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Diapycnal mixing (across density surfaces) is an important process in the global ocean 

overturning circulation 1-3. However, mixing in the interior of most of the ocean is 

thought to be ten times weaker4 than that required to close the global circulation by 

the downward mixing of buoyancy1. Some of this deficit is made up by intense near-

bottom mixing occurring in restricted “hot spots” associated with rough ocean floor 

topography 5,6, but this leaves open the question of how the mid-depth waters, 1000-

3000 m, are returned to the surface, whether by cross-density mixing or by along-

density flows 7. Here we show, using an open ocean tracer release, that diapycnal 

mixing of mid depth (~1500 m) waters undergoes a sustained 20-fold increase  as the 

Antarctic circumpolar current (ACC) flows through Drake Passage. We ascribe this to 

turbulence generated by the deep-reaching ACC as it flows over rough bottom 

topography there. Scaled to the entire circumpolar current, the mixing we observe is 

compatible with a Southern Ocean upwelling ~20Sv, where cross-density mixing 

contributes a significant fraction, (20-30%) of this total. The great majority of the 

diapycnal flux is the result of interaction with restricted regions of rough bottom 

topography.  

 

 

The tracer, 76 kg of trifluoro methyl sulphur pentafluoride (CF3SF5) 8, was released 

within +/- 3m depth of neutral density  n = 27.906 kg m-3 in February 2009, as part of 

the DIMES project (“Diapycnal and Isopycnal Mixing Experiment in the Southern 

Ocean”, see http://dimes.ucsd.edu). The release location (figure 1) was near 58S, 

107W, about 2000 km upstream of Drake Passage in the ACC between the 

Subantarctic and Polar Fronts, and at a depth of about 1500 m 9, in the upper 

circumpolar deep water mass (UCDW). The vertical and horizontal dispersion of the 
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tracer was measured one year later, in the region 57-62S and 105- 85W, between 

the release site and Drake Passage9. The vertical turbulent diffusivity integrated over 

that period was found to be 1.3  0.2 x 10-5 m2s-1, which is typical for the interior of 

the ocean far from boundaries. It  is smaller by a factor of 10 than the diffusivities 

~10-4 m2s-1 which on average would be required to close the abyssal overturning 

circulation by down-mixing of buoyancy alone1,2.  ` 

 

 From December 2010 to April 2011 two further surveys of the eastern part of the 

tracer patch were carried out as it flowed through Drake Passage, yielding five 

meridional sections through the patch (locations shown in Figure 1). Mean vertical 

profiles of the sections are shown in Figure 1, lower panel. The profiles are plotted 

against neutral density, and also mapped against a depth scale that represents the 

average vs depth profiles for the stations occupied in April 2011. The dotted line 

shows the “target” density on which the release was made.  

 

The surveys can be used to constrain diapycnal diffusivities both in the Eastern 

Pacific and the Drake Passage sectors of the ACC. The growth in the second moments 

of the profiles in Figure 1 can be used to estimate diffusivity averaged over the period 

since release4. These estimates are given in Figure 2, with 95% confidence intervals 

found from the statistics of individual profiles (see figure legend, and supplementary 

information for details). The estimates obtained by averaging over the path from the 

release point to section E and F east of Drake Passage, are two to three times larger 

than those confined to the Pacific sector, indicating a large increase in the rate of 

cross-density mixing as the tracer is advected through Drake Passage. This is 

consistent with the idea that the rough bottom topography which dominates eastward 
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of about 70W greatly influences mixing rates. Since the tracer has resided in the high 

diffusivity region for only a comparatively short time (a conservative estimate would 

be a quarter of the total time since release, assuming no increase in eastward velocity 

in Drake Passage) the observed broadening of profiles implies that the tracer 

experiences a rate of diapycnal mixing about an order of magnitude greater in Drake 

Passage than in the eastern Pacific.  

 

To obtain a more quantitative estimate of the mixing rate in Drake Passage, we solved 

the advection-diffusion equation for the tracer on a two-dimensional (longitude and 

depth) domain divided into two sub-regions, east and west of 67W, this being 

approximately the longitude of the Phoenix Ridge, which marks the western extent of 

the seafloor mountains in Drake Passage. Vertical and horizontal diffusion and 

horizontal advection velocities in the two sub-regions were adjusted to give the best 

fits to the mean profiles B-F of Figure 2 (see supplementary information for full 

details). Uncertainties in the fitted parameters were estimated from the variation of the 

chi-square statistic in parameter space around its minimum value10. The best values 

estimated for the diapycnal diffusivity in Drake Passage and in the Eastern Pacific 

were respectively (3.6 ±0.6) x 10-4 m-2s-1 and (1.78±0.06) x 10-5 m-2s-1, where 

uncertainties are 2-ʍ. Our conclusion is that diapycnal diffusivity  in the UCDW 

through Drake Passage, O(2km) above the bottom, averages ~20 times the values 

immediately to the west in the Pacific sector of the ACC. The measurements at the 

eastern exit of Drake Passage were made towards the leading edge of the tracer patch. 

This might introduce systematic errors, biasing the mixing rate low because vertical 

shear has narrowed the extent of the tracer distribution, or high if more rapidly 

advected tracer also experiences higher vertical diffusivity than average. We estimate  
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that such systematic errors should be contained within confidence intervals broadened 

by a further factor of ~1.5. 

 

Elevated cross-density mixing has been observed in the vicinity of mid ocean 

ridges5,6, caused by breaking of internal waves generated by bottom currents 

interacting with the rough topography6. The view that substantial diapycnal mixing 

occurs in restricted areas by such interaction is now widely accepted. While the driver 

for near-bottom currents at the mid-ocean ridges is internal tides, recent work 

suggests that in the Southern Ocean the main source of mixing is the deep-reaching 

extension of the ACC and associated mesoscale eddies, which dominate bottom 

flow11-14. These can generate lee waves by interaction with bottom topography, which 

may subsequently break, producing turbulence15. Globally,  it has been estimated that 

0.2TW  (~20% of  the wind energy put into the surface ocean)  may be dissipated by 

such interaction16, much of it in the Southern Ocean15. The great majority of the 

energy goes into the layer within a kilometre of the bottom, and the diapycnal mixing 

induced there is likely to be of considerable importance in the modification of the 

deepest water masses. This forms the return path for the lower limb of the meridional 

overturning circulation, (MOC), supporting a flux ~10 Sv (1 Sv = 106 m3s-1) of 

Antarctic bottom water 16. By contrast, the layer studied by the tracer release is 2-3 

km from the bottom over most of the area, except in the restricted zones where it 

contacts the continental slope at the Northern limit of Drake Passage, or close to the 

peaks of the highest submarine mountains. Our measurements suggest that even these 

limited sources of high dissipation are sufficient to produce substantially elevated 

average mixing rates.  
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Profiles of turbulent dissipation made at the same time as tracer measurements during 

DIMES also show a substantial increase between the southeast Pacific and Drake 

Passage above the rough topography17. The rates of mixing we measured in the 

UCDW appear to scale, very approximately, with the input of power into lee wave 

radiation. Using the calculations of ref 13, we find that the energy density of lee wave 

generation in the ACC between the tracer release and our section D (Fig 1) averages 

0.6 mW m-2, whereas in Drake Passage between sections D and E/F it is ~20 mW m-2, 

so a factor ~30 greater, comparable to the enhancement of 20-fold in diapycnal 

mixing rates. Applying the implied scaling factors to the average lee wave energy 

dissipation under the entire ACC (~3mW m-2
, again from ref 13) suggests diapycnal 

mixing of (0.6 – 1) × 10-4 m2 s-1 for the upper circumpolar deep water as a whole, 

concentrated over regions of rough topography such as Drake Passage, the Scotia Sea, 

Crozet-Kerguelen and the Southeast Indian Ridge. This mixing rate is in the range of 

values found by Zika et al 18 to be compatible with a Southern component meridional 

overturning of order 20Sv, given observed temperature and salinity distributions. We 

estimate (see supplementary information) that such a mixing rate will contribute about 

3-6Sv to this overturning at the density level of deepest UCDW, where the tracer was 

released.  Our measurements support the view therefore that ~20-30% of the Southern 

component of the overturning circulation at mid-depths is sustained by diapycnal 

processes, with the remainder being accomplished by isopycnal transport19. Virtually 

all of the diapycnal component is excited over the restricted regions of rough bottom 

topography below the ACC, by interaction of the deep-reaching current with the sea 

floor.   
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Figure 1: Upper panel: location of the tracer release in February 2009 (red star) and 

of subsequent measurements and surveys: A: East Pacific survey, 1 year after release, 

B and C: Sections near 78W, at 1.9 years and 2.2 years after release, D: Section at 

western entrance to Drake Passage, 1.9 years after release, E and F: Sections at 

eastern exit of Drake  Passage, 1.9 and 2.2 years after release.  

Lower Panel, mean profiles obtained from each of these locations. These are plotted 

in neutral density space (right hand axis) which is also translated into a depth scale 

(left hand axis) using a mean density versus depth profile appropriate to Drake 

Passage (the mean of sections C and F).  
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Figure 2: Mean diapycnal diffusivitiess from the point of release calculated from the 

second moments of the mean profiles in Figure 1. These are averages over the times 

since release, and spatial extents indicated by the grey arrows above the inset. The 

approximately threefold increase in the mean when averaged over a path including 

Drake Passage indicates diffusivities increase by at least an order of magnitude east of 

70W compared to west of it. Note that the water column in Drake Passage is less 

stratified than in the Eastern Pacific, so the tracer distribution on survey A in figure 1 

occupies a wider depth span when mapped Drake Passage depth-vs –density profile, 

than used in the calculations of Ledwell et al5. Correspondingly the diffusivity shown 

here for the Pacific sector after 1 year is ~25% larger than that quoted by them. 

Error bars show 95% confidence limits, calculated from the statistics of individual 

profiles (see supplementary information for details).  
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