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ABSTRACT 

Island biogeography theory is fundamentally reliant on measuring the number of species per 

island and hence has taxonomy at its foundation. Yet as a metric used in tests of the theory, 

island species richness (S) has varied with time according to the level of taxonomic effort (a 

function of the rate of finding and describing species). Studies using a derivative of S, single-

island-endemic species richness (SIE S), may be even more prone to change in taxonomic 

effort. Decreases or increases in species numbers resulting from taxonomic revision or 

increased sampling are likely to have a large effect on values of SIE S, as they tend to be 

smaller than total S for the same island. Using simple biogeography models, we analysed 

estimates of SIE S in plants, land snails, beetles and fungi from comprehensive datasets for 

eight island groups, produced species accumulation curves and applied Bayesian regression 

over five time periods. Explanatory power differed across taxa, but area and island age were 

not always the best explanatory variables, and niche diversity appeared to be important. 

Changing levels of SIE S over time had different effects on models with different taxa and 

between island archipelagos. The results indicated that the taxonomic effort that determines 

SIE S is important. However, as this cannot often be quantified, we suggest Bayesian 

approaches should be more useful than frequentist methods in evaluating SIE S in island 

biogeography theory. Fundamentally, the paper highlights the importance of taxonomy to 

theoretical biogeography. 

Keywords: species richness, evolution, modelling 
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INTRODUCTION

Species richness (S) is a fundamental metric used to validate many theoretical and 

empirical studies, particularly when the primary focus is to resolve why some areas have 

more species than others. The scientific foundation that allows the development, validation 

and testing of theories using S is taxonomy. Taxonomic and related research classifies 

species, defines their distributions and hence allows regional estimates of S to be derived. 

2013 marks 50 years since the publication of MacArthur and Wilson’s (MacArthur and 

Wilson 1963) groundbreaking paper that led to The Theory of Island Biogeography 

(MacArthur and Wilson 1967). From a few underlying principles, island biogeography theory 

(and other macroecological theories) aims to unify the relationships between island area, 

abundance and species richness (S) by generating models of, for example, the species–area 

curve. Central to validation of these models are estimates of island S. More recently, as a step 

towards including indicators of island evolutionary dynamics, studies have begun to 

incorporate single-island endemic S (SIE S) (Emerson and Kolm 2005, Whittaker et al. 2008) 

defined here as: 

“the total number of single island endemic species within any specified taxonomic group in a 

given area” 

Intuitively, SIEs have the potential to reveal within and between island evolutionary 

processes if these species are symptomatic of the individual islands’ processes. From an 

analysis of SIE S from Hawaii and the Canaries, Emerson and Kolm (2005) provided 

evidence that endemic diversification was related to species richness. They suggested that, 

mostly through competitive mechanisms, high diversity stimulates high rates of speciation 

and that speciation rate and extinction rate are positively related. This created some 

controversy (Cadena et al. 2005, Emerson and Kolm 2007a, Emerson and Kolm 2007b, 
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Kiflawi et al. 2007, Pereira et al. 2007, Whittaker et al. 2007, Witt and Maliakal-Witt 2007, 

Gruner et al. 2008) but is also beginning to gain some empirical support  (Forbes et al. 2009, 

Zobel et al. 2011) yet theoretically remains uncertain (see e.g. Chen and He 2009). 

Incorporating factors such as the geological life cycle of islands have also been proposed as 

alternative models (Whittaker et al. 2007, Whittaker et al. 2008). This, however, has been 

questioned for high dispersive taxa and more recently SIE S of bryophytes and seed plants 

has been related more successfully to elevation than island age (Patiño et al. 2013, Steinbauer 

et al. 2013) suggesting that within-island processes may be important to evolution and hence 

SIE.  

Regional species distributions are often summarised in checklists from which estimates of 

SIE S are usually drawn. However, there are several assumptions underlying these estimates 

that have yet to be fully explored. Of these, the most important is that available species 

counts for an island are a representative estimate of the ‘true’ SIE S. Estimates of SIE S may 

be particularly susceptible to differences in taxonomic effort, i.e. the effort that goes into 

finding, describing and revising endemic species. Furthermore, SIE S may be more 

susceptible than total island S because estimates of SIE S can be small, therefore small 

changes of one or two species can have disproportionately large effects. In addition, 

technological advances, particularly in molecular methods, and/or periods of intense 

taxonomic revision of island flora and fauna may cause SIE S to increase or decrease rapidly 

resulting in step changes through time. If single-island endemics are to be reliable indicators 

of evolutionary dynamics, any estimate of SIE S needs to be examined in detail, especially if 

the ultimate goal is to successfully combine evolutionary and biogeographic theories. 

Taxonomic effort is composed of two parts: sampling effort and description effort. The 

first concerns the rate of sampling (collecting) between and within islands. This is a well-
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known phenomenon and is directly analogous to sampling effort in distributional biodiversity 

studies (see e.g. Prendergast et al. 1993, Gotelli and Colwell 2001, Bush et al. 2004, Romo et 

al. 2006, Cardoso et al. 2009). Examination of taxonomic sampling effort involves the 

collation of data from geo-referenced specimens from any particular taxonomic group so that 

a spatial representation of collection effort can be assessed. The second component depends 

on the amount of effort, after collection, expended on describing new species i.e. taxonomic 

description effort. Many collections may be looked at once during collection and then left for 

decades (or longer), particularly in less charismatic taxa. Also, as technology advances, the 

resolution at which taxa are classified is being increasingly refined. The net effect of the two 

components of taxonomic effort could be to raise SIE S by identifying more species through 

increased collection effort, higher species description / revision rate and the consequent 

‘taxonomic inflation’ caused by revising subspecies and raising them to the species level 

(Isaac et al. 2004). Or SIE S could be lowered by the revision and combination of previously 

separate endemic species or subspecies into one, more widely distributed species or by 

finding single-island endemics on more than one island.  

Dealing with the spatial variation in sampling effort is analytically possible though there 

can be problems and data quality is an important issue and in particular sampling bias can 

lead to prediction errors (Hortal et al. 2007, Aranda and Lobo 2011). Schulman et al., (2007) 

present an elegant example using electronic datasets of geo-referenced herbarium collections 

to quantify taxonomic sampling effort in Amazonia. However, for many areas and islands the 

type of data required to perform these analyses is simply not yet available.  

Hypothetically, even for well-known island biotas, taxonomic effort may have a 

demonstrable effect on models involving SIE S. A useful first step in biogeographic analyses 

is to construct species accumulation curves; the accumulated number of species discovered 

and described over time. The resulting curves are a direct result of both aspects of taxonomic 
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effort which are likely to be dynamic over time. Nevertheless, a general assumption is that 

when species accumulation curves  approach an asymptote that effort should be reaching 

saturation; thus estimates of S are stabilising (Gotelli and Colwell 2001).  

It is likely that, for evolutionary processes to be meaningfully assessed in biogeographic 

models based on SIE S, locally important variables, such as within-island niche diversity, will 

need to be incorporated (see e.g. Steinbauer et al. 2012). This is because the rate of within-

island speciation is not related only to island area for example, but is dependent on the 

selective pressure applied by factors such as environmental diversity and complexity. Hence, 

local data will need to be incorporated into models if the causative factors driving differences 

in diversity are to be successfully identified. Such assessments of the drivers of 

diversification are fundamentally important to the conservation of global biodiversity. 

Using estimates of SIE S derived from comprehensive databases from eight groups of 

islands we attempt to answer the questions:  

1. Are within-island processes (e.g. niche diversity and evenness) important for

determining levels of SIE S and hence speciation?

(i) How common is an asymptotic relationship in SIE S data? 

(ii) How does a temporally dynamic SIE S resulting from increasing taxonomic 

effort affect model results? 

2. Finally we ask, should SIE S be used in biogeography?

http://sysbio.oxfordjournals.org/
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METHODS 

Analyses were based on SIE S derived from checklists for eight well known island 

groups mainly for plants and land snails but also fungi and Coleoptera. Specifically the island 

checklist sources are: the Azores (9 islands), plants and land snails - Borges et al. (2010); the 

Canary Islands (7 islands), plants, land snails and fungi - Hernández et al. (2009); the 

Galapagos (14 islands), plants, land snails and Coleoptera - Bungartz et al. (2009); the 

Hawai’ian Islands (11 islands), plants Wagner et al. (2005) and land snails - Bishop Museum 

(2002); Marquesas Islands (9 islands), plants - Wagner and Lorence (2011); the Seychelles (8 

islands), plants - Robertson (2005) and land snails - Gerlach (2006); St Helena (1 island) and 

Ascension (1 island) plants and invertebrates - Ashmole and Ashmole (2000), Cronk (1980, 

2000) and Gray (2005); Tristan da Cuhna (3 islands), plants and land snails - Holdgate  

(1965) and Wace and Holdgate (1958); Falkland Islands (2 main islands), plants (Broughton 

and McAdam 2005); Fernando de Norhona (1 island), Trinidade (1 island) and Martim Vaz 

(1 island)  - Alves (1998, 2006); and finally the plants of the West Indies (13 islands) - 

Acevedo-Rodríguez  (2007).  

For Hawai’i, as in the analysis of Whittaker, R.J., Triantis, K.A., et al., (2008) we excluded 

all the small atolls, Kure, Midway, Pearl & Hermes, French Frigate Shoals and Kaula Island 

as they do not represent single islands but complexes of many small sand islets. The South 

Atlantic islands are included here as one group as the flora have some taxonomic affinities 

(particularly among the Pteridophytes and Poaceae and Cyperaceae) but note they are really a 

more diffuse and isolated grouping than the other archipelagos. In addition, note that the 

analysis across the South Atlantic island group was done for plants only. For land snail data 

we used both species with and without external shells. In addition to the above references, we 

also used online databases such as International Plant Name Index, Missouri Botanical 

Garden’s Tropicos® database, the World Checklist of Selected Plant Families, the 
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Encyclopedia of Life, the Biodiversity Heritage Library, the Botanicus Digital Library, 

ZipcodeZoo, The Global Biodiversity Information Facility and the International Mycology 

Association’s MycoBank database. 

We used the checklists to identify the date of publication for each endemic species using the 

basionym. Nomenclatural synonymy was also researched in order to derive the date when 

each species was classified as endemic. This resulting dated reference allowed us to build up 

the number of single island endemic species described per year for each island. We included 

species, sub-species and varieties in our analyses but note that the results were qualitatively 

unchanged if sub-species and varieties were excluded.  

http://sysbio.oxfordjournals.org/
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ANALYSES

All the analyses were conducted across the complete island dataset and for each of the 

archipelagos or island groupings separately. 

Accumulation curves 

From the checklist data we quantified SIE S over time (1750 – 2012) and produced 

species accumulation curves for each island. Theoretically, several species accumulation 

curves are possible, including those that show asymptote, linear, exponential and step 

changes in species description (Fig. 1a). The asymptote assumes that the effort expended is 

finding fewer and fewer species over time and is hence approaching the true value of SIE S. It 

is widely regarded that this asymptotic relationship is the ideal from which to analyse species 

richness data. A linear relationship would arise if the number of species discovered remained 

constant. Under this scenario it is possible that the true SIE S value could be reached abruptly 

ending in a flattened line. However, a linear relationship may also indicate that a particular 

island is in the early stages of species discovery. An exponential curve indicates increasing 

discovery possibly as a result of increasing effort but may also indicate the early stages of 

species discovery. Step changes may also arise if there are sporadic bouts of species 

description in periods when, for example, a limited number of taxonomists are active and 

then either stop or slow down their activity.  

We fitted robust locally weighted regression or LOWESS smoothers (Cleveland 

1979) to show the relationship between the accumulated number of taxa described and time. 

Robust locally weighted regression is a method for smoothing a scatterplot, (xi, yi), i = 1,..n, 

in which the fitted value at xk is a polynomial fit to the data by weighted least squares, where 

the weight for (xi, yi) is large if xi is close to xk and small if it is not (Cleveland 1979).  

Species-area curves 
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We examined the effects of a temporally dynamic SIE S on Type IV species-area curves 

(Scheiner 2003) plotted separately for five differing time points (1849; 1899; 1949; 1999 and 

2010);  data were log transformed.. We chose an arbitrary 50-year period that we regard as 

sufficient for either revisions and/or new species to have been described resulting in a change 

to SIE S. Although power models appear to perform best in relation to species-area curves 

(Triantis et al. 2012), the authors also conclude that there is no definitive technique applicable 

to all situations.  As such, we have largely retained simple linear models here as it is a widely 

understood and easily interpretable technique both within and outside the biogeography 

community but we also include comparison to power models in the supplementary material. 

We used the premise that taxonomic effort increases with time and will tend to increase SIE 

S. In addition, we assumed (for the species-area curves and the more complex models below) 

that this change to SIE S would affect models in a systematic way, i.e. we assume the model 

relationship to improve with time. Thus, taxonomic effort should have a minimal effect on 

model interpretation - an assumption that presumably underlies most analyses in the 

literature. However, we acknowledge this may not necessarily be the case and it is possible 

that the model interpretation could be affected by a varying SIE S. Our approach to this 

problem is to incorporate Bayesian methodology in our analyses. Although, Bayesian 

methods do not explicitly correct for a changing SIE S, they do allow models to be developed 

through time with the incorporation of prior knowledge in subsequent analyses (see below).  

Biogeographic Modelling (1) Area and Island Age 

Here, we replicated a simple yet well known model from Whittaker et al., (2008) that 

used a combination of area and island age (Time + Time2). An estimate of maximal 

geological age was derived from the literature and a bibliography of sources consulted is 

included in the supporting information. The model was fitted to the data using multiple 

regression of the form: 
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SIE S = a +b1* log(Area) + b2*Time + b3*Time2 + ε  (equation 1) 

We have one important distinction from the analyses of Whittaker et al.: we used a 

Bayesian approach to fit the multiple regressions and incorporate prior information (i.e. the 

results from preceding time periods) using OpenBUGS v3.2.1 (see Lunn et al. 2000). Data 

were analysed both across all islands and within each archipelago.  The Bayesian approach 

was used to derive the intercept (a) and regression coefficients for the explanatory variable 

(b1-3) with 95% credible intervals based on prior information. In this case the prior 

information was based on the parameters and credible intervals from the regression models of 

previous estimates of SIE S from the preceding time period. In cases where quantification of 

taxonomic effort is impossible or impractical, we suggest that using a Bayesian approach is 

more useful and informative than frequentist approaches. This is because the effect of prior 

information on coefficients and credible intervals can be more intuitively assessed; in 

Bayesian terminology there is a 95% chance that the true parameter value will be within the 

given interval (McCarthy 2007). This type of prior information can be collated from 

previously published data or by incorporating previous checklist assessments of S into any 

analyses. For our analyses, if the prior information is uninformative then the regression 

parameters will remain similar and the credible intervals will tend towards constancy. We 

also consider that using Bayesian methods and presenting the data in this way, the results are 

much more useful for the meta-analyses (see McCarthy 2007 and references therein) that are 

routinely undertaken in biogeography and macroecology.  

Biogeographic Modelling (2) Incorporating Island Isolation and Niche Diversity 

In the second approach, we extended the area/island age model by including an index 

of niche diversity calculated from the Shuttle Radar Topography Mission (SRTM) (CGIAR-

CSI 2004, Farr et al. 2007). The SRTM is an international research effort to obtain and freely 
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disseminate digital elevation models on a near-global scale from 56° S to 60° N. The SRTM 

data represents approximately three-arcsecond, 90-m resolution digital elevation; note that 

data was available for most islands but not all. From the island SRTM data we calculated two 

altitudinal diversity metrics; Shannon-Wiener diversity index (Shannon 1948) and Buzas and 

Gibson's Evenness (Buzas and Gibson 1969). We made the assumption that these were 

suitable indicators of niche diversity as there is often a close coupling between island altitude 

and environment, particularly soils and climate (Steinbauer et al. 2012). Hence, if niche is 

defined in terms of resource availability (sensu Hutchinson 1957) we assume that niche 

diversity will correlate with the changing climatic conditions that are associated with altitude. 

It follows then that islands with more diverse elevation and topography would be expected to 

have greater niche diversity. Using the SRTM data we used elevation as an indicator of niche 

and assessed whether niche diversity (Shannon-Wiener) and/or niche evenness (Buzas and 

Gibson 1969) across islands were important explanatory variables. 

A strong latitudinal gradient was evident in our complete dataset (from the southern 

Falklands to northern Azores) we therefore included latitude in the analysis (northern values 

positive and southern negative). In addition we included distance to nearest islands and 

distance to nearest continent, obtained from the UNEP island directory 

(http://islands.unep.ch/isldir.htm). When incorporating these variables we used a best subsets 

approach to the multiple regressions, thus our maximal model was: 

SIE S = a +b1* log(Area) + b2*Time + b3*Time2 + b4*Nrstisld + b5*Nrstcont + b6*Altdiv + 

b7*Alteven + b7*Lat +  ε 

(equation 2) 
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RESULTS 

Accumulation Curves 

The effect of increasing taxonomic effort over time for all archipelagos and 

taxonomic groups was clear in that all islands showed an increase in SIE S (Fig. 1; note, not 

all islands are shown). Very few of the islands appeared to approach an asymptote (Table S1 

in Supplementary Material: doi:10.5061/dryad.cc47h). In only two of the island groups were 

asymptotes evident, however, a further five did appear to be approaching one. Interestingly, 

what we considered to be well worked islands did not show asymptotes, e.g. in Hawai’i, there 

appeared to be an almost linear relationship, the Canaries appeared to show step changes, and 

although most of the West Indies appear to at least be approaching asymptotes, Cuba was a 

notable exception (Fig. S1). Amongst all the islands we examined we found evidence for all 

the theoretical species accumulation curves illustrated in Figure 1a. The Marquesas were the 

only islands to show exponential-like curves (Fig. S2). Some islands also showed a very 

recent increase (post-1999), e.g. land snails in some of the Canary Islands (Fig. S3).  

Species area curves 

The effect of a temporally dynamic SIE S influenced the species-area relationships in 

slightly different ways for each of the different archipelagos and taxa. In some archipelagos, 

but not all, the slopes and intercepts appeared to be converging at least in the latter time 

periods e.g. plant SIE S in Seychelles, Hawai’i, and Marquesas (Table S2). The variance 

explained by the species-area model did not show systematic increase over time across all 

islands or taxa (Fig. 2 and Table S2). For example, r2 values for the vascular plant SIE data 

for the Canary Islands decreased over time whereas that for the Hawai’ian flora tended to 

increase. This effect appeared to be consistent among Canarian plants and land snails, but the 
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fungi showed an increase to 1949, a decrease during the next period and a slight rise in the 

post-2000 period (Fig. 2).  

Biogeographic modelling (1) 

Regression coefficients associated with the area and island age model appeared much 

more stable than species-area relationships but there was still a degree of change over the 

time periods examined (Table S3). Across all islands, it appeared that coefficients were 

reaching stability with decreasing width of credible intervals. The picture within island 

groups was again much more variable and mirrors the patterns shown in the species area 

curves above; perhaps as a consequence of the overall importance of area in this model. 

There appeared more general stability where the data were asymptotic. The results suggest 

that a Bayesian approach of incorporating prior information from previous time periods is an 

appropriate and useful approach, particularly for the incorporation of data into future studies 

and meta-analyses. 

Biogeographic modelling (2) 

Using all the variables as single predictors suggested that there were important 

differences among taxa but also between island groups. Across all islands, for the SIE plant 

dataset, area was a strong explanatory variable with high adjusted r2 values that increase in 

each successive time period (Fig. 3 and Table S3). However for land snails, although area 

appeared to be a good single predictor there was no clear increase in r2 and altitudinal 

diversity was a close second in explanatory power. Also, island age in the land snail data only 

appeared to be important when included as a quadratic fit but with much less explanatory 

power than for plants. Both isolation from islands and continents and latitude had little 

explanatory power in comparison to the other variables.  
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The best subsets regression suggested that when model complexity was increased 

area, island age and isolation were not always the best combination of explanatory variables 

and that there were competing models with as much if not slightly more explanatory power 

(Fig. 3, Tables S2 and S4). This was the case for both the data across all the islands and 

within the island groups. For example, the best model as indicated by the AIC and adjusted r2 

for all the snail data omitted area, whereas area was a component of most of the plant SIE 

models. The best model for the Canaries plant data also omitted area, although in every other 

island group area was a strong feature for plants. In contrast to the plant datasets, area was 

not always a clear predictor for the land snail data except for the Canary Islands. There was 

also an interesting contrast between the West Indies and the South Atlantic islands: in the 

West Indies, area, age, latitude, proximity to islands and niche diversity were important 

parameters. In contrast the best model for the South Atlantic omitted latitude altogether and 

nearest continent was more important than nearest island. For the land snail data, the 

estimates of SIE S for the Galapagos were not explained very well by any of the parameters, 

although the single parameter model of altitudinal evenness gave the best AIC and adjusted 

r2. For the beetles of the Galapagos the models were similar to the plants with the addition of 

altitudinal diversity in the best overall model. The Canary Islands fungi showed a similar 

response to the Canary Islands land snails, as area, age, nearest island and altitude diversity 

were the most consistent explanatory variables. (Table S4). 
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DISCUSSION 

Are within-island processes (e.g. niche diversity and evenness) important for determining 

levels of SIE S and hence speciation? 

The land snail and plant datasets – our two most comprehensive datasets – showed 

distinct responses that can best be explained ecologically and have consequences for 

estimations of evolutionary rates within these groups. Across all time periods, SIE S 

estimates for land snails showed a clear and consistent relationship with niche diversity. We 

suggest this may result from the land snail group including species with a variety of differing 

adaptations that allow survival in contrasting habitats. For example, included here are species 

that inhabit hot dry areas and avoid the driest seasons by aestivating inside their shell 

(dormancy). In addition there are also species that have a preference for cooler, wetter 

habitats because they are either unable to retreat into their shell (e.g. the genus Plutonia 

Stabile 1864) or have no external shell.  The variability and sensitivity of this group to 

environmental conditions may explain its clear link to our measure of niche diversity. SIE S 

estimates for plant data showed a slightly different response, with niche evenness appearing 

to have more explanatory power  than niche diversity.  Island area and age were also 

important parameters for plants but age showed little explanatory power for land snails. Since 

plants are rooted and have potential for a plastic environmental response, they are expected to 

show less sensitivity to environmental variability. Borges & Hortal (2009) showed that 

analysing different arthropod ecological groups generates diverse patterns and conclusions 

indicating that ecological relationships are not always congruent. What is important to SIE S 

model interpretation is the inclusion of variables that are expected to be important within and 

between island ecological and evolutionary drivers even when these differ across taxa.  

How common is an asymptotic relationship in SIE S data? 
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We expected that the effect of taxonomic effort would be evident, but that well-

worked biotas would tend to reach asymptotes with increasing effort and time. However, 

even such well worked taxa as those on the Hawai’ian Islands appeared to show an almost 

linear relationship between SIE S and time; a relationship that has been observed previously 

in other systems (see e.g. Bebber et al. 2007). The influence of time on species richness has 

mostly been considered on geological time scales (see Borges and Brown 1999 and 

references therein) but shorter term taxonomic influences also need consideration for model 

interpretation. Gotelli & Colwell (2001) suggest that raw species richness counts can only be 

validly compared when accumulation curves have reached a clear asymptote. However, this 

can only be the case when one knows that the effort expended is not a contributing factor to 

the shape of the curve. Clearly a well defined asymptote can be the result of a decrease in 

taxonomic effort. From experience we know this to be the case in St Helena which showed 

the clearest asymptote of any of the islands. Yet plant species are still being described and the 

number of endemics has been recently revised for St Helena (Lambdon et al. 2012, Lambdon 

2013). In addition, we expect that the finer resolution offered by genetic techniques will 

reveal further distinct species that are as yet cryptically hidden. There is increasing molecular 

evidence from single-species studies to support the classification of intraspecific taxa without 

clear differentiation in the phenotype, i.e. cryptic species (Gibson and Dworkin 2004, Masel 

2006, Bickford et al. 2007, Hayden et al. 2011, Schaefer et al. 2011), hence, SIE S is highly 

likely to change. 

There are methods to deal with variations in taxonomic effort in addition to the 

example noted above (Schulman et al. 2007). Lobo and Borges (2010) used comparisons of 

the exponential and Clench functions (the two main species-accumulation functions) and 

asymptotic value to estimate the number of species still undescribed. Santos et al. (2010) 

dealt with unevenness of data quality by using completeness at high taxonomic levels, 
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congruence with well-established ecological relationships (such as species–area relationship) 

and publication effort. Nevertheless, many of these deal either with only one aspect of 

taxonomic effort or rely on a high proportion of the species to have been already described 

(e.g. see Bebber et al. 2007). If our results are representative then the latter point is unlikely 

to be the case for SIE S datasets, and highlights the problem that much of the data needed for 

these methods is not widely available. 

How does a temporally dynamic SIE S resulting from increasing taxonomic effort affect 

model results? 

We also expected that increasing taxonomic effort would result in a decreasing 

influence on the models. However, regression coefficients did not always tend towards 

stability with increasing effort and time. Thus the effects on the SIE S area-time relationships 

did not appear to be systematic in relation to increasing taxonomic effort. Changes in slope 

have been attributed to changes in geographical scale (Williams 1943, Preston 1960, 

Rosenzweig 1995, Triantis et al. 2012). Our analyses show that taxonomic effort can also 

change these parameters when geographic scale is held constant. The application of Bayesian 

methods allowed us to assess how the parameters and credible intervals responded to the 

incorporation of prior information. In all cases credible intervals narrowed through time 

suggesting informative priors. This suggests that Bayesian approaches are likely to be very 

useful in the application of SIE datasets particularly where they are expected to be temporally 

dynamic. 

Perhaps the most surprising result was that the explained variance in some 

archipelagos decreased with increasing time. The lack of consistent relationships among 

archipelagos implied that important processes are being omitted from current models of 

island biogeography. In particular, as many islands show incomplete saturation of taxonomic 
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effort (i.e. failure to reach SIE asymptote); it seems likely that quantification of currently 

unexplored levels of species diversity (both cryptic species and poorly known island flora and 

fauna) will tend to change these relationships further. The consequence would be that, for 

models of island biogeography, in situ speciation rate would take a much more prominent 

role in determining levels of diversity, via the physical proxies of island age, size and niche 

complexity. Recently, there have been attempts to take a more phylogenetic approach to 

biogeography models (e.g. Rosindell and Phillimore 2011). However, in most cases the 

extent of phylogenetic coverage is still too limited to allow entire island biotas to be fully 

evaluated and, where an extensive phylogenetic framework exists, problems of variable 

taxonomic or sampling effort are likely to undermine their value. There is a need to re-

evaluate SIE S estimates for islands, using objective approaches systematically applied across 

multiple islands. Secondly, there is a need to reassess the causative factors driving the 

differences in diversity and to work these key local variables into revised models of island 

biogeography. This is especially the case if more meaningful ecological, evolutionary and 

geological processes are to be incorporated, as has been widely called for (Haila 1990, Cowie 

1995, Borges and Brown 1999, Brown and Lomolino 2000, Heaney 2000, Lomolino 2000, 

Heaney 2007, Whittaker and Fernández-Palacios 2007).  

Should SIE S be used in biogeography? 

Our results suggest that estimates of SIE S can be valuable biogeographic parameters 

when their quality is properly assessed and controlled for. This is true for both biogeography 

and other studies where SIE S has formed part or a major focus. It should be noted that using 

the basionym year, as we have done here, does not give an indication of the additional 

sampling effort through collections performed by taxonomists and ecologists on islands. We 

suggest that, when available, standardized island surveys (e.g. Borges et al. 2005, Ribeiro et 

al. 2005) should also be used to evaluate the relative knowledge of island floras and faunas. 
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However, we think the study of SIE S is likely to yield interesting results when variables of 

evolutionary consequence are included in models such as those that are indicators of niche 

diversity. We propose that island SIE S (and probably total S) be regarded as an unknown and 

dynamic metric and that studies attempt to assess the level of taxonomic effort within the 

datasets they use and the influence this may have on the results. We also suggest that a 

systematic approach to evaluating SIE S on islands is also required, sampling across and 

within taxa to test model predictions and hypotheses. For example, we might ask: what is the 

importance of relictual isolation as the origin of endemism (paleo / neo-endemism) and 

selection versus drift as mechanisms of SIE speciation? Although this type of evidence has 

still to be collated for many islands, these are necessary data to allow within-island processes 

to be understood and biogeographic models interpreted appropriately (see also Rosindell and 

Phillimore 2011). That the effects of increasing taxonomic effort alone can influence species-

area relationships, and hence biogeographic models, illustrates the drawbacks of accepting 

SIE S estimates de facto. However, by embracing a Bayesian approach the explanatory power 

of island biogeography theory can be compared and evaluated in a more objective manner. In 

particular, better collaboration between taxonomists and modellers presents exciting 

opportunities to test and develop the theory of island biogeography in new and dynamic 

ways, promising rapid development as we move into the next 50 years. 
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SUPPLEMENTARY MATERIAL 

Supplementary material can be found in the Dryad data repository (doi:10.5061/dryad.cc47h) 
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Figure Legends 

Figure 1: Idealised (a) and actual species accumulation curves from 1750 until 2010 for 

selected islands (b, c and d). (a) Idealised species accumulation curves: decreasing towards 

asymptote, linear, exponential and step change rates of endemic species description (b) 

Species accumulation curves for single island endemic plant richness of the Hawai’ian 

archipelago; most Hawai’ian Islands exhibit near linear increase. (c) Species accumulation 

curve for single island endemic plant richness of the South Atlantic island group; most South 

Atlantic Islands exhibit a decreasing rate of discovery. (d) Species accumulation curve for 

single island endemic plant richness of the Canary archipelago; most Canary Islands exhibit 

step changes in the discovery rate, significantly slowing down in the 1850-1950 period. Note 

that the Marquesas Islands showed a near exponential increase (Fig. S1). Fitted lines (in b, c 

and d) represent a LOWESS smoother (Cleveland 1979) with degree of smoothing set to 0.1 

and 10 steps. 

Figure 2: Species-area relationships for selected island data using accumulated single island 

endemic richness over five different time periods. Both species richness and area were log 

transformed. (a) Species-area curve for single island endemic plant richness of the Hawaiian 

archipelago. (b) Species-area curve for single island endemic plant richness of the Marquesas 

archipelago. (c) Species-area curve for single island endemic plant richness of the Canary 

archipelago. (d) Species-area curve for single island endemic fungal richness of the Canary 

archipelago. 

Figure 3: Results of univariate linear regression of single island endemic plant richness for 

different island groups and time periods, showing the variance explained by each explanatory 

variable. Note that both a simple fit to maximum age and a quadratic fit for island age were 

used here. 
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Method Note 

Island Geological Age: We used the maximal geological age derived from the published 

sources found in the bibliography.   

Additional Results 

Figure S1: Species accumulation curves for single island endemic plant richness of the West 

Indies. Fitted lines represent a LOWESS smoother (Cleveland, W.S. 1979) with degree of 

smoothing set to 0.1 and 10 steps. 



Figure S2: Species accumulation curves for single island endemic plant richness of the 

Marquesas archipelago note the near exponential increase. Fitted lines represent a LOWESS 

smoother (Cleveland, W.S. 1979) with degree of smoothing set to 0.1 and 10 steps. 



Figure S3: Species accumulation curves for single island endemic land snail richness of the 

Canary Islands. Fitted lines represent a LOWESS smoother (Cleveland, W.S. 1979) with 

degree of smoothing set to 0.1 and 10 steps. 



Table S1: Details of island groups: number of islands where at least 1 single island endemic 

was found in at least one taxonomic group (n), datasets included and whether the single 

island endemic accumulation curve reached an asymptote. Three categories were used for 

classifying asymptote, Yes for those islands definitely displaying an asymptote, No when an 

asymptote was not apparent and Approaching for those that were more ambiguous. * St 

Helena & Tristan da Cuhna only. 

Ocean Region Island System Island Origins n Taxon Asymptote 

North Atlantic Azores Volcanic 9 Plants No 

Land snails No 

Canary Islands Volcanic 7 Plants No 

Land snails No 

Fungi* No 

Pacific Ocean Hawai'ian Islands Volcanic 11 Plants No 

Land snails Yes 

Galapagos Volcanic 14 Plants Approaching 

Land snails Approaching 

Coleoptera No 

Marquesas Volcanic 9 Plants No 

Indian Ocean Seychelles Continental 8 Plants Approaching 

& Atolls Land snails Approaching 

South Atlantic All Volcanic 6 Plants Yes 

& Continental 

2 Land snails* Approaching 

Caribbean West Indies Volcanic, 13 Plants Yes or approaching  

Continental (but Cuba still increasing) 

& Atolls 



Table S2: Results of univariate linear regression of single island endemic plant richness for different island groups and time periods, showing the 

variance explained by each explanatory variable note that a quadratic fit was used for Island Age here. * indicates time periods for when no 

single island endemics were recorded therefore model not fitted. 

     

Adjusted 

r2 

     Variable Time Period All Islands Azores Canaries Galapagos Hawaii Marquesas Seychelles South Atlantic West Indies 

Area  1849 33.17 N/A 8.62 0.21 9.34 N/A 48.48 21.82 69.42 

 

1899 41.11 13.96 12.05 17.87 27.67 3.76 48.48 0 77.55 

 

1949 47.6 26.37 0 19.74 41.02 44.69 60.16 0 79.06 

 

1999 52.13 44.47 0 40.64 48.12 49.91 60.31 0 79.93 

 

2010 52.5 35.34 0 41.06 48.12 67.8 60.31 0 79.88 

Latitude 1849 0 N/A 0 6.17 3.08 N/A 0 0 15.65 

 

1899 1.89 1.89 0 36.01 11.73 0 0 0 23.77 

 

1949 0.63 0 0 35.16 18.18 0 2.56 0 30.76 

 

1999 0.82 0 0 32.13 17.63 0 27.56 0 34.55 

 

2010 0.29 6.6 0 31.61 17.63 19.5 27.56 0 33.81 

Nrst Continent 1849 5.73 N/A 0 0 0 N/A 0 8.06 0 

 

1899 7.16 7.22 0 0 4.2 0 0 0 0 

 

1949 4.75 16.82 0 4.09 7.74 0 0 0 0 

 

1999 5.69 0 0 10.43 12.57 0 0 5.18 0 

 

2010 2.67 0 0 10.39 12.57 0 0 7.28 0 

Nrst Island 1849 2.94 N/A 24.03 0 0 N/A 0 0 56.21 

 

1899 1.36 27.37 13.57 0 1.89 0 0 0 51.69 

 

1949 0 9.64 29.12 0 13.61 0 0 0 44.64 

 

1999 0 0 27.08 0 18.79 0 0 0 46.94 

 

2010 0 14.9 34.08 0 18.79 0 0 0 46.62 

  



Table S2 continued 

     

Adjusted 

r2 

     Variable Time Period All Islands Azores Canaries Galapagos Hawaii Marquesas Seychelles South Atlantic West Indies 

Island Age 1849 25.24 N/A 0 6.82 0 N/A 0 0 60.42 

 

1899 20.8 0 0 5.36 12.57 0 0 0 67.86 

 

1949 18.31 0 0 0 20.22 0 0 0 72.73 

 

1999 15.42 0 0 0 19.44 0 0 0 71.56 

 

2010 14.71 10.04 0 0 19.44 0 0 0 72.86 

Island Age 

(quadratic) 1849 21.1 N/A 6.29 3.86 0 N/A 0 0 73.32 

 

1899 19.01 31.1 23.66 9.45 2.06 0 0 28.55 73.75 

 

1949 17.35 41.9 33.88 1.4 12.58 0 7.97 13.74 79.47 

 

1999 15.27 29.14 37.33 0 12.32 1.95 38.6 0 76.4 

 

2010 14.72 27.1 37.25 0 12.32 8.21 38.6 0 78.09 

Alt Diversity 1849 8.41 N/A 31.78 0 5.97 N/A 0 14.64 27.81 

 

1899 12.07 0 36.8 11.4 35.76 0 0 0 0.73 

 

1949 12.4 0 52.87 9.61 49.45 19.27 0 0 0 

 

1999 12.72 14.64 52.47 33.43 51.17 23.78 12.51 0 0 

 

2010 14.51 0 56.84 33.71 51.17 1.23 12.51 0 0 

Alt Evenness 1849 18.71 N/A 0 0 1.5 N/A 0 0 4.74 

 

1899 21.43 0 0 0 10.23 0 0 0 37.08 

 

1949 24.99 0 0 0 12.73 0 0 0 43.9 

 

1999 27.19 0 0 11.04 17.02 0 0 0 46.34 

 

2010 25.57 0 0 11.84 17.02 8.87 0 0 46.28 

            

 



Table S3: Bayesian regression coefficients for the ATT
2
 model of single island endemics species richness in eight island systems spanning five

different time periods. Grey shaded rows signify that no single island endemics published and the model cannot be fitted. The fungal group here 

includes fungi, lichens and fungi imperfecta. CI’s are Bayesian derived 95% credible intervals. 

Island 

System 

Time 

Period intercept SD 5% CI 

95% 

CI 

b [1] 

(area) SD 5% CI 

95% 

CI 

b [2] 

(time) SD 5% CI 

95% 

CI 

b [3] 

(time2) SD 5% CI 95% CI 

All Islands to 1849 0.729 0.112 0.546 0.913 0.211 0.042 0.142 0.280 0.025 0.011 0.006 0.043 0.000 0.000 0.000 8.16E-05 

n = 80 to 1899 0.927 0.090 0.780 1.073 0.253 0.033 0.198 0.306 0.022 0.007 0.010 0.034 0.000 0.000 0.000 0.000 

(plants) to 1949 1.114 0.081 0.980 1.247 0.286 0.029 0.238 0.334 0.021 0.006 0.011 0.031 0.000 0.000 0.000 0.000 

To 1999 1.288 0.077 1.162 1.413 0.313 0.026 0.270 0.357 0.019 0.005 0.011 0.028 0.000 0.000 0.000 0.000 

2000 plus 1.438 0.072 1.319 1.555 0.334 0.024 0.293 0.373 0.018 0.004 0.011 0.025 0.000 0.000 0.000 0.000 

Azores to 1849 

n = 9 to 1899 0.077 0.081 -0.046 0.202 0.072 0.076 -0.045 0.190 0.227 0.147 0.011 0.447 -0.025 0.017 -0.051 0.0012 

(plants) to 1949 0.123 0.052 0.036 0.206 0.104 0.048 0.024 0.181 0.273 0.079 0.141 0.399 -0.031 0.009 -0.046 -0.0151 

To 1999 0.161 0.051 0.077 0.245 0.127 0.046 0.052 0.202 0.278 0.061 0.178 0.378 -0.033 0.007 -0.045 -0.0214 

2000 plus 0.203 0.052 0.118 0.288 0.142 0.043 0.070 0.213 0.308 0.050 0.226 0.389 -0.030 0.006 -0.040 -0.0208 

Canaries to 1849 1.956 0.398 1.448 2.466 1.891 0.706 0.979 2.803 0.231 0.226 -0.044 0.511 -0.020 0.011 -0.034 -0.0073 

n = 7 to 1899 2.709 0.259 2.215 3.043 1.625 0.360 1.076 2.244 0.286 0.098 0.119 0.440 -0.021 0.005 -0.028 -0.013 

(plants) to 1949 3.059 0.174 2.743 3.310 1.401 0.249 1.016 1.830 0.279 0.058 0.183 0.375 -0.021 0.003 -0.025 -0.016 

To 1999 3.272 0.178 2.974 3.559 1.307 0.225 0.946 1.683 0.283 0.045 0.210 0.357 -0.020 0.002 -0.024 -0.016 

2000 plus 3.480 0.168 3.193 3.745 1.212 0.202 0.887 1.550 0.283 0.036 0.225 0.341 -0.020 0.002 -0.023 -0.017 

Hawaii to 1849 0.746 0.378 0.138 1.358 0.300 0.214 -0.044 0.646 0.143 0.362 -0.442 0.729 -0.007 0.016 -0.033 0.019 

n = 11 to 1899 1.356 0.338 0.774 1.886 0.414 0.157 0.150 0.666 0.165 0.218 -0.199 0.520 -0.011 0.010 -0.027 0.005 

(plants) to 1949 1.929 0.325 1.375 2.445 0.451 0.127 0.242 0.657 0.183 0.149 -0.064 0.427 -0.012 0.007 -0.023 -0.001 

To 1999 2.495 0.292 1.991 2.951 0.489 0.104 0.316 0.659 0.228 0.152 -0.024 0.475 -0.013 0.006 -0.023 -0.003 

2000 plus 2.839 0.230 2.449 3.202 0.515 0.085 0.374 0.655 0.248 0.100 0.083 0.412 -0.014 0.004 -0.022 -0.007 

Marquesas to 1849 

n = 12 to 1899 0.091 0.081 -0.038 0.222 0.072 0.037 0.013 0.131 -0.410 0.184 -0.707 -0.113 0.051 0.028 0.005 0.097 

(plants) to 1949 0.138 0.079 0.008 0.267 0.095 0.036 0.036 0.154 -0.443 0.144 -0.679 -0.203 0.045 0.022 0.008 0.082 

To 1999 0.180 0.079 0.050 0.309 0.114 0.036 0.056 0.172 -0.442 0.142 -0.675 -0.207 0.021 0.042 -0.048 0.090 

2000 plus 0.215 0.079 0.085 0.344 0.129 0.036 0.070 0.187 -0.436 0.134 -0.656 -0.215 0.017 0.032 -0.036 0.071 



Table S3 continued 

Island 

System 

Time 

Period intercept SD 5% CI 

95% 

CI 

b [1] 

(area)  SD 5% CI 

95% 

CI 

b [2] 

(time) SD 5% CI 

95% 

CI 

b [3] 

(time2) SD 5% CI 95% CI 

Galapagos to 1849 0.206 0.114 0.022 0.391 0.071 0.049 -0.008 0.151 0.846 0.574 -0.091 1.777 -0.220 0.189 -0.527 0.08746 

n = 14 to 1899 0.286 0.106 0.109 0.458 0.081 0.042 0.011 0.151 0.831 0.385 0.197 1.463 -0.209 0.130 -0.423 0.006 

(plants) to 1949 0.335 0.104 0.165 0.505 0.090 0.041 0.023 0.157 0.756 0.308 0.251 1.263 -0.227 0.105 -0.399 -0.055 

 

To 1999 0.385 0.103 0.216 0.554 0.103 0.040 0.037 0.168 0.653 0.264 0.222 1.089 -0.251 0.089 -0.397 -0.103 

  2000 plus 0.432 0.101 0.266 0.598 0.115 0.039 0.052 0.179 0.612 0.229 0.236 0.990 -0.257 0.078 -0.385 -0.129 

Seychelles to 1849 0.288 0.219 -0.049 0.629 0.246 0.158 0.000 0.490 2.482 1.984 -0.896 5.347 -0.040 0.032 -0.086 0.014 

n = 8 to 1899 0.288 0.136 0.067 0.511 0.247 0.098 0.087 0.407 2.464 1.398 -0.064 4.415 -0.040 0.023 -0.064 4.415 

(plants) to 1949 0.332 0.111 0.147 0.513 0.293 0.081 0.158 0.423 2.737 1.172 0.726 4.342 -0.044 0.019 -0.070 -0.012 

 

To 1999 0.384 0.106 0.208 0.558 0.334 0.077 0.206 0.460 3.017 1.017 1.163 4.565 -0.049 0.016 -0.074 -0.019 

  2000 plus 0.430 0.101 0.264 0.595 0.370 0.073 0.249 0.489 3.265 0.881 1.649 4.553 -0.053 0.014 -0.073 -0.027 

South 

Atlantic to 1849 1.682 1.045 0.579 2.791 1.159 1.071 0.094 2.301 0.134 0.232 -0.107 0.399 -0.001 0.002 -0.004 0.001 

n = 6 to 1899 2.442 0.242 2.055 2.773 0.452 0.237 0.124 0.839 0.146 0.050 0.071 0.223 -0.001 0.000 -0.002 -0.001 

(plants) to 1949 2.580 0.129 2.357 2.777 0.418 0.122 0.221 0.619 0.124 0.024 0.085 0.164 -0.001 0.000 -0.001 -0.001 

 

To 1999 2.666 0.113 2.475 2.845 0.402 0.100 0.240 0.567 0.111 0.016 0.085 0.139 -0.001 0.000 -0.001 -0.001 

  2000 plus 2.726 0.099 2.560 2.885 0.392 0.085 0.254 0.531 0.106 0.012 0.087 0.125 -0.001 0.000 -0.001 -0.001 

West Indies to 1849 1.738 0.274 1.297 2.181 0.292 0.162 0.031 0.555 0.056 0.025 0.016 0.096 0.000 0.000 0.000 0.000 

n = 13 to 1899 2.155 0.221 1.775 2.500 0.359 0.112 0.171 0.539 0.045 0.014 0.021 0.068 0.000 0.000 0.000 0.000 

(plants) to 1949 2.545 0.234 2.152 2.917 0.364 0.092 0.216 0.519 0.039 0.010 0.023 0.056 0.000 0.000 0.000 0.000 

 

To 1999 2.986 0.240 2.582 3.371 0.371 0.079 0.240 0.500 0.034 0.008 0.021 0.048 0.000 0.000 0.000 0.000 

  2000 plus 3.426 0.203 3.074 3.741 0.383 0.066 0.273 0.490 0.032 0.006 0.021 0.042 0.000 0.000 0.000 0.000 

All Islands to 1849 0.452 0.106 0.278 0.627 0.130 0.041 0.063 0.198 0.064 0.028 0.017 0.109 -0.001 0.000 -0.002 0.000 

n = 51 to 1899 0.632 0.097 0.472 0.791 0.176 0.037 0.116 0.236 0.072 0.019 0.040 0.104 -0.001 0.000 -0.002 -0.001 

(land snails) to 1949 0.763 0.092 0.612 0.914 0.202 0.034 0.146 0.258 0.069 0.015 0.045 0.094 -0.001 0.000 -0.002 -0.001 

 

To 1999 0.885 0.088 0.740 1.029 0.220 0.032 0.168 0.273 0.070 0.012 0.051 0.089 -0.001 0.000 -0.001 -0.001 

  2000 plus 0.988 0.084 0.851 1.125 0.236 0.030 0.186 0.285 0.070 0.010 0.054 0.086 -0.001 0.000 -0.001 -0.001 

Azores to 1849 0.077 0.081 -0.046 0.202 0.072 0.077 -0.045 0.190 0.229 0.150 0.011 0.447 -0.025 0.018 -0.051 0.001 

n = 9 to 1899 0.149 0.083 0.012 0.284 0.096 0.072 -0.023 0.213 0.347 0.112 0.163 0.529 -0.014 0.013 -0.035 0.008 

(land snails) to 1949 0.229 0.083 0.092 0.364 0.118 0.066 0.009 0.227 0.373 0.085 0.234 0.513 -0.013 0.010 -0.029 0.004 

 

To 1999 0.296 0.083 0.160 0.432 0.136 0.063 0.032 0.240 0.396 0.071 0.279 0.513 0.011 0.008 -0.025 0.002 

  2000 plus 0.357 0.082 0.222 0.491 0.153 0.061 0.053 0.253 0.359 0.061 0.259 0.460 0.005 0.007 -0.006 0.017 



Table S 3 continued 

Island 

System 

Time 

Period intercept SD 5% CI 

95% 

CI 

b [1] 

(area)  SD 5% CI 

95% 

CI 

b [2] 

(time) SD 5% CI 

95% 

CI 

b [3] 

(time2) SD 5% CI 95% CI 

Canaries to 1849 1.037 0.500 0.399 1.678 1.069 0.887 -0.075 2.215 0.226 0.284 -0.120 0.577 -0.014 0.014 -0.030 0.003 

n = 7  to 1899 2.089 0.521 1.134 2.814 0.709 0.600 -0.213 1.757 0.198 0.156 -0.055 0.459 -0.012 0.008 -0.024 0.000 

(land snails) to 1949 2.739 0.255 2.285 3.106 0.539 0.358 -0.030 1.140 0.188 0.087 0.046 0.331 -0.011 0.004 -0.017 -0.004 

 

To 1999 3.052 0.156 2.772 3.280 0.406 0.229 0.046 0.795 0.205 0.052 0.118 0.289 -0.010 0.002 -0.014 -0.006 

  2000 plus 3.172 0.124 2.961 3.367 0.358 0.183 0.061 0.663 0.209 0.037 0.149 0.270 -0.010 0.002 -0.013 -0.007 

Galapagos to 1849 

                n = 14 to 1899 0.214 0.159 -0.043 0.471 0.102 0.069 -0.009 0.213 -0.429 0.800 -1.735 0.869 0.146 0.263 -0.281 0.575 

(land snails) to 1949 0.186 0.133 -0.031 0.405 0.129 0.055 0.037 0.219 -0.754 0.516 -1.591 0.108 0.187 0.174 -0.102 0.469 

 

To 1999 0.168 0.114 -0.020 0.356 0.142 0.047 0.065 0.219 -0.850 0.363 -1.441 -0.251 0.215 0.123 0.011 0.416 

  2000 plus 0.164 0.104 -0.007 0.335 0.154 0.042 0.084 0.223 -0.922 0.280 -1.380 -0.460 0.224 0.095 0.067 0.380 

Hawaii to 1849 0.935 0.377 0.336 1.538 0.243 0.154 -0.002 0.490 0.323 0.379 -0.281 0.935 -0.016 0.016 -0.042 0.010 

n = 11 to 1899 1.343 0.337 0.766 1.873 0.395 0.134 0.167 0.608 0.208 0.223 -0.163 0.572 -0.015 0.010 -0.031 0.002 

(land snails) to 1949 1.768 0.328 1.212 2.287 0.513 0.117 0.313 0.700 0.134 0.151 -0.115 0.382 -0.013 0.007 -0.024 -0.002 

 

To 1999 2.114 0.276 1.640 2.546 0.583 0.095 0.424 0.735 0.146 0.107 -0.032 0.321 -0.013 0.005 -0.021 -0.005 

  2000 plus 2.294 0.224 1.917 2.651 0.614 0.077 0.486 0.740 0.159 0.078 0.030 0.287 -0.014 0.004 -0.019 -0.008 

Seychelles to 1849 0.173 0.184 -0.110 0.459 -0.059 0.132 -0.266 0.145 2.056 1.657 -0.756 4.463 -0.033 0.027 -0.072 0.012 

n = 8 to 1899 0.370 0.121 0.157 0.551 0.086 0.087 -0.066 0.216 2.303 1.163 0.154 3.894 -0.037 0.019 -0.063 -0.002 

(land snails) to 1949 0.484 0.114 0.293 0.667 0.124 0.075 -0.002 0.246 2.558 1.013 0.795 4.116 -0.041 0.016 -0.066 -0.013 

 

To 1999 0.594 0.115 0.404 0.781 0.135 0.069 0.022 0.248 2.784 0.891 1.167 4.166 -0.045 0.014 -0.067 -0.019 

  2000 plus 0.705 0.111 0.520 0.884 0.145 0.062 0.042 0.247 2.989 0.794 1.548 4.220 -0.048 0.013 -0.068 -0.025 

Galapagos to 1849 0.206 0.152 -0.039 0.452 0.080 0.066 -0.026 0.186 0.470 0.765 -0.779 1.708 -0.063 0.251 -0.471 0.347 

n = 14 to 1899 0.092 0.087 -0.039 0.245 0.063 0.033 0.012 0.119 -0.113 0.363 -0.665 0.527 0.024 0.119 -0.186 0.206 

(Coleoptera) to 1949 0.085 0.071 -0.031 0.201 0.072 0.027 0.028 0.116 -0.262 0.242 -0.656 0.142 0.053 0.082 -0.083 0.186 

 

To 1999 0.105 0.071 -0.011 0.222 0.074 0.027 0.030 0.118 -0.299 0.224 -0.666 0.071 0.050 0.076 -0.074 0.174 

  2000 plus 0.128 0.071 0.011 0.219 0.076 0.027 0.032 0.110 -0.350 0.211 -0.697 -0.079 0.041 0.071 -0.076 0.132 

Canaries to 1849 0.099 0.235 -0.201 0.400 0.112 0.416 -0.426 0.650 0.032 0.133 -0.130 0.197 -0.002 0.006 -0.009 0.006 

n = 7  to 1899 0.099 0.116 -0.090 0.289 0.113 0.207 -0.223 0.452 0.031 0.057 -0.063 0.125 -0.002 0.003 -0.006 0.003 

(Fungi) to 1949 0.141 0.116 -0.050 0.331 0.189 0.205 -0.147 0.525 0.032 0.050 -0.050 0.114 -0.002 0.002 -0.006 0.002 

 

To 1999 0.175 0.116 -0.015 0.367 0.219 0.202 -0.113 0.553 0.030 0.047 -0.046 0.107 -0.003 0.002 -0.006 0.001 

  2000 plus 0.210 0.117 0.019 0.403 0.248 0.200 -0.081 0.578 0.031 0.044 -0.042 0.104 -0.003 0.002 -0.006 0.001 

 



Table S4: The results of the best subsets regression for single island endemics datasets of plants, land snails, Coleoptera (Galapagos only) and 

fungi (Canaries only), which identifies the best combination of variables for each island group level. The candidate models are ranked by Akaike 

Information Criterion (AIC), which identifies the models which explain the most variance in the data with the fewest terms in the model. 

Candidate models with 0% adjusted r
2
 (Adj. r

2
) are not shown.

Taxa Island Group AIC Adj. r2 Model 

Plants All Islands 77.76 57.44 Area + Age + Nrst Isld 

n = 80 78.08 56.63 Area + Nrst Isld 

79.20 57.19 Area + Age + Latitude + Nrst Isld 

80.35 57.11 Area + Age + Latitude + Nrst Cont + Nrst Isld 

81.15 57.25 Area + Age + Latitude + Nrst Cont + Nrst Isld + Alt Even 

83.00 56.72 Area + Age + Age2 + Latitude + Nrst Cont + Nrst Isld + Alt Even 

84.03 52.50 Area 

85.00 56.08 Area + Age + Age2 + Latitude + Nrst Cont + Nrst Isld + Alt Div + Alt Even 

Plants Azores 15.00 99.85 Area + Age + Age2 + Latitude + Alt Div + Alt Even 

n = 9 17.00 99.70 Area + Age + Age2 + Latitude + Nrst Isld + Alt Div + Alt Even 

18.30 99.37 Area + Age + Latitude + Alt Div + Alt Even 

44.30 97.43 Area + Age + Latitude + Alt Div 

419.90 75.28 Area + Age + Latitude 

952.20 52.67 Area + Age 

1512.20 35.34 Area 

Plants Canaries 10.47 89.09 Age + Age2 + Alt Div 

n = 7  10.70 84.46 Age + Alt Div 

11.50 90.09 Area + Age + Age2 + Alt Div 

13.00 86.77 Area + Age + Age2 + Nrst Isld + Alt Div 

20.31 56.84 Alt Div 



Table S4 continued 

Taxa Island Group AIC Adj. r2     Model                         

Plants Galapagos 14.77 63.48 Area + Age + Age2 
          

 

n = 14 15.74 65.14 Area + Age + Age2 + Latitude 

        

  

16.72 47.93 Area + Latitude 

            

  

17.35 41.06 Area 

              

  

17.37 62.74 Area + Age + Age2 + Latitude + Nrst Cont 

      

  

18.11 66.74 Area + Age + Age2 + Nrst Cont + Nrst Isld + Alt Even 

    

  

20.04 60.71 Area + Age + Age2 + Nrst Cont + Nrst Isld + Alt Div + Alt Even 

  
    22.00 51.42 Area + Age + Age2 + Latitude + Nrst Cont + Nrst Isld + Alt Div + Alt Even 

Plants Hawaii 15.87 71.60 Area + Age + Latitude + Nrst Isld 

        

 

n = 11 16.14 75.95 Area + Age + Latitude + Nrst Cont + Nrst Isld 

      

  

16.65 64.09 Latitude + Nrst Isld + Alt Div 

          

  
17.31 75.96 Area + Age + Latitude + Nrst Cont + Nrst Isld + Alt Div 

    

  

17.42 58.53 Latitude + Alt Div 

            

  

18.22 78.53 Area + Age + Latitude + Nrst Cont + Nrst Isld + Alt Div + Alt Even 

  

  

19.13 51.17 Alt Div 

              
    20.00 70.96 Area + Age + Age2 + Latitude + Nrst Cont + Nrst Isld + Alt Div + Alt Even 

Plants Marquesas 13.91 98.81 Area + Age + Age2 + Alt Div + Alt Even 

      

 

n = 9 15.28 98.80 Area + Age + Age2 + Nrst Isld + Alt Div + Alt Even 

    

  
17.00 98.13 Area + Age + Age2 + Latitude + Nrst Isld + Alt Div + Alt Even 

  

  
18.61 95.97 Area + Age + Age2 + Alt Div 

        

  

40.04 88.01 Area + Nrst Isld + Alt Div 

          

  

64.57 81.74 Area + Age 

                124.45 67.80 Area                             

 

 

 



Table S4 continued  

Taxa Island Group AIC Adj. r2     Model                         

Plants Seychelles 5.99 60.31 Area 
              

 

n = 8 7.45 65.38 Area + Alt Div 

            

  

9.12 66.56 Area + Age + Alt Div 

          

  

11.01 59.89 Area + Age + Age2 + Alt Even 

        

  

13.00 39.95 Area + Age + Age2 + Alt Div + Alt Even 

      
    15.00 0.00 Area + Age + Age2 + Latitude + Alt Div + Alt Even         

Plants South Atlantic 11.00 99.72 Area + Nrst Cont + Age + Alt Div 

        

 
n = 6 621.20 14.79 Nrst Cont + Age + Alt Div 

          

  

1274.50 0.00 Nrst Cont + Alt Div 

                1338.40 7.28 Nrst Cont                           

Plants West Indies 19.06 97.27 Area + Age + Latitude + Nrst Isld + Alt Even 
      

 
n = 13 19.99 96.62 Area + Age + Latitude + Nrst Isld 

        

  

20.01 97.83 Age + Age2 + Latitude + Nrst Cont + Nrst Isld + Alt Div + Alt Even 

  

  

20.13 97.23 Area + Age + Age2 + Latitude + Nrst Isld + Alt Even 

    

  
22.00 97.30 Area + Age + Age2 + Latitude + Nrst Cont + Nrst Isld + Alt Div + Alt Even 

  
28.55 93.82 Area + Age + Nrst Isld 

          

  

45.04 89.44 Area + Nrst Isld 

                85.81 79.88 Area                             

Land Snails All Islands 55.06 43.63 Age + Age2 + Nrst Cont + Alt Div + Alt Even 
      

 

n = 51 56.03 43.69 Area + Age + Age2 + Nrst Cont + Alt Div + Alt Even 

    

  

56.97 39.88 Area + Age + Age2 + Nrst Cont 

        

  

57.01 43.75 Area + Age + Age2 + Nrst Cont + Nrst Isld + Alt Div + Alt Even 

  

  

57.67 37.80 Area + Nrst Cont + Nrst Isld 

          

  

59.00 42.39 Area + Age + Age2 + Latitude + Nrst Cont + Nrst Isld + Alt Div + Alt Even 

  

60.68 32.98 Area + Nrst Cont 

                66.55 24.93 Area                             

 

 



Table S4 continued 

Taxa Island Group AIC Adj. r2 Model 

Land Snails Azores 12.00 65.82 Age 

n = 9 9.29 83.59 Age + Nrst Cont 

10.02 87.93 Age + Age2 + Nrst Cont 

11.16 91.34 Age + Age2 + Nrst Cont + Nrst Isld 

13.12 88.80 Age + Age2 + Latitude + Nrst Cont + Nrst Isld 

15.02 84.78 Age + Age2 + Latitude + Nrst Cont + Nrst Isld + Alt Div 

17.00 70.09 Area + Age + Age2 + Latitude + Nrst Cont + Nrst Isld + Alt Div 

Land Snails Canaries 10.74 89.46 Area + Age + Alt Div 

n = 7  11.54 91.16 Area + Age + Nrst Isld + Alt Div 

12.68 80.76 Age + Alt Div 

13.00 88.48 Area + Age + Age2 + Nrst Isld + Alt Div 

46.60 1.81 Area 

Land Snails Galapagos 8.84 26.26 Alt Even 

n = 14 10.55 23.71 Area + Nrst Cont 

12.42 17.79 Nrst Isld + Alt Div + Alt Even 

14.37 8.55 Area + Age + Age2 + Nrst Cont 

16.05 2.99 Age + Age2 + Nrst Cont + Nrst Isld + Alt Div 

18.02 0.00 Area + Age + Age2 + Nrst Cont + Nrst Isld + Alt Div 

20.01 0.00 Area + Age + Age2 + Latitude + Nrst Cont + Nrst Isld + Alt Div 

22.00 0.00 Area + Age + Age2 + Latitude + Nrst Cont + Nrst Isld + Alt Div + Alt Even 

Land Snails Hawaii 20.00 97.24 Area + Age + Age2 + Latitude + Nrst Cont + Nrst Isld + Alt Div + Alt Even 

n = 11 21.72 94.73 Area + Age + Age2 + Latitude + Nrst Cont + Nrst Isld + Alt Div 

27.99 90.34 Area + Age + Age2 + Latitude + Nrst Cont + Alt Div 

31.74 89.1 Area + Age + Age2 + Latitude + Nrst Cont 

38.62 86.83 Area + Age + Latitude + Nrst Cont 

69.82 75.62 Nrst Isld + Alt Div + Alt Even 

108.04 64.79 Alt Div + Alt Even 

154.08 53.96 Alt Div 



Table S4 continued 

Taxa Island Group AIC Adj. r2 Model 

Land Snails Seychelles 13.70 99.98 Area + Age + Latitude + Alt Div + Alt Even 

n = 8 15.00 99.98 Area + Age + Age2 + Latitude + Alt Div + Alt Even 

19.80 99.94 Area + Age + Latitude + Alt Even 

2287.90 90.00 Area + Latitude + Alt Even 

12027.20 57.83 Area + Alt Div 

24367.20 28.78 Area 

Coleoptera Galapagos 16.74 81.25 Area + Age + Age2 + Alt Div 

n = 14 17.53 82.42 Area + Age + Age2 + Nrst Cont + Alt Div 

18.66 82.71 Area + Age + Age2 + Nrst Cont + Alt Div + Alt Even 

19.25 72.20 Area + Age + Age2 

20.11 81.70 Area + Age + Age2 + Nrst Cont + Nrst Isld + Alt Div + Alt Even 

21.60 65.31 Area + Age 

22.00 77.75 Area + Age + Age2 + Latitude + Nrst Cont + Nrst Isld + Alt Div + Alt Even 

28.30 50.85 Area 

Fungi Canaries 10.24 86.97 Area + Nrst Isld + Alt Div 

n = 7 11.14 90.09 Area + Age + Nrst Isld + Alt Div 

11.34 76.73 Area + Alt Div 

13.00 82.56 Area + Age + Age2 + Nrst Isld + Alt Div 

22.70 34.77 Alt Div 
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