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Abstract. The seasonal cycle (i.e. phenology) of oceanic pri-
mary production (PP) is expected to change in response to
climate warming. Here, we use output from 6 global bio-
geochemical models to examine the response in the seasonal
amplitude of PP and timing of peak PP to the IPCC AR5
warming scenario. We also investigate whether trends in PP
phenology may be more rapidly detectable than trends in an-
nual mean PP. The seasonal amplitude of PP decreases by
an average of 1–2 % per year by 2100 in most biomes, with
the exception of the Arctic which sees an increase of∼ 1 %
per year. This is accompanied by an advance in the tim-
ing of peak PP by∼ 0.5–1 months by 2100 over much of
the globe, and particularly pronounced in the Arctic. These
changes are driven by an increase in seasonal amplitude of
sea surface temperature (where the maxima get hotter faster
than the minima) and a decrease in the seasonal amplitude
of the mixed layer depth and surface nitrate concentration.
Our results indicate a transformation of currently strongly
seasonal (bloom forming) regions, typically found at high
latitudes, into weakly seasonal (non-bloom) regions, char-
acteristic of contemporary subtropical conditions. On aver-
age, 36 yr of data are needed to detect a climate-change-
driven trend in the seasonal amplitude of PP, compared to
32 yr for mean annual PP. Monthly resolution model output
is found to be inadequate for resolving phenological changes.
We conclude that analysis of phytoplankton seasonality is not
necessarily a shortcut to detecting climate change impacts
on ocean productivity.

1 Introduction

Climate change is expected to alter the seasonal cycle of
oceanic primary productivity by changing the availability
of nutrients and light. The effects may include shifts in the
timing of the start, end or peak of the growing season, in
addition to changes in the amplitude of the seasonal cycle.
Understanding the phenology (i.e. the timing of annually
recurring events) in phytoplankton is important to charac-
terising variability in higher trophic levels, CO2 fluxes and
oceanic carbon export and sequestration. Changes to phy-
toplankton phenology are likely to have knock-on effects
for higher trophic levels via the “match-mismatch” hypothe-
sis (Cushing, 1990), as late blooms may result in a reduced
period of time when prey (phytoplankton) are available to
predators (zooplankton or larval fish), and vice versa for ear-
lier blooms. In the northwest Atlantic, for example, the sur-
vival of haddock larvae is closely linked to the timing of phy-
toplankton bloom initiation (Platt et al., 2003), and it has also
been suggested that the annual shrimp hatching has evolved
to coincide with the mean bloom start date (Koeller et al.,
2009). Changes to the seasonality of primary production may
also impact oceanic carbon export and storage (Lutz et al.,
2007), as regions with large amplitude seasonal cycles, e.g.
high latitudes, are typically regions of high productivity, with
blooms dominated by large, rapidly sinking diatoms. Future
changes in seasonality therefore imply changes to export pro-
duction and alteration of the food web.
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Although the change in seasonal timing of temperature is
faster in the oceans than on land (Burrows et al., 2011), there
are fewer reports of long-term trends in plankton phenology,
likely due to the relative shortness of marine ecosystem time
series. In terrestrial ecosystems, the response to warmer tem-
peratures has been observed as earlier first flowering and a
longer growing season in boreal and temperate regions, re-
sulting in higher primary productivity (Myneni et al., 1997;
Walther et al., 2002). Earlier breeding or emergence has also
been observed in amphibians, birds and butterflies, partic-
ularly at higher latitudes (Parmesan, 2007), which has re-
sulted in mismatches between, for example, winter moth egg
hatch and budburst on oak trees that act as larval hosts.
A few long time series of marine ecosystems exist, such
as the long-running Continuous Plankton Recorder dataset,
which indicates that in the North Sea spring occurrences of
phyto- and zooplankton are shifting earlier (Edwards and
Richardson, 2004), with phytoplankton peak timing advanc-
ing by ∼ 0.3 days/decade between 1976 and 2005. Time se-
ries stations, such as the Bermuda Atlantic Time Series, also
provide sufficiently long data records to show that the tim-
ing of peak zooplankton abundance has advanced by∼ 2–3
weeks over the last 15 yr (Steinberg et al., 2012). These re-
gional studies of plankton phenology are complemented by
global-scale analyses conducted using satellite ocean colour
data. Generally, these show that the timing of phytoplank-
ton bloom initiation progresses polewards through winter and
early spring in subpolar to subtropical latitudes (Racault et
al., 2012), whilst oligotrophic regions show very weak sea-
sonality (Cole et al., 2012). Substantial interannual variabil-
ity in phytoplankton phenology is also evident (e.g. Henson
et al., 2009; Platt et al., 2009; Sasaoka et al., 2011; Zhai
et al., 2011; Thomalla et al., 2011; Kahru et al., 2011;
Racault et al., 2011; Sapiano et al., 2012).

Current patterns of phytoplankton phenology are set partly
by the population’s response to nutrient and light availabil-
ity. At high latitudes, deep winter mixing results in light
limitation of phytoplankton growth but at the same time en-
sures a plentiful supply of nutrients, so that shoaling of the
mixed layer in spring results in rapid, sustained growth, i.e.
a strong seasonal cycle. This is in contrast to subtropical re-
gions where mixed layers are sufficiently shallow year-round
such that light limitation does not occur. However, this lack
of mixing results in nutrient limitation through much of the
spring and summer, and phytoplankton blooms are only stim-
ulated when winter mixing or storms deepen the mixed layer
sufficiently to entrain new nutrients, resulting in a weak sea-
sonal cycle. Even weaker (indeed, non-existent) seasonal-
ity is found in oligotrophic regions where persistent strati-
fication leads to chronic nutrient limitation, and only small,
sporadic increases in phytoplankton abundance occur, with
no annual repeating cycle. In this context, continued global
warming, leading to increased stratification, is hypothesised
to reduce the seasonal magnitude of ocean primary produc-
tion in nutrient-limited regions, but may advance the phy-

toplankton growth season in light-limited regions (due to
earlier alleviation of light limitation) and result in stronger
blooms (Bopp et al., 2001; Doney, 2006). The regions of
weak seasonality, e.g. oligotrophic gyres, are expected to ex-
pand (Polovina et al., 2011), reducing the amplitude of the
seasonal cycle along gyre boundaries.

Phytoplankton seasonality is highly responsive to altered
forcing (Ji et al., 2010), due to rapid phytoplankton growth
rates and sensitivity to changes in environmental conditions.
It has therefore been suggested that “phenology is the most
responsive aspect of nature to warming” (Sparks and Menzel,
2002). Here, we examine the possibility that global warming
may be more readily detectable in phenological markers than
in other metrics, using output from 6 biogeochemical mod-
els run for the IPCC CMIP5 project (Taylor et al., 2012) to
examine how the timing of peak production and the ampli-
tude of the seasonal cycle respond to climate change up to
the year 2100. We also investigate the length of time series
needed to distinguish global warming signals in phytoplank-
ton seasonality from the natural variability. An earlier study
(Henson et al., 2010) suggested that∼ 30–40 yr of contin-
uous data is needed to separate a global warming trend in
primary production (PP) from the natural variability. Here,
we investigate whether climate-change-driven trends are de-
tectable more rapidly in PP seasonality than in PP itself.

2 Methods

The coupled climate model output is taken primarily from the
Coupled Model Intercomparison Project Phase 5 (CMIP5)
multimodel archive, available fromhttp://cmip-pcmdi.llnl.
gov/cmip5/dataportal.html. An exception is the National
Oceanography Centre (NOC) model that instead used model
output from an ocean-only General Circulation Model
(GCM) driven by atmospheric forcing derived from a sep-
arate CMIP5 simulation (using the UKMO’s HadGEM2-ES
model). Table 1 presents a full list of the models used. Pro-
jections were forced with the Representative Concentration
Pathway 8.5 (RCP8.5) scenario (Moss et al., 2010) in which
emissions continue to rise, resulting in a warming poten-
tial from all greenhouse gases of 8.5 W m−2 by 2100. All
model output analysed here is at monthly resolution from
January 2006–December 2098. The variables used are ver-
tically integrated primary production by all phytoplankton
types (referenced as “intpp” in the CMIP5 database), mixed
layer depth (MLD) defined by the model’s mixing scheme
(omlmax), surface nitrate concentration (no3), sea surface
temperature (tos) and dissolved iron concentration (dfe).

As seasonality metrics we use the amplitude of the sea-
sonal cycle, defined as the maximum minus the minimum
value in a given year, and the month of peak productivity.
Note that the “year” runs from July–June in the Southern
Hemisphere and January–December in the Northern Hemi-
sphere. The historical model output is initially compared to

Biogeosciences, 10, 4357–4369, 2013 www.biogeosciences.net/10/4357/2013/

http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html
http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html


S. Henson et al.: The impact of global warming on seasonality of ocean primary production 4359

Table 1.List of models used in this study and relevant references for the biogeochemical component of the models.

Institute and abbreviation used here Model Reference

Canadian Centre for Climate Modelling
and Analysis (CCCMA)

CanESM2 Zahariev et al. (2008)

NOAA Geophysical Fluid Dynamics
Laboratory (GFDL)

GFDL-ESM2M Sarmiento et al. (2010),
the Supplement therein

Met Office Hadley Centre (Hadley) HadGEM2-CC Collins et al. (2011)

Institut Pierre Simon Laplace (IPSL) IPSL-CM5A-MR Seferian et al. (2013)

Max Planck Institute (MPI) MPI-ESM-LR http://www.mpimet.mpg.
de/fileadmin/models/
MPIOM/HAMOCC5.
1 TECHNICAL REPORT.pdf

National Oceanography Centre (NOC) NEMO-MEDUSA Yool et al. (2011)

contemporary observations of seasonality metrics. Satellite-
derived primary production data were estimated using the
Vertically Generalized Production Model (VGPM) applied
to SeaWiFS data covering the period January 1998 to De-
cember 2005 at monthly, 9 km resolution (Behrenfeld and
Falkowski, 1997) and regridded onto the coarser resolution
model grids. Although the satellite-derived PP fields them-
selves have errors potentially as large as biogeochemical
models (Friedrichs et al., 2009; Saba et al., 2010), they pro-
vide an indication of the large-scale features in PP season-
ality. A period of 20 yr (January 1985 to December 2005)
at monthly resolution was used to fully resolve long-term
means. Natural variability cycles should occur at a similar
frequency in the models as they do in the real world but the
phase (timing) of the cycles may differ. Using a long pe-
riod to identify mean values reduces the likelihood of out
of phase cycles causing discrepancies between observations
and model output (Schneider et al., 2008).

Trends are calculated using generalized least squares by
fitting the model

yt = µ + ωt + Nt , (1)

whereyt is the data at timet , µ is the intercept,ω is the trend
magnitude andNt represents the residual noise at timet . We
assume that the noise follows a first-order autoregressive pro-
cess, AR(1), expressed as

Nt = φNt−1 + εt , (2)

whereφ is the first-order autocorrelation andεt are indepen-
dent and identically normally distributed random errors with
a mean of zero and constant variance. We use a first-order
autoregressive process to represent the autocorrelation in the
data, since it is typically used as a rough approximation of
the internal variability of the climate system (Hasselmann,

1976). A higher-order autoregressive process may occasion-
ally better represent the noise in some models and some re-
gions. However, there was no consistent pattern to which
models and regions suggested a higher-order autocorrela-
tion, so in the interest of parsimony we apply the AR(1)
model at all times. Similarly, the underlying assumptions of
normality and constant variance of the residuals were not
always respected in every grid cell, suggesting that a data
transformation be applied, or that a linear trend is not ap-
propriate. We tried a logarithmic transformation which did
not improve the fit, and we therefore use linear trends in the
interest of parsimony.

The number of years of data,n∗, required to distinguish a
trend from natural variability is calculated by the method of
Weatherhead et al. (1998), with a probability of detection of
90 % and a confidence level of 95 %:

n∗
=

[
3.3σN

|ω|

√
1+ ϕ

1− ϕ

]2/3

, (3)

where σN is the standard deviation of the noise (residu-
als after trend has been removed). Model output is divided
into biomes intended to represent large-scale biogeographi-
cal provinces, defined as in Henson et al. (2010) which sep-
arates light-limited and equatorial regions on the basis of in-
cident irradiance, MLD and net heat flux.

3 Results

3.1 Modelled and satellite-derived PP seasonality

A visual comparison shows that the models broadly repro-
duce the spatial patterns of the satellite-derived PP in both the
seasonal amplitude and timing of peak PP reasonably well

www.biogeosciences.net/10/4357/2013/ Biogeosciences, 10, 4357–4369, 2013
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Figure 1: Taylor diagram showing model-data comparison of global spatial 

variability in seasonal amplitude of PP (red) and timing of peak PP (blue) for 6 

models.  Model hindcast runs averaged from 1985-2005 are compared with satellite-

derived data averaged from 1998-2007.  Taylor diagrams compare the correlation 

coefficient of the data and model and the normalised model standard deviation (model 

standard deviation/data standard deviation).  A perfect model has a correlation 

coefficient of 1 and normalised standard deviation of 1 (indicated by the black 

reference circle).  
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Fig. 1. Taylor diagram showing model–data comparison of global
spatial variability in seasonal amplitude of PP (red) and timing of
peak PP (blue) for 6 models. Model hindcast runs averaged from
1985–2005 are compared with satellite-derived data averaged from
1998–2007. Taylor diagrams compare the correlation coefficient of
the data and model and the normalised model standard deviation
(model standard deviation/data standard deviation). A perfect model
has a correlation coefficient of 1 and normalised standard deviation
of 1 (indicated by the black reference circle).

(see Supplement, Figs. S1 and S2). In the satellite-derived
PP, the North Atlantic, parts of the North Pacific, the Sub-
tropical Front region of the Southern Ocean and some sub-
tropical coastal regions are shown to have large seasonal
amplitudes in primary production (∼ 1000–3000 mgC m−2

day−1), whereas the oligotrophic gyres have the smallest am-
plitudes (< 500 mgC m−2 day−1). There are some notice-
able discrepancies in some of the models. The Hadley and
MPI models both overestimate the seasonal amplitude of PP
in the Southern Ocean, whilst the CCCMA model overesti-
mates the seasonal amplitude in the eastern Pacific upwelling
region. In addition, the seasonal amplitude in the North At-
lantic is underestimated in both the Hadley and NOC mod-
els. All models broadly capture the spatial pattern in peak
PP timing, which occurs in the Northern Hemisphere dur-
ing February/March at low latitudes, progressing through to
July/August at higher latitudes. In the Southern Hemisphere
peak PP occurs at low latitudes during September/October,
advancing through to January/February at high latitudes.

The agreement in the spatial patterns between the model
output and satellite-derived PP can be summarised using Tay-
lor diagrams (Taylor, 2001; Fig. 1). Taylor diagrams dis-
play the correlation coefficient of the data and model and the
normalised model standard deviation (model standard devia-
tion/data standard deviation). A perfect model has both a cor-
relation coefficient and normalised standard deviation of 1. If
the normalised standard deviation is 1, then the spatial vari-
ability in the model output matches that of the observations.

Table 2. Comparison of model-derived seasonality metrics (hind-
cast runs, mean of 1985–2005) with those observed in satellite-
derived primary production (mean 1998–2007). All correlations
(Pearson correlation coefficient) are significant at the 99 % level.

Model Seasonal amplitude of PP Timing of peak PP

Standard Correlation Standard Correlation
deviation coefficient deviation coefficient

CCCMA 1.11 0.49 1.42 0.29
GFDL 0.74 0.39 1.50 0.60
Hadley 1.14 0.23 1.16 0.55
IPSL 0.61 0.53 1.55 0.55
MPI 2.86 0.02 1.42 0.62
NOC 1.38 0.45 0.61 0.57

In general, the Taylor diagrams show that most of the mod-
els compare well to the satellite-derived PP for both parame-
ters. The correlation coefficients range from 0.02 to 0.53 for
the seasonal amplitude and from 0.29 to 0.62 for the month
of peak primary production (Table 2). The spatial variability
in the timing of peak PP is consistently overestimated (i.e.
greater than 1) with the standard deviation ranging from 1.16
to 1.55, whereas the spatial variability in seasonal amplitude
is seen to be both under- and overestimated (standard de-
viation ranges from 0.61–2.86) across the range of models.
Weak agreement between the satellite-derived and modelled
seasonal amplitude generally arises due to an overestimate
of PP seasonal amplitude in the Southern Ocean. Taylor di-
agrams excluding the region south of 50◦ S generally show
improved agreement with the data (Supplement, Fig. S3).

Most of the models show good agreement with satellite-
derived estimates of the timing of peak PP (Fig. 1) with
relatively high correlation coefficients (0.55–0.62), although
the spatial variability is generally overestimated. Overall, the
modelled timing of peak PP more closely resembles the ob-
servations than modelled seasonal amplitude. There is no
model that stands out as being the best or the worst in com-
parison to observations, and in some cases a model will sim-
ulate one seasonality metric better than the other. Broadly,
the models reproduce the satellite-derived PP spatial pattern
well, and so taken together should provide a reasonable esti-
mate of the trends in future projections.

3.2 Trends in seasonality

The trend in mean annual PP for 2006–2098 is shown in
Fig. 2. The majority of models show a decrease in PP over
much of the global ocean, with the exception of parts of
the Southern Ocean and Arctic, which have an increasing
trend. The corresponding trend in the seasonal amplitude of
PP is shown in Fig. 3. In general, the amplitude of the sea-
sonal cycle decreases in low and midlatitudes and increases
in the Southern Ocean and Arctic. Expansion of the olig-
otrophic gyres is reflected in the bands of decreased sea-
sonal amplitude at the gyre boundaries and around the Pacific

Biogeosciences, 10, 4357–4369, 2013 www.biogeosciences.net/10/4357/2013/
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Figure 2: Trends in mean annual PP for 2006-2100 (expressed as average % change 

per year) for 6 models forced with IPCC AR5 scenario RCP8.5. Only points where 

the trend is statistically significant at the 95% level are plotted.  
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Fig. 2. Trends in mean annual PP for 2006–2100 (expressed as av-
erage % change per year) for 6 models forced with IPCC AR5 sce-
nario RCP8.5. Only points where the trend is statistically significant
at the 95 % level are plotted.

equatorial upwelling region. However, in some models in-
creased seasonal amplitude is seen beyond the outer edge of
the oligotrophic gyres, i.e. in a band south of the gyre edge
in the Southern Ocean, northwest of the North Pacific and
North Atlantic gyres and equatorward of the gyre bound-
ary in the Pacific upwelling region. A consistent increase
in the seasonal amplitude of PP is found in the Arctic and
parts of the Southern Ocean, particularly in the vicinity of
the Antarctic land mass.

The difference in the timing of peak PP between the aver-
age of 2006–2026 and 2081–2100 is plotted in Fig. 4. Differ-
ences are reported because the monthly resolution discretises
the time series to the extent that calculating trends is unreli-
able. Generally, peak PP advances by 0.5–1 months by 2098
over much of the globe, with the exception of along the ex-
panding edge of the oligotrophic gyre where peak PP is 1–2
months later (particularly pronounced in the IPSL model). In
oligotrophic regions, there is currently a very weak or com-
pletely absent seasonal cycle due to perennial nutrient limita-
tion. As the gyres expand, subtropical regions which had pre-
viously been seasonally nutrient limited may become olig-
otrophic. As well as a reduction in PP, the amplitude of the
seasonal cycle is predicted to decrease. Mid- to high latitudes
which were previously seasonally light limited have strong
seasonal cycles, typically peaking in spring. With continued
warming, light limitation may be alleviated by reduced mix-

 

 

Figure 3: Trends in PP seasonal amplitude for 2006-2100 (expressed as average % 

change per year) for 6 models forced with IPCC AR5 scenario RCP8.5. Only points 

where the trend is statistically significant at the 95% level are plotted. 
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Fig. 3. Trends in PP seasonal amplitude for 2006–2100 (expressed
as average % change per year) for 6 models forced with IPCC AR5
scenario RCP8.5. Only points where the trend is statistically signif-
icant at the 95 % level are plotted.

ing, but PP then becomes more rapidly nutrient limited, as
seen by a decrease in seasonal amplitude and shift to earlier
peak PP. This reflects a change from a subpolar-type spring
bloom to a subtropical-type autumn bloom (e.g. as observed
in the contemporary North Atlantic in response to the North
Atlantic Oscillation by Henson et al., 2009, 2012). In the
North Atlantic, for example, where PP is typically seasonally
light limited due to deep winter mixing, total PP decreases
dramatically, as does the magnitude of the seasonal cycle,
with the peak PP occurring earlier.

In the Southern Ocean, PP is both seasonally light and
iron limited. In parts of the Southern Ocean, this results in
a strong seasonal cycle with a spring peak, while in others
chronic iron limitation results in almost oligotrophic condi-
tions (i.e. weak seasonality). By 2098, the model results sug-
gest increased seasonal amplitude in PP in a band south of
the oligotrophic gyre boundary and in the Ross and Weddell
seas. A similar response of increased amplitude and earlier
PP peaks (by∼ 0.5–2 months) is seen in the Arctic, likely
due to increased melting of sea ice and thus earlier allevia-
tion of light limitation.

The biome mean trends in PP and seasonal amplitude
of PP, as well as the difference in timing of peak PP, are
shown in Fig. 5. The range in the model estimates is rep-
resented by the error bars. Despite intermodel differences in
predicted trends, some general patterns emerge. Biome mean

www.biogeosciences.net/10/4357/2013/ Biogeosciences, 10, 4357–4369, 2013
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Figure 4:  Difference in timing of peak PP between the period 2006-2026 and 2081-

2100 (where negative values indicate earlier peak timing). Only points where a 1-way 

ANOVA analysis showed no significant difference in the means of the 2 periods 

(significance at 5% level) are plotted.
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Fig. 4. Difference in timing of peak PP between the period 2006–
2026 and 2081–2100 (where negative values indicate earlier peak
timing). Only points where a 1-way ANOVA analysis showed no
significant difference in the means of the 2 periods (significance at
5 % level) are plotted.

PP decreases everywhere by an average change per year of
0.1–0.3 % except in the Arctic, where PP increases by an av-
erage of∼ 0.2 % per year. The seasonal amplitude of PP de-
creases by an average of 0.2–0.4 % per year in a majority of
biomes, excluding the Southern Ocean regions and the Arc-
tic where it increases by an average of 0.05–0.1 % per year.
The timing of peak PP shifts earlier by 2–10 days, with the
exception of the oligotrophic North Pacific, North Atlantic
and Indian biomes, which show later peaks of 2–5 days.

3.3 Drivers of change in seasonal cycles

Changes in the seasonal amplitude of PP are likely to be
driven by changes in the seasonal amplitude of drivers such
as MLD or nutrient supply. In all biomes and all models,
sea surface temperature (SST) increases by an average of
∼ 0.03–0.05◦C per year, i.e. an increase of 3–5◦C between
2000 and 2100 (Fig. 6a). However, there is not only an in-
crease in the mean annual SST. The seasonal amplitude of
SST also increases in most biomes, particularly the Arctic
(Fig. 6b). This is a result of peak annual SST increasing at a
faster rate than the minimum annual SST, i.e. the highs are
getting hotter more rapidly than the lows.

Increased SST is reflected in shallower mean annual MLD
(Fig. 6c), particularly pronounced in the Pacific and Atlantic

sectors of the Southern Ocean and the high-latitude North
Atlantic. The seasonal amplitude of MLD also decreases by
an average of∼ 0.1 % per year, except in the high latitudes
where the average percent change per year is 4–5 % (Fig. 6d).
The effect of decreased seasonal amplitude in MLD on sur-
face nitrate concentrations is evident in Fig. 6e, which shows
decreasing nitrate of∼ 0.05 % per year, with the exception of
the equatorial Atlantic and Bay of Bengal which exhibit in-
creased nitrate concentrations, despite shallower MLD. This
is possibly due to changes in wind-driven upwelling not re-
flected in the mean annual MLD. The seasonal amplitude in
nitrate concentration also decreases in the majority of biomes
and models (Fig. 6f), likely due to reduced winter mixing.

Unlike the situation with the macronutrient nitrate
(Fig. 4e), there are trends towards higher surface dissolved
iron concentrations across all biomes (Fig. 4g). These are
typically stronger in regions where iron is supplied by ae-
olian dust, and lower (to near zero) in regions, such as the
Southern Ocean and equatorial Pacific, where aeolian dust
supply is limited. Note that none of the models include time-
variant atmospheric dust deposition, so any increase in sur-
face iron is not a consequence of increased desertification.
In the case of dust-affected regions, since the seasonal am-
plitude of vertical mixing broadly decreases in response to
climate change, macronutrient supply from deep, nutrient-
rich waters also declines. As a result, production declines in
these regions, and the iron deposited via dust is unable to
be utilised by phytoplankton and so accumulates. As such,
what might appear a potential source of enhanced growth
– extra iron – cannot support enhanced PP. By contrast, in
iron-limited high-nutrient, low-chlorophyll regions such as
the Southern Ocean, the supply of nitrate and iron is largely
from below, so this decoupling of surface nutrient availability
is absent. These results emphasise the importance of the pro-
cesses by which nutrients, macro- and micro-, are supplied
to the surface ocean.

3.4 Detection of trends in PP seasonality

We examine the hypothesis that global-warming-driven
trends may be more rapidly detectable in PP seasonality than
in PP itself by comparing the length of time series required
to detect trends in both the amplitude of the PP seasonal cy-
cle and mean annual PP. We use the method of Weatherhead
et al. (1998), which estimates the number of years of data
needed to distinguish a trend from the background variabil-
ity (Eq. 3). This approach was applied previously in Hen-
son et al. (2010) to annual mean PP from models forced
with the IPCC A2 scenario (Nakicenovic and Swart, 2000).
Here, we update these estimates using the IPCC AR5 RCP8.5
scenario (Moss et al., 2010). Per Rogelj et al. (2012), the
temperature impact of RCP8.5 is slightly greater than that
of SRES scenario A2, and more closely resembles that of
SRES scenario A1F1, although it is slightly less extreme than
this latter scenario.
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Table 3.Number of years of continuous data needed to detect a climate-change-driven trend above natural variability in primary production
and the seasonal amplitude of primary production (bold) reported for each model as the average within the biome. One standard deviation of
the spatial average is shown in parentheses.

Biome
Biome/Model CCCMA GFDL Hadley IPSL MPI NOC mean

High-latitude North Pacific 35 (13) 37 (11) 34 (10) 36 (10) 45 (8) 19 (12) 34
35 (12) 46 (7) 38 (8) 31 (10) 46 (8) 25 (10) 37

Oligotrophic North Pacific 19 (12) 46 (7) 37 (9) 28 (10) 33 (8) 33 (9) 33
33 (11) 47 (8) 38 (9) 34 (10) 43 (8) 38 (9) 39

Equatorial Pacific 35 (8) 34 (11) 31 (7) 34 (9) 35 (8) 27 (10) 33
38 (9) 40 (9) 38 (9) 34 (9) 37 (9) 37 (9) 37

Oligotrophic South Pacific 22 (11) 38 (11) 42 (9) 34 (11) 37 (9) 36 (10) 35
32 (11) 42 (9) 42 (9) 36 (10) 38 (8) 38 (9) 38

Southern Ocean – Pacific 28 (11) 34 (11) 39 (11) 33 (12) 44 (8) 24 (10) 34
34 (10) 39 (10) 39 (12) 38 (12) 44 (8) 26 (10) 37

High-latitude North Atlantic 31 (10) 36 (9) 26 (10) 31 (9) 33 (11) 24 (10) 30
31 (10) 35 (8) 29 (10) 31 (9) 38 (9) 30 (9) 32

Oligotrophic North Atlantic 26 (13) 42 (12) 29 (10) 28 (10) 25 (10) 34 (9) 31
36 (11) 45 (10) 33 (9) 33 (10) 32 (10) 37 (9) 36

Equatorial Atlantic 25 (10) 42 (8) 17 (6) 17 (2) 20 (4) 18 (6) 23
25 (10) 43 (9) 26 (7) 23 (10) 25 (8) 22 (7) 27

Oligotrophic South Atlantic 19 (10) 36 (11) 36 (12) 20 (11) 26 (9) 34 (10) 28
29 (10) 36 (10) 39 (11) 27 (10) 34 (10) 38 (10) 34

Southern Ocean – Atlantic 26 (10) 34 (14) 38 (10) 27 (13) 41 (8) 24 (11) 32
28 (8) 36 (12) 40 (10) 34 (12) 44 (7) 26 (11) 35

Arabian Sea 40 (8) 35 (8) 32 (10) 18 (4) 29 (5) 29 (8) 30
38 (8) 41 (7) 40 (8) 33 (11) 30 (7) 32 (9) 36

Bay of Bengal 40 (10) 41 (8) 38 (10) 24 (9) 27 (7) 29 (10) 33
38 (9) 47 (5) 40 (8) 32 (9) 33 (8) 32 (9) 37

Oligotrophic Indian Ocean 17 (11) 45 (8) 42 (10) 27 (12) 35 (7) 36 (11) 34
29 (10) 44 (8) 43 (10) 27 (12) 44 (8) 40 (11) 38

Southern Ocean – Indian 28 (10) 36 (10) 38 (10) 29 (12) 41 (8) 27 (10) 33
32 (9) 38 (10) 43 (12) 36 (10) 45 (7) 27 (9) 37

Arctic Ocean 27 (11) 31 (8) 40 (9) 40 (14) 35 (9) 28 (8) 34
29 (10) 34 (8) 40 (8) 30 (12) 44 (7) 25 (8) 34

For the amplitude of the seasonal cycle in PP, the number
of years required to detect a global warming trend is plotted
in Fig. 7b. In some regions, and some models, time series
as short as∼ 20–25 yr may be adequate, but in the majority
30–40 yr of data are needed. The biome median values are
reported in Table 3 and show that trends in the seasonal am-
plitude of PP should be detectable most rapidly in the equa-
torial Atlantic and high-latitude North Atlantic (27 and 32 yr,
respectively). Trends in the seasonal amplitude of PP take the
longest to detect above the background variability in olig-
otrophic regions (∼ 38 yr).

The number of years of data needed to detect a global
warming trend in annual mean PP is also displayed in Ta-
ble 3 and Fig. 7a. In most biomes, a trend in annual mean PP
is detectable more rapidly than a trend in the seasonal ampli-
tude of PP. However, averaged over all models and biomes,
the number of years of data required to detect a trend is sim-
ilar for annual mean PP (mean 32± 3 yr) and the seasonal
amplitude of PP (mean 36± 3 yr). This suggests that natural
interannual and decadal variability in PP seasonality is simi-
larly strong as for annual mean PP and therefore that climate
change cannot be detected in the metrics of seasonality tested
here more rapidly than from PP itself.

4 Discussion

4.1 Response of phytoplankton seasonality to
climate change

The seasonal cycle of PP responds strongly to climate
change. The weak seasonal cycles in PP typical of low-
latitude, oligotrophic regions in the contemporary ocean ex-
pand poleward. Regions which currently exhibit pronounced
seasonality have increasingly reduced seasonal amplitude,
and the timing of peak PP shifts earlier, from spring to-
wards late winter – signs of their transition from typical high-
latitude spring bloom to non-blooming tropical conditions.
The Arctic is the only region in which the seasonal ampli-
tude of PP consistently increases.

These patterns are driven by the decrease in seasonal am-
plitude of MLD and subsequent decline in surface nitrate
availability. High-latitude regions which exhibit substantial
seasonality are characterised by low PP during winter when
deep mixing imposes light limitation, followed by a strong
spring bloom as the mixed layer shoals. The pronounced sea-
sonal cycle is thus driven by deep winter mixing, which en-
sures both seasonal light limitation and a plentiful supply of
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Figure 5: Biome mean trend and standard deviation for 6 models forced with IPCC 

AR5 scenario RCP8.5 to 2100.  a) primary production (PP), b) seasonal amplitude of 

PP and c) timing of peak PP (where negative values indicate earlier timing of peak 

PP).  Biome labels indicate (l-r) high latitude North Pacific, oligotrophic North 

Pacific, equatorial Pacific, oligotrophic South Pacific, Southern Ocean - Pacific, high 

latitude North Atlantic, oligotrophic North Atlantic, equatorial Atlantic, oligotrophic 

South Atlantic, Southern Ocean - Atlantic, Arabian Sea, Bay of Bengal, oligotrophic 

Indian Ocean, Southern Ocean - Indian and Arctic Ocean (see Henson et al. (2010) for 

biome definitions).
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Fig. 5.Biome mean trends and standard deviations for 6 models forced with IPCC AR5 scenario RCP8.5 until 2100.(a) Primary production
(PP), (b) seasonal amplitude of PP and(c) timing of peak PP (where negative values indicate earlier timing of peak PP). Biome labels
indicate (left to right) high-latitude North Pacific, oligotrophic North Pacific, equatorial Pacific, oligotrophic South Pacific, Southern Ocean –
Pacific, high-latitude North Atlantic, oligotrophic North Atlantic, equatorial Atlantic, oligotrophic South Atlantic, Southern Ocean – Atlantic,
Arabian Sea, Bay of Bengal, oligotrophic Indian Ocean, Southern Ocean – Indian, and Arctic Ocean (see Henson et al., 2010, for biome
definitions).

entrained nutrients to fuel the spring bloom. Reduced win-
ter mixing, by as much as 40–60 % by 2100 in some high-
latitude regions (Fig. 6c), extends the potential growing sea-
son by alleviating light limitation earlier in the year, but also
restricts entrainment of new nutrients. This is also reflected
in a shift forward of peak PP (Fig. 5c), indicating a transi-
tion from subpolar, spring bloom to subtropical conditions,
where the bloom tends to occur in autumn or early winter as
nutrient limitation is alleviated during mixed layer deepen-
ing, while the relatively shallow winter MLD ensures light is
not limiting (Henson et al., 2009). Climate change has been
hypothesised to have a positive impact on PP in light-limited
regions due to a reduction in mixing, leading to earlier alle-
viation of light limitation and hence a longer growing season
(e.g. Doney, 2006; Sarmiento et al., 2004). However, our re-
sults suggest that by 2100 the potential benefits of extending
the growing season length are outweighed by the negative
effects of nutrient limitation, resulting in a transformation of
previously high PP bloom regions into nutrient-limited, low
PP, non-seasonal conditions.

The effect of expanding oligotrophic gyres is particularly
pronounced in the high-latitude North Atlantic, the classic
spring bloom region. Here, in the transition zone between the
subpolar and subtropical gyres, interannual to decadal-scale
shifts from subpolar- to subtropical-type blooms has been ob-
served in response to changes in the phase of the North At-
lantic Oscillation (Henson et al., 2009, 2012). Whether the
currently observed relationships between natural interannual
to decadal variability can be regarded as analogues of the
future response to climate change has been questioned (e.g.
Stone et al., 2001). However, here there is a suggestion that
the response of PP to contemporary variability does seem to
mirror the longer-term climate-change-driven trend.

In the Arctic and some parts of the Southern Ocean, PP
and the seasonal amplitude of PP increase. The Arctic experi-
ences the strongest warming trend (Fig. 6a) and, on average,
a 20 % increase in PP between 2006 and 2100. In the Arctic,
reduced mixing results in reduced nutrient supply via ver-
tical entrainment; however, the predominant effect appears
to be the expansion of a seasonally ice-free area in which a
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Figure 6: Biome mean trend and standard deviation for 6 coupled models forced with 

IPCC AR5 scenario RCP8.5 to 2100 expressed as average % change per year, except 

SST which is shown in average °C change per year.  a) Mean annual SST, b) seasonal 

amplitude of SST, c) mean annual MLD, d) seasonal amplitude of MLD, e) mean 

annual surface nitrate concentration, f) seasonal amplitude of surface nitrate 

concentration, g) mean annual surface dissolved iron concentration and h) seasonal 

amplitude of surface dissolved iron concentration. Biome labels are the same as in 

Figure 5. 
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Fig. 6. Biome mean trends and standard deviations for 6 coupled models forced with IPCC AR5 scenario RCP8.5 until 2100 expressed
as average % change per year, except SST which is shown in average◦C change per year.(a) Mean annual SST,(b) seasonal amplitude
of SST,(c) mean annual MLD,(d) seasonal amplitude of MLD,(e) mean annual surface nitrate concentration,(f) seasonal amplitude of
surface nitrate concentration,(g) mean annual surface dissolved iron concentration and(h) seasonal amplitude of surface dissolved iron
concentration. Biome labels are the same as in Fig. 5.

phytoplankton bloom can occur. The contemporary Southern
Ocean is iron limited and possibly light limited (Mitchell et
al., 1991; Boyd et al., 2000). Of the models that report sur-
face dissolved iron concentrations (GFDL, IPSL, Hadley and
NOC), the consensus is that iron concentrations will increase
globally (Fig. 6g), particularly in the South Atlantic. In the
Southern Ocean, global warming leads to an intriguing com-
petition between alleviation of light limitation (due to shal-
lower MLD) on the one hand and reduced winter entrainment
of nutrients on the other. The seasonal amplitude of PP in-
creases, but the timing of peak PP advances by only∼ 5–10
days on average, suggesting that light limitation still occurs
in winter. This suggests that alleviation of nutrient limita-
tion (likely iron) is the dominant factor that drives the change
of parts of the Southern Ocean from non-bloom regions into
strongly seasonal areas.

Globally, the predominant effect of climate change on PP
seasonality is the conversion of bloom regions into non-
bloom regions (rather than vice versa), which is likely to

have subsequent impacts on food web structure and oceanic
carbon uptake. On interannual timescales, the well-known
“match-mismatch” hypothesis (Cushing, 1990) states that
survival of larval stages of higher trophic levels depends
strongly on the timing of the phytoplankton bloom. However,
on longer timescales climate change promotes the expan-
sion of oligotrophic regions and conversion of bloom regions
to non-bloom regions, resulting in a whole-scale change to
the ecosystem structure. Contemporary bloom regions tend
to be dominated by diatoms in early spring, before being
succeeded by smaller phytoplankton, and they also support
abundant fisheries, as well as being regions of high carbon
export and thus often CO2 sinks. Non-bloom regions, on the
other hand, are dominated by small phytoplankton and are fu-
elled by recycled nutrients, thus contributing little to carbon
export, and they additionally support meagre higher trophic
level populations. Earlier studies focusing on climate change
effects on export production confirm this hypothesis, with a
projected increase in the abundance of small phytoplankton
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Figure 7: Number of years of continuous data required to separate a global warming 

trend (RCP8.5 scenario, 2006-2100) from natural variability in time series of a) mean 

annual primary production and b) seasonal amplitude of primary production.  Only 

points where the trend is statistically significant at the 95% level are plotted. 
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Fig. 7. Number of years of continuous data required to separate a
global warming trend (RCP8.5 scenario, 2006–2100) from natural
variability in time series of(a) mean annual primary production and
(b) seasonal amplitude of primary production. Only points where
the trend is statistically significant at the 95 % level are plotted.

at the expense of diatoms, and a subsequent decrease in
global carbon export (Bopp et al., 2005; Steinacher et al.,
2010). The predicted pronounced reduction in the amplitude
of the PP seasonal cycle would therefore have profound im-
plications for both global fish production and the air–sea par-
titioning of CO2.

4.2 Detecting climate change trends in phytoplankton
phenology and seasonality

A key aim of this study was to investigate the hypothesis
that global warming may be detectable in seasonality met-
rics more rapidly than in other metrics (Sparks and Menzel,
2002). Previous work suggested that in order to distinguish
a climate change trend from natural variability, a continu-
ous PP record of∼ 30–40 yr in length was required (Hen-
son et al., 2010). In light of the ongoing threats to a continu-
ous ocean colour record, it behoves us to investigate whether
alternative indicators of PP response to climate change are
more rapidly detectable. We find however that, on average,

∼ 36 yr of continuous data on the seasonal amplitude of PP
is required to distinguish the climate change trend from nat-
ural variability. This is in contrast to PP itself which, for this
emissions scenario and suite of models, requires∼ 32 yr of
data.

Detecting changes in timing of peak PP (or timing of any
other seasonally recurring event) is limited by the monthly
resolution of the model output, i.e. only changes in peak PP
timing of greater than 1 month are resolved. In some regions
changes in peak timing far exceed 1 month by 2100, but if
shifts in the peak timing are more subtle, higher temporal res-
olution output will be required to detect them. One of the few
in situ datasets long enough to assess trends in phytoplank-
ton phenology, the Continuous Plankton Recorder dataset,
suggests that the peak timing of dinoflagellate blooms in
the North Sea has shifted earlier by∼ 1 month over 45 yr
(Edwards and Richardson, 2004). This trend would be at the
limit of detection for the model output used here. The earth
system models used here are typically run with a daily time
step; however, only monthly mean output is saved due to lim-
ited storage space. Use of higher temporal resolution output
would result in an increased sensitivity of phenological met-
rics to changing conditions and so may allow for more rapid
detection of trends in seasonality. An interesting experiment
would be to repeat one of the model runs analysed here, sav-
ing the output at higher temporal resolution, and investigat-
ing whether the number of years of data required to detect a
climate change trend in phenological metrics was reduced.

An additional confounding factor in detecting trends in
phenology is strong natural variability, whether on interan-
nual timescales driven by local changes in forcing, or on mul-
tiyear timescales driven by basin-wide modes of variability,
such as the North Atlantic Oscillation or Pacific Decadal Os-
cillation. As examples, the timing of phytoplankton bloom
initiation was found to vary interannually by∼ 2–6 weeks
in the North Atlantic (Henson et al., 2009), whilst the peak
zooplankton abundance was observed to vary interannually
by 1–3 months in a global synthesis (Mackas et al., 2012).
These results (and many others) suggest that interannual vari-
ability in plankton phenology is large and of a similar magni-
tude to the modelled trend, which hinders the ability to distin-
guish the two signals. Sparks and Menzel (2002) suggested
that phenological indicators are particularly sensitive indi-
cators of climate change. However, the same properties that
make phytoplankton seasonality sensitive to climate change,
i.e. rapid growth and sensitivity to changes in environmental
conditions, also make seasonality sensitive to natural inter-
annual forcing. On the other hand, a deeper understanding
of seasonal variability could also result in an improved abil-
ity to detect climate-change-driven trends. For example, in-
cluding a statistical model of the seasonal components of a
time series in the trend analysis may increase its sensitiv-
ity (e.g. Weatherhead et al., 1997). Changes in seasonality
can also amplify or mask trends as shown for SST by Co-
hen et al. (2012), who demonstrated that the recent pause
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in increasing global temperatures is a seasonal phenomenon.
Careful consideration of seasonal effects may therefore aid in
detecting climate-change-driven trends. However, as shown
here, analysis of phytoplankton seasonality is not necessarily
an automatic shortcut to detecting climate change impacts
on ocean ecosystems. Note, though, that we have made the
assumption that trends in PP and PP seasonality are linear
and that the residual noise follows an AR(1). Further refine-
ments would be required to detect nonlinear trends or abrupt
changes with a different autocorrelation structure, as well as
determine the number of years of observations necessary for
their detection.

The imperative for sustained monitoring of ocean pro-
ductivity remains undiminished, and the recent loss of the
ESA ocean colour instrument, MERIS, in April 2012 brings
into sharp focus the possibility of a gap in the ocean colour
record. At the time of writing, MODIS-Aqua is the only
fully operational global ocean colour sensor still operating,
and with a new instrument (on ESA’s Sentinel-3 craft) not
planned for launch until late 2013, the potential for a break
in the ocean colour climate record looms. As demonstrated in
Henson et al. (2010) and Beaulieu et al. (2013), a discontinu-
ity in the time series could substantially increase the number
of years of data required to detect a climate-change-driven
trend – a delay we can ill-afford if we wish to understand the
impact of climate change on ocean ecosystems.

Supplementary material related to this article is
available online at:http://www.biogeosciences.net/10/
4357/2013/bg-10-4357-2013-supplement.pdf.
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