issue and it is therefore essential that they 854 

operate reliably for a wide range of environmental conditions. Here we reviewed six process-855 

based crop models that have been parameterised for Miscanthus, reported the current extent 856 

of their application and described the possible uses of these models. The models differ in both 857 

their design and computational power but none is vastly superior; selecting one over another 858 

depends mainly on the particular research question to be answered. 859 

 860 

For model development to occur, and therefore to improve the reliability of model 861 

predictions, high-quality experimental field data are essential. As interest has grown in the 862 

viability of Miscanthus as a bioenergy crop, experimental data from its non-native countries 863 

has increased considerably, but not all is freely available or accompanied by the supporting 864 

information essential for model development. In addition, to better validate the internal model 865 

parameters and rate modifiers, increased data availability through data sharing is also key to 866 

addressing the issues of uncertainty quantification and model comparisons, which is 867 

necessary for ensuring realistic model outputs. The scientific modelling community is 868 

sufficiently motivated to develop Miscanthus crop models and therefore it is highly likely 869 

that as data availability and computational modelling power increases, there will be a 870 

significant improvement in Miscanthus model performance.  871 
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Table 1: Model characteristics, submodels and components of six crop growth models parameterised for Miscanthus (format adapted from 
Surendran Nair et al. (2012) to aid comparison between the papers). 

Model Spatial Scale 

Biomass Production Submodel Hydrological 
Submodel Soil Quality Submodel Stress factors 

Phenological 
development 

Biomass 
calculation 

method 

Biomass 
partitioning 

Processes 
simulated 

Carbon 
losses 

simulated 

SOC pools 
represented 

Nitrogen 
processes 
simulated 

Factor 
considered 

Variables 
affected 

WIMOVAC 
and BioCro Site/Ecosystem 6 stages Biochem. 4 pools R, Et G, L A, S, P Min, Imm W Stomatal 

conductance 

Agro-IBIS Ecosystem 3 stages Biochem. 3 pools C, R, Et G, L A, S, I Min, D, N, 
Le W, NL Photosynthesis 

DAYCENT Site Curve ARF 5 pools C, Et, Sf G, E, L, F Mic, A, S,
P 

Min, Imm, 
D, N, V, 

Le 

W, T, NL, 
O Element budgets 

DNDC Site Curve / 
9 stages* Biochem. 4 pools C, R, Et G, L Res, Mic, 

H, P 

Min, Imm, 
D, N, V, 

Le W, NL 
Biomass, 

Partitioning, 
Nitrogen budgets 

ECOSSE Site/Regional Curve Biochem. 5 pools R, Et G, L A, S, P, I, 
Res, H 

Min, Imm, 
D, N, V, 

Le 

W, T, NL, 
O 

 Partitioning, 
Nitrogen 

budgets, Carbon 
budgets 

* Depending on version of the model. RUE - Radiation Use Efficiency, Biochem. - Biochemical approach, ARF - Abiotic Response Function C - Canopy interception, R -

Runoff, Et - Evapotranspiration, Sf – Storm Flow, G - Gaseous, E - Erosion, L - Leaching, F - Fire, Mic - Microbial Biomass, S - Slow, P - Passive, A - Active, I - 

Intermediate, Res - Residual plant litter (very labile, labile and resistant), H - Humads (labile and resistant), Min - Mineralisation, Imm - Immobilization, D - Denitrification, 

N - Nitrification, Le - Leaching, V - Ammonium volatilization, W – Water limitation, T – Temperature limitation, O - Oxygen limitation, NL - Nutrient limitation, LAI - Leaf 

Area Index, Element Budgets - Includes carbon, nitrogen, phosphorus and sulphur. 



Table 2: Essential and optional input parameters required by six process-based carbon models parameterised for Miscanthus. 

Model 
Essential input parameters 

Optional input parameters 
Weather input parameters Site input parameters Crop input parameters 

WIMOVAC 
and 

BioCro 

Air temperature 
Solar radiation 

Relative humidity 
Wind speed 
Precipitation 

Sand, silt and clay contents 
Initial soil C pools 

Soil pH 
Latitude and altitude 

Field capacity 
Wilting point 

Irrigation, sowing, harvest dates 

Maximum rooting depth 
Maximum carboxylation rate 

Quantum efficiency 
Dark respiration 

Thermal periods for growth stages 
Dry matter partitioning coefficients 

Parameters easily changed through R 
function calls (generic WIMOVAC 
model has user interface front end) 

Rate and timing of fertiliser application 
Tillage timing and technique 

Agro-IBIS 

Air temperature 
Solar radiation 

Relative humidity 
Wind speed 
Precipitation 

Sand, silt and clay contents 
Initial soil C pools for all layers 

Soil pH 
Soil bulk density 

Initial soil C pools 
Irrigation, sowing, harvest dates 

Maximum carboxylation rate 
Quantum efficiency 

Dark respiration 

Additional climate inputs (e.g. days frost 
per year) edited via text file inputs 

Rate and timing of fertiliser application 
Tillage timing and technique 

DAYCENT Max./Min. Air Temperature 
Precipitation 

Sand, silt and clay contents 
Soil pH 

Initial soil C pools for all layers 
Latitude and longitude 

Respiration partitioning coefficients 
Biomass partitioning coefficients 

Crop growth temperature thresholds 
Thermal periods for growth stages 

N and lignin content 

Relative humidity and wind speed 
Soil C for each 15 cm layer 

Rate and timing of fertiliser application 
Tillage timing and technique 

Water and nutrient stress modifiers 
Solar radiation 

DNDC 
Max./Min. Air temperature 

Precipitation 
N rainfall concentration 

Sand, silt and clay content 
Soil pH 

Soil bulk density 
Initial soil C pools 

Initial NO3
-/NH4

+ soil contents 
Latitude, longitude and slope 

Leaf area index 
Maximum crop height 
Thermal degree days 

Biomass partitioning coefficients 
Thermal periods for growth stages 

Atmospheric CO2 & NH3 concentrations 
Rate and timing of fertiliser application 

Tillage and harvest timings 
Soil C for each 5 cm layer 

Solar radiation 

ECOSSE 
Air temperature 

Potential evapotranspiration 
Precipitation 

Sand, silt and clay contents 
Initial soil C 

Soil pH  
Soil bulk density  

Water Table depth 
Latitude 

Vegetation cover type 
(Miscanthus parameters are already 
included within the basic version) 

Rate and timing of fertiliser application 
Annual crop yield 

Tillage and harvest timings 
Soil C for each 5 cm layer 

Solar radiation 
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