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Abstract. The Fourth IPCC Assessment Report concluded
that ice sheet flow models, in their current state, were un-
able to provide accurate forecast for the increase of polar
ice sheet discharge and the associated contribution to sea
level rise. Since then, the glaciological community has un-
dertaken a huge effort to develop and improve a new genera-
tion of ice flow models, and as a result a significant number
of new ice sheet models have emerged. Among them is the
parallel finite-element model Elmer/Ice, based on the open-
source multi-physics code Elmer. It was one of the first full-
Stokes models used to make projections for the evolution
of the whole Greenland ice sheet for the coming two cen-
turies. Originally developed to solve local ice flow problems
of high mechanical and physical complexity, Elmer/Ice has
today reached the maturity to solve larger-scale problems,
earning the status of an ice sheet model. Here, we summarise
almost 10 yr of development performed by different groups.
Elmer/Ice solves the full-Stokes equations, for isotropic but
also anisotropic ice rheology, resolves the grounding line
dynamics as a contact problem, and contains various basal
friction laws. Derived fields, like the age of the ice, the
strain rate or stress, can also be computed. Elmer/Ice in-
cludes two recently proposed inverse methods to infer badly
known parameters. Elmer is a highly parallelised code thanks
to recent developments and the implementation of a block

preconditioned solver for the Stokes system. In this paper, all
these components are presented in detail, as well as the nu-
merical performance of the Stokes solver and developments
planned for the future.

1 Introduction

Since the 2007 IPCC report (Solomon et al., 2007), theoret-
ical glaciology has taken a big leap towards improved ice
sheet flow models, in order to provide reliable future es-
timates of the dynamical contribution of ice sheets to sea
level rise. These models were originally designed to recon-
struct the evolution of ice sheets over past glaciological cy-
cles, neglecting short-term responses and local features. The
new challenge of running ice sheet models to provide esti-
mates of future sea level rise has created the need for a new
generation of ice sheet models (Vaughan and Arthern, 2007;
Gillet-Chaulet and Durand, 2010; Blatter et al., 2011; Kirch-
ner et al., 2011; Alley and Joughin, 2012). This new genera-
tion of ice sheet models includes a set of requisites that are
essential to provide a sufficiently accurate description of the
ice flow dynamics.
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As a first requisite, these models must be able to describe
the ice flow heterogeneity, and particularly the major con-
tribution of individual ice streams to the total ice discharge.
This requires the use of an unstructured mesh in the horizon-
tal plane (e.g.Gillet-Chaulet et al., 2012; Larour et al., 2012;
Seddik et al., 2012) or of adaptive multi-grid methods (Corn-
ford et al., 2013b). These mesh techniques are essential to
produce hundred-metre-scale grid sizes in areas of interest,
especially near the coast, while for the interior regions where
variations in velocity gradients are small, classic grid sizes
can be kept to save computing resources. Grid refinement is
even more essential when considering the dynamics of the
grounding line, i.e. the boundary between the grounded ice
sheet and the floating ice shelf, because a grid size that is
too large gives inconsistent grounding line dynamics (Du-
rand et al., 2009; Pattyn et al., 2013).

The second important requisite is to have an accurate de-
scription of the complex state of stress prevailing in ice
streams to solve the full-Stokes system, or at least to adopt
a higher-order asymptotic formulation. As shown by the
ISMIP-HOM inter-comparison exercise (Pattyn et al., 2008),
higher-order models are needed to describe the ice flow in ar-
eas where the basal topography and slipperiness vary greatly,
which are generally the most dynamic regions within ice
sheets. Higher-order models are also necessary to properly
describe the dynamics of the grounding line. The MISMIP
inter-comparison (Pattyn et al., 2012) indicated the need to
solve the full-Stokes equations near the grounding line to ob-
tain fully accurate results.

The consequences of these first two requisites, i.e. high
numerical resolution at places of interest and higher-order
formulations, are a high computing cost and the necessity to
develop parallel codes, able to run on hundreds of CPUs. Re-
cent studies (Larour et al., 2012; Gillet-Chaulet et al., 2012;
Seddik et al., 2012; Cornford et al., 2013b) have fulfilled
these requirements and have shown that by deploying high-
performance computing (HPC) techniques this challenge can
be successfully taken on. In this context, Elmer/Ice takes ad-
vantage of being backed by a large open-source community
that also develops new numerical and HPC techniques for the
code (e.g.Malinen, 2007).

The third requisite, and from the physical point of view the
most challenging, is to implement physically founded bound-
ary conditions. These improvements are far more complex
and it will take more time to fully address them in the ice
sheet flow models. The recently observed changes in coastal
glacier dynamics (e.g.Moon et al., 2012) are certainly driven
by changes in ice sheet and ice shelf boundary conditions,
and consequently linked to changes in the ocean and atmo-
sphere components of the climatic system. In the simplest
cases, changes in the climatic components directly drive the
changes at the boundaries of the ice mass. This is the case for
surface air temperature or ocean temperature which directly
drive the temperature boundary condition of the upper sur-
face or the bottom ice/ocean interface, respectively. In other

more complex cases, the link between changes in the ocean
and/or atmosphere and changes in the ice flow is indirect. In-
termediate processes (often not observable) are involved, as
in the case for example of the link between surface runoff and
basal sliding or ocean temperature and calving rate. Thus,
a dedicated model is required to describe the processes re-
sponsible for the transfer of these changes to the ice mass.
Driving this dedicated transfer model might require coupling
the ice sheet model with an atmosphere or an ocean model.

The last important requisite for a forecast model is to be
able to simulate present-day observations with as much fi-
delity as possible (Aschwanden et al., 2013). This point must
be addressed clearly using data assimilation techniques and
specific inverse methods to estimate the less well known pa-
rameters of the model (e.g.Heimbach and Bugnion, 2009;
Arthern and Gudmundsson, 2010; Morlighem et al., 2010).

Recent ice sheet model developments have started to fulfil
some of these priority requisites, leading the way toward the
new generation of ice sheet models (Bueler and Brown, 2009;
Pollard and DeConto, 2009; Rutt et al., 2009; Larour et al.,
2012; Leng et al., 2012; Winkelmann et al., 2011; Favier
et al., 2012; Gillet-Chaulet et al., 2012). Among them, the
Elmer/Ice model already includes many of these requisites.
Elmer/Ice is the glaciological extension of Elmer, the open-
source finite element (FE) software developed by CSC in
Finland (http://www.csc.fi/elmer/). Elmer is a multi-physics
code base from which it was possible to develop new spe-
cialised modules for computational glaciology while main-
taining the compatibility with the main Elmer distribution.
Thus, Elmer/Ice still benefits from the developments of the
standard Elmer distribution. In this paper, for simplicity we
refer to Elmer/Ice even if some of the features described be-
long to the main Elmer distribution. Elmer/Ice was not orig-
inally designed as anice sheetmodel since the first appli-
cations were restricted to local areas of interest or glaciers
(Le Meur et al., 2004; Zwinger et al., 2007; Zwinger and
Moore, 2009). Elmer/Ice was primarily developed to solve
the flow of anisotropic polar ice and the evolution of its
strain-induced fabric (Gillet-Chaulet et al., 2006; Durand
et al., 2007; Seddik et al., 2008, 2011; Ma et al., 2010;
Martín and Gudmundsson, 2012). It has since then been
used to model the flow of a cold firn-covered glacier using
a dedicated snow/firn rheological law (Zwinger et al., 2007).
Elmer/Ice has been the only full-Stokes model to perform the
whole set of the ISMIP-HOM experiments (Gagliardini and
Zwinger, 2008; Pattyn et al., 2008) and is still the only full-
Stokes model to participate in the grounding line experiments
MISMIP (Pattyn et al., 2012). Elmer/Ice was further used
as a reference for the later MISMIP3d experiments (Pattyn
et al., 2013). Recently, data assimilation was implemented
within Elmer/Ice (Jay-Allemand et al., 2011; Schäfer et al.,
2012; Gillet-Chaulet et al., 2012) to infer poorly known pa-
rameters such as basal drag. Today, Elmer/Ice is the only
three-dimensional full-Stokes model that solves the ground-
ing line dynamics (Favier et al., 2012), and it will be the
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only full-Stokes model able to run forecast simulations for
the whole Greenland ice sheet for the coming AR5 IPPC re-
port, in the framework of both SeaRISE (Seddik et al., 2012)
and ice2sea (Gillet-Chaulet et al., 2012; Shannon et al., 2013;
Edwards et al., 2013) programmes.

In this paper, we summarise ten years of consistent devel-
opments and present the current state of the new-generation
ice sheet model Elmer/Ice (Elmer library version 7.0 SVN
revision 5955). We only focus on the past developments that
are relevant for simulations of three-dimensional ice sheets.
Specific developments regarding two-dimensional flow line
or glacier applications are not presented here, but one can
consult previous publications on these types of applications
(the complete list of Elmer/Ice publications can be found on
http://elmerice.elmerfem.org/). Section2 presents the gov-
erning equations implemented in Elmer/Ice. The associated
boundary conditions are discussed in Sect.3. Other useful
equations, such as the equation to evaluate the age of the ice,
are presented in Sect.4. Section5 is dedicated to the inverse
methods implemented in Elmer/Ice. Some technical aspects
related to the resolution of these equations in the framework
of the FE method are discussed in Sect.6. The efficiency
of Elmer/Ice was verified by standard convergence and scal-
ability tests described in Sect.7. Finally, we provide some
insights into the future planned developments in Sect.8.

2 Governing equations

2.1 Ice flow equations

Ice is a fluid with an extremely high viscosity that flows
very slowly so that inertia and acceleration terms entering
the momentum equation can be neglected. Therefore, the
three-dimensional velocity field and the pressure field of an
ice mass flowing under gravity are obtained by solving the
Stokes equations over the ice volume�. The Stokes equa-
tions express the conservation of linear momentum

divσ + ρg = divτ − gradp + ρg = 0, (1)

and the mass conservation

divu = trε̇ = 0. (2)

In these equations,ρ is the ice density,g = (0,0,−g) the
gravity vector,u = (u,v,w) the ice velocity vector,σ = τ −

pI the Cauchy stress tensor withp = −trσ/3 the isotropic
pressure,τ the deviatoric stress tensor andI the identity ma-
trix. This system of equations of unknownsu andp is closed
by adopting one of the rheological laws presented in the next
section. The conditions that are applied on the boundary0 of
the volume� are discussed in Sect.3.

2.2 Rheological laws for polar ice

Even if most ice sheet models assume an isotropic rheolog-
ical law for ice, it is well known that the viscous response

of polar ice can be strongly anisotropic, and that this re-
sponse depends on the crystal orientation distribution, i.e.
the ice fabric (e.g.Gagliardini et al., 2009). Elmer/Ice in-
cludes the classic isotropic Glen’s flow law as well as two
anisotropic flow laws. As shown in various applications, the
anisotropy of polar ice has a strong influence on the over-
all flow (Zwinger et al., 2013) and will in turn modify the
age–depth relationship (Gillet-Chaulet et al., 2006; Seddik
et al., 2011). In central parts of ice sheets, ice anisotropy and
the development of fabric can explain the observed hetero-
geneity of the ice deformation along a drilling (Durand et al.,
2007). On the coastal area, due to the large contrast of the
stress regimes for the grounded part and for the ice shelf, the
ice anisotropy induces an apparent hardening of the ice up to
a factor 10 when ice moves from grounded to floating (Ma
et al., 2010).

When ice is assumed to behave as an isotropic material,
its rheology is given by a Norton–Hoff power law, known as
Glen’s law in glaciology, which links the deviatoric stressτ

with the strain ratėε:

τ = 2ηε̇, (3)

where the effective viscosityη is defined as

η =
1

2
(EA)−1/nε̇

(1−n)/n
e . (4)

In Eq. (4), ε̇2
e = tr(ε̇2)/2 is the square of the second in-

variant of the strain rate andA = A(T ′) is a rheological pa-
rameter which depends onT ′, the ice temperature relative
to the pressure melting point, via an Arrhenius law. The en-
hancement factorE in Eq. (4) is often used to account for
anisotropy effects, by prescribing an ad hoc value depend-
ing on the ice age and/or type of flow. Due to the state of
stress,E is expected to be greater than 1 for grounded ice
of polar ice sheets, whereas a value lower than 1 should be
used for floating ice shelves (Ma et al., 2010). A compress-
ible form of Glen’s law (Gagliardini and Meyssonnier, 1997),
well adapted to describe the flow of firn, is also implemented
in Elmer/Ice (Zwinger et al., 2007).

Both implemented anisotropic flow laws depend on the ice
polycrystalline fabric, which is described by its second- and
fourth-order orientation tensorsa(2) and a(4), respectively,
defined as

a
(2)
ij = 〈cicj 〉 anda

(4)
ijkl = 〈cicj ckcl〉, (5)

wherec is the crystalc axis unit vector and〈〉 denotes the av-
erage over all the grains that compose the polycrystal. By
definition odd-order orientations tensors are null, and the
higher the order of the orientation tensor the better the de-
scription of the fabric. However, it can be shown that with
a linear flow law, knowing the second- and fourth-order ori-
entation tensors is sufficient to uniquely define the macro-
scopic flow law (Gillet-Chaulet et al., 2005; Gagliardini
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et al., 2009). For randomc axes distribution the non-zero en-
tries of a(2) area

(2)
11 = a

(2)
22 = a

(2)
33 = 1/3, for a single maxi-

mum fabric with its maximum in the third direction,a
(2)
33 >

1/3 and a
(2)
11 ≈ a

(2)
22 < 1/3, and for a girdle-type fabric in

the plane(x1,x2), a
(2)
33 < 1/3 anda

(2)
11 ≈ a

(2)
22 > 1/3. In ad-

dition to three eigenvalues, three Euler angles are necessary
to uniquely definea(2) with respect to a general reference
frame. It can be shown analytically with a linear flow that
if the second- and fourth-order orientation tensors have the
same eigenframe, the polycrystal behaviour will exhibit or-
thotropic symmetries (Gillet-Chaulet et al., 2006). The equa-
tions for the fabric evolution are presented in Sect.2.5.

The first anisotropic flow law implemented in Elmer/Ice is
the non-linear General Orthotropic Flow Law (GOLF,Gillet-
Chaulet et al., 2005; Ma et al., 2010). The GOLF provides
a non-collinear and non-linear relation between strain rate
and stress, using the concept of structure tensors. In its initial
form, the ice was assumed to behave as a linearly viscous or-
thotropic material. In more recent works (Martín et al., 2009;
Ma et al., 2010), the GOLF has been extended to a non-
linear form by adding an invariant in the anisotropic linear
law. The simplest choice is either to add the second invariant
of the strain ratėεe (Martín et al., 2009) or the second in-
variant of the deviatoric stressτe (with τ2

e = tr(τ2)/2, Pettit
et al., 2007; Ma et al., 2010). No theoretical or experimental
results are available today to discard one of these two solu-
tions, and other solutions based on anisotropic invariants of
the deviatoric stress and/or the strain rate are also possible.
In Elmer/Ice, both solutions are implemented. Using the sec-
ond invariant of the deviatoric stress, for a given fabric and
a given state of stress, the corresponding strain rate relative
to the isotropic response is the same for the linear and non-
linear cases. Using the strain-rate invariant in the same way
asMartín et al.(2009) leads to an opposite definition of the
anisotropy ratios: for a given strain rate, the corresponding
stress relative to the isotropic response is the same for the
linear and non-linear cases. When using the stress second in-
variant, the GOLF reads

2Aτn−1
e τ =

3∑
r=1

[
ηr tr(M r · ε̇)MD

r + ηr+3(ε̇ · M r + M r · ε̇)D
]
. (6)

The six dimensionless anisotropy viscositiesηr(a(2)) and
ηr+3(a(2)) (r = 1, 2, 3) are functions of eigenvalues of the
second-order orientation tensora(2), which represent a mea-
sure of the anisotropy strength. The three structure tensors
M r are given by the dyadic products of the three eigenvec-
tors ofa(2), which then represent the material symmetry axes.
In the method proposed byGillet-Chaulet et al.(2006), the
six dimensionless viscositiesηr(a(2)) are tabulated as a func-
tion of the fabric strength (i.e. thea(2)

i ) using a micro-macro
model. Various micro-macro models, from the assumption of
uniform stress within the ice polycrystal to the assumption
of uniform strain rate, as well as different crystal anisotropy

can be used to tabulate the six viscositiesηr . The most re-
alistic polycrystalline response is obtained using the visco-
plastic self-consistent model (VPSC,Castelnau et al., 1996,
1998), with the two crystal anisotropy parameters chosen so
that the experimentally observed polycrystal anisotropy is re-
produced (Gillet-Chaulet et al., 2006; Ma et al., 2010). When
the ice is isotropic,ηr = 0 andηr+3 = 1 (r = 1, 2, 3), then
the GOLF (6) reduces to Glen’s isotropic flow law (3) with
E = 1.

The second anisotropic flow law implemented in
Elmer/Ice is the Continuum-mechanical Anisotropic Flow
model based on an anisotropic Flow Enhancement factor
(CAFFE, Seddik et al., 2008; Placidi et al., 2010). The
CAFFE model assumes collinearity between the strain rate
and deviatoric stress tensors, so that the general form of
Glen’s law (3) is not modified, but the enhancement factor
E is a function of thepolycrystalline deformabilityD such
that

E(D) =

{
(1− Emin)D

t
+ Emin 1 ≥ D ≥ 0 ,

4D2(Emax−1)+25−4Emax
21 5/2 ≥ D > 1 ,

(7)

with

t =
8

21

(
Emax− 1

1− Emin

)
, Emax ≈ 10 , Emin ≈ 0.1 . (8)

The polycrystalline deformabilityD is a function of strain
rate and fabric. WhenD = 0, the minimal enhancement fac-
tor Emin is reached, which corresponds to an uni-axial com-
pression on a single maximum fabric. For an isotropic fab-
ric, D = 1 and the response is identical whatever the strain
rate, whereas the maximal enhancementEmax is obtained for
D = 5/2, which corresponds to a single maximum fabric un-
dergoing simple shearing. The adopted form for the poly-
crystalline deformability, which verifies the above criteria,
reads

D = 5

[(
ε̇ · a(2)

− a(4)
: ε̇
)
: ε̇
]

ε̇2
e

. (9)

2.3 Evolution of the surface boundaries

For transient simulations, the upper and lower boundaries
of the domain are allowed to evolve, following an advec-
tion equation. Evolution of the upper surfacez = zs(x,y, t)

is given by

∂zs

∂t
+ us

∂zs

∂x
+ vs

∂zs

∂y
− ws = as, (10)

where (us,vs,ws) are the surface velocities obtained from
the Stokes solution andas = as(x,y, t) is the accumu-
lation/ablation prescribed as a vertical component only.
Elmer/Ice provides a surface melting parameterisation based
on positive degree-day (PDD) method (Reeh, 1991), supple-
mented by the semi-analytical solution for the PDD integral
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by Calov and Greve(2005) (Seddik et al., 2012). The accu-
mulation/ablation distribution can also be inferred from a re-
gional climate model either directly as inGillet-Chaulet et al.
(2012) andShannon et al.(2013) or using a surface elevation
parameterisation as inEdwards et al.(2013).

The lower surface of an ice sheet is either in contact with
the bedrock or the ocean. The evolution of the lower surface
z = zb(x,y, t) is given as

∂zb

∂t
+ ub

∂zb

∂x
+ vb

∂zb

∂y
− wb = ab⊥

[
1+

(
∂zb

∂x

)2

+

(
∂zb

∂y

)2
]1/2

, (11)

where (ub,vb,wb) are the basal velocities andab⊥ =

ab⊥(x,y, t) is the melting/accretion function, taken perpen-
dicular to the surface.

Assuming a rigid, impenetrable bedrockz = b(x,y), the
following topological conditions must be fulfilled byzs and
zb:

zs(x,y, t) ≥ zb(x,y, t) ≥ b(x,y) ∀x,y, t. (12)

The weak formulation of Eq. (10) or Eq. (11), in combina-
tion with the constraints (12) forms a variational inequality.
Technically, it is solved using a method of imposed Dirichlet
conditions that are released by a criterion based on the resid-
ual, as described in Sect.6.5. In Gagliardini et al.(2010),
melting below the ice shelf was prescribed using a param-
eterised expression followingWalker et al.(2008). As dis-
cussed in Sect.8, a proper description of the basal melt-
ing below ice shelves will certainly require the coupling of
Elmer/Ice with an ocean model or at least the implementa-
tion of a plume-type model.

The margin boundary of an ice sheet is either land- or
marine-terminated, depending on whether the bedrock ele-
vation at the ice front is located above or below sea level,
respectively. In both cases, the front position evolves with
time and its evolution is governed by the imbalance be-
tween ice flux and ablation/basal melting/calving processes.
Land-terminated fronts can be treated classically by adopting
a minimal ice thicknesshmin, so that the exact condition (12)
is replaced by the less strict onezs(x,y, t) ≥ b(x,y) + hmin
(andzb(x,y, t) = b(x,y)).

Where the ice sheet is marine-terminated, this type of
treatment cannot be applied because the sea water pressure
and lateral buttressing forces would not be correctly taken
into account. The front boundary of a marine-terminated ice
sheet must therefore be allowed to move over time, as a func-
tion of the calving rate and ice flux at the margin.

Assuming that the calving front is a vertical surface,
it can be described by the implicit functionFc(x,y, t) =

0 (Greve and Blatter, 2009). Denoting by gradFc =

(∂Fc/∂x,∂Fc/∂y,0) its gradient,Nc = | gradFc| the norm
and nc = grad Fc/Nc the unit normal vector (assumed to
point out of the ice), the calving front evolves as follows

∂Fc

∂t
+ u

∂Fc

∂x
+ v

∂Fc

∂y
= Ncc⊥, (13)

where c⊥ is the calving rate. The latter is defined as the
ice volume flux across the calving front,c⊥ = (u − wc) · nc,
where wc is the kinematic velocity of the calving front
(Greve and Blatter, 2009). Implementation of calving laws to
evaluate the calving ratec⊥ is part of the developments cur-
rently ongoing in Elmer/Ice, as discussed more in details in
Sect.8. Moving the mesh both vertically (upper and lower
surface) and horizontally (calving front) induces additional
terms in the convection part of equations and in turn techni-
cal issues that are discussed in Sect.6.1.

2.4 Heat equation

The temperature within the ice is obtained from the general
balance equation of internal energy and reads

ρcv

(
∂T

∂t
+ u · gradT

)
= div(κ gradT ) + D : σ , (14)

whereκ = κ(T ) and cv = cv(T ) are the heat conductivity
and specific heat of ice, respectively. The last term in the heat
equation represents the amount of energy produced by vis-
cous deformation. The ice temperatureT is bounded by the
pressure melting pointTm, so thatT ≤ Tm, or equivalently
T ′

≤ 0, with T ′
= T − Tm being the homologous tempera-

ture entering the Arrhenius law to estimate Glen’s parameter
in Eqs. (4) and (6). This inequality, as well as temperature-
dependent material properties, make the solution of the heat
transfer equation a non-linear problem which is solved using
an iterative method as presented in Sect.6.5.

2.5 Fabric description and evolution

Assuming that recrystallisation processes do not occur and
that the ice fabric is induced solely by deformation, the evo-
lution of the second-order orientation tensora(2) defined by
Eq. (5) can be written as

∂a(2)

∂t
+ grada(2)

· u = W · a(2)
− a(2)

· W − ι(C · a(2)

+ a(2)
· C − 2a(4)

: C), (15)

whereW is the spin tensor defined as the antisymmetric part
of the velocity gradient. The tensorC is defined as

C = (1− α)ε̇ + αksAτn−1
e τ . (16)

The interaction parameterα controls the relative weight-
ing of the strain ratėε and the deviatoric stressτ in the fab-
ric evolution Eq. (15). Whenα = 0, the fabric evolution is
solely controlled by the state of strain rate, whereas in the
case whereα = 1 the fabric evolves under the influence of the
deviatoric stress solely. In between, as for the VPSC, both the
strain rate and deviatoric stress contribute to the fabric evolu-
tion. Assumingι = 1, an interaction parameterα = 0.06 is in
accordance with the crystal anisotropy and the VPSC model
used to derive the polycrystalline behaviour (Gillet-Chaulet
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et al., 2006). Seddik et al.(2008, 2011) adopted insteadα = 0
and a value ofι lower than 1. In Eq. (15), the fourth-order
orientation tensor is evaluated assuming a closure approxi-
mation givinga(4) as a tensorial function ofa(2) (Chung and
Kwon, 2002; Gillet-Chaulet et al., 2006). Theoretically, re-
crystallisation processes, such as continuous and migration
recrystallisation, can be included by adding terms in Eq. (15)
to parameterise on the polycrystalline scale the phenomena
occurring at the grain scale (Seddik et al., 2011). Because
experimental data are currently missing, these parameterisa-
tions have not yet been validated and are not presented here.

3 Boundary conditions

For all the equations presented above, classic Dirichlet, Neu-
mann, Robin, symmetric and periodic boundary conditions
can be applied on the boundary of the domain. In this sec-
tion, we present the conditions to be applied on the different
boundaries of an ice sheet for the main equations presented
above, and we focus more specifically on the treatment of the
basal boundary.

3.1 Ice/atmosphere boundary

The upper free surfacez = zs(x,y, t), also denoted0s, is in
contact with the atmosphere and is therefore a stress-free sur-
face, so that

σns = −patmns ≈ 0 for z = zs, (17)

wherens is the normal outward-pointing unit vector to the
free surface. For the dating equation, fabric equations and all
other transport equations, Dirichlet conditions are applied on
the upper surface only where the ice velocity enters the do-
main (mainly in the accumulation area). Wherez = zs and
u · ns ≤ 0, the temperature is equal to the imposed surface
temperature,T (x,y,zs, t) = Ts(x,y, t), and the fabric is as-
sumed to be isotropic,a(2)(x,y,zs, t) = I/3. For the heat
equation, a heat flux can be imposed at the upper surface to
account for melt-water refreezing.

3.2 Ice/bedrock boundary

The lower interfacez = zb(x,y, t), also denoted0b, may be
in contact with either the sea or the bedrock, so two kinds of
boundary conditions coexist on a single surface. The condi-
tions to be applied where the ice is in contact with the sea are
presented in the next section. Where the ice is in contact with
the bedrock (i.e.zb = b), the following conditions apply:

u · nb + ab⊥ = 0, (18)

σnti = ff (u,N)uti , i = 1,2, (19)

whereσnti = t i · σnb anduti = u · t i (i = 1,2) are the basal
shear stresses and basal velocities, respectively, defined in
terms of tangent vectorst i and normal outward-pointing

unit vector to the bedrocknb. Note that the boundary con-
dition Eq. (18) for the Stokes problem is equivalent to the
free-surface Eq. (11). The effective pressureN is defined
as the difference between the ice normal stress and the wa-
ter pressure, such asN = −σnn− pw with σnn = nb · σnb.
Equation (18) is the no-penetration condition accounting
for basal melting (ab⊥ < 0) or basal accretion (a⊥b > 0),
whereas Eq. (19) stands for the general form of a friction
law. Whenff = 0, the ice slides perfectly over the bedrock,
whereas whenff → +∞ basal sliding is null. The three dif-
ferent friction laws implemented in Elmer/Ice are presented
below.

The first friction law linearly relates the basal shear stress
to the basal velocity, such as

σnti + βuti = 0, i = 1,2, (20)

whereβ ≥ 0 is the basal friction parameter. As shown later,
this simple law is used for data assimilation and in this case
β is a control parameter.

The second law implemented in Elmer/Ice is a Weertman-
type sliding law:

σnti + βmum−1
b uti = 0, i = 1,2, (21)

whereub is the norm of the sliding velocityub = u − (u ·

nb)nb, βm is a sliding parameter andm an exponent. When
m = 1, the Weertman-type friction law Eq. (21) reduces to
the linear law Eq. (20). Theoretically, in the case of ice slid-
ing without cavitation over an undulating bed,m is equal to
1/n (Lliboutry, 1968), wheren is Glen’s law exponent.

The third friction was proposed bySchoof (2005) from
mathematical expansions and byGagliardini et al.(2007)
from FE simulations. This law describes the flow of clean
ice over a rigid bedrock when cavitation is likely to occur:

σnti

CN
+

(
χ u1−n

b

1+ αq(χ ub)q

)1/n

uti = 0 i = 1,2, (22)

whereχ = 1/(CnNnAs), αq = (q−1)q−1/qq , As is the slid-
ing parameter in the absence of cavitation andn Glen’s
law exponent, resulting in a non-linear relation between the
basal dragσnti and the basal sliding velocityuti . The max-
imal value ofσnti is C and the exponentq ≥ 1 controls the
post-peak decrease. When the post-peak exponentq is equal
to 1, the basal drag tends asymptotically to its maximum
valueC (no post-peak decrease). Note that in the limit case
whereN � 0, the sliding parameterAs and the friction pa-
rameterβm are inversely proportional. As shown bySchoof
(2005), the coefficientC should be chosen smaller than the
maximum local positive slope of the bedrock topography at
a decimetre to metre scale, so that the ratioσnti /N ≤ C ful-
fills Iken’s bound (Iken, 1981). The friction law Eq. (22) is
strongly related to the water pressurepw through the effec-
tive pressureN . The law Eq. (22) can then be used to cou-
ple the hydrology and the ice dynamics. The hydrological
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model and its implementation in Elmer/Ice are presented in
de Fleurian et al.(2013).

For the heat equation, the geothermal heat fluxqgeo is im-
posed where the basal temperature is lower than the pres-
sure melting point (T < Tm or T ′ < 0), and the following
Neumann-type boundary condition applies:

κ(T )( gradT · nb) |0b = qgeo+ |σnti uti |, (23)

where|σnti uti | is the heat energy induced by basal friction.
Where the temperature melting point is reached (T = Tm),
the amount of melted water is estimated from the imbalance
of heat fluxes and surface production:

ab =
qgeo+ |σnti uti | − κ gradT · nb

ρL
, (24)

whereL is the latent heat of ice.

3.3 Ice/sea boundary

At the bottom surfacez = zb(x,y, t) where the ice is in con-
tact with the ocean (i.e.zb > b) and at the front of the ice
sheet, the normal stress is equal to the sea pressurepw(z, t),
which evolves vertically as follows:

pw(z, t) =

{
ρwg(lw(t) − z), z < lw(t)

0, z ≥ lw(t),
(25)

whereρw is the sea water density andlw the sea level. The
Neumann condition applied on these ice/ocean interfaces is
thus

σnc = −pwnc. (26)

3.4 Grounding line dynamics

The position of the grounding line is part of the solution and
can evolve with time. Its position at each time step is deter-
mined by solving a contact problem. The contact is tested
by comparing at each node wherezb = b the normal force
Rn exerted by the ice on the bedrock and the equivalent wa-
ter forceFw. Rn is directly evaluated from the residual of
the Stokes system, whereasFw is obtained by integrating the
water pressure over the boundary elements using the bound-
ary element shape functions. Then, ifRn > Fw andzb = b,
the boundary conditions Eqs. (18) and (19) apply; whereas
if Rn = Fw and zb = b, or zb > b, the boundary condition
Eq. (26) applies instead.

4 Auxiliary equations

The goal of an ice sheet simulation, usually, is to obtain infor-
mation on either the geometry, the age/depth relationship or
simply the exerted stresses and forces on a particular surface
in contact with the ice. This section introduces the methods
needed to obtain such information.

4.1 Age equation

The ageA of the ice at each point of the ice sheet domain is
obtained by solving the following equation:

∂A
∂t

+ u · gradA= 1, (27)

wherez = zs andu · ns ≤ 0, the age of the ice is zero, i.e.
A(x,y,zs,t) = 0 (Zwinger and Moore, 2009). By solving the
age equation we can compute isochrones and determine dat-
ing as a function of depth at an ice core (drilled or planned)
location. Input parameters entering other equations might
also be age-dependent, such as the enhancement factor for
example.

4.2 Depth and elevation

It is often very useful to know the depth below the upper
surface or the height above the bedrock at each point of the
ice sheet domain. For example, it can be used to prescribe
parameterisation of the temperature or the ice fabric fields
as a function of depth. With the FE method, using unstruc-
tured meshes, the depthd(x,y,z, t) = zs− z or the height
h(x,y,z, t) = z − zb at any pointM(x,y,z) cannot be esti-
mated directly because nodes are not necessarily vertically
aligned. Therefore, we compute the depthd (or equivalently
heighth) field by solving the following equations:

∂d

∂z
= −1 , or

∂h

∂z
= 1, (28)

with the boundary conditionsd = 0 on z = zs or h = 0 on
z = zb.

Effectively, we solve, here for the heighth, the following
system:

− ez · ∇ (ez · ∇h) = 0, (29)

ez · ∇h|∂� = 1, (30)

with the boundary conditionh|0b = 0 and the unity vec-
tor ez in the vertical direction. The variational form is ob-
tained after integrating Eq. (29) by parts and accounting for
the boundary condition Eq. (30), leading to a degenerated
Laplace equation of the form

−

∫
�

∇ (ez · ∇h) · ϕezd� =

∫
�

(ez · ∇h)∇ϕ · ezd� −

∮
∂�

ϕez · nd0. (31)

4.3 Stress and strain rate

Elmer/Ice includes solvers to compute the Cauchy stress,
deviatoric stress or strain rate fields from the Stokes solu-
tion, and also includes eigenvalues of these tensor variables.
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In addition, calculating of the stress from the velocity and
isotropic pressure fields is a matter of interest because dif-
ferent methods can lead to noticeably different solutions. In
Elmer/Ice, the componentsσij of the nodal Cauchy stress
field are obtained from an existing Stokes solution(u,p)

by writing the variational version of the constitutive law in
a componentwise manner as∫
�

σij8d� =

∫
�

ei · σej8d�

=

∫
�

ei ·

(
η
(

gradu + gradT u
)

− pI
)
ej8d�. (32)

This results in solving six independent equations, one for
each of the six independent components of the stress tensor.
In a similar manner, componentsε̇ij of the nodal strain rate
tensor are obtained from the following variational form:∫
�

ε̇ij8d� =

∫
�

ei ·

(
gradu + gradT u

)
ej8d�. (33)

5 Inverse methods within Elmer/Ice

The ice effective viscosityη(x,y,z) in Eq. (3) and the basal
friction coefficientβ(x,y) in Eq. (20) are two particularly
important input fields when modelling the flow of real glacio-
logical systems. However, these two parameters are used
to represent complex processes, and their values in situ are
poorly constrained and can vary by several orders of magni-
tude with time and space. On the other hand, our knowledge
of some of the outputs of the model (surface velocity, surface
elevations) has considerably increased recently with data ac-
quired by remote spatial observation.

Two variational inverse methods have been implemented
within Elmer/Ice to constrainη(x,y,z) andβ(x,y) in diag-
nostic simulations from topography and surface horizontal
velocity data. Both methods are based on minimising a cost
function that measures the mismatch between the model and
the observations. The two methods are briefly described be-
low and their implementation in Elmer/Ice is verified in
Sect.7.

5.1 Robin inverse method

This method, initially proposed byArthern and Gudmunds-
son(2010), consists in solving alternatively thenatural Neu-
mann-type problem, defined by Eqs. (1) and (2) and the sur-
face boundary conditions (17), and the associatedDirich-
let-type problem, defined by the same equations except that
the Neumann upper-surface condition Eq. (17) is replaced by
a Dirichlet condition where observed surface horizontal ve-
locities are imposed, such that

u = uobs andv = vobs for z = zs. (34)

The cost function that expresses the mismatch between the
solutions of the two models is given by

Jo =

∫
zs

(uN
− uD) · (σN

− σD) · nd0, (35)

where superscriptsN and D refer to the Neumann and
Dirichlet problem solutions, respectively.

The Gâteaux derivatives of the cost functionJo with re-
spect to the parametersη andβ for perturbationsη′ andβ ′,
respectively, are given by

dηJo =

∫
�

4η′

(
(ε̇D

e )2
− (ε̇N

e )2
)

d�, (36)

dβJo =

∫
zb

β ′

(
|uD

|
2
− |uN

|
2
)

d0, (37)

where the symbol̇ε2
e denotes the square of the second invari-

ant of the strain rate as defined for Eq. (4) and| · | defines the
norm of the velocity vector. Note that this derivative is exact
only for a linear rheology and thus is only an approximation
of the true derivative of the cost function when using Glen’s
flow law Eq. (3) with n > 1 in Eq. (4).

5.2 Control inverse method

For a linear isotropic rheology (a scalar viscosityη indepen-
dent of the velocity, i.e.n = 1 in Eq.4), the Stokes system
of equations is self-adjoint. Denoting byλ andq the adjoint
variables corresponding tou andp, respectively, they are so-
lutions of the following equations:

2divηε̇λ
− gradq = 0, (38)

trε̇λ
= 0, (39)

whereε̇λ is the equivalent of the strain rate tensor constructed
with λ. For a non-linear rheology, the operator used by the
forward solver (Stokes operator) remains self-adjoint when
equipped with the Newton linearisation (Petra et al., 2012).

The cost function is chosen to measure the mismatch be-
tween the modelled and observed surface velocities

Jo =

∫
0s

j (u − uobs)d0, (40)

wherej is the mismatch measure function anduobs are the
observed surface velocities. The choice ofj can be case-
dependent and will affect the boundary condition terms of
the adjoint system. For example, as the surface velocity di-
rection is mainly governed by topography, we can discard the
error on the velocity direction and expressj as

j (u − uobs) =
1

2

(
|uH| − |uobs

H |

)2
, (41)
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where subscript H refers to the horizontal component
of the velocity vectors (Gillet-Chaulet et al., 2012). The
Gâteaux derivatives of Eq. (40) with respect toη andβ are
obtained as follows:

dηJo =

∫
�

−2η′

(
ε̇λ

: ε̇
)

d�, (42)

dβJo =

∫
0b

−β ′u · λd0. (43)

5.3 Regularisation

When working with non-perfect (noisy) data, it is neces-
sary to add a regularisation term in the cost function to im-
prove the conditioning of the inverse problem and ensure the
existence of a unique minimum. The regularisation term is
based on a priori information on the solution either from
measurements, from analytical solutions (Raymond Pralong
and Gudmundsson, 2011), or from assumptions on the spa-
tial variations of the variable. In Elmer/Ice, a smoothness
constraint on a variableα can be imposed in the form of
a Tikhonov regularisation penalising the first spatial deriva-
tives ofα as inMorlighem et al.(2010), Jay-Allemand et al.
(2011), andGillet-Chaulet et al.(2012):

Jreg =
1

2

∫
0b

((
∂α

∂x

)2

+

(
∂α

∂y

)2

+

(
∂α

∂z

)2
)

d0. (44)

The Gâteaux derivative ofJreg with respect toα for a per-
turbationα′ is obtained by

dαJreg =

∫
0b

((
∂α

∂x

)(
∂α′

∂x

)
+

(
∂α

∂y

)(
∂α′

∂y

)
+

(
∂α

∂z

)(
∂α′

∂z

))
d0. (45)

The total cost function to minimise then reads

Jtot = Jo + λJreg, (46)

whereλ is a positive ad hoc parameter. The cost function
minimum is therefore no longer the best possible fit to obser-
vations, but a compromise (through the tuning ofλ) between
fitting with observations and smoothness inα.

5.4 Minimisation

The Gâteaux derivatives ofJo are given by a continuous
scalar product represented by the integral terms in Eqs. (37)
and (42). When discretized on the FE mesh, these equations
are transformed into a discrete Euclidean product as follows:

dγ Jo =

∫
∇γ Joγ

′
≈

Np∑
i=1

Wi∇
i
γ Joγ

′

i , (47)

whereγ representsη or β, ∇γ Jo is the continuous Fréchet
derivative ofJo, the expression of which is given by com-
parison with Eqs. (37) and (42), ∇

i
γ Jo is its value at mesh

nodei = (1, . . . ,Np) andWi is the nodal weight associated
with nodei and computed following the standard integration
scheme. The sum of all weights is the volume (or area) of
the FE mesh. The discrete gradients ofJo at each mesh node
used for the minimisation are then given byWi∇

i
γ Jo and ac-

count for the volume or area surrounding each node.
The minimisation of the cost functionJo with respect to

ηi or βi is done using the limited memory quasi-Newton rou-
tine M1QN3 (Gilbert and Lemaréchal, 1989) implemented in
Elmer/Ice in reverse communication mode. This method uses
an approximation of the second derivatives of the cost func-
tion and is therefore more efficient than a fixed-step gradient
descent.

How we define the inner product used to compute the
Gâteaux derivatives affects the definition of the Fréchet
derivatives, and could affect the convergence of the min-
imisation, but does not affect the minimum we are seek-
ing to achieve. As for glaciological applications, velocities
and strain rates can vary by several orders of magnitude in-
side the domain, and we have observed that including the
nodal weights in the definition of the Fréchet derivatives
leads to good convergence properties when using an unstruc-
tured mesh where large elements correspond to low-velocity
areas, and vice versa. Possible alternatives are, for the con-
trol inverse method (Morlighem et al., 2010), to use a cost
function that measures the logarithm of the misfit or, for the
Robin inverse method (Arthern and Gudmundsson, 2010), to
use a spatially varying step size rather than a fixed step in
the gradient descent algorithm, as proposed inSchäfer et al.
(2012).

6 Numerical implementation and specificities

6.1 Mesh and deforming geometry

Ice sheets and ice caps have a very small aspect ratio, hori-
zontal dimensions being much larger than the vertical dimen-
sions, and therefore meshing requires special care. The strat-
egy commonly adopted in Elmer/Ice for meshing glaciers,
ice sheets and ice caps is to mesh first the horizontal 2-D
footprint and then extrude it vertically. These meshes are then
vertically structured with the same number of layers over
the whole domain, whereas the horizontal dimension can be
meshed using an unstructured mesh. This is one of the main
advantage of a FE ice flow model in comparison to the clas-
sically used finite difference or volume methods for which
the grid has the same size over all the domain, unless a mesh
adaptive method is implemented (Cornford et al., 2013a).

The unstructured mesh of the footprint can be created
using triangle-shaped elements of various sizes to account
for the spatial heterogeneity of the variables gradient. The
horizontal size of the elements can be controlled using,
for example, a metric constructed from the Hessian ma-
trix of observed surface speed (Gillet-Chaulet et al., 2012).
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Technically, optimising the mesh sizes according to this met-
ric is done using the freely available anisotropic mesh adap-
tation software YAMS (Frey and Alauzet, 2005). Because of
the overall size of ice sheets, the mesh is then partitioned and
all partitions are solved in parallel using the Message Passing
Interface (MPI). In Elmer/Ice, the mesh can be generated ei-
ther by extrusion as a preprocessing step or by a built-in mesh
extrusion feature which operates on the parallel level. This
internal procedure efficiently removes some of the possible
bottlenecks in preprocessing as the maximum mesh size is
no longer constrained by serial operations. Also, in the case
of an extruded mesh, certain operations become trivial, as
for example modifying the geometry or computing the depth
or elevation, which efficiently becomes a one-dimensional
problem.

For transient simulation, the geometry of the ice sheet is
evolving with time and the mesh has to be deformed to follow
these changes. The common approach to deform geometries
in Elmer/Ice, if dealing with unstructured meshes, is to rear-
range the nodes by solving a pseudo linear elasticity problem.
Any mesh displacement,1x, in Elmer/Ice is relative to the
initial mesh position,x0, i.e.x(t) = x0+1x(t). A deforma-
tion of the surface, for instance, can be induced by a chang-
ing free-surface elevation,h. Hence, the prescribed vertical
deformation here is1x(t) · ez = h(t) − h(t = 0). Inside the
bulk mesh, the corresponding deformation is then obtained
by solving

−∇ ·

(
2Yκ

(1− κ)(1− 2κ)
ε + λ

Y

2(1+ κ)
∇ ·1xI

)
= 0, (48)

whereY andκ are respectively a pseudo Young’s modulus
and Poisson ratio, describing the resistance against the de-
formation and its directional ratio. Further,ε describes the
symmetric strain tensor

ε =
1

2

(
∇1x + (∇1x)T

)
. (49)

In consequence, the induced mesh velocity from the re-
computation of1x by Eq. (48) from one discrete time-level
t to t + 1t then is given by

um =
1x(t + 1t) − 1x(t)

1t
. (50)

The continuum equations, as presented above, strictly, are
valid only in a fixed reference frame. In ice sheets or glaciers,
however, the geometry by nature is not fixed. In a fixed ref-
erence frame, ifu is the fluid velocity, the total change of
a scalar property,9,

d9

dt
=

∂9

∂t
+ u · grad9, (51)

consists of the local change and of a convective part
u · grad9.

For instance, if we solve Eq. (14), we should take any in-
duced mesh velocity Eq. (50) into account. This is done by
the arbitrary Lagrangian–Eulerian (ALE) formulation, which
is based on the Reynolds transport theorem (e.g.Greve and
Blatter, 2009). Conservation simply demands that in the gen-
eral reference frame of a moving mesh, Eq. (51) changes into

d9

dt
=

∂9

∂t
+ (u − um) · grad9. (52)

A slight deviation from this is for the kinematic boundary
condition Eq. (10), as the convection term is only in the hor-
izontal plane, i.e.

∂zs

∂t
+ (us− um)

∂zs

∂x
+ (vs− vm)

∂zs

∂y
− ws = as. (53)

The same is applied to Eq. (11) for the evolution ofzb.
A special case of Eq. (52) is when the surface is considered
to move horizontally (it does vertically by definition) at the
speed of the fluid particles, i.e.um = us. This, for instance, is
needed if dealing with advancing fronts in marine-terminated
glaciers. In this case, the new position of the surface is deter-
mined byx(t + 1t) = x(t) + u(t)1t . In terms of the abso-
lute mesh update1x, this means that1x(t +1t) = 1x(t)+

u(t)1t , which simply reflects Eq. (50) underum = us and
as = 0.

6.2 Variational formulations

Elmer/Ice relies on the FE method, and all the equations pre-
sented above are solved using a discretised variational form,
leading in turn to solving a linear system for which the un-
knowns are the nodal value of the variable. The aim of this
section is to present some technical details for the variational
forms of both the Stokes and transport equations.

6.2.1 Stokes equations

The discrete variational form of the Stokes system Eqs. (1)
and (2) is obtained by integration over the ice domain�

using the vector-valued weight function8 and the scalar
weight function9,∫
�

9divud� = 0, (54)

∫
�

τ : grad8d� −

∫
�

pdiv8d� −

∮
∂�

n · σ8d0

= ρ

∫
�

g · 8d�. (55)

In the relation given above, the left-hand-side term in the
momentum equation given in Eq. (1) has been integrated by
parts. One part is re-formulated by applying Green’s theo-
rem, transforming it from an integral over the domain� into
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one over the closed boundary of the domain0, for which
Neumann or Newton boundary conditions can be set (e.g.
vanishing deviatoric surface stress components). The numer-
ical solution of Eq. (54) is obtained by either using the sta-
bilised method fromFranca and Frey(1992) or the residual
free bubbles method inBaiocchi et al.(1993).

For non-linear rheology, e.g.n = 3 in Glen’s law (Eq.4)
and Eq. (54) is non-linear and needs to be solved iteratively.
For the(k + 1)-st iterations of the non-linear loop, the effec-
tive viscosityηk+1 is estimated from Eq. (4) using the pre-
viously computed velocity fielduk (fixed-point method or
Picard method) or a Newton linearisation such as

ηk+1 = ηk + (uk+1 − uk) ·
∂η

∂u
. (56)

Convergence is obtained much faster with the Newton iter-
ation than with the Picard method, but the former algorithm is
known to diverge when starting too far from the solution. In
practice, the solution is initially approached by performing
some Picard iterations, and then activating the Newton lin-
earisation for the last iterations. Because the convergence is
problem-dependent and depends on the initial solution, there
is no general rule stating when to start the Newton iteration
scheme. The efficiency of the Newton method is illustrated
on a test case in Sect.7.2.

6.2.2 Transport equations

AssumingA = (A) or A = (a
(2)
11 ,a

(2)
22 ,a

(2)
12 ,a

(2)
23 ,a

(2)
13 ), equa-

tions for the age of ice (Eq.27) or the ice fabric evolution
(Eq.15) can be expressed using the generic form

∂Ai

∂t
+ div(Aiu) + KiAi = Fi, (57)

wherei = 1, K = 0 andF = 1 for the dating equation and
wherei = 1, . . . ,5, andK andF are vector functions ofC,
W, a(2) anda(4) for the fabric evolution equations. For in-
compressible fluids (ice), div(Aiu) simplifies tou· grad(Ai).
Equation (57) is a first-order hyperbolic equation, and is non-
linear when solving for the fabric evolution.

The variational formulation of the transport equations is
obtained by multiplying Eq. (57) by the test function8 and
integrating over the ice volume�. Because in the case of
a vector solutionA the set of equations is solved iteratively
for each component independently, the variational formula-
tion is presented for a scalarA, and reads∫
�

∂A

∂t
8d� +

∫
�

div(Au)8d� +

∫
�

KA8d� =

∫
�

F8d�. (58)

The second term is then integrated by parts, so that∫
�

∂A

∂t
8d� −

∫
�

A
∂8

∂xk

ukd� +

∫
�

KA8d�

=

∫
�

F8d� −

∮
∂�

Au · n8d0. (59)

Dirichlet conditions have to be applied on all the bound-
aries of� where the flow velocity is directed inside the ice
domain. Because of the missing diffusion terms in Eq. (59),
the classic Galerkin method is unstable. This transport equa-
tion is either solved using the discontinuous Galerkin method
proposed byBrezzi et al. (2004) or a semi-Lagrangian
method (Staniforth and Côté, 1991; Martín et al., 2009).

6.3 Preconditioned linear solvers

The discretisation and linearisation of the varying viscos-
ity Stokes system lead to linear systems which cannot be
solved efficiently by using standard linear solvers. A special
preconditioned version of the generalised conjugate resid-
ual (GCR) method has therefore been implemented recently
into Elmer/Ice to obtain effective parallel solutions of these
systems. This new preconditioner utilises the natural block
structure of the associated linear algebra problem and is de-
rived from approximating the associated pressure Schur com-
plement matrixS asS≈ (1/η)M , whereη denotes the vis-
cosity corresponding to the current non-linear iterate andM
is the mass matrix corresponding to the pressure approxi-
mation (for similar solvers for varying viscosity flows see
Grinevich and Olshanskii, 2009; Burstedde et al., 2009; Gee-
nen et al., 2009; ur Rehman et al., 2011). Results of scal-
ability tests done with this block preconditioned solver are
presented in Sect.7.3. Note that in conjunction with this
Stokes solver version, we employ a bubble stabilisation strat-
egy based on utilising bubble basis functions corresponding
to the high-order version of the finite element method.

6.4 Normal consistency

All boundary conditions involving vector (velocities) or ten-
sor values (stress) are in need of a consistent description of
the surface normals. Nodal normals, by nature of the discreti-
sation applied in the FE method, are not uniquely defined, es-
pecially with linear elements. Thus, the representation of sur-
faces has non-continuous derivatives at nodes. For ice sheet
boundary conditions, this is a problem occurring typically
at the bedrock interface in the presence of sliding where a
Dirichlet-type non-penetration condition has to be applied,
i.e.u·n = 0. Depending on the nodal definition ofn, this con-
dition can lead to artificial source and sinks for mass and mo-
mentum in very uneven parts of the bedrock.Gillet-Chaulet
et al. (2012) have shown that using the average of the nor-
mal to the elements sharing the node to estimate the nodal
normal can lead to anartificial mass loss of up to 10 % of
total ice discharge at the margin of Greenland. Recently, the
mass-conserving way of deducing the nodal surface (Walkley
et al., 2004) has been implemented in Elmer. For a nodexj ,
with an element-correlation numberNj , the surface normal
is derived by
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nj =
1/Nj

∑Nj

i=1

∫
�k

n(xj )ϕkdV

‖1/Nj

∑Nj

i=1

∫
�k

n(xj )ϕkdV ‖

. (60)

The relation above constructs the nodal surface normal,
nj , as a sum of the normals evaluated at the adjacent ele-
ments,�k, using the same weighting functions,ϕk, as for the
momentum equation.

6.5 Accounting for inequality

As presented in Sect.2, the ice temperatureT in Eq. (14) is
bounded by the pressure melting pointTm, and the free sur-
facezb andzs in Eqs. (10) and (11) must fulfil the inequali-
tieszs(x,y, t) ≥ b(x,y)+hmin andzb(x,y, t) ≥ b(x,y). The
variational inequality is solved using a method of imposed
Dirichlet condition that are released by a criterion based on
the residual. Let

A · h = a (61)

be the matrix equation of the unconstrained system. In FE
method terminology,A is the system matrix,h the solution
vector anda the body force. We then have to solve Eq. (61)
under a constraint vectorhmin. Here, we choose a minimum
value, hence a lower constraint, but the same method works
also with upper bounds, like it is applied in the case for
constraining the temperature with the local pressure melting
point. This lower constraint reads

h > hmin . (62)

In order to enforce Eq. (62) we apply the same method as
in Zwinger et al.(2007):

– A nodei violatinghi > hmini is set as “active”.

– For each “active” node a Dirichlet conditionhi = hmini

is introduced into Eq. (61). This is achieved by setting
theith row of the system matrix toAij = δij , whereδij

is the Kronecker symbol, and theith entry of the force
vector toai = hmini . Doing so for all active nodes re-
sults in an altered, constrained system

A′
· h′

= a′. (63)

– Instead of Eq. (61) we are now solving Eq. (63), obtain-
ing a solution vectorh′.

– h′ in turn is inserted into the unconstrained system
Eq. (61), defining the residual

R = A · h′
− a . (64)

– If an earlier “active” node is found to comply with
Eq. (62), it is taken of the list if, and only if,Ri < 0.

This algorithm is repeated as long as there is no change in
the active node set and the convergence criteria imposed for
the solver are met.

In a converged state, the physical meaning of the resid-
ual can be interpreted. For the heat equation Eq. (14), the
residual represents the additional cooling needed to comply
with the inequalityT < Tm. For the free-surface equations
Eqs. (10) and (11), the residual can be interpreted as the per-
node additionally needed accumulation/ablation to meet the
constraint Eq. (12).

7 Elmer/Ice efficiency

7.1 Convergence tests

Convergence of the Stokes solver is tested by running the
same problem with an increased mesh resolution. The pur-
pose of this exercise is to verify the model and compare the
efficiency of the various elements and associated stabilisa-
tion methods available within Elmer. For three-dimensional
geometries, the Stokes equation can be solved using 8-node
(linear) or 20-node (quadratic) hexahedron elements, or 6-
node (linear) wedge elements. Stabilisation of the Stokes
equations is done either using the stabilised method (Franca
and Frey, 1992) or the residual free bubbles method (Baioc-
chi et al., 1993).

The Stokes solver is verified using the manufactured ana-
lytical solution first proposed inSargent and Fastook(2010)
and subsequently modified and corrected inLeng et al.
(2013). Here, we use exactly the same geometry and set of
parameters as inLeng et al.(2013). All meshes are structured
and defined by the number of elements inx, y andz direc-
tions. The mesh discretisation is made to vary from a very
coarse mesh (20× 20× 5, 10 584 degrees of freedom for the
linear element) up to a fine mesh (160× 160× 40, 4 251 044
degrees of freedom). The modelled domain is the bumpy bed
of ISMIP-HOM experiment A (Pattyn et al., 2008) with the
80 km length. For this geometry, the finer mesh does corre-
spond to horizontal and mean vertical resolutions of 500 and
25 m, respectively. The convergence rate for the various el-
ements and stabilisation methods is obtained as the slope of
the L2 relative error norm function of the grid size refine-
ment. TheL2 relative error norm of two arbitrary vectorsu
andv is defined as

δu,v =
2|u − v|

|u + v|
. (65)

For simplicity, it is plotted here as a function of the cu-
bic root of the inverse of the degrees of freedom, which is
proportional to the grid size refinement. These curves for the
three components of the velocity and isotropic pressure are
plotted in Fig.1. They show that whatever the element type
and stabilisation method, the rates of convergence (slopes of
the curves) are similar and close to 3 for velocity and pres-
sure. A rate of convergence of 3 is greater than the theoretical

Geosci. Model Dev., 6, 1299–1318, 2013 www.geosci-model-dev.net/6/1299/2013/



O. Gagliardini et al.: Elmer/Ice model 1311

10-3 10-2 10-1
10-4

10-3

10-2

10-1

10-3 10-2 10-1
10-4

10-3

10-2

10-1

10-3 10-2 10-1
10-4

10-3

10-2

10-1

10-3 10-2 10-1
10-4

10-3

10-2

10-1

10-3 10-2 10-1
10-3

10-2

10-1

100

10-3 10-2 10-1
10-3

10-2

10-1

100

10-3 10-2 10-1
10-6

10-5

10-4

10-3

10-2

10-3 10-2 10-1
10-6

10-4

10-2

L
2
r
e
la
ti
v
e
e
r
r
o
r
n
o
r
m

L
2
r
e
la
ti
v
e
e
r
r
o
r
n
o
r
m

dof−1/3dof−1/3

δuElmer,uAnalytical δvElmer,vAnalytical

δwElmer,wAnalytical δpElmer,pAnalytical

Fig. 1. Results of the convergence tests:L2 relative error norm be-
tween Elmer/Ice and analytical solutions for the 3 components of
the velocity(u,v,w) and the pressure,p, as a function of the grid
size (which is proportional to the inverse of the cubic root of the
degrees of freedom) forFranca and Frey(1992) stabilisation with
(black) 6-node wedge element, (red) 8-node hexahedron element
and with (blue) 20-node hexahedron element; and for the residual
free bubbles stabilisation (Baiocchi et al., 1993) with (green) 8-node
hexahedron element and with (magenta) 20-node hexahedron ele-
ment. The black dashed line indicates a rate of convergence of 3.

value expected (e.g.Ern and Guermond, 2004), especially for
the linear element and pressure. Surprisingly, the same rate
of convergence is obtained for linear and quadratic elements,
and for a given discretisation the quality of the solution is
even better using linear elements, so that the use of quadratic
elements is not recommendable, at least in this particular ex-
ample. For this application and the quadratic 20-node hexa-
hedron element, the residual free bubbles method is found to
be less accurate than the stabilisation method ofFranca and
Frey(1992).

7.2 Picard versus Newton linearisation

Picard and Newton schemes for the non-linear solution of
the Stokes equations are compared by performing the ISMIP-
HOM experiment A005 (Pattyn et al., 2008; Gagliardini and
Zwinger, 2008) for two different initial conditions. The first
one assumes null velocity and pressure, whereas the second
initial condition is equal to the SIA solution for this problem.
The switch from the Picard to the Newton iterative scheme
is controlled by a criterion onδup,up+1, theL2 relative error
norm, Eq. (65), between the previousp and currentp + 1
velocity fields of the non-linear iteration loop. The same di-
agnostic simulation is repeated for switch criteria of 10−6
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Fig. 2. Evolution of the L2 relative error norm between two consecutive solutions of the Stokes system, δup,up+1 , as

a function of the non-linear iteration, for a switch criterion from the Picard to the Newton scheme of 10−6 (Picard

only, black curve), red 10−2, green 10−1, blue 1 and magenta 2 (Newton only), for the ISMIP HOM experiment A005

with initial conditions (circle) assuming zero velocity and pressure and (triangle) estimated from the SIA solution.

The colour of the dot-dashed lines indicates the value of the switch criterion of the corresponding colour curve.
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Fig. 2. Evolution of theL2 relative error norm between two con-
secutive solutions of the Stokes system,δup,up+1, as a function of
the non-linear iteration, for a switch criterion from the Picard to the
Newton scheme of 10−6 (Picard only, black curve), red 10−2, green
10−1, blue 1 and magenta 2 (Newton only), for the ISMIP-HOM
experiment A005 with initial conditions (circle) assuming zero ve-
locity and pressure and (triangle) estimated from the SIA solution.
The colour of the dot-dashed lines indicates the value of the switch
criterion of the corresponding colour curve.

(Picard only), 10−2, 10−1, 1 and 2 (Newton only). The non-
linearity is assumed to be resolved whenδup,up+1 < 10−6.

The evolution ofδup,up+1 as a function of the non-linear it-
eration indices is presented in Fig2. As expected, the Newton
scheme is quadratically convergent, while Picard converges
only linearly (Paniconi and Putti, 1994). When the initial
condition is null velocity and pressure, it takes 40 Picard it-
erations to converge, whereas with Newton’s method alone,
it requires only 10 iterations. Surprisingly, even if it takes
less Picard iterations to converge for the SIA initial condi-
tion, the convergence of the Newton solver is only obtained
if Picard iterations are performed fromδup,up+1 < 10−1. This
example shows that Newton’s method can diverge if the ini-
tial condition is too far from the converged solution. A switch
criterionδup,up+1 < 10−2 is found to work in most cases and
it reduces the non-linear iterations by a factor about 2. Be-
cause the CPU consumption is almost proportional to the
number of non-linear iterations performed within one time
step, switching from Picard to Newton iterative schemes can
reduce CPU time by the same factor.

7.3 Elmer/Ice scalability

The scalability of the new block preconditioned solver is
tested and compared with the parallel sparse direct solver
MUMPS (Amestoy et al., 1998). For this purpose, the
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Fig. 3. Acceleration (top) and efficiency (bottom) for strong scala-
bility experiments using the block preconditioner for meshes with
(red•) 2.400× 106 nodes, (red�) 1.142× 106 nodes and (redN)
0.708× 106 nodes, and the MUMPS solver for meshes with (blue
�) 1.142× 106 nodes and (blueN) 0.708× 106 nodes. The dashed
line indicates a theoretical efficiency of 100 %.

diagnostic Stokes solution is computed using the present-day
Greenland geometry. The Greenland footprint is first meshed
using regular triangle elements and then vertically extruded.
Different meshes are constructed by varying the horizontal
element size from 5 km to 10 km, but all have 20 vertical lay-
ers. The size of the tested meshes varies from 708 000 up
to 4 580 000 nodes. Temperature and basal drag are imposed
using the same fields as inGillet-Chaulet et al.(2012). New-
ton iterations are used after the convergence criterion reaches
5× 10−2.

The results obtained for strong scalability, i.e. a constant
problem size with different partitionings, and for weak scala-
bility, i.e. a constant load per CPU using different mesh sizes,
are presented in Figs.3 and 4, respectively. If the elapsed
time istn for a number of partitionsn, then, for a strong scal-
ing test, the scalability of a solver can be characterised ei-
ther by itsaccelerationtref/tn or itsefficiency(n/nref)tref/tn,
where ref stands for the reference simulation (often the one
with the smallest mesh size). For a weak scaling test, the ac-
celeration depicted in Fig.4 is defined as(n/nref)tref/tn .

The weak scalability experiment uses a constant number
of 4200 nodes per partition in combination with an increas-
ing number of partitions from 168 up to 1092. Weak scala-
bility is found to be greater than 60 % even for the largest
test case. Efficiency greater than 100 % is obtained with the
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Fig. 4. Efficiency for a weak scalability experiment using the block preconditioner for an approximate number of

nodes in all meshes of 4200 and meshes from 0.708×106 nodes up to 4.58×106 nodes.
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Fig. 4.Efficiency for a weak scalability experiment using the block
preconditioner for an approximate number of nodes in all meshes of
4200 and meshes from 0.708× 106 nodes up to 4.58× 106 nodes.

new block preconditioned method for the strong scalability,
whereas for a number of partitions greater than 100, MUMPS
was always found to scale badly due to an increase of the re-
quired memory. This new solution strategy using the block
preconditioned solver clearly opens the door to applications
one order of magnitude larger in mesh size than what we
were able to achieve so far using a direct solver like MUMPS.

7.4 Inverse methods validation

We test the two inverse methods previously presented in a 2-
D example resembling a calving glacier. As our objective
is to validate the numerical implementation, we use a linear
rheology for which the two inverse methods implemented are
exact.

Our domain is 20 km long, the bed elevation is constant
and equal to−900 m. The free-surface elevation decreases
linearly from 200 m atx = 0 km to 100 m atx = 20 km.
The free surface is stress-free, we prescribe an homogeneous
Dirichlet condition of 50 ma−1 for the horizontal velocity at
x = 0 km, we apply a Neumann condition (hydrostatic sea
pressure) atx = 20 km, and we apply a linear sliding law and
a non-penetration condition at the bedrock.

We generate a reference solution with

β = 10−3 (1.0+ sin(2πx × 2/L)) MPa m−1 a, (66)

η = 10(1.5+ sin(2πx × 6/L)) MPa a. (67)

The surface velocities computed from this reference so-
lution are then used as perfect synthetic observations (twin
experiments).

The first step in the validation process is to assess the
ability of each solver independently to reconstruct the syn-
thetic observations. For the sliding coefficientβ, we start
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Fig. 5. Evolution as a function of the number of iterations of (top)
the cost function relative to the initial cost function and (bottom) the
norm of the gradient vector relative to the initial gradient norm for
the Robin (black curves) and control (red curves) inverse methods
for the inversion ofβ (solid curve),Eη(x,y) (dashed curve) and
Eη(x,y,z) (dotted curve).

from the initial guessβi = 10−3. The viscosityη is expressed
as η = Eηη0, and the optimisation is done on the viscos-
ity enhancement factorEη with initial guessesEη = 1 and
η0 = 15. It is possible a priori that several distributions ofEη,
especially in the vertical direction, can lead to the same sur-
face velocities; therefore, we made it possible in the model
to invert Eη only in the horizontal plane(x,y) when using
vertically extruded meshes. The gradient ofJ with respect to
Eη at a given position(x,y) is then obtained as the vertical
sum of the nodal gradients at position(x,y).

To ensure thatβ andEη remain positive during the opti-
misation,β is expressed asβ = 10α1 andEη is expressed as
Eη = α2

2. The optimisation is then done with respect to the
αi (i = 1,2). The evolution of the cost function and norm of
the gradient obtained for each test is given in Fig.5. Both the
cost function and the gradient norm decrease and tend toward
zero with the number of iterations.

The second step in the validation process is to verify the
following approximation:

J (αi + hα′

i) − J (αi)

h
= ∇Jαi

+ o(1). (68)

For a given perturbationα′

i , the left-hand-side term is eval-
uated by computingJ (αi + hα′

i) with the direct model for
several values ofh, and the right-hand-side term is com-
puted directly from the nodal gradients. This test is done
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Fig. 6.Ratio1(h) obtained with the Robin (black curves) and con-
trol (red curves) inverse methods for perturbations of the enhance-
ment factor to the viscosityEη(x,y).

for the initial conditions of the previous twin experiments.
We also test the implementation of the Tikhonov regular-
isation, Eq. (44), by choosing the cost function such as
J =

∫
0b

0.5(∂αi/∂x)2d0 whereαi = 1.0−9(1.0+sin(2.0π×

4x/L)).
For each solver, we use 10 random perturbation fieldsα′

i

where each nodal value ofα′

i is a random number between
−50 % and 50 % of the mean value ofαi . The gradient com-
puted from the two inverse methods is verified using the ratio
1(h) defined as

1(h) =

∣∣∣∣ (J (αi + hα′

i) − J (αi))/h − ∇Jαi

∇Jαi

∣∣∣∣ . (69)

An example of the evolution of1(h) as a function of h is
shown in Fig.6 for the perturbation of the enhancement fac-
tor to the viscosityEη(x,y). For both inverse methods and all
experiments, i.e. perturbation ofβ (not shown),Eη(x,y,z)

(not shown),Eη(x,y) (Fig. 6) and the Tikhonov regularisa-
tion (not shown), the ratio1(h) is found to decrease ash
decreases and it reaches a value typically lower than 10 %.
Such values are already satisfactory; nonetheless we could
obtain even more accurate gradients by automatically deriv-
ing the code itself.

Figure7 illustrates the difference of results obtained when
inverting forEη only in the horizontal plane or in the whole
ice volume. As can be seen, the two inferred fieldsEη(x,y)

andEη(x,y,z) are significantly different even if surface ve-
locity and observation are in comparable agreement. This
indicates that a non-unique solution can be obtained when
the number of control parameters starts to be larger than the
number of observation points.
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Fig. 7. Comparison of the obtained inverted enhancement factor
field for the control method assuming only changes in a horizon-
tal plane (Eη(x,y), left) or changes in all 3 directions (Eη(x,y,z),
right). The inverted fieldEη(x,y) in the left is virtually identical to
the one prescribed to obtain theobservedvelocities (Eq.67).

8 Outlook

A number of the requisites for an ice sheet model as dis-
cussed in the Introduction have already been implemented in
Elmer/Ice, and especially those necessary to accurately de-
scribe the flow of polar ice. Nevertheless, as for other ice
sheet models, the physical processes at the boundaries and
their coupling with the other components of the climate sys-
tem can still be improved in the near future. This is the pre-
requisite for running any forecast simulations of ice sheets,
and not only sensitivity experiments based on more-or-less
crude parameterisations that link changes in the atmosphere
and the ocean to changes at the boundaries of the ice sheet.
Our efforts in the near future will be dedicated to improv-
ing the physical description of the ice/atmosphere, ice/ocean
and ice/bedrock boundaries, as well as the models describing
how the pertinent variables at these interfaces are distributed.

For the basal boundary condition, numerical modelling
(Schoof, 2010) or direct measurements (Sole et al., 2011)
seem to indicate a very complex relation, most certainly non-
linear, between changes in surface runoff and modulation
of basal sliding. Two ingredients would then be required to
fully account for the complexity of basal processes in rela-
tion with changes in surface runoff: (i) a proper basal friction
law depending on the effective basal pressure (i.e. Eq.22),
and (ii) an associated hydrological model to describe the
basal water pressure distribution. This hydrological model
is currently under development and will be presented inde
Fleurian et al.(2013).

Changes in the front position of marine-terminated
glaciers seem to have a great influence on the upstream ice
flow by modulating the buttressing force (Vieli and Nick,
2011). Determining the rate at which icebergs are calved for
many different configurations remains an open question in
glaciology. Submarine melting acting at the calving front of
glaciers certainly increases calving rate by undercutting the
ice (Rignot et al., 2010; O’Leary and Christoffersen, 2013).
A general calving law, especially for 3-D configurations, still
needs to be formulated (Benn et al., 2007). Better knowledge

of the stress distribution at the front of glaciers and of the
submarine melting distribution, as well as a reliable ice dam-
age model (e.g.Pralong, 2005; Jouvet et al., 2011), are the re-
quired ingredients to describe calving at the front of marine-
terminated glaciers. In Elmer/Ice, the already implemented
ALE formulation for the free surface accounts for moving ice
sheet margin boundaries. Because Elmer/Ice solves the full-
Stokes system, all components of the stress field are known
and can therefore be used to evaluate ice damage. Work is in
progress to implement an ice damage rheological law follow-
ing Pralong(2005) with the aim of using damage iso-surface
to locate the calving surface and move accordingly the front
surface.

Melting from beneath the ice shelves is certainly one the
most important triggers of the observed recent ice stream ac-
celerations (e.g.Payne et al., 2004; Dupont and Alley, 2005).
Not only is the total amount of basal melting important, but
also its spatial distribution (Gagliardini et al., 2010). For nu-
merical and technical reasons, coupling an ocean model with
an ice sheet model is still a challenging issue. An interme-
diate approach we would like to explore as a preliminary
step towards a complete coupling with an ocean model is
the implementation within Elmer/Ice of a plume-type model
(Holland and Feltham, 2006).

9 Conclusions

We have presented in detail the Elmer/Ice ice sheet flow
model, from the equations implemented to the way they are
solved using the FE method. Elmer/Ice contains a high me-
chanical description of ice flow: it solves the complete Stokes
equations without any approximation, includes two complex
anisotropic flow laws, resolves the grounding line dynamics
as a contact problem and incorporates a basal friction law ac-
counting for cavitation. Temperature and fabric fields within
the ice sheet domain can be determined in a coupled man-
ner with the flow solution. Other equations allowing for the
derivation of secondary variables from the Stokes solution,
such as the age of the ice, the stress or strain rate fields,
are also implemented. Two recent inverse methods have been
implemented in Elmer/Ice that make it possible to infer the
poorly known parameters to construct the initial state of the
ice sheet. From a technical point of view, Elmer/Ice reaps
the benefits of the FE method, and provides an easy mesh
adaptation method to focus on areas of interest. Elmer/Ice is
a highly parallelised code and, as a recent important improve-
ment, the new block preconditioned solver will in the near fu-
ture lead to increase significantly the size of the solved prob-
lems. As listed in the previous section, there is still a need
for future improvements and new developments, particularly
by linking more tightly the pertinent variables controlling the
flow at the boundaries, like the basal water pressure, with the
other components of the climatic system. This next step is
the requisite for driving ice sheet forecast simulations and
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furnishing reliable estimates of ice-sheet-induced sea level
rise for the coming centuries.
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