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1 Introduction 
 

Water temperature is a key control on many river processes including ecology and 

biogeochemistry. Consequently, the effect of climate change on river and stream 

temperature is a major scientific and practical concern. River thermal sensitivity to climate 

change/ variability is controlled by complex drivers that need to be unravelled to better 

understanding patterns of spatio-temporal variability and the relative importance of different 

controls to inform water and land management, specially climate change mitigation and 

adaptations strategies. To address these research gaps, we aim: (1) to quantify the relative 

importance of different climatic drivers of water temperature across a set of UK ‘benchmark’ 

monitoring sites; and (2) to assess the effect of basin properties as modifiers of the climate-

temperature relationships. Previous UK studies focussed either on a limited number of 

monitoring sites or climatic drivers. 

Table 1 Overall response for the five average models (overall response) 

[RI is the variable Relative Importance in the MMI selection process; ranging from 1 

(variable included in all sets of good models) to 0 (never included)] 

All Seasons Winter Spring Summer Autumn 

Coef. RI Coef. RI Coef. RI Coef. RI Coef. RI 

AT 0.5824 1.00 0.3955 1.00 0.6815 1.00 0.4969 1.00 0.6860 1.00 

SWR 0.0055 1.00 0.0193 1.00 0.0073 1.00 0.0077 0.64 0.0003 1.00 

LWR -0.0149 1.00 0.0008 0.13 0.0107 0.18 -0.0246 0.52 -0.0053 0.25 

WS -0.1348 1.00 -0.1014 0.68 -0.1228 0.63 -0.3028 1.00 0.0552 0.33 

SH 0.4664 1.00 0.6658 1.00 0.2241 0.34 0.2903 0.53 0.1360 0.37 

P 0.0011 0.26 0.0049 0.15 -0.0107 0.38 -0.0004 1.00 -0.0111 0.41 

4 Overall responses: relative importance of climatic drivers (Aim 1) 
  

• AT and SWR are the most important variables (AT RI = 1 for all models; SWR RI = 1 for most models) 

• Other variables have some influence across all seasons, with highest coefficient (absolute value) and 

  highest RI as follows: Winter = SH; Summer = LWR and WS; Summer = P (highest RI only) 

• AT, SWR and SH have positive coefficient for all models (i.e. a consistent warming effect on water 

  temperature) while LWR, WS and P have positive and negative coefficients (i.e. a warning or cooling effect 

  depending on season) 

• The variable effect changes in strength depending on season (e.g. AT effect is lowest in Winter and 

  Summer, and highest in Spring and Autumn) 

• The varying coefficients and RI may reflect the range of processes controlling WT, with different controls 

  and processes dominating at different times of year 
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Water Temperature (WT) data 
 

Dependent Variable 

 

 

Data collated across several long-term UK national 

capability projects,  

totalling 35 sites with a nationwide coverage  

(see Figure s 1-3)  

 

Variable periods and temporal resolutions 

 

Multi-Level Modelling (MLM) Approach 
 

MLM allows to pool data from all sites while accounting for the hierarchical structure in the data, e.g. 

observations from same site, sites on same river 

 

MLM provides two components: 

Overall response , i.e. ‘fixed effect’: same coefficients for all sites (all predictors) 

Site-specific response , i.e. ‘random effects’: coefficients can vary per site  (specified predictors only) 

Modelled climate forcing data  

Joint UK Land-Environment 

Simulator (JULES) 
 

6 x Independent Variables: 

 

Air Temperature (AT), Short Wave Radiation (SWR), 

Long Wave Radiation (LWR),  Wind Speed (WS), 

Specific Humidity (SH), Precipitation  (P) 

 

Daily, 1-km gridded, 1971-2007 period 

 

 

Seasonal WT series 

(i.e. 3-month averages) 
 

December–February winter, March–May spring, 

June–August summer, September–November 

autumn 

Seasonal JULES variables series  

(i.e. 3-month averages) 
 

December–February winter, March–May spring, 

June–August summer, September–November 

autumn 

2 Data and Methods 

Model selection for fixed effects via Multi-Model Inference (MMI) 
 

Robust model selection: AICc computed for all combinations of predictors, good models selected  i.e. 

models within 4 pts of lowest AICc rather a single best model, average model computed 

Extraction of JULES cells corresponding 

with WT sites 

3 Model outputs 
The number of models contributing to each final model as selected by MMI were: All Seasons = 2; Winter = 4; Spring = 12; 

Summer = 6; Autumn = 14. RI is the relative importance of each variable calculated as the sum of the AICc weights (i.e. re-

scaled AICc scores) of the contributing models. For example, All Seasons is based on two models with AICc weights 0.74 

and 0.26; P is only included in the model with weight = 0.26 while the others are in both models.  

 

Overall response: Table 1 features the coefficients of the average models [e.g. the slope for AT All Seasons (0.5854) is the 

average of the AT slope from the two models selected by MMI] . 

 

Site-specific responses: The following variables were included as ‘random effects’ (i.e. variables for which different sites 

have different coefficients): All Seasons = AT and SWR; Winter = SH; Summer = P; Autumn = SWR; Spring no variables 

retained. These site-specific coefficients were mapped against elevation and permeability to explore basin modification of 

the WT-Climate relationship (Figures 1-3; only models showing some pattern are displayed). 

Figure 1 Mapping of site-specific  air temperature (AT) coefficients in the ‘All Seasons’ model (classified per 

quartiles) against elevation (left) and permeability (right) 

Figure 2 Mapping of site-specific shortwave radiation (SWR) coefficients in the ‘Autumn’ model (red symbols for 

negative coefficients, blue for positive coefficients) against elevation (left) and permeability (right) 

Figure 3 Mapping of site-specific specific humidity (SH) coefficients in the ‘Winter’ model (red symbols for 

negative coefficients, blue for positive coefficients) against elevation (left) and permeability (right) 

Output: five models 
 

All Seasons = one model for whole series (seasonal time-step) 

Winter, Spring, Summer, Autumn: one model per season (e.g. annual time-step) 

 

Generic WT response for all drivers: Table 1 

Site-specific  response for selected drivers: Figures 1 to 3 

 

Model selection for random effects  
 

With all predictors included in fixed effects, various formulation for random effects are ranked using Akaike 

Information Criterion (corrected for small datasets i.e. AICc)  and the one with lowest AICc retained 

5 Site-specific responses: basin properties modify climate-WT relationships (Aim 2) 
 

Exploratory mapping of site-specific coefficients for the selected predictors against elevation and permeability 

(chosen due to their known role in modifying hydro-climatological links) show the following patterns: 

• All Seasons AT: sites with high coefficient tend to be upland and impermeable basins 

• Winter SH: sites with high positive (negative) coefficient tend to be impermeable (permeable) basins 

• Autumn SWR: sites with high positive coefficient tend to be upland basins 

 

These findings are indicative of the role of basin properties as modifiers of climate controls on river 

temperature, although limited to certain variables (AT, SH, and SWR) and with no clear pattern for Spring and 

Summer. Current research is focused on additional basin properties and understanding the chain of causality 

(i.e. elevation and permeability may be surrogates for other co-varying properties).   

 


