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One Sentence Summary: 9 

Hillslope morphology indicates whether a landscape is undergoing rejuvenation or decay, and 10 

consequently may be used to quantitatively derive changes in tectonic rates.  11 

Abstract:  12 

The Earth's surface archives the combined history of tectonics and erosion, which tend to 13 

roughen landscapes, and sediment transport and deposition, which smooth them.  We analyzed 14 

hillslope morphology in the tectonically active Dragon’s Back Pressure Ridge in California, 15 

USA, to assess whether tectonic uplift history can be reconstructed using measurable attributes 16 

of hillslope features within landscapes.  Hilltop curvature and hillslope relief mirror measured 17 

rates of vertical displacement caused by tectonic forcing, and their relationships are consistent 18 

with those expected when idealizing hillslope transport as a non-linear diffusion process. Hilltop 19 

curvature lags behind relief in its response to changing erosion rates, allowing growing 20 

landscapes to be distinguished from decaying landscapes. Numerical modeling demonstrates that 21 

hillslope morphology may be used to infer changes in tectonic rates. 22 



Main Body: 23 

Hillslope morphology is a first-order indicator of landscape change, with great potential for 24 

interrogating landscapes in tectonically active settings (1-3). Under the condition that erosion 25 

rates have adjusted to tectonic uplift, landscape morphology can be used to infer uplift rates (4).  26 

Until recently, efforts have focused on inferring rates of base-level fall from channel profiles; 27 

hillslopes were generally considered insensitive to rapid base-level fall since they become 28 

invariantly steep and planar in such context (5). Advances in the quality of digital topographic 29 

data have recently led to new techniques allowing interpretation of hillslope morphology as a 30 

first-order indicator of change in boundary conditions, even in rapidly uplifted landscapes (1-3). 31 

In the limiting case that channels respond more rapidly to changes in uplift rates than do 32 

hillslopes, the history of tectonic rates may be faithfully archived in the profile form of hillslopes 33 

(6). Hilltop curvature (CHT) and mean hillslope gradient (S) are expected to predictably vary with 34 

relative base-level lowering rates (hereafter equated with tectonic uplift rate, U) providing 35 

hilltops remain soil-mantled (2, 7). We study hillslope morphology at the Dragon’s Back 36 

Pressure Ridge (DBPR), located along the San Andreas Fault (SAF), California, USA. Small 37 

catchments (<400 m long) trending perpendicular to the fault are cut into poorly consolidated 38 

sediments of the Paso Robles formation that is readily transportable as soil (8).  Geological 39 

mapping reveals that these sediments are progressively folded as a monocline to the northwest.  40 

Surface structures exposed within the North American Plate and magnetotelluric profiles suggest 41 

that the SAF is offset in the shallow subsurface and that this offset remains stationary with 42 

respect to the North American Plate.  Taken together, these observations indicate that flat-lying 43 

sediments southwest of the DBPR are progressively deformed as strike-slip motion moves them 44 

into and through the deformation zone created by this offset (Fig. 1a). Topography along the 45 

DBPR reflects translation through the fixed uplift zone at a rate equal to the mean slip rate along 46 

the SAF (33 mm a-1), allowing a space-for-time substitution to analyze topography as a result of 47 

the integrated uplift history along the landform. As such, uplift increases rapidly from SE to NW 48 

along the landform, peaking 1200 m from the SE tip of the ridge (30 ka) and declining by 2000 49 

m (60 ka)  (Fig. 1a) (8). Additionally, it has been demonstrated that the fluvial system rapidly 50 

communicates changes in uplift rates to hillslopes, which is a limiting condition required to 51 

examine hillslope responses to changing tectonic rates (8). 52 



In steep, rapidly eroding terrain, hillslope gradient is often invariant (5, 9), an observation 53 

consistent with geomorphic transport models in which sediment flux increases nonlinearly with 54 

hillslope gradient and tends to infinity as gradient approaches a critical slope, SC (2, 10, 11). 55 

When tectonic uplift is balanced by surface lowering rates (hereafter referred to as steady-state), 56 

a relationship can be derived from this flux law between two dimensionless topographic 57 

measures: an apparent dimensionless erosion rate E* and dimensionless relief R* (7) (see 58 

supplementary material):  59 
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where LH is horizontal hillslope length. Changes in E* and R* are primarily driven by changes in 62 

CHT and S, respectively. As E* becomes large, R* asymptotically approaches unity, indicating that 63 

mean slopes approach SC at high uplift rates (Fig. 2a; dashed line). When the steady-state 64 

assumption is violated, deviation from the steady-state relationship (Fig. 2a; dashed line) has 65 

been hypothesized to reflect the adjustment of hillslope profiles to changes in relative base-level 66 

lowering rates (6). Therefore, we calculate E* and R* from high-resolution topographic data (see 67 

supplementary material for details) by quantifying S, CHT and LH to reveal landscape history in 68 

relation to changing uplift (2).  69 

S, CHT and LH all increase in response to increased erosion rates (Fig. 1). S attains 70 

maximum values by 900 m (27 ka) along the landform and remains high until 2700 m (82 ka), 71 

suggesting that S is limited by landsliding in these areas as previously observed (8). By 750 m 72 

(23 ka), LH increases to 30 m and remains approximately constant until 2700 m (82 ka). Uplift 73 

rates are high (> 1mm a-1) at 900-1800 m (27-55 ka); in this zone, CHT increases to a maximum 74 

value 750 m (23 ka) after uplift has declined. 75 

We used S, CHT, and LH to calculate E* and R*, fixing SC = 0.8 so that R* cannot exceed 76 

unity (S should not exceed SC). We observed systematic deviations between the measured values 77 

and those expected for steady-state hillslopes (Fig. 2a). Initially, increasing S, LH and CHT, 78 



elevate R* and E* respectively. R* does not notably increase after 25 ka as hillslope gradient 79 

approaches SC. Increasing CHT raises E* even after uplift ceases at 55 ka. From 80 ka onwards, 80 

both E* and R* decline gradually; however, E* values are larger for a given R* value than would 81 

be predicted based on the steady-state model. This pattern suggests that changes in CHT (and 82 

hence E*) lag behind S (and hence R*). The result is tectonically induced hysteresis in hillslope 83 

form: high-relief, low-CHT, and low-relief, high-CHT, hillslopes are associated with active and 84 

waning tectonic uplift, respectively. 85 

We constructed a one-dimensional numerical model of hillslope evolution to determine if 86 

the observed hysteresis could be explained by the lag in hillslope response to changes in base-87 

level lowering rates (see supplementary material).  The model used a time-dependent uplift pulse 88 

idealized as a Gaussian function with the timing (tmax
*), standard deviation (tstd

*)  and magnitude 89 

(Umax
*) of uplift treated as model parameters. LH and the transport coefficient D (see 90 

supplementary material) were fixed for the modeled hillslope. A Monte Carlo approach was used 91 

to find the most likely combination of these parameters according to the misfit between values of 92 

R* and E* derived from the DBPR topography and those calculated at corresponding model-time 93 

values in the forward model.   94 

The resulting distribution of apparent uplift is shown in Fig. 3a. Dimensionalization of 95 

the best fit modeled uplift field uses D = 0.0086 m2 a-1 as previously derived for the study site 96 

(12), and the similarity in magnitude of modeled U with the independently-derived mapped uplift 97 

field (8) supports this value. The model reasonably explains the distribution of hillslope 98 

morphology, as shown by the similarity between E* derived from topography and the modeled 99 

hillslope through time (Fig. 3b). Although first-order features of hillslopes within the DBPR 100 

were captured using the model, several key features remain unexplained.   101 

First, the inferred U* distribution implicitly equates changes in base-level lowering rate 102 

with changes in rock uplift rate. Channels adjust rapidly but not instantaneously to the waning of 103 

uplift (8).  This delayed channel response introduces an additional 15-20 ka (t* = 0.14-0.19) lag 104 

between changes in uplift and relative base-level fall along hillslopes, similar to the offset 105 

between their mapped uplift field and the most likely distribution of U* derived from the model 106 



(Fig. 3a). The modeled tstd
* values were larger than those observed, with apparent uplift 107 

distributed throughout the model run (Fig. 3a).   108 

Secondly, peak E* values are smaller than E* derived from the topography (Fig. 3b). This 109 

likely reflects the choice of a modeled Gaussian uplift pulse that is smoother than the 110 

documented uplift distribution at the DBPR. 111 

  Thirdly, toward the NW end of the DBPR (beyond 2700 m / 80 ka), R* is generally 112 

smaller than model predictions (Fig. 3c).  The mismatch could be due to high transport rates in 113 

the study area associated with processes that are not replicated in the model, such as debris-114 

flows, landslides, and erosion by overland flow (see Fig. S2), which have been interpreted as a 115 

possible cause for variation in channel concavities within and beyond the uplift zone (8).  116 

Finally we integrated the modeling results with field observations in a conceptual 117 

framework for the temporal evolution of DBPR (Fig. 2b). Accelerated uplift drives erosional 118 

adjustment that propagates into a landscape. Channel erosion ensues, with a concomitant delay in 119 

hillslope response, so relief can grow without a commensurate change in CHT and thus E*, 120 

leading to data lying above the steady-state E* vs. R* curve. Once uplift stops, channels rapidly 121 

become gentler (8) whereas again hillslopes and hilltops are slower to respond, leading to points 122 

lying below the steady E* vs. R* curve. This hysteresis in has important implications for the 123 

interpretation of transient hillslopes, providing a means to discriminate growing and decaying 124 

landscapes based on hillslope topography alone. Our findings highlight the potential to 125 

distinguish active faults in remote settings, quantify the distribution of fault-related uplift and 126 

delineate zones with high landslide risk (i.e., zones with high uplift rate, steep landscape and/or 127 

proximity to active faults). Such an approach will be best suited to landscapes where hillslopes 128 

have a response time that is longer than that of the channel network, but not so long that channels 129 

effectively become decoupled from their base-level. Alternatively where the response time of the 130 

channel network is very long, hillslopes may be able to track spatial variation in relative base-131 

level (2) and provide a complementary test to channel-based erosion rate metrics.  132 

Figure Captions: 133 



Figure 1: Study site and hillslope morphology: (a) Shaded relief image of DBPR adjacent to 134 

the SAF (UTM zone 11N projection; (E)astings and (N)orthings in meters). Contours show 135 

distribution of surface uplift derived by geological mapping of deformed sedimentary beds (8) 136 

and black lines depict mapped hilltops. (b) Distribution of surface metrics sampled from hilltops 137 

in (a). Shaded regions show standard deviation and solid lines are standard errors about bin 138 

means. Space-for-time substitution is based on 0.033 m a-1 slip rate on the SAF (8).  S appears 139 

limited by 900m along the DBPR, whilst CHT continues to increase suggesting rising erosion 140 

rates.  141 

Figure 2: Hysteresis in hillslope morphology: (a) Variation in E* and R* with distance towards 142 

NW along DBPR. Dashed line indicates theoretical relationship for steady-state hillslopes. Error 143 

bars propagated from standard errors in Fig. 1.  Space-for-time substitution is based on 0.033 m 144 

a-1 slip rate on the SAF (8). The morphological evolution of hillslopes is distinct for adjustment 145 

during uplift versus relaxation after uplift has ceased. (b) Schematic diagram illustrating 146 

landscape response to the onset and conclusion of uplift and the expected distribution of E* vs. 147 

R* (inset plot). Values for E* vs. R* reflect hillslope profiles highlighted in red on the schematic 148 

plot. Uplift triggers increased erosion rates in channels which dissect the original surface. A 149 

wave-like signal propagates onto the hillslopes, causing steepening (20-40 ka). Subsequently, the 150 

hilltops respond by becoming sharper (60-80 ka). At 60 ka uplift ceases and channel slopes 151 

decrease (8). Hillslope gradients and hilltop curvature both reduce gradually in response. 152 

Figure 3: Modeled Uplift: (a) Distribution of U* as a function of t*. Solid black line represents 153 

the mapped uplift field normalized following Equation S3c (using D = 0.0086 m2 a-1 (12) and LH 154 

= 30 m) and slip rate of 0.033 m a-1. Grey line is the Gaussian function for apparent uplift (base-155 

level fall) providing best fit to observed topography from probability densities with mean values 156 

(± 1σ) of Umax
* = 20.89 (±0.6), tmax

* = 0.621 (±0.001) and tstd
* = 0.490 (± 0.015). (b) Distribution 157 

of E* through t*: topography-derived (Equation 5b) and modeled E* (Pearson’s correlation test 158 

gives R2 = 0.78). (c) Distribution of modeled and measured R* through t*. (d) E* from topography 159 

and modeled hillslopes as a function of model-derived apparent uplift U* through t*. Hysteresis is 160 

recorded such that during accelerating uplift and topographic growth E* lags behind U* whilst 161 

during landscape relaxation E* lags behind a declining U*. 162 
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Materials and Methods 

 
Hillslope Model 
 
The evolution of a one-dimensional hillslope follows: 

 

 
dx

dq
UEU

dt

d s ** 
       [S1] 

 
such that surface elevation  changes through time t where U is surface uplift rate [L T-1], 
ρ* is the density ratio between bedrock and dry soil, E is erosion rate [L T-1], x is distance 
along the hillslope and qs is volumetric sediment flux per unit width [L2 T-1] (dimensions 
of [L]ength, [M]ass and [T]ime denoted with square brackets). Sediment flux in steep, 
soil mantled landscapes can be modeled using (10, 11): 
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where D is a transport coefficient [L2 T-1], S is hillslope gradient [L L-1] and SC [L L-1] is 
a critical hillslope gradient toward which sediment flux becomes infinite. This system can 
be nondimensionalized (as denoted by an asterisk superscript) (7): 
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Substituting Equation 2 into 1 and using these nondimensionalizing definitions leads to 
the following solution for hillslope form: 
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which we use to model the evolution of a 1D hillslope through time. 
 
Topographic Analysis 
 
Roering, et al. (7) provide steady state solutions (i.e. when the condition U=E is satisfied) 
for the above model which allow derivation of non-dimensional erosion rate E* which is 
proportional to E (Equation 3c). The solutions also predict E* based on quantifiable 
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hillslope topographic metrics, namely hilltop curvature CHT [L-1], hillslope length LH [L] 
and mean hillslope gradient S [L/L]: 
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Dimensionless relief can be derived theoretically as a function of E* and predicted from 
topography using S: 
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We use Equations 5b and 6b to quantify E* and R* from topographic data, selecting SC = 
0.8 so that the requirement R* < 1 is met. Varying SC does not change the overall 
distribution of E* vs. R* data derivbed from topography but will alter their absolute 
values. These metrics are expected to deviate from their steady-state predictions when a 
hillslope is undergoing a transient response to base-level change. Following Hurst, et al. 
(2) we located hilltops as the adjoining margins of drainage basins extracted at a range of 
stream orders. In DBPR we restricted our analysis to interfluves trending roughly 
perpendicular to SAF, so that the hilltops are likely to be experiencing similar erosion 
rates on both sides of the divide (Fig. 1a). Using a 0.25m digital elevation model, we 
calculated the aspect, gradient and curvature (Laplacian) of elevation from the 
coefficients of a 6-term quadratic surface fitted by least squares to all cells within a 2.5m 
window centered on the cell of interest.  CHT was sampled directly at hilltops then an 
aspect-driven, steepest descent trace was run from each hilltop pixel until a mask defining 
the channel network/valley fill was encountered. From this trace LH and S were calculated 
(see Fig. S1). 
 
DEM Preparation 
 
There were two principal concerns when preparing a DEM for this analysis. Firstly, the 
raw LiDAR point cloud contained returns misclassified as ground originating from small 
shrubs bushes (Fig S2 and Fig S3). These were identified and preferentially smoothed. 
Secondly, hilltops on the Dragon’s Back Pressure Ridge get extremely narrow (<2 m) 
where denudation is rapid, and so calculating reliable values for CHT required analysis to 
check for scale dependency (Fig. S4).  
 
We interpolated raw point cloud LiDAR returns (point density ~4 m-2) to a 0.25 m2 
resolution grid using MCC-LiDAR (13). This algorithm identifies locations in the point 
cloud where returns coincide spatially and removes the highest of these points. We do not 



 
 

4 
 

use MCC-LiDAR to identify shrub vegetation since the algorithm is dependent on 
curvature, and hence has a tendency to misidentify sharp hilltops as vegetation. To 
remove bushes and shrubs, the gridded data was smoothed using a non-local means 
filtering algorithm (14). Filtering is based on the assumption of regularity; that in the 
neighbourhood of the pixel of interest there are neighbourhoods that should look similar 
and therefore these non-local neighbourhoods can be used to predict the value at the 
original pixel. A non-local approach to DEM smoothing is particularly appealing towards 
the goal of removing bushes/shrubs which can be considered positive, high frequency 
noise since unlike many filtering techniques it does not assume the noise is normally 
distributed, therefore we minimize smoothing of hilltops. Fig. S2 shows an example of 
the effect of the smoothing. 

 
We justify interpolation to a 0.25 m2 grid resolution by arguing that this allows the true 
location and elevations of point cloud data to be better spatially resolved in the gridded 
approximation of the surface. This fine resolution allows us to calculate curvature over 
smaller windows, which is essential for resolving the curvature of narrow hilltops. 
Typically topographic curvature is calculated over scales greater than the characteristic 
wavelength of high-frequency noise associated with surface roughness, for example due 
to pit-mound topography generated by tree throw (15). At DBPR positive surface noise 
associated to low relief vegetation was smoothed. Given that hilltops are narrow, we 
calculated curvature over much smaller spatial scales. We varied the scale from 0.75 m to 
5 m to test for scale effects. In Fig. S4 we show four hilltops distributed along the length 
of DBPR, and the associated variation in CHT and its standard deviation as the scale over 
which curvature was calculated varied. The selected hilltops are distributed along the 
length of DBPR, chosen to reflect the various stages in landform development. We 
observe that CHT varies little with length scales above ~2.5m, except on the sharpest 
hilltops (Fig. S2(b)) and there is a significant reduction in the standard deviation at this 
scale. At this scale we see through high frequency noise in the landscape. The hilltop in 
Fig. S2(b) is extremely narrow and therefore with increasing length scale we are 
underestimating CHT. This is an important limitation to our results since it alters the range 
of E* in Fig. 2, compressing the data at high E* and may be the cause of clustering. It is 
therefore possible that any relationship between E and CHT becomes artificially non-linear 
at high E. 

 
Uplift/Base-level Model 

 
The hillslope model presented in Equation S4 was forward modeled through time, 
assuming that D = 0.0086 m2 a-1 (12) and LH = 30 m (Fig. 1), which allowed us to 
calculate R* and E* at each simulated non-dimensional model time (Equation S3d). We 
favored fixing LH rather than developing a more complex 2D landscape evolution model 
to avoid having to model complex valley forming processes, particularly transitions from 
detachment to transport limited conditions and the initiation of debris-flow processes.  
Time-dependent dimensionless uplift U* was idealized as a Gaussian function with 
duration tstd

* peaking at time tmax
* and maximum uplift Umax

* treated as model parameters: 
 



 
 

5 
 

2

*

*
max

*
*

max* 2 








 


 stdt

tt

C

H e
DS

LU
U       [S7] 

Posterior probability densities for U* and tstd
* were then sampled using a Markov-Chain 

Monte Carlo (MCMC) method according to the misfit between measured values of R* 
and E* and those calculated at corresponding t* values in the forward model (16) using a 
maximum likelihood estimator: 
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where n is the number of data points, u could be either E* or R* as a function of time 
(determined using a space for time substitution based on a fault slip rate of 33 mm yr-1) 
(8), the superscripts meas and mod denote measured and modeled quantities, respectively, 
and σu  is the standard deviation of E* or R* data. Values of the peak uplift and width of 
the Gaussian uplift curve were changed after each iteration of the MCMC ‘chain’ and 
then accepted or rejected using an acceptance criterion (see below). For each iteration, 
the two parameter values were changed from the last accepted parameter value, and this 
deviation was selected from a Gaussian probability distribution bounded by minimum 
and maximum parameter values. Following standard practice, the standard deviation of 
the Gaussian distribution of each parameter (peak uplift and uplift field width) is set so 
that the acceptance rate of each iteration is c. 33 % (17). This process is iterated upon 
several thousand times in order to constrain the posterior distribution of the model 
coefficients (18). The acceptance criterion is based on the Metropolis-Hastings algorithm 
(19). The likelihood of the current iteration is compared to the previous iteration. If the 
ratio likelihood of the new iteration to the previous iteration is > 1, then the new 
coefficient values are accepted. If this ratio is < 1, then the new coefficients are accepted 
with a probability equal to the ratio. To generate the posterior distribution of coefficient 
values, each iteration in the Markov Chain is weighted by the likelihood of the 
combination of parameter values, creating a probability distribution of each coefficient. 
This can be used to determine both mean and 95% credibility limits on the parameter 
values. The resulting best fit uplift field can be seen in Fig. 3. 
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Fig. S1.  

One dimensional schematic cross section of a hillslope showing the metrics extracted 
from topographic data. Relief R is the difference in elevation between the divide and the 
base of the hillslope, and the horizontal distance between these elevations is the hillslope 
length LH. The ratio of these gives the mean hillslope gradient S. Hilltop curvature ( in 
2D space) is the second derivative of the surface measure only at the divide.  
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Fig. S2.  

Aerial imagary (courtesy of Bing Maps) centered north-west of the zone of high uplift. 
Note that the hillslopes in this portion of the DBPR are corrugated which is interpreted to 
be due to small landslides/debris flows. Dark speckles are patchy shrub and brush 
vegetation which required filtering in the topographic data. 
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Fig. S3:  

Example of smoothing by nonlocal means filtering algorithm which preferentially 
smoothes positive noise generated by the presence of local surface features such as 
bushes or boulders. Left image is topographic data gridded to 0.25m, right image is 
smoothed data using the nonlocal means techniques (17). 
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Fig. S4. 

Variation in the Hilltop Curvature as a function of the length scale (or window size) over 
which curvature is extracted from the DEM. For each hilltop depicted in black in the 
shaded relief image, we extract the mean and standard deviation of curvature with a range 
of window sizes. Columns (a)-(d) are for hilltops distributed along the length of DBPR 
recording (a) transient response to uplift/erosion, (b) high erosion rate, steep planar 
hillslopes and narrow ridges, (c)-(d) relaxation of hillslope after uplift has ceased. For (a), 
(c) and (d) mean hilltop curvature is independent of window sizes above 2.5m so this is 
the scale we use. On sharp hilltops with steep side slopes (b) negative hilltop curvature 
increases as the window size decreases suggesting we will underestimate CHT on such 
hilltops. 
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