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[1] Abundant short-period, small-scale gravity waves have
been identified in the mesosphere and lower thermosphere
over Halley, Antarctica, via ground-based airglow image
data. Although many are observed as freely propagating at
the heights of the airglow layers, new results under modeled
conditions reveal that a significant fraction of these waves
may be subject to reflections at altitudes above and below.
The waves may at times be trapped within broad thermal
ducts, spanning from the tropopause or stratopause to the
base of the thermosphere (~140 km), which may facili-
tate long-range propagation (~1000s of km) under favorable
wind conditions. Citation: Snively, J. B., K. Nielsen, M. P.
Hickey, C. J. Heale, M. J. Taylor, and T. Moffat-Griffin (2013),
Numerical and statistical evidence for long-range ducted gravity
wave propagation over Halley, Antarctica, Geophys. Res. Lett., 40,
4813-4817, doi:10.1002/grl.50926.

1. Introduction

[2] Gravity wave ducting occurs where waves become
confined between reflective layers at altitudes above and
below. Reflections arise from variations in Brunt-Viisila
frequency N, leading to thermal ducting [e.g., Walterscheid
et al. 2001], or variations in intrinsic frequency due to winds,
leading to Doppler ducting [Isler et al., 1997, and refer-
ences cited therein], or intermediate combinations of both.
Ducted waves may be excited linearly in situ or via upward
tunneling through the evanescent lower duct boundary [e.g.,
Walterscheid et al., 2001; Sutherland and Yewchuk, 2004; Yu
and Hickey, 2007a; Walterscheid and Hickey, 2009] or non-
linearly via energy transfer from propagating gravity waves
[Vadas et al., 2003; Snively and Pasko, 2008, and references
cited therein].

[3] Analyses of gravity waves in midlatitude airglow
image data, in conjunction with wind and temperature data,
have identified ducts and bounding layers of evanescence
throughout the mesosphere and lower thermosphere (MLT)
[e.g., Isler et al., 1997; Snively et al., 2007; Simkhada
et al., 2009; Suzuki et al., 2013]. In contrast to these
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midlatitude observations, recent analyses of waves imaged
above Halley, Antarctica [Nielsen et al., 2009, 2012] find
minimal evidence for well-defined ducting or evanescence
from 80—-100 km altitude, due to relatively weak wind flow
within the high-latitude MLT. Wave characteristics above
this site are nevertheless similar to those at lower latitudes:
Typical horizontal wavelengths range from 20—40 km, with
phase velocities of 30—60 m/s.

[4] Quantification of short-period wave fluxes is signifi-
cantly complicated by reflection and ducting [Fritts, 2000]:
Consisting of superposed up- and down-going wave com-
ponents, ideal ducted gravity waves are vertically localized
and propagate horizontally while exhibiting minimal net
vertical fluxes of momentum and energy. Ducted waves that
are non-ideally trapped exhibit fluxes that are measurably
periodic in time, alternating upwards and downwards, as
the packet “bounces” between reflective boundaries [ Yu and
Hickey, 2007a]. Tunneling of non-ideal ducted waves into
more stable regions at higher altitudes may contribute to
their eventual dissipation, via breaking or viscous damping.
Waves trapped in deep, non-ideal ducts may appear instanta-
neously as freely propagating waves, except as they undergo
reflection at boundaries. Indeed, short-period gravity waves
have been observed to persist over long periods of time,
in packets spanning remarkably large horizontal extents
exceeding 1000 km, as a result of partial ducting in favorable
atmospheric conditions [Suzuki et al., 2013].

[s] We demonstrate numerically and on a statistical basis
that many waves observed at Halley may be subject to
thermal reflections or ducting, within deep spans of altitude
from stratopause (or tropopause) to the base of the thermo-
sphere. Numerical case studies are constructed to investigate
broad ranges of parameter space under average conditions.
Results identify ducted wave modes and a large range of
waves likely susceptible to reflection in the lower thermo-
sphere, which may facilitate long-range propagation. We
find that a remarkable fraction of observed events occur
within this range of parameter space, suggesting that reflec-
tion and ducting processes may influence their propagation
and observability. These processes may thus complicate
the analysis, interpretation, and quantification of observed
short-period waves, their fluxes and effects, at high latitudes.

2. Numerical Model Formulation

2.1. Steady-State Full-Wave Model

[6] The numerical steady-state full-wave model of Hickey
et al. [1997] is used to solve the linear, compressible,
one-dimensional equations of motion, including molecular
viscosity and thermal conduction, for a single gravity wave
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(a) NRLMSISE-00 Buoyancy Profiles

(b) HWM-07 Meridional Wind Evolution
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Figure 1. (a) Empirical model buoyancy profiles show similar stratopause and lower thermospheric “boundary” heights
for both high- and low-solar activity, with dashed vertical lines denoting 7, 10, and 12 min periods that approximately divide
regimes of propagation. (b) Meridional wind profiles are plotted over a 24 h diurnal cycle, along with the diurnal mean.

frequency and horizontal wave number. It is here used to
perform thousands of sequential runs across wide ranges
of parameter space, to obtain maps of wave “amplifica-
tion factor” at very high resolution. Amplification factor
is defined as the ratio of wave perturbation kinetic energy
density at a specified upper altitude (numerator) relative to
another lower altitude (denominator). The energy densities
at each height are averaged over a vertical range (spanning 5
km above and below the numerator altitude, and 4 km above
and below the denominator altitude).

[7] Ratios of kinetic energy near unity imply unhindered
(or equally hindered) propagation of the wave at both heights
(i.e., similar energy densities). Ratios near zero imply that
wave energy is being dissipated or accumulated elsewhere
(i.e., dissipated prior to reaching the altitude of interest or
trapped within other ducts). Ratios greater than unity imply
accumulation of wave energy near the numerator height (i.c.,
formation of standing waves or modes). Numerical values
for amplification factor are meaningful only in the context
of the reference heights at which they are calculated. How-
ever, they allow for identification of gravity wave modal
dispersion curves and determination of waves excited under
specified conditions [Walterscheid and Hickey, 2009, and
references cited therein].

[8] Four sets of 880,000 runs are performed across a
parameter space spanning horizontal phase velocities from
10 to 120 m/s (880 increments) and horizontal wavelengths
from 10 to 60 km (1000 increments). Increments are spaced
to maximize resolution at short wavelengths, where density
of adjacent wave modes becomes high. The vertical spatial
resolution of the full-wave model is exceptionally high at
50 m (6000 vertical grid points over 300 km altitude).
Waves are forced in the model by ideal thermal oscillators,
which are specified at either 4 km or 95 km altitude. These
sources are consistent with forcing from the tropospheric
Brunt-Viisild frequency minimum and forcing within the
lower thermospheric duct (LTD) region [e.g., Walterscheid
et al., 2001], respectively. They thus allow assessment

of gravity waves that may reach the lower thermosphere
from tropospheric sources, or that may be excited in situ
in the LTD.

2.2. Ambient Atmosphere

[o] Ambient atmospheric conditions are specified from
the empirical NRLMSISEOO model temperature and neutral
densities [Hedin, 1991; Picone et al., 2002], with profiles
obtained for Halley Observatory (76°S longitude, 27°W
latitude), 1 July 2000, at 12:00 UT (~10:10 LST). Resulting
Brunt-Viisdld period profiles are plotted in Figure 1a for two
example cases under relatively mild and relatively strong
solar activity; for the full-wave model runs, solar and geo-
magnetic conditions are specified arbitrarily with Ap = 4 and
F10.7 = F10.7 A = 150 to produce a temperature of ~950K
at 300km. Test cases (not shown) using alternate profiles
find nearly identical wave characteristics and modes. Never-
theless, we emphasize statistical and qualitative conclusions,
due to uncertainty in ambient atmospheric conditions, solar
activity, and winds.

[10] Vertical lines are plotted on Figure la to indicate
three approximate regimes for gravity wave propagation
within the specified thermal profile: For waves with intrinsic
periods shorter than ~7 min, ducting becomes likely within
the upper mesosphere and lower thermosphere, within the
stratosphere, or across both regions via a coupled two-duct
system [e.g., Walterscheid et al., 2001]. For waves with
intrinsic periods of ~7-10 min, reflection at the base of
the thermosphere ~125-150 km is possible (in particu-
lar at horizontal wavelengths >30 km, where damping by
viscosity is less significant), providing an effective means to
prolong propagation of short-period waves. At intrinsic peri-
ods longer than ~10-12 min, reflection is likely effective
only under favorable conditions.

[11] A significant majority of observed waves at Halley
were found to propagate meridionally [Nielsen et al., 2009].
Winds are obtained from the HWM-07 empirical model
[Drob et al., 2008] for a series of 24 profiles taken at hourly
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Figure 2. Model results showing ratios of kinetic energy plotted across the parameter space defined by varying phase
velocity and horizontal wavelength for averaged (a, b) wind and (c, d) windless cases. Figures 2a and 2b show
ratios of kinetic energy at the OH layer (87 km) relative to the source altitude, for northward and southward directions,
respectively. Figure 2¢ shows ratios for the center of the stratospheric duct at 30 km, and Figure 2d shows ratios for 87 km,
each with superposed ground-relative and intrinsic wave event data points, respectively.

intervals over the same day (1 July 2000). The series of
profiles and their mean are plotted in Figure 1b to con-
firm that meridional winds are, on average, relatively weak.
The model winds in the MLT correspond well to observa-
tions, typically on the order of a few ~ 10 s of m/s. The
HWM-07 profiles suggest that winds near the thermospheric
reflection heights ~115-150 km may introduce direction-
ality constraints; reflection should be most effective when
winds oppose the direction of wave propagation at these
heights, preventing critical level filtering.

3. Results and Discussion

[12] To first investigate the effects of winds, we spec-
ify two numerical model runs for northward or southward
propagation using the average modeled winds shown in

Figures 1b. Figure 2a and 2b depict the ratios of kinetic
energy for these runs, respectively, where a wave source is
placed in the troposphere at 4 km altitude (also correspond-
ing with the denominator reference altitude). “Dispersion
curves” are revealed in Figure 2 by red regions with ratios
typically >1 and especially >2 that indicate wave amplifica-
tion via reflection and ducting, where kinetic energy at the
altitude of interest (numerator) exceeds that at the source
altitude (denominator). Modeled waves oppose MLT winds
in the “northward” case (Figure 2a), leading to refraction
to higher intrinsic phase velocities, thus reducing dissipa-
tion on average (increasing amplification factor) and also
limiting Doppler ducting in this region. In the “southward”
case (Figure 2b), refraction to lower intrinsic phase veloc-
ities enhances dissipation (decreasing amplification factor)
and introduces Doppler modes that intersect and enhance the
available thermal duct modes.
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Figure 3. Full-wave model results for wave “amplification
factor” ratio of kinetic energy for the center of the thermo-
spheric duct at 115 km relative to 105 km, for a source at
95 km altitude, thus revealing amplification of wave energy
by trapping near the duct center.

[13] Both test case scenarios indicate favorable propaga-
tion and the possibility of ducting in either direction. Wind
directionality in HWM-07, however, cannot be expected to
correspond consistently with observed data; indeed, waves
reported by Nielsen et al. [2012] were observed to propa-
gate both along and against the ambient wind flow, in both
southward and northward directions. Reported winds were
notably weak, variable in terms of directionality, and only
~5% of waves were found to be Doppler ducted in the MLT
above Halley. Thus, we omit winds in later numerical model
runs to compare with measured wave parameters.

[14] Figures 2c and 2d show results of two model runs
performed without winds, each using a 4 km source alti-
tude. Ratios of kinetic energy are calculated at two altitudes
of interest relative to the source altitude: First at 30 km
(Figure 2c), consistent with the center of the stratospheric
duct and second at 87 km (Figure 2d), consistent with the
height of the OH layer. The ratio of kinetic energy at a 30 km
numerator height provides special insight into the available
stratospheric duct modes, including those with small verti-
cal scale, while the 87 km numerator provides insight into
observable waves in the OH layer.

[15] Scattered upon both plots are event statistics for
waves identified over Halley by Nielsen et al. [2009], with
intrinsic parameters obtained from wind analyses of Nielsen
et al. [2012] assuming an 87 km OH layer peak. To com-
pare with modeled waves in the stratosphere at 30 km
(Figure 2c¢), ground-relative phase velocities of wave events
are plotted; on average, ground-relative parameters are com-
parable to wave intrinsic parameters at these altitudes, where
meridional winds are weak. To compare with modeled
waves in the OH layer at 87 km (Figure 2d), intrinsic
wave phase velocities are plotted under the assumption

that the wind is reasonably consistent throughout the
MLT region. Indeed, for >80% of events reported by
Nielsen et al. [2012], the wave-aligned wind velocity was
observed to be less than half of the ground-relative phase
velocity; events observed in stronger winds are marked
in red, to note the enhanced importance of winds and
increased uncertainty.

[16] Waves excited by the lower atmospheric source may
be subject to thermal ducting within the stratosphere and
may leak intermittently upward through stratopause to the
lower thermosphere [Walterscheid et al., 2001], leading to
their detection in mesospheric airglow data [Nielsen et al.,
2012]. At 87 km, well-defined modes exist for periods
<7 min; 49 events (~30% of those plotted) were identi-
fied by Nielsen et al. [2009, 2012] in this range. The 54
events (~33%) having periods of 7—10 min are less likely to
experience strong ducting but may become reflected at the
base of the lower thermosphere if not excessively damped
by viscosity. Approximately 25 out of these 54 waves occur
near modal amplification curves (~15% of total), defined
as the enhancements occurring above the red dashed line
in Figure 2d (which approximately traces the sixth modes
of both the stratosphere and thermosphere). In total, this
suggests that ~45% of all events may be candidates for
ducting (ideal or non-ideal) and ~63% of all events may be
candidates for some form of ducting or thermal reflection.
An additional 11 events, with periods >10 min but occur-
ring in parameter space above the sixth mode trace line,
may be counted as candidates for reflection or ducting, sug-
gesting an upper limit of just under 70%. Waves in these
intermediate ranges of intrinsic periods (>7 min) likely prop-
agate as partially reflected dispersing packets, rather than
as ideal ducted waves, and thus may be observed as freely
propagating at MLT heights. Their reflections likely occur
outside of the 80-100 km span of the observable MLT,
consistent with findings of Nielsen et al. [2012] but suggest-
ing significantly greater importance for thermal reflection
or ducting.

[17] Figure 2d identifies the parameter space where the
specified lower atmospheric source is effective at exciting
lower thermospheric waves (i.e., a ratio ~1); indeed, many
observed events occur in this range. However, ~30 events
(~18%) occur in a range not excited by the lower atmo-
spheric source. This does not indicate an absence of ducted
modes; instead, it indicates that waves are trapped effec-
tively in the stratosphere, preventing them from reaching
the model’s thermosphere. Figure 2c¢ indicates that ~18
waves satisfy the first (fundamental) or second modes of the
stratospheric duct.

[18] To confirm that equivalent LTD modes exist near
the Brunt-Viiséld period, an additional set of model runs
is specified using an in situ source at 95 km [e.g., Snively
and Pasko, 2008]. Figure 3 depicts the modeled ratios of
kinetic energy for a height of 115 km, corresponding to
the center of the LTD, relative to 105 km, chosen above
the source to prevent the ratio of kinetic energy from
falling below unity along the modal dispersion curves of
the stratospheric duct where waves are also captured. Event
intrinsic phase velocities are plotted, under the assumption
that winds throughout the MLT are reasonably consistent in
directionality and amplitude. The shortest intrinsic period
events, found by Nielsen et al. [2012] to be evanescent at
the height of the airglow layers, indeed appear consistent
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with waves near the fundamental modes of the strato-
sphere (Figure 2¢) or the LTD (Figure 3). Evolving MLT
region winds and structure may facilitate tunneling through
the MLT between these ducts above or below [Yu and
Hickey 2007b].

4. Conclusions

[19] The parameter space of gravity waves over Halley,
Antarctica, has been investigated using a steady-state model.
It is found that a significant fraction of observed wave events
have characteristics within a range that can be excited by
ground-based or in situ sources. Under modeled conditions,
up to ~70% of observed waves may experience some form
of thermal reflection, evanescence, or ducting: Of observed
waves, ~12% may be subject to ducting in the stratosphere
and lower thermosphere, up to ~15% may be subject to
broad ducting between tropopause and the lower thermo-
sphere, and a remaining ~25% may experience partial lower
thermospheric reflection. The ~18% of observed waves
found to be evanescent at the airglow layers, also identified
by Nielsen et al. [2012], are likely well trapped below in the
stratosphere or above in the lower thermosphere (where they
may be excited by in situ forcing).

[20] Results suggest that many of the observed waves
thus have characteristics favorable (although not sufficient)
for long-range meridional propagation from distant sources.
Atmospheric variability will influence the propagation,
directionality, and redistribution of short-period wave
energy and momentum, especially over large distances.
The possibility that a significant fraction of waves may
be ducted broadly through the high-latitude MLT region
suggests a need for careful assessments of wave propa-
gation that account for reflection at altitudes well above
and below. Results also demonstrate a need to evaluate the
effects of such waves, and to identify biases present in the
observed system [e.g., Fritts, 2000], to prevent underesti-
mation or overestimation of their impacts on both local and
global scales.
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