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Abstract. The Fourth IPCC Assessment Report concludedpreconditioned solver for the Stokes system. In this paper, all
that ice sheet flow models, in their current state, were unthese components are presented in detail, as well as the nu-
able to provide accurate forecast for the increase of polamerical performance of the Stokes solver and developments
ice sheet discharge and the associated contribution to sgalanned for the future.

level rise. Since then, the glaciological community has un-
dertaken a huge effort to develop and improve a new genera-

tion of ice flow models, and as a result a significant number;  |ntroduction

of new ice sheet models have emerged. Among them is the

parallel finite-element model EImer/Ice, based on the openSince the 2007 IPCC reporg¢lomon et a].2007), theoret-
source multi-physics code Elmer. It was one of the first full- jcal glaciology has taken a big leap towards improved ice
Stokes models used to make projections for the evolutiorsheet flow models, in order to provide reliable future es-
of the whole Greenland ice sheet for the coming two cen-timates of the dynamical contribution of ice sheets to sea
turies. Originally developed to solve local ice flow problems level rise. These models were originally designed to recon-
of high mechanical and physical complexity, Elmer/ice hasstruct the evolution of ice sheets over past glaciological cy-
today reached the maturity to solve larger-scale problemsgles, neglecting short-term responses and local features. The
earning the status of an ice sheet model. Here, we summarisgew challenge of running ice sheet models to provide esti-
almost 10 yr of development performed by different groups. mates of future sea level rise has created the need for a new
Elmer/ice solves the full-Stokes equations, for isotropic butgeneration of ice sheet modelaQighan and Arther2007

also anisotropic ice rheology, resolves the grounding lineGillet-Chaulet and Duran®01Q Blatter et al, 2011, Kirch-
dynamics as a contact problem, and contains various basaler et al, 2011, Alley and Joughin2012. This new genera-
friction laws. Derived fields, like the age of the ice, the tion of ice sheet models includes a set of requisites that are
strain rate or stress, can also be computed. EImer/ice inessential to provide a sufficiently accurate description of the
cludes two recently proposed inverse methods to infer badlyice flow dynamics.

known parameters. Elmer is a highly parallelised code thanks

to recent developments and the implementation of a block
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As a first requisite, these models must be able to describenore complex cases, the link between changes in the ocean
the ice flow heterogeneity, and particularly the major con-and/or atmosphere and changes in the ice flow is indirect. In-
tribution of individual ice streams to the total ice discharge. termediate processes (often not observable) are involved, as
This requires the use of an unstructured mesh in the horizonin the case for example of the link between surface runoff and
tal plane (e.gGillet-Chaulet et a].2012 Larour et al, 2012 basal sliding or ocean temperature and calving rate. Thus,
Seddik et al.2012) or of adaptive multi-grid method€prn- a dedicated model is required to describe the processes re-
ford et al, 20130. These mesh techniques are essential tasponsible for the transfer of these changes to the ice mass.
produce hundred-metre-scale grid sizes in areas of interesDriving this dedicated transfer model might require coupling
especially near the coast, while for the interior regions wherethe ice sheet model with an atmosphere or an ocean model.
variations in velocity gradients are small, classic grid sizes The last important requisite for a forecast model is to be
can be kept to save computing resources. Grid refinement iable to simulate present-day observations with as much fi-
even more essential when considering the dynamics of theéelity as possibleAschwanden et gl2013. This point must
grounding line, i.e. the boundary between the grounded icébe addressed clearly using data assimilation techniques and
sheet and the floating ice shelf, because a grid size that ispecific inverse methods to estimate the less well known pa-
too large gives inconsistent grounding line dynamiosi{  rameters of the model (e.gleimbach and Bugniqr2009
rand et al.2009 Pattyn et al.2013. Arthern and GudmundsspR01Q Morlighem et al, 2010.

The second important requisite is to have an accurate de- Recent ice sheet model developments have started to fulfil
scription of the complex state of stress prevailing in ice some of these priority requisites, leading the way toward the
streams to solve the full-Stokes system, or at least to adoptew generation of ice sheet modedsieler and Brown2009
a higher-order asymptotic formulation. As shown by the Pollard and DeCont®2009 Rultt et al, 2009 Larour et al,
ISMIP-HOM inter-comparison exercisdttyn et al.2008, 2012 Leng et al, 2012 Winkelmann et al.201% Favier
higher-order models are needed to describe the ice flow in aret al, 2012 Gillet-Chaulet et al.2012. Among them, the
eas where the basal topography and slipperiness vary greatliglmer/lce model already includes many of these requisites.
which are generally the most dynamic regions within ice EImer/Ice is the glaciological extension of Elmer, the open-
sheets. Higher-order models are also necessary to properlource finite element (FE) software developed by CSC in
describe the dynamics of the grounding line. The MISMIP Finland fittp://www.csc.fi/felme)/ Elmer is a multi-physics
inter-comparisonFattyn et al.2012 indicated the need to code base from which it was possible to develop new spe-
solve the full-Stokes equations near the grounding line to ob-<cialised modules for computational glaciology while main-
tain fully accurate results. taining the compatibility with the main Elmer distribution.

The consequences of these first two requisites, i.e. higlThus, Elmer/ice still benefits from the developments of the
numerical resolution at places of interest and higher-ordeistandard Elmer distribution. In this paper, for simplicity we
formulations, are a high computing cost and the necessity taefer to Elmer/ice even if some of the features described be-
develop parallel codes, able to run on hundreds of CPUs. Rdlong to the main Elmer distribution. EImer/lce was not orig-
cent studiesl(arour et al, 2012 Gillet-Chaulet et a].2012 inally designed as aite sheetmodel since the first appli-
Seddik et al. 2012 Cornford et al. 20130 have fulfiled  cations were restricted to local areas of interest or glaciers
these requirements and have shown that by deploying high(Le Meur et al, 2004 Zwinger et al, 2007, Zwinger and
performance computing (HPC) techniques this challenge caMoore, 2009. Elmer/Ice was primarily developed to solve
be successfully taken on. In this context, ElImer/ice takes adthe flow of anisotropic polar ice and the evolution of its
vantage of being backed by a large open-source communitgtrain-induced fabric Gillet-Chaulet et al. 2006 Durand
that also develops new numerical and HPC techniques for thet al, 2007 Seddik et al. 2008 2011 Ma et al, 201Q
code (e.gMalinen, 2007). Martin and Gudmundssor2012. It has since then been

The third requisite, and from the physical point of view the used to model the flow of a cold firn-covered glacier using
most challenging, is to implement physically founded bound-a dedicated snow/firn rheological la&winger et al, 2007).
ary conditions. These improvements are far more complexElmer/Ice has been the only full-Stokes model to perform the
and it will take more time to fully address them in the ice whole set of the ISMIP-HOM experiment&égliardini and
sheet flow models. The recently observed changes in coast@winger, 2008 Pattyn et al.2008 and is still the only full-
glacier dynamics (e.dvoon et al, 2012 are certainly driven  Stokes model to participate in the grounding line experiments
by changes in ice sheet and ice shelf boundary conditionsMISMIP (Pattyn et al. 2012). Elmer/ice was further used
and consequently linked to changes in the ocean and atmas a reference for the later MISMIP3d experimeiRatfyn
sphere components of the climatic system. In the simplestt al, 2013. Recently, data assimilation was implemented
cases, changes in the climatic components directly drive thevithin Elmer/ice (Jay-Allemand et a).2011;, Schéfer et a).
changes at the boundaries of the ice mass. This is the case f@8012 Gillet-Chaulet et a].2012 to infer poorly known pa-
surface air temperature or ocean temperature which directlyameters such as basal drag. Today, Elmer/ice is the only
drive the temperature boundary condition of the upper surthree-dimensional full-Stokes model that solves the ground-
face or the bottom ice/ocean interface, respectively. In otheing line dynamics Favier et al. 2012, and it will be the
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only full-Stokes model able to run forecast simulations for of polar ice can be strongly anisotropic, and that this re-

the whole Greenland ice sheet for the coming AR5 IPPC re-sponse depends on the crystal orientation distribution, i.e.

port, in the framework of both SeaRISEdddik et al.2012 the ice fabric (e.gGagliardini et al. 2009. Elmer/Ice in-

and ice2sed3illet-Chaulet et a].2012 Shannon et 812013 cludes the classic isotropic Glen’s flow law as well as two

Edwards et a).2013 programmes. anisotropic flow laws. As shown in various applications, the
In this paper, we summarise ten years of consistent develanisotropy of polar ice has a strong influence on the over-

opments and present the current state of the new-generatiaall flow (Zwinger et al, 2013 and will in turn modify the

ice sheet model Elmer/Ice (Elmer library version 7.0 SVN age—depth relationshigs(llet-Chaulet et al. 2006 Seddik

revision 5955). We only focus on the past developments thaet al, 2011). In central parts of ice sheets, ice anisotropy and

are relevant for simulations of three-dimensional ice sheetsthe development of fabric can explain the observed hetero-

Specific developments regarding two-dimensional flow linegeneity of the ice deformation along a drillinBrand et al.

or glacier applications are not presented here, but one caB007). On the coastal area, due to the large contrast of the

consult previous publications on these types of applicationsstress regimes for the grounded part and for the ice shelf, the

(the complete list of Elmer/Ice publications can be found onice anisotropy induces an apparent hardening of the ice up to

http://elmerice.elmerfem.org/Section2 presents the gov- a factor 10 when ice moves from grounded to floatia

erning equations implemented in Elmer/ice. The associateet al, 2010.

boundary conditions are discussed in S&ctOther useful When ice is assumed to behave as an isotropic material,

equations, such as the equation to evaluate the age of the icits rheology is given by a Norton—Hoff power law, known as

are presented in Sea. Section5 is dedicated to the inverse Glen’s law in glaciology, which links the deviatoric stress

methods implemented in Elmer/ice. Some technical aspectwith the strain rate:

related to the resolution of these equations in the framework

of the FE method are discussed in SektThe efficiency T =2né, (3)

of Elmer/Ice was verified by standard convergence and scal- ) _ o _

ability tests described in Sec. Finally, we provide some Where the effective viscosity is defined as

insights into the future planned developments in S&ct. 1

n=SEA)reg (4)

2 Governing equations " - , ,
In Eq. @), é5=1r(¢%)/2 is the square of the second in-

2.1 Ice flow equations variant of the strain rate andl = A(7’) is a rheological pa-
rameter which depends dff, the ice temperature relative
Ice is a fluid with an extremely high viscosity that flows to the pressure melting point, via an Arrhenius law. The en-
very slowly so that inertia and acceleration terms enteringhancement factof in Eq. @) is often used to account for
the momentum equation can be neglected. Therefore, thanisotropy effects, by prescribing an ad hoc value depend-
three-dimensional velocity field and the pressure field of aning on the ice age and/or type of flow. Due to the state of
ice mass flowing under gravity are obtained by solving thestress,E is expected to be greater than 1 for grounded ice
Stokes equations over the ice volurfte The Stokes equa- of polar ice sheets, whereas a value lower than 1 should be
tions express the conservation of linear momentum used for floating ice shelved/a et al, 2010. A compress-
ible form of Glen’s law Gagliardini and Meyssonnigt997),

dive + pg =divt — gradp + pg =0, (1) well adapted to describe the flow of firn, is also implemented
and the mass conservation in Elmer/Ice Zwinger et al, 2007).

, ) Both implemented anisotropic flow laws depend on the ice
divu =tré =0. (2)

polycrystalline fabric, which is described by its second- and
In these equationg; is the ice densityg = (0,0, —g) the  fourth-order orientation tenso@? and a®, respectively,

gravity vectoru = (u, v, w) the ice velocity vectoly = 7 — defined as
pl the Cauchy stress tensor with= —tre /3 the isotropic @ @
pressurer the deviatoric stress tensor ahthe identity ma- ~ ¢; = (ci¢j) @anda;;, = (cicjexer), 5)

trix. This system of equations of unknownsndp is closed h is th b axi ) q h
by adopting one of the rheological laws presented in the next""'€"€¢ is the crystak axis unit vector and) denotes the av-

section. The conditions that are applied on the bountia/ Zre;gg_over;cljl thg grains th&.lt compose the ponI(I:ryst?jl. Ey
the volumex are discussed in Se@. efinition odd-order orientations tensors are null, and the

higher the order of the orientation tensor the better the de-
2.2 Rheological laws for polar ice scription of the fabric. However, it can be shown that with

a linear flow law, knowing the second- and fourth-order ori-
Even if most ice sheet models assume an isotropic rheologentation tensors is sufficient to uniquely define the macro-
ical law for ice, it is well known that the viscous response scopic flow law Gillet-Chaulet et al. 2005 Gagliardini
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et al, 2009. For randont axes distribution the non-zero en- can be used to tabulate the six viscositigs The most re-

tries ofa®@ area(d = o) = a3 = 1/3, for a single maxi- ~ alistic polycrystalline response is obtained using the visco-

mum fabric with its maximum in the third directiony; > Fl’lg‘;t'c Sfig'tchonts'Stem rr:oldel (VFt’SG:astelnautet allr?%

1/3 and al? ~ aézz) < 1/3, and for a girdle-type fabric in 9, wi € two crystal anisotropy parameters chosen so
11 @ @ @ that the experimentally observed polycrystal anisotropy is re-

the plane(xy, x2), agz < 1/3 andayy *az, >1/3.Inad-  produced Gillet-Chaulet et al.2006 Ma et al, 2010. When

dition to three eigenvalues, three Euler angles are necessakye ice is isotropicy, =0 andn,43=1 ( = 1, 2, 3), then

to uniquely definea® with respect to a general reference the GOLE 6) reduces to Glen’s isotropic flow lavB) with
frame. It can be shown analytically with a linear flow that r _ 1
if the second- and fourth-order orientation tensors have the The second anisotropic flow law implemented in

same eigenframe, the polycrystal behaviour will exhibit or- imer/ice is the Continuum-mechanical Anisotropic Flow
thotropic symmetriesillet-Chaulet et a.2008. The equa-  odel based on an anisotropic Flow Enhancement factor

tions for the fabric evolution are presented in S2c3. (CAFFE, Seddik et al. 2008 Placidi et al, 2010. The
The first anisotropic flow law implemented in Elmer/ice is cAFFE model assumes collinearity between the strain rate
the non-linear General Orthotropic Flow Law (GOWGillet- g deviatoric stress tensors, so that the general form of

Chaulet et al.2005 Ma et al, 2010. The GOLF provides  glen’s law @) is not modified, but the enhancement factor

a non-collinear and non-linear relation between strain rateg is a function of thepolycrystalline deformabilityD such
and stress, using the concept of structure tensors. In its initigjy 5

form, the ice was assumed to behave as a linearly viscous or-
thotropic material. In more recent workglértin et al, 2009 (1— Emin) D'+ Emin 1>D>0,

Ma et al, 2010, the GOLF has been extended to a non- E(D) = {4D2(Emax—l)+25—4Emax 5/2>D>1 Q)
linear form by adding an invariant in the anisotropic linear 21 N ’
law. The simplest choice is either to add the second invariantyith
of the strain ratee (Martin et al, 2009 or the second in-

variant of the deviatoric stresg (with t2 =tr(z?)/2, Pettit  , — 8 <
et al, 2007 Ma et al, 2010. No theoretical or experimental 21
results are available today to discard one of these two solu-

tions, and other solutions based on anisotropic invariants OFate and fabric. Whe — 0. the minimal enhancement fac-
the deviatoric stress and/or the strain rate are also possibl%Jr Eo i reac.he d wh;:h ,correspon ds to an uni-axial com

. . . min ) - -
In EI.merll-ce, both squt|c_)ns are |mpIemented: Using the Sec'pression on a single maximum fabric. For an isotropic fab-
ond invariant of the deviatoric stress, for a given fabric and

. . . . ric, D =1 and the response is identical whatever the strain
a given state of stress, the corresponding strain rate relat|V(|eate whereas the maximal enhancemBg, is obtained for
to the isotropic response is the same for the linear and non+,

: . . . . D = 5/2, which corresponds to a single maximum fabric un-
linear cases. Using the strain-rate invariant in the same wa

P . . ergoing simple shearing. The adopted form for the poly-
asMart|n et aI..(2009 Ieads toan Qpp05|te definition of th? crystalline deformability, which verifies the above criteria,
anisotropy ratios: for a given strain rate, the correspondin

. . . . eads
stress relative to the isotropic response is the same for the

linear and non-linear cases. When using the stress second in- :[(é -a® —a®:¢):¢]
variant, the GOLF reads D=5

Emax— 1

1_ Emm) ) EmaX% 10 , Emm ~ Ol . (8)

The polycrystalline deformability is a function of strain

> ©

3 . .
_ . . . 2.3 Evolution of the surface boundaries
24707 =) :[nrtr(M, MP 403 M, M, - e)D]. (6)
r=1

For transient simulations, the upper and lower boundaries
The six dimensionless anisotropy viscositigga®) and qf the domain are a!lowed to evolve, following an advec-
nr+3@@) (r =1, 2, 3) are functions of eigenvalues of the _t|on. equation. Evolution of the upper surfage- zs(x, y, 1)
second-order orientation tensgi®, which represent a mea- 'S 9iven by
sure of the anisotropy strength. The three structure tensor§Zs dzs dzs
M, are given by the dyadic products of the three eigenvec-—— + us—— + vs—— — ws = as, (10)
> . . at ox dy
tors ofa'®, which then represent the material symmetry axes.
In the method proposed Wgillet-Chaulet et al(2000, the  where (us, vs, ws) are the surface velocities obtained from
six dimensionless viscositigs (a'?) are tabulated as afunc- the Stokes solution ands= as(x, y,#) is the accumu-
tion of the fabric strength (i.e. thq(z)) using a micro-macro lation/ablation prescribed as a vertical component only.
model. Various micro-macro models, from the assumption ofElmer/Ice provides a surface melting parameterisation based
uniform stress within the ice polycrystal to the assumptionon positive degree-day (PDD) methd®geh 1997), supple-
of uniform strain rate, as well as different crystal anisotropy mented by the semi-analytical solution for the PDD integral
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by Calov and Grevé2005 (Seddik et al.2012. The accu-

mulation/ablation distribution can also be inferred from a re-

gional climate model either directly as@illet-Chaulet et al.
(2012 andShannon et al2013 or using a surface elevation
parameterisation as Bdwards et al(2013.

1303

wherec, is the calving rate. The latter is defined as the
ice volume flux across the calving fromt, = (u — w¢) - ng,
where wc is the kinematic velocity of the calving front
(Greve and Blatte2009. Implementation of calving laws to
evaluate the calving rate, is part of the developments cur-

The lower surface of an ice sheet is either in contact withrently ongoing in Elmer/ice, as discussed more in details in
the bedrock or the ocean. The evolution of the lower surfaceSect.8. Moving the mesh both vertically (upper and lower

7 =2zp(x, y,t) is given as

9 00,
Y bax bay b =apL

o2 ()] @

where (up, vp, wp) are the basal velocities andp, =

ap (x,y,1) is the melting/accretion function, taken perpen-

dicular to the surface.
Assuming a rigid, impenetrable bedrogk= b(x, y), the
following topological conditions must be fulfilled ky and

b’
zs(x, y, 1) > zp(x,y,1) > b(x,y) Vx,y,t. (12)

The weak formulation of Eq1Q) or Eq. (L1), in combina-
tion with the constraintsl) forms a variational inequality.

Technically, it is solved using a method of imposed Dirichlet
conditions that are released by a criterion based on the resid-

ual, as described in Sed.5. In Gagliardini et al.(2010,

melting below the ice shelf was prescribed using a param

eterised expression following/alker et al.(2008. As dis-
cussed in Sect8, a proper description of the basal melt-
ing below ice shelves will certainly require the coupling of

Elmer/Ice with an ocean model or at least the implementa

tion of a plume-type model.

surface) and horizontally (calving front) induces additional
terms in the convection part of equations and in turn techni-
cal issues that are discussed in S6ct

2.4 Heat equation

The temperature within the ice is obtained from the general
balance equation of internal energy and reads

T
ey (a— +u- gradT) =div(x gradT)+D: o,

57 (14)

wherex =« (T) and ¢y = ¢y(T) are the heat conductivity
and specific heat of ice, respectively. The last term in the heat
equation represents the amount of energy produced by vis-
cous deformation. The ice temperatdrdés bounded by the
ressure melting pointy,, so thatT < Ty, or equivalently

' <0, with T" = T — T;,, being the homologous tempera-
ture entering the Arrhenius law to estimate Glen’s parameter
in Egs. @) and @). This inequality, as well as temperature-
dependent material properties, make the solution of the heat
transfer equation a non-linear problem which is solved using
an iterative method as presented in S6ci.

2.5 Fabric description and evolution

The margin boundary of an ice sheet is either land- or
marine-terminated, depending on whether the bedrock eleAssuming that recrystallisation processes do not occur and
vation at the ice front is located above or below sea level,that the ice fabric is induced solely by deformation, the evo-
respectively. In both cases, the front position evolves withlution of the second-order orientation tensé® defined by
time and its evolution is governed by the imbalance be-Eq. 5) can be written as
tween ice flux and ablation/basal melting/calving processes.
Land-terminated fronts can be treated classically by adoptingaa_(z)
a minimal ice thicknesBnmin, so that the exact conditiod?) ot
is replaced by the less strict opg(x, y,t) > b(x,y) + hmin
(@ndzp(x, y, 1) = b(x,)).

Where the ice sheet is marine-terminated, this type ofwhereW is the spin tensor defined as the antisymmetric part
treatment cannot be applied because the sea water pressutkthe velocity gradient. The tens@ris defined as
and lateral buttressing forces would not be correctly taken . netl
into account. The front boundary of a marine-terminated iceC = (1 — @€ +aksAze 7. (16)
gheet must the_refore be allqwed to move over t_ime, asafunc- e interaction parametety controls the relative weight-
tion of the calving rate and ice flux at the margin.

Assuming that the calving front is a vertical surface,
it can be described by the implicit functiof;(x, y,7) =
0 (Greve and Blatter 2009. Denoting by grad F.=
(0Fc/dx,dFc/dy,0) its gradient,N. = | grad F¢| the norm
andnc. = grad F./N. the unit normal vector (assumed to
point out of the ice), the calving front evolves as follows
dF¢ dF¢ dFc

Tl Tl = Neey,
ar THax TUGy TN

+ grada® .u =wW.a® —-a®.w -, (C-a?

+a@.c—2a¥:0), (15)

ing of the strain raté and the deviatoric streasin the fab-

ric evolution Eq. 15). Whena = 0, the fabric evolution is
solely controlled by the state of strain rate, whereas in the
case where = 1 the fabric evolves under the influence of the
deviatoric stress solely. In between, as for the VPSC, both the
strain rate and deviatoric stress contribute to the fabric evolu-
tion. Assuming = 1, an interaction parameter= 0.06 is in
accordance with the crystal anisotropy and the VPSC model

(13) used to derive the polycrystalline behavio@il{et-Chaulet

www.geosci-model-dev.net/6/1299/2013/ Geosci. Model Dev., 6, 12938 2013
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etal, 2006. Seddik et al(2008 2011) adopted instead = 0 unit vector to the bedrocky. Note that the boundary con-
and a value of lower than 1. In Eq.15), the fourth-order dition Eq. (L8) for the Stokes problem is equivalent to the
orientation tensor is evaluated assuming a closure approxifree-surface Eq.1(1). The effective pressur& is defined
mation givinga® as a tensorial function af® (Chung and  as the difference between the ice normal stress and the wa-
Kwon, 2002 Gillet-Chaulet et a].200§. Theoretically, re-  ter pressure, such a8 = —opn— pw With onp = np - onyp.
crystallisation processes, such as continuous and migratiokquation (8) is the no-penetration condition accounting
recrystallisation, can be included by adding terms in B6) (  for basal melting 41 < 0) or basal accretiona(p > 0),
to parameterise on the polycrystalline scale the phenomenahereas Eq.19) stands for the general form of a friction
occurring at the grain scalé&séddik et al. 2011). Because law. Whenfs = 0, the ice slides perfectly over the bedrock,
experimental data are currently missing, these parameterisavhereas wherf; — 4-oo basal sliding is null. The three dif-
tions have not yet been validated and are not presented heréerent friction laws implemented in Elmer/ice are presented
below.
The first friction law linearly relates the basal shear stress

3 Boundary conditions to the basal velocity, such as

For all the equations presented above, classic Dirichlet, Neuami +Bu, =0, i=12, (20)
mann, Robin, symmetric and periodic boundary conditions

can be applied on the boundary of the domain. In this secwhereg > 0 is the basal friction parameter. As shown later,
tion, we present the conditions to be applied on the differentthis simple law is used for data assimilation and in this case
boundaries of an ice sheet for the main equations presented is a control parameter.

above, and we focus more specifically on the treatment of the The second law implemented in Elmer/Ice is a Weertman-
basal boundary. type sliding law:

3.1 Ice/atmosphere boundary ong + Bmupy tuy =0, i=1,2, (21)

The upper free surface= zs(x, . 1), also denoted's, isin ~ Whereus is the norm of the sliding velocity, = u — (u -

contact with the atmosphere and is therefore a stress-free suftb)tb, B iS @ sliding parameter and an exponent. When
face. so that m =1, the Weertman-type friction law Eq2T) reduces to

the linear law Eq.Z0). Theoretically, in the case of ice slid-
ons= —pammits ~ 0for z = zs, a7) ing without cavitation over an undulating bed,is equal to

1/n (Lliboutry, 1968, wheren is Glen’s law exponent.
wherens is the normal outward-pointing unit vector to the  The third friction was proposed b$choof (2005 from
free surface. For the dating equation, fabric equations and alnathematical expansions and Bagliardini et al.(2007)
other transport equations, Dirichlet conditions are applied orfrom FE simulations. This law describes the flow of clean

the upper surface only where the ice velocity enters the dojce over a rigid bedrock when cavitation is likely to occur:
main (mainly in the accumulation area). Where- zs and

u-ng <0, the temperature is equal to the imposed surface(,mi X u%—" Ln .
temperature? (x, v, zs, t) = Ts(x, y, t), and the fabric is as- CN l+a—(xub)‘1 u, =0 i=12, (22)
sumed to be isotropica® (x, y, zs,1) = 1 /3. For the heat 1

equation, a heat flux can be imposed at the upper surface r\?/herex = 1/(C"N"Ag), oy = (4—1)9"1/g4, Asis the slid-

account for melt-water refreezing. ing parameter in the absence of cavitation andlen’s
law exponent, resulting in a non-linear relation between the
basal dragrn; and the basal sliding velocity;,. The max-

The lower interface = zp(x, y, 1), also denoted',, may be ~ imal value ofony is C and the exponenf > 1 confcrols the
in contact with either the sea or the bedrock, so two kinds ofP0st-peak decrease. When the post-p.eak equpsm*qugl
boundary conditions coexist on a single surface. The condi0 1. the basal drag tends asymptotically to its maximum
tions to be applied where the ice is in contact with the sea ar¢alue C (no post-peak decrease). Note that in the limit case
presented in the next section. Where the ice is in contact witvhereN > 0, the sliding parametes and the friction pa-

3.2 Ice/bedrock boundary

the bedrock (i.ezp = b), the following conditions apply: rameters,, are inversely proportional. As shown Bchoof

(2009, the coefficientC should be chosen smaller than the
u-np+ap =0, (18) maximum local positive slope of the bedrock topography at
ony = fr(w, Ny, i=1,2, (19)  adecimetre to metre scale, so that the ratig/N < C ful-

fills Iken’s bound (ken, 1981). The friction law Eq. 22) is
whereon; =t; -onp anduy, = u - ¢; (i =1,2) are the basal strongly related to the water pressysg through the effec-
shear stresses and basal velocities, respectively, defined tive pressureV. The law Eq. 22) can then be used to cou-
terms of tangent vectorss and normal outward-pointing ple the hydrology and the ice dynamics. The hydrological
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model and its implementation in Elmer/Ice are presented ir4.1 Age equation
de Fleurian et al(2013.
For the heat equation, the geothermal heat flgsg is im- The ageA of the ice at each point of the ice sheet domain is
posed where the basal temperature is lower than the pregbtained by solving the following equation:
sure melting point{ < Ty, or T’ < 0), and the following A
Neumann-type boundary condition applies: e +u- gradA =1, (27)

w(T) (gradT - mp) Iry, = ggeot |ong uy . (23 \wherez = zs andu -ns < 0, the age of the ice is zero, i.e.

where|op uy, | is the heat energy induced by basal friction. A(, ¥, zs,0) = 0 (Zwinger and Moore2009. By solving the

Where the temperature melting point is reach&d<(7,,), ~ 29€ equation we can compute isochrones and determine dat-
the amount of melted water is estimated from the imbalancd"d &s a function of depth at an ice core (drilled or planned)
of heat fluxes and surface production: location. Input parameters entering other equations might
also be age-dependent, such as the enhancement factor for
+ |lonyut, | —« gradT - n
ap = 9% |t ;| . g b (24) example.
P

. i 4.2 Depth and elevation
whereL is the latent heat of ice.

It is often very useful to know the depth below the upper
3.3 Ice/sea boundary surface or the height above the bedrock at each point of the
ice sheet domain. For example, it can be used to prescribe
parameterisation of the temperature or the ice fabric fields
as a function of depth. With the FE method, using unstruc-
tured meshes, the depthx, y, z,t) = zs— z or the height
h(x,y,z,t) =z — zp at any pointM (x, y, z) cannot be esti-

At the bottom surface = zp(x, y, t) where the ice is in con-
tact with the ocean (i.ep > b) and at the front of the ice
sheet, the normal stress is equal to the sea pregguter),
which evolves vertically as follows:

I(t) — 2). Lt mated directly because nodes are not necessarily vertically
pw(z, 1) = {gwg( w®) =2), = i lW( ) (25)  aligned. Therefore, we compute the degttor equivalently
’ 2= lw(®), heighth) field by solving the following equations:
wherepy is the sea water density ang the sea level. The 5, ah
Neumann condition applied on these ice/ocean interfaces iTZ =-1, Ora—Z =1 (28)
thus
with the boundary conditiond =0 onz =zs or A =0 on
Onc = —pyhc. (26) 7= 2.
3.4 Grounding line dynamics Effectively, we solve, here for the height the following
system:
The position of the grounding line is part of the solution and
P d g P —e.-V(e.-Vh)=0, (29)

can evolve with time. Its position at each time step is deter-
mined by solving a contact problem. The contact is testece: - Vilae =1, (30)
by comparing at each node wherg= b the normal force ) - ]

Rn exerted by the ice on the bedrock and the equivalent waWVith the boundary conditiork|r, =0 and the unity vec-
ter force Fy. Rn is directly evaluated from the residual of to_r e in the_ver'ucal_ direction. The variational form_ is ob-
the Stokes system, whereBg is obtained by integrating the ~(@ined after integrating Eq2¢) by parts and accounting for
water pressure over the boundary elements using the bound® boundary condition Eq30), leading to a degenerated
ary element shape functions. ThenRf > F,y andzp = b, Laplace equation of the form

the boundary conditions Eqsl8) and (9) apply; whereas

if Rn= Fy andzp=>b, or z, > b, the boundary condition —/V(eZ -Vh) - ge,dQ2 =

Eq. (26) applies instead. o

/(ez -Vh)Vg - e, dQ — f we, -ndrl. (32)
Q

4 Auxiliary equations 0

The goal of an ice sheet simulation, usually, is to obtain infor-4.3  Stress and strain rate

mation on either the geometry, the age/depth relationship or

simply the exerted stresses and forces on a particular surfadélmer/Ice includes solvers to compute the Cauchy stress,
in contact with the ice. This section introduces the methodsdeviatoric stress or strain rate fields from the Stokes solu-

needed to obtain such information. tion, and also includes eigenvalues of these tensor variables.
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In addition, calculating of the stress from the velocity and The cost function that expresses the mismatch between the
isotropic pressure fields is a matter of interest because difsolutions of the two models is given by

ferent methods can lead to noticeably different solutions. In
Elmer/ice, the components; of the nodal Cauchy stress j, = /(uN —uP). (N = 0oP) . ndr, (35)
field are obtained from an existing Stokes solutia p)

by writing the variational version of the constitutive law in w

a componentwise manner as where superscriptev and D refer to the Neumann and
Dirichlet problem solutions, respectively.
/ 0;; PdQ = / e -oe; ddAQ The Gateaux derivatives of the cost functidgnwith re-
o o spect to the parametensand 8 for perturbations;” and g/,
respectively, are given by
=/e,--(n<gradu+ gradTu>—pI>ej<I>dQ. (32)
& dyJo = / 4 ((ég)z - (ég‘)z) de, (36)
This results in solving six independent equations, one for Q
each pf _the six independent components of the str(_ass tensocﬁl.3 Jo= /ﬁ/ <|uD|2 _ |uN|2) dr., (37)
In a similar manner, componentg of the nodal strain rate
<b

tensor are obtained from the following variational form:

. od q g7 q where the symbaiZ denotes the square of the second invari-
/sijcb Q= /e,- . ( gradu + gra u) e; odQ. (33) ant of the strain rate as defined for E4) &nd| - | defines the

Q Q norm of the velocity vector. Note that this derivative is exact

only for a linear rheology and thus is only an approximation

5 Inverse methods within Elmer/ice of the true derivative of the cost function when using Glen’s

flow law Eqg. @) with n > 1 in Eq. @).
The ice effective viscosity (x, y, z) in Eq. 3) and the basal .
friction coefficient(x,y) in Eq. 0) are two particularly ~ ©-2 Control inverse method

important input fields when modelling the flow of real glacio- Eor a linear isotropic rheology (a scalar viscosjtindepen-
logical systems. However, these two parameters are use%ent of the veloci{) on — 193(” Eq.4), the Stc?kgg spstem
to represent complex processes, and their values in situ ar Y, 1-en = 4-2), Y

poorly constrained and can vary by several orders of magni-O f equations is self-adjoint. Denoting byandg the adjoint

tude with time and space. On the other hand, our knowledg yariables corresponding toandp, respectively, they are so-

of some of the outputs of the model (surface velocity, surfac<—:‘-funonS of the following equations:

elevations) has considerably increased recently with data aCZdivné* _ gradg =0, (38)
quired by remote spatial observation. N
Two variational inverse methods have been implemente&re =0, (39)

within Elmer/Ice to constraim(x, y, z) andg(x, y) in diag-
nostic simulations from topography and surface horizontal
velocity data. Both methods are based on minimising a cos . e

. . rward solver (Stokes operator) remains self-adjoint when
function that measures the mismatch between the model ang’ . . . L

. : . equipped with the Newton linearisatioRdtra et al.2012).
the observations. The two methods are briefly described be- Co .
The cost function is chosen to measure the mismatch be-

low and their implementation in Elmer/I is verifi in "
gecta7d the plementatio erfice s verified tween the modelled and observed surface velocities

whereé?* is the equivalent of the strain rate tensor constructed
ith . For a non-linear rheology, the operator used by the

5.1 Robin inverse method Jo= /j(” —u®*9dr, (40)

s
This method, initially proposed b&rthern and Gudmunds-
son(2010), consists in solving alternatively tmatural Neu- ~ Where is the mismatch measure function am@fs are the
manntype problem, defined by Eqgsl)(and @) and the sur-  observed surface velocities. The choice jotan be case-
face boundary conditionsly), and the associateDirich- dependent and will affect the boundary condition terms of
let-type problem, defined by the same equations except thaihe adjoint system. For example, as the surface velocity di-
the Neumann upper-surface condition Eijf)(is replaced by  rection is mainly governed by topography, we can discard the
a Dirichlet condition where observed surface horizontal ve-error on the velocity direction and expregsas
locities are imposed, such that 1

2
Jj =S == (jun] - [ugp%)”, (41)

u = u®®Sandv = v°PSfor z = zs. (34) 2
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where subscript H refers to the horizontal componentnodei = (1,..., N,) andW; is the nodal weight associated
of the velocity vectors Gillet-Chaulet et al. 2012. The  with nodei and computed following the standard integration
Gateaux derivatives of Eg4Q) with respect tay andg are  scheme. The sum of all weights is the volume (or area) of

obtained as follows: the FE mesh. The discrete gradients/gft each mesh node
used for the minimisation are then given WyV! J, and ac-
1 on . X 14
dyJo = / —2n (6 : 6) ds, (42)  count for the volume or area surrounding each node.
Q The minimisation of the cost functior, with respect to
, n; or B; is done using the limited memory quasi-Newton rou-
dgJo = f —pu-2dr. (43) tine M1LQN3 Gilbert and Lemaréchal 989 implemented in
T Elmer/Ice in reverse communication mode. This method uses

an approximation of the second derivatives of the cost func-

5.3 Regularisation . . . . .
g tion and is therefore more efficient than a fixed-step gradient

When working with non-perfect (noisy) data, it is neces- descent. . _
sary to add a regularisation term in the cost function to im- How we define the inner product used to compute the

prove the conditioning of the inverse problem and ensure th&3ateaux derivatives affects the definition of the Frechet
existence of a unigue minimum. The regularisation term isderivatives, and could affect the convergence of the min-
based on a priori information on the solution either from imisation, but does not affect the minimum we are seek-
measurements, from analytical solutioRagmond Pralong  Ing to achieve. As for glaciological applications, velocities

and Gudmundssor2011), or from assumptions on the spa- and strain rates can vary by several orders of magnitude in-
tial variations of the variable. In Elmer/ice, a smoothnessSide the domain, and we have observed that including the

constraint on a variable can be imposed in the form of nodal weights in the definition of the Fréchet derivatives
a Tikhonov regularisation penalising the first spatial deriva-/€ads to good convergence properties when using an unstruc-

tives ofa as inMorlighem et al(2010, Jay-Allemand et al.  tured mesh where large elements correspond to low-velocity
(2011), andGillet-Chaulet et al(2012: areas, and vice versa. Possible alternatives are, for the con-

trol inverse methodMorlighem et al, 2010, to use a cost
1 do do oo function that measures the logarithm of the misfit or, for the

2 2 2
Jreg = 5/ <<a) + <5> + (8_z> ) dr. (44 Robin inverse method\fthern and Gudmundssp2010), to
T use a spatially varying step size rather than a fixed step in

The Gateaux derivative okeq with respect tax for a per- the gradient descent algorithm, as proposefichéafer et al.
turbatione’ is obtained by (2012).

wm= [ () (50)+ () (5)+ () (5o @9

The total cost function to minimise then reads

6 Numerical implementation and specificities

6.1 Mesh and deforming geometry
Jiot = Jo + AJreg (46)

Ice sheets and ice caps have a very small aspect ratio, hori-
where is a positive ad hoc parameter. The cost function zontal dimensions being much larger than the vertical dimen-
minimum is therefore no longer the best possible fit to obsersjons, and therefore meshing requires special care. The strat-
vations, but a compromise (through the tuning.pbetween  egy commonly adopted in Elmer/ice for meshing glaciers,
fitting with observations and smoothnessin ice sheets and ice caps is to mesh first the horizontal 2-D
footprint and then extrude it vertically. These meshes are then
vertically structured with the same number of layers over
the whole domain, whereas the horizontal dimension can be

scalar product represented by the integral terms in B33. ( meshed using an u_nstructured me.sh. This IS one of the main
gdvantage of a FE ice flow model in comparison to the clas-

and @2). When discretized on the FE mesh, these equation . ) i
62) ! 2 quest sically used finite difference or volume methods for which

are transformed into a discrete Euclidean product as follows; _ . .
the grid has the same size over all the domain, unless a mesh

adaptive method is implemente@drnford et al, 20133.
, P ; , The unstructured mesh of the footprint can be created
dy Jo vay Joy' & ZWI'V;/ Jov;s (47) using triangle-shaped elements of various sizes to account
i=1 for the spatial heterogeneity of the variables gradient. The
wherey represents) or 8, V, J, is the continuous Fréchet horizontal size of the elements can be controlled using,
derivative ofJ,, the expression of which is given by com- for example, a metric constructed from the Hessian ma-
parison with Egs. 37) and @2), Vj, Jo is its value at mesh trix of observed surface spee@i(let-Chaulet et al.2012.

5.4 Minimisation

The Géteaux derivatives af, are given by a continuous

N
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Technically, optimising the mesh sizes according to this met- For instance, if we solve Eql4), we should take any in-
ric is done using the freely available anisotropic mesh adapduced mesh velocity Eq50) into account. This is done by
tation software YAMS FErey and Alauzet2005. Because of  the arbitrary Lagrangian—Eulerian (ALE) formulation, which
the overall size of ice sheets, the mesh is then partitioned ani$ based on the Reynolds transport theorem @rgve and
all partitions are solved in parallel using the Message Passin@latter, 2009. Conservation simply demands that in the gen-
Interface (MPI). In Elmer/Ice, the mesh can be generated eieral reference frame of a moving mesh, Exf)(changes into
ther by extrusion as a preprocessing step or by a built-in mesh
extrusion feature which operates on the parallel level. This 5
internal procedure efficiently removes some of the possiblea = o + (u —u,) - gradw. (52)
bottlenecks in preprocessing as the maximum mesh size is
no longer constrained by serial operations. Also, in the casé slight deviation from this is for the kinematic boundary
of an extruded mesh, certain operations become trivial, agondition Eg. {0), as the convection term is only in the hor-
for example modifying the geometry or computing the depthizontal plane, i.e.
or elevation, which efficiently becomes a one—dimensional8
is 8Zs 323

problem. —— + (us— ) — + (Vs — Up) — — Ws = as. (53)

For transient simulation, the geometry of the ice sheet is 3t 9x 9y
evolving with time and the mesh has to be deformed to follow  The same is applied to EqlY) for the evolution ofzp,.

these changes. The common approach to deform geometrigg special case of Eq5@) is when the surface is considered
in Elmer/ice, if dealing with unstructured meshes, is to rear-to move horizontally (it does vertically by definition) at the
range the nodes by solving a pseudo linear elasticity problemspeed of the fluid particles, i.e,, = us. This, for instance, is
Any mesh displacementyx, in Elmer/ice is relative to the needed if dealing with advancing fronts in marine-terminated
initial mesh positionxo, i.e.x(t) = xo+ Ax(t). Adeforma-  glaciers. In this case, the new position of the surface is deter-
tion of the surface, for instance, can be induced by a changmined byx (¢ + At) = x(r) +u(r) Az. In terms of the abso-
ing free-surface elevatiom, Hence, the prescribed vertical |yte mesh updatax, this means thatx (1 + Ar) = Ax (1) +
deformation here i\x(¢) -e; = h(t) — h(t = 0). Inside the 4 (r) A, which simply reflects Eq.50) underu,, = us and
bulk mesh, the corresponding deformation is then obtaineq,s = 0.
by solving

6.2 Variational formulations

2Yk Y
-V <(1 —k)(1—2) €t 2(14«) v Axl) =0 8) " Eimeriice relies on the FE method, and all the equations pre-
sented above are solved using a discretised variational form,
whereY and« are respectively a pseudo Young's modulus leading in turn to solving a linear system for which the un-
and Poisson ratio, describing the resistance against the d&nowns are the nodal value of the variable. The aim of this
formation and its directional ratio. Further,describes the  section is to present some technical details for the variational

symmetric strain tensor forms of both the Stokes and transport equations.

1 .
e=3 <VAx T (VAx)T>. (49) 6.2.1 Stokes equations

The discrete variational form of the Stokes system Egjs. (
and @) is obtained by integration over the ice doman
using the vector-valued weight functiob and the scalar
weight functiony,

In consequence, the induced mesh velocity from the re
computation ofAx by Eq. @8) from one discrete time-level
t tot + At then is given by

_ Ax(t+ At) — Ax(1)
= Al .

Upm

(50) / Wdive dQ =0, (54)

Q
The continuum equations, as presented above, strictly, are _
valid only in a fixed reference frame. In ice sheets or glaciers, | T : grad®d2 — / pdivedQ — ?gn -o®dl’

however, the geometry by nature is not fixed. In a fixed ref-g, o 30
erence frame, it is the fluid velocity, the total change of
a scalar propertyy, = ,O/g - dQ. (55)
Q
dav v
priairval gradv, (51) In the relation given above, the left-hand-side term in the

momentum equation given in EdL)(has been integrated by
consists of the local change and of a convective partparts. One part is re-formulated by applying Green’s theo-
u- gradv. rem, transforming it from an integral over the dom&irnto
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one over the closed boundary of the doma&infor which

1309

Dirichlet conditions have to be applied on all the bound-

Neumann or Newton boundary conditions can be set (e.garies ofQ2 where the flow velocity is directed inside the ice
vanishing deviatoric surface stress components). The numedomain. Because of the missing diffusion terms in BE§),(
ical solution of Eq. §4) is obtained by either using the sta- the classic Galerkin method is unstable. This transport equa-

bilised method fronfranca and Frey1992 or the residual
free bubbles method iBaiocchi et al(1993.
For non-linear rheology, e.g.= 3 in Glen’s law (Eq.4)

and Eq. 64) is non-linear and needs to be solved iteratively.

tion is either solved using the discontinuous Galerkin method
proposed byBrezzi et al. (2004 or a semi-Lagrangian
method Gtaniforth and C6t€1991; Martin et al, 2009.

For the(k + 1)-st iterations of the non-linear loop, the effec- 6.3 Preconditioned linear solvers

tive viscosityn;1 is estimated from Eq.4) using the pre-
viously computed velocity fielde; (fixed-point method or
Picard method) or a Newton linearisation such as

a

n
M+l =Nk + W1 —ug) - —.

o (56)

The discretisation and linearisation of the varying viscos-
ity Stokes system lead to linear systems which cannot be
solved efficiently by using standard linear solvers. A special
preconditioned version of the generalised conjugate resid-
ual (GCR) method has therefore been implemented recently

Convergence is obtained much faster with the Newton iter-into Elmer/Ice to obtain effective parallel solutions of these

ation than with the Picard method, but the former algorithm issystems. This new preconditioner utilises the natural block
known to diverge when starting too far from the solution. In structure of the associated linear algebra problem and is de-
practice, the solution is initially approached by performing rived from approximating the associated pressure Schur com-
some Picard iterations, and then activating the Newton lin-plement matrixS as S~ (1/57)M, where7 denotes the vis-
earisation for the last iterations. Because the convergence iosity corresponding to the current non-linear iterate ldnd
problem-dependent and depends on the initial solution, thergs the mass matrix corresponding to the pressure approxi-
is no general rule stating when to start the Newton iterationmation (for similar solvers for varying viscosity flows see
scheme. The efficiency of the Newton method is illustratedGrinevich and Olshanski2009 Burstedde et al2009 Gee-

on atest case in Seat.2

6.2.2 Transport equations

AssumingA = (A) or A = (afl),aézz),afz), a%,a%), equa-
tions for the age of ice (EQR7) or the ice fabric evolution
(Eg.15) can be expressed using the generic form

A,
a_rl +div(Aju) + K;A; = F;, (57)

wherei =1, K =0 and F = 1 for the dating equation and

wherei =1,...,5, andK and F are vector functions o€,

W, a® anda® for the fabric evolution equations. For in-

compressible fluids (ice), diy; u) simplifies tou- grad(A;).

Equation b7) is a first-order hyperbolic equation, and is non-

linear when solving for the fabric evolution.

The variational formulation of the transport equations is

obtained by multiplying Eq.57) by the test functior® and

integrating over the ice volumg. Because in the case of
a vector solutionA the set of equations is solved iteratively .’

. L dition ca
for each component independently, the variational formula-

tion is presented for a scaldr, and reads

/%chQJr/div(Au)cbdQJr/KA<1>dQ:/FcI>dQ, (58)
Q Q Q Q

The second term is then integrated by parts, so that

0A P
/ECDdQ—/Aa—ude+/‘KACDdQ
Q

X
Q
= f FodQ — y{ Au -n@dr. (59)
Q Q2
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nen et al. 2009 ur Rehman et al.2017). Results of scal-
ability tests done with this block preconditioned solver are
presented in Sec®Z.3. Note that in conjunction with this
Stokes solver version, we employ a bubble stabilisation strat-
egy based on utilising bubble basis functions corresponding
to the high-order version of the finite element method.

6.4 Normal consistency

All boundary conditions involving vector (velocities) or ten-
sor values (stress) are in need of a consistent description of
the surface normals. Nodal normals, by nature of the discreti-
sation applied in the FE method, are not uniquely defined, es-
pecially with linear elements. Thus, the representation of sur-
faces has non-continuous derivatives at nodes. For ice sheet
boundary conditions, this is a problem occurring typically
at the bedrock interface in the presence of sliding where a
Dirichlet-type non-penetration condition has to be applied,
i.e.u-n = 0. Depending on the nodal definitionmfthis con-

n lead to artificial source and sinks for mass and mo-
mentum in very uneven parts of the bedroGillet-Chaulet

et al. (2012 have shown that using the average of the nor-
mal to the elements sharing the node to estimate the nodal
normal can lead to aartificial mass loss of up to 10% of
total ice discharge at the margin of Greenland. Recently, the
mass-conserving way of deducing the nodal surfeéaley

et al, 2004 has been implemented in EImer. For a nage

with an element-correlation numbaf;, the surface normal

is derived by
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This algorithm is repeated as long as there is no change in
N; the active node set and the convergence criteria imposed for
1/N; 32 Jo, n(x ecdV the solver are met.
nj= N . (60) . . iy
1N SN [ n(x edv | In a converged state, the physical meaning of the resid
S =l T ual can be interpreted. For the heat equation Bd), (the
The relation above constructs the nodal surface normalfesidual represents the additional cooling needed to comply
n;, as a sum of the normals evaluated at the adjacent elewith the inequality? < Tr,. For the free-surface equations

ments £, using the same weighting functions,, as forthe ~ Egs. 0) and (L1), the residual can be interpreted as the per-
momentum equation. node additionally needed accumulation/ablation to meet the

constraint Eq.12).

6.5 Accounting for inequality

As presented in Sec?, the ice temperaturg in Eq. (14)is 7 Elmer/ice efficiency
bounded by the pressure melting pofigt, and the free sur-
facezp andzs in Egs. (L0) and (1) must fulfil the inequali-

tieszs(x, y, 1) = b(x, y) +hmin ANzp(x, y,1) > b(x, y). The Convergence of the Stokes solver is tested by running the
variational inequality is solved using a method of imposed ; : .
same problem with an increased mesh resolution. The pur-

Dirichlet condition that are released by a criterion based on ; L )
: pose of this exercise is to verify the model and compare the
the residual. Let

efficiency of the various elements and associated stabilisa-
A-h=a (61)  tion methods available within Elmer. For three-dimensional
geometries, the Stokes equation can be solved using 8-node
be the matrix equation of the unconstrained system. In FElinear) or 20-node (quadratic) hexahedron elements, or 6-
method terminologyA is the system matrixz the solution  node (linear) wedge elements. Stabilisation of the Stokes
vector andz the body force. We then have to solve EL)(  equations is done either using the stabilised metkodrca
under a constraint vectd,. Here, we choose a minimum and Frey 1992 or the residual free bubbles methdgbfoc-
value, hence a lower constraint, but the same method workshi et al, 1993.
also with upper bounds, like it is applied in the case for The Stokes solver is verified using the manufactured ana-
constraining the temperature with the local pressure meltingdytical solution first proposed iSargent and Fastodr010

7.1 Convergence tests

point. This lower constraint reads and subsequently modified and correctedLieng et al.
(2013. Here, we use exactly the same geometry and set of
h > hmin. (62) parameters as ineng et al(2013. All meshes are structured

and defined by the number of elementsciny andz direc-
tions. The mesh discretisation is made to vary from a very
coarse mesh (20 20 x 5, 10 584 degrees of freedom for the
— A nodei violating #; > hmin; is set as “active”. linear element) up to a fine mesh (18A60x 40, 4251 044
) . - degrees of freedom). The modelled domain is the bumpy bed
— For each “active” node a Dirichlet conditidn = hmini  of ISMIP-HOM experiment A Pattyn et al.2008 with the
is introduced into Eq.€1). This is achieved by setting  go km length. For this geometry, the finer mesh does corre-
theith row of the system matrix td;; = 5;;, wheres;;  gpond to horizontal and mean vertical resolutions of 500 and
is the Kronecker symbol, and tht entry of the force 25 respectively. The convergence rate for the various el-
vector toa; = hmin;- Doing so for all active nodes re-  ements and stabilisation methods is obtained as the slope of
sults in an altered, constrained system the L2 relative error norm function of the grid size refine-
AW =d. (63) ment._TheL_2 relative error norm of two arbitrary vectors
andv is defined as

_ 2lu—v|

In order to enforce Eq6Q) we apply the same method as
in Zwinger et al(2007):

— Instead of Eqg.§1) we are now solving Eq6Q), obtain- — ]
ing a solution vectoh’. ’ lu+v]
For simplicity, it is plotted here as a function of the cu-

bic root of the inverse of the degrees of freedom, which is

proportional to the grid size refinement. These curves for the

R=A-W—a. (64) three components of the velocity and isotropic pressure are

plotted in Fig.1. They show that whatever the element type

If an earlier “active” node is found to comply with and stabilisation method, the rates of convergence (slopes of

Eq. 62), it is taken of the list if, and only ifR; < O. the curves) are similar and close to 3 for velocity and pres-

sure. A rate of convergence of 3 is greater than the theoretical

(65)

— k' in turn is inserted into the unconstrained system
Eq. 61), defining the residual
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Fig. 2. Evolution of theL? relative error norm between two con-
gsecutive solutions of the Stokes systeiy, .., as a function of
the non-linear iteration, for a switch criterion from the Picard to the
Newton scheme of 1 (Picard only, black curve), red 18, green

Fig. 1. Results of the convergence test relative error norm be-
tween Elmer/lce and analytical solutions for the 3 components o
the velocity (4, v, w) and the pressurg, as a function of the grid
size (which is proportional to the inverse of the cubic root of the “~"7
degrees of freedom) fdfranca and Frey1992) stabilisation with 10 ,.blue 1and m.ag.er?tla 2 (Ney\{ton on.ly), for the I$MIP-HOM
(black) 6-node wedge element, (red) 8-node hexahedron elemerfXPeriment AO0O05 with initial conditions (circle) assuming zero ve-

and with (blue) 20-node hexahedron element; and for the residuallOCity and pressure and (‘”ang'e) e_stir_nated from the SIA solutipn.
free bubbles stabilisatioB&iocchi et al. 1993 with (green) 8-node The C,OIOU; (;]f the dot-dasggd Ilnels indicates the value of the switch
hexahedron element and with (magenta) 20-node hexahedron el&lterion of the corresponding colour curve.

ment. The black dashed line indicates a rate of convergence of 3.

(Picard only), 162, 1071, 1 and 2 (Newton only). The non-

_ linearity is assumed to be resolved whign,,,,, < 10°8.

value expected (e.gm and Guermon@004), especially for The evolution o8, , ,, ., as a function of the non-linear it-
the linear element and pressure. Surprisingly, the same ratg ation indices is prepée/ﬁted in FgAs expected, the Newton

of convergence is obtained for linear and quadratic elementssmheme is quadratically convergent, while Picard converges
and for a given discretisation the quality of the solution is only linearly Paniconi and Putti1994. When the initial
even better using linear elements, so that the use of quadratig,gition is null velocity and pressure, it takes 40 Picard it-
elements is not recommendable, at least in this particular €Xarations to converge, whereas with Newton's method alone,

ample. For this application and the quadratic 20-node hexay; yequires only 10 iterations. Surprisingly, even if it takes

hedron element, the residual free bubbles method is found t@,q¢ picard iterations to converge for the SIA initial condi-
be less accurate than the stabilisation methodrahca and tion, the convergence of the Newton solver is only obtained

Frey(1992. if Picard iterations are performed fro&*[,IMP+l <1071 This
example shows that Newton’s method can diverge if the ini-

7.2 Picard versus Newton linearisation tial condition is too far from the converged solution. A switch
criterion§ < 1072 is found to work in most cases and

- B . up’u[)+1 . . .
Picard and Newton schemes for the non-linear solution ofit reduces the non-linear iterations by a factor about 2. Be-

the Stokes equations are compared by performing the ISMIPeause the CPU consumption is almost proportional to the
HOM experiment AOO5Rattyn et al.2008 Gagliardiniand  number of non-linear iterations performed within one time
Zwinger, 2008 for two different initial conditions. The first  step, switching from Picard to Newton iterative schemes can
one assumes null velocity and pressure, whereas the secomdduce CPU time by the same factor.

initial condition is equal to the SIA solution for this problem.

The switch from the Picard to the Newton iterative scheme7.3 Elmer/Ice scalability

is controlled by a criterion o] PR the L2 relative error

norm, Eqg. 65), between the previoup and currentp + 1 The scalability of the new block preconditioned solver is
velocity fields of the non-linear iteration loop. The same di- tested and compared with the parallel sparse direct solver
agnostic simulation is repeated for switch criteria of40 MUMPS (Amestoy et al. 1999. For this purpose, the
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Fig. 4. Efficiency for a weak scalability experiment using the block
50 preconditioner for an approximate number of nodes in all meshes of
4200 and meshes from@8x 10° nodes up to 68 x 10° nodes.
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1

48 96 144 192 240 288 336 384 432 480 528 576 624 672 720
Number of cores new block preconditioned method for the strong scalability,

whereas for a number of partitions greater than 100, MUMPS
bility experiments using the block preconditioner for meshes with Wa_s always found t(.) scale badly due to an mcrt_aase of the re-
(red e) 2.400x 10° nodes, (redm) 1.142x 10° nodes and (red) quired memory. This new solution strategy using the block
0.708x 10° nodes, and the MUMPS solver for meshes with (blue Preconditioned solver clearly opens the door to applications

m) 1.142x 10° nodes and (blua) 0.708x 10° nodes. The dashed ©One order of magnitude larger in mesh size than what we
line indicates a theoretical efficiency of 100 %. were able to achieve so far using a direct solver like MUMPS.

Fig. 3. Acceleration (top) and efficiency (bottom) for strong scala-

diagnostic Stokes solution is computed using the present-day-4 Inverse methods validation

Greenland geometry. The Greenland footprint is first meshe . : .
using regular triangle elements and then vertically extruded(éNe test the two inverse methods previously presented in a 2-

Different meshes are constructed by varying the horizontaE t?) X\?;TizlaeteretﬁsﬂSlrlr?gri:a(lz?r:;”Tgmg;?m(t:;irénA?/vguurst;eI(i::(\a/zr
element size from 5 km to 10 km, but all have 20 vertical lay- P !

ers. The size of the tested meshes varies from 708 000 ugeOIOQV forwhich the two inverse methods implemented are

: act.
to 4580 000 nodes. Temperature and basal drag are |mposed( o L
using the same fields as @illet-Chaulet et al(2012). New- Our domain is 20km long, the bed elevation is constant

. . L nd equal to—900 m. The free-surface elevation decreases
t50>r<1 ggiaztmns are used after the convergence criterion ream%ﬁearly from 200m atr — 0km to 100m atr — 20 k.

The results obtained for strong scalability, i.e. a constant-llshe free surface is stress-free, we prescribe an homogeneous

.. e l . .
problem size with different partitionings, and for weak scala- irichlet condition of 50ma- for the horizontal velocity at

bility, i.e. a constant load per CPU using different mesh sizesg = Okm, ;vte_aggllz a Nedumann cl:ondl_mon (therosltatlc sga
are presented in Fig8 and 4, respectively. If the elapsed ressure) at = M, and we apply a inear siiding faw an

time ist, for a number of partitions, then, for a strong scal- a Wg'p::::;?g(;nrg?er}gﬁs: :(;&;E?Siiﬁ(:k'
ing test, the scalability of a solver can be characterised ei- 9

ther by itsacceleratioret/t, or itsefficiency(n/nref)tret/t, g =10"3(1.04sin(2rx x 2/L)) MPam g (66)
where ref stands for the reference simulation (often the one :

=10(1.5+sin(2 6/L)) MPa a 67
with the smallest mesh size). For a weak scaling test, the ac’z (L5 sin(2mx x ©/L)) €7)
celeration depicted in Figl is defined asn/nef)fref/ tn - The surface velocities computed from this reference so-

The weak scalability experiment uses a constant numbelution are then used as perfect synthetic observations (twin
of 4200 nodes per partition in combination with an increas-experiments).
ing number of partitions from 168 up to 1092. Weak scala- The first step in the validation process is to assess the
bility is found to be greater than 60 % even for the largestability of each solver independently to reconstruct the syn-
test case. Efficiency greater than 100 % is obtained with thehetic observations. For the sliding coefficiefit we start
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for the initial conditions of the previous twin experiments.
Fig. 5. Evolution as a function of the number of iterations of (top) We also test the implementation of the Tikhonov regular-
the cost function relative to the initial cost function and (bottom) the jsation, Eq. 44), by choosing the cost function such as

norm of the gradient vector relative to the initial gradient norm for y _ [+ 0.5(da; /3x)%dT wherew; = 1.0~%(1.0+sin(2.07 x
the Robin (black curves) and control (red curves) inverse method%x / L)F)b_

for the inversion ofg (solid curve),E;,(x, y) (dashed curve) and

For each solver, we use 10 random perturbation fie[ds
Ey(x,y,z) (dotted curve).

where each nodal value al,f is a random number between
—50% and 50 % of the mean valueaf The gradient com-

from the initial guess; = 10-2. The viscosity is expressed puted from the two inverse methods is verified using the ratio
;= )

asn = Eyno, and the optimisation is done on the viscos- A(h) defined as
ity enhancement factoE,, with initial guessesE, =1 and (J (i +hap) — J(;))/ h — Vg,
no = 15. Itis possible a priori that several distributionsf A(h) = : v :
especially in the vertical direction, can lead to the same sur- i
face velocities; therefore, we made it possible in the model ap example of the evolution ok (7) as a function of h is
to invert £, only in the horizontal plangx, y) when using  shown in Fig.6 for the perturbation of the enhancement fac-
vertically extruded meshes. The gradienvafith respectto  tor to the viscositye, (x, y). For both inverse methods and all
E, at a given positior(x, y) is then obtained as the vertical experiments, i.e. perturbation gf (not shown),E, (x, y, z)
sum of the nodal gradients at position y). (not shown),E, (x, y) (Fig. 6) and the Tikhonov regularisa-

To ensure thap and £, remain positive during the opti-  tion (not shown), the ratia\ (%) is found to decrease ds
misation, is expressed a8 = 10 and £, is expressed as  decreases and it reaches a value typically lower than 10 %.
E, = a3. The optimisation is then done with respect to the sych values are already satisfactory: nonetheless we could

a; (i =1,2). The evolution of the cost function and norm of optain even more accurate gradients by automatically deriv-
the gradient obtained for each test is given in BigBoth the ing the code itself.

cost function and the gradient norm decrease and tend toward Figyre7 illustrates the difference of results obtained when

(69)

zero with the number of iterations. _ . inverting for £, only in the horizontal plane or in the whole
The second step in the validation process is to verify thejce volume. As can be seen, the two inferred fieltjgx, y)
following approximation: andE,(x, y, z) are significantly different even if surface ve-
J (@ +hal) — (@) locity and observation are in comparable agreement. This
% i %) _ Vg +0(Q). (68) indicates that a non-unique solution can be obtained when
h the number of control parameters starts to be larger than the

For a given perturbatiom/, the left-hand-side term is eval- number of observation points.

uated by computing/ («; + ha!) with the direct model for
several values oh, and the right-hand-side term is com-
puted directly from the nodal gradients. This test is done
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18 of the stress distribution at the front of glaciers and of the
’. 1 "{ | submarine melting distribution, as well as a reliable ice dam-
15 I age model (e.cPralong 2005 Jouvet et a].2011), are the re-
quired ingredients to describe calving at the front of marine-
09 | terminated glaciers. In Elmer/ice, the already implemented
|| ALE formulation for the free surface accounts for moving ice
0.6 - sheet margin boundaries. Because Elmer/Ice solves the full-
J I H J 03 . Stokes system, all components of the stress field are known
and can therefore be used to evaluate ice damage. Work is in
Fig. 7. Comparison of the obtained inverted enhancement factorprogress to implement an ice damage rheological law follow-
field for the control method assuming only changes in a horizon-ing Pralong(2005 with the aim of using damage iso-surface
tal plane €, (x, y), left) or changes in all 3 direction€{ (x, y, z), to locate the calving surface and move accordingly the front
right). The inverted fieldz; (x, y) in the left is virtually identical to  gyrface.
the one prescribed to obtain thbservedvelocities (Eq67). Melting from beneath the ice shelves is certainly one the
most important triggers of the observed recent ice stream ac-
celerations (e.d?ayne et a)2004 Dupont and Alley2005.
8 Outlook Not only is the total amount of basal melting important, but
also its spatial distributionagliardini et al, 2010. For nu-
A number of the requisites for an ice sheet model as dis-merical and technical reasons, coupling an ocean model with
cussed in the Introduction have already been implemented ian ice sheet model is still a challenging issue. An interme-
Elmer/Ice, and especially those necessary to accurately dediate approach we would like to explore as a preliminary
scribe the flow of polar ice. Nevertheless, as for other icestep towards a complete coupling with an ocean model is
sheet models, the physical processes at the boundaries atite implementation within ElImer/Ice of a plume-type model
their coupling with the other components of the climate sys-(Holland and Felthan006.
tem can still be improved in the near future. This is the pre-
requisite for running any forecast simulations of ice sheets,
and not only sensitivity experiments based on more-or-les® Conclusions
crude parameterisations that link changes in the atmosphere
and the ocean to changes at the boundaries of the ice she#tle have presented in detail the Elmer/ice ice sheet flow
Our efforts in the near future will be dedicated to improv- model, from the equations implemented to the way they are
ing the physical description of the ice/atmosphere, ice/ocearsolved using the FE method. Elmer/Ice contains a high me-
and ice/bedrock boundaries, as well as the models describinghanical description of ice flow: it solves the complete Stokes
how the pertinent variables at these interfaces are distributedequations without any approximation, includes two complex
For the basal boundary condition, numerical modelling anisotropic flow laws, resolves the grounding line dynamics
(Schoof 2010 or direct measurementSo¢le et al. 2017) as a contact problem and incorporates a basal friction law ac-
seem to indicate a very complex relation, most certainly non-counting for cavitation. Temperature and fabric fields within
linear, between changes in surface runoff and modulatiorthe ice sheet domain can be determined in a coupled man-
of basal sliding. Two ingredients would then be required toner with the flow solution. Other equations allowing for the
fully account for the complexity of basal processes in rela-derivation of secondary variables from the Stokes solution,
tion with changes in surface runoff: (i) a proper basal friction such as the age of the ice, the stress or strain rate fields,
law depending on the effective basal pressure (i.e.2)).  are also implemented. Two recent inverse methods have been
and (ii) an associated hydrological model to describe theimplemented in Elmer/Ice that make it possible to infer the
basal water pressure distribution. This hydrological modelpoorly known parameters to construct the initial state of the
is currently under development and will be presenteden ice sheet. From a technical point of view, Elmer/ice reaps
Fleurian et al(2013. the benefits of the FE method, and provides an easy mesh
Changes in the front position of marine-terminated adaptation method to focus on areas of interest. Elmer/ice is
glaciers seem to have a great influence on the upstream icghighly parallelised code and, as a recentimportant improve-
flow by modulating the buttressing forc®i€li and Nick, ment, the new block preconditioned solver will in the near fu-
2017). Determining the rate at which icebergs are calved forture lead to increase significantly the size of the solved prob-
many different configurations remains an open question inems. As listed in the previous section, there is still a need
glaciology. Submarine melting acting at the calving front of for future improvements and new developments, particularly
glaciers certainly increases calving rate by undercutting theby linking more tightly the pertinent variables controlling the
ice (Rignot et al, 201Q O’Leary and Christofferser2013. flow at the boundaries, like the basal water pressure, with the
A general calving law, especially for 3-D configurations, still other components of the climatic system. This next step is
needs to be formulate@®énn et al.2007). Better knowledge the requisite for driving ice sheet forecast simulations and

1.2
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