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Abstract  8 

Ice streams are fed by tributaries that can extend deep into the heart of ice sheets. These tributaries are born 9 

at onset zones — the abrupt transitions from slow sheet flow to fast streaming flow that often occur at 10 

significant topographic steps on hard beds (bedrock-dominated beds). For this reason, tributary onset zones 11 

leave only a subtle erosional geomorphic signature in the landscape record that is rarely studied. This paper 12 

examines, in detail, the geomorphic signature of ice-sheet flow on a hard bed at the head of a palaeo-ice 13 

stream. We use field survey techniques to map glacial bedforms within an ~ 200-km
2
 area of hard crystalline 14 

bedrock in a landscape of ‘areal scour’ around Loch Laxford in NW Scotland. The bedrock bedforms range from 15 

plastically moulded (p-forms) and wholly abraded forms, to stoss-lee forms and plucked surfaces all on an 16 

outcrop scale (1-100 m). We devise a five-zone classification system to map (in a GIS) the presence, absence, 17 

and abundance of glacial erosional forms within 619 (500-m square) grid cells. We go on to use these erosional 18 

bedform zones, along with known glaciological relationships to interpret the spatial and altitudinal pattern of 19 

palaeo-ice sheet processes and glacier dynamics in this part of NW Scotland. Our interpretation highlights the 20 

strong vertical thermal zonation on mountains, and the spatial variations in ice rheology (softness), ice 21 

temperature and, by inference, ice velocity in troughs — intimately associated with the onset of ice streaming 22 

in tributaries. Consequently, we define the Laxfjord palaeo-ice-stream tributary — a feeder to the Minch 23 

palaeo-ice stream in NW Scotland. Finally, we suggest that this new mapping approach could be performed in 24 

other deglaciated hard-bed terrain to examine, more widely, the subtle erosional signatures preserved in areas 25 

traditionally thought to represent ice sheet ‘areal scour’.  26 
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1. Introduction 29 

Ice streams and their tributaries are the major conveyors of mass within ice sheets (Bentley, 1987; 30 

Bamber et al., 2000), with the transition from slow sheet flow to fast streaming flow occurring at the 31 

onset zone (Bindschadler et al., 2000; Whillans et al., 2001). Radar-derived ice velocity maps from 32 

Antarctica and Greenland show these tributaries can extend into the heart of ice sheets, with the 33 

downstream velocity transition involving an order of magnitude or more increase (from < 10 to > 34 

400 m/a) over a relatively short distance (approximately tens of kilometres) (Joughin et al., 2002, 35 

2010; Rignot et al., 2011). Joughin et al. (2002) defined two types of onset zone: an upper one where 36 

inland flow velocities increase rapidly at the head of ice stream tributaries (typically to 50-150 m/a); 37 

and another further downstream where these tributaries converge and accelerate to full ice stream 38 

velocities (> 400 m/a). The upper, tributary onsets, are normally associated with abrupt increases in 39 

basal-shear stress related to changes in subglacial topography such as flow into troughs; whereas 40 

the lower, ice stream onsets, normally occur in low basal shear stress regions where ice emerges 41 

from confining subglacial valleys and ice stream tributaries increase rapidly in width (e.g. Paterson, 42 

1994, Bindschadler et al., 2000; Whillans et al., 2001; Joughin et al., 2002, 2010). By definition, 43 

tributary onset marks a thermal transition from ice frozen to its bed to warm-based ice lubricated at 44 

its bed; whereas ice stream onset may be a complex function of decreased lateral drag and 45 

decreased bed resistance (Bindschadler et al., 2000; Whillans et al., 2001; Joughin et al., 2002).  46 

Ice sheet flow around high relief topography and into subglacial troughs has long been suggested as 47 

a mechanism for perturbing the temperature and stress field of ice sheets, causing fast flow onset 48 

and organization into streams of differing erosional capability (Sugden, 1968, 1974, 1977; McIntyre, 49 

1985). More recently, numerical modelling experiments have emphasized the importance of 50 

topographic focusing and strain heating on the flow dynamics of ice sheets (Payne and Dongelmans, 51 

1997; Hindmarsh, 2001; Boulton and Hagdorn, 2006). Flow focusing, or channelling, concentrates 52 

strain heating in areas of low elevation, increasing ice temperature and leading to increased ice 53 

deformation rates and increased rheological softness (Nye, 1957; Paterson, 1994; Hindmarsh, 2001). 54 
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Much of this ice deformation is concentrated in the basal layers but can involve large components of 55 

both vertical and lateral shear (Truffer and Echelmeyer, 2003; Clarke, 2005). Deep mountain passes 56 

and narrow topographic cols aligned with ice flow are therefore ideal places to see evidence of ice 57 

softening (i.e. higher plasticity) owing to increased basal shear stresses and strain heating, possibly 58 

augmented by enhanced creep and increased liquid water content (Clarke et al., 1977; Duval, 1977; 59 

Echelmeyer et al., 1994). Unsurprisingly, topographic steps have also been associated with the onset 60 

of palaeo-ice streams in formerly glaciated settings (Stokes and Clark, 2001; Kleman and Glasser, 61 

2007; Briner et al., 2006, 2008; Bradwell et al., 2008b; Winsborrow et al., 2010), yet little detailed 62 

work has been done to characterise the glacial geomorphology in these settings.  63 

From a palaeo-glaciological perspective, identification and examination of palaeo-onset zones in the 64 

landscape record allows glaciological inferences to be made regarding former ice sheet dynamics, 65 

thermal regimes, and flow characteristics. Unfortunately for geomorphologists, onset zones typically 66 

occur in bedrock-dominated (hard-bed) areas, with only thin or very limited sediment cover; hence 67 

their geomorphic signature is largely reflected in the erosion record (Stokes and Clark, 2001; De 68 

Angelis and Kleman, 2008; Briner et al., 2008; Winsborrow et al., 2010; Ross et al., 2011). Bedrock 69 

(hard-bed) landforms produced by glacial erosion are an important tool for understanding glacial 70 

processes but have received relatively little attention compared to their soft-bed counterparts (cf. 71 

Piotrowski et al., 2004; Menzies and Brand, 2007; Clark et al., 2009; Stokes et al., 2011). Although 72 

subtle differences in bedrock bedform morphology have long been regarded as valuable indicators 73 

of former subglacial processes (e.g. MacClintock, 1953; Sugden, 1978; Evans, 1996; Glasser and 74 

Bennett, 2004; Roberts and Long, 2005), few have analysed these morphological variations on hard 75 

beds over large areas in detail.  Recently, however, Trommelen et al. (2012) outlined a new and 76 

promising spatio-temporal glacial terrain zone approach, using remote sensing data in combination 77 

with fieldwork, to map bedrock and sedimentary bedforms and establish a relative chronology 78 

across a large area of complex subglacial terrain (8100 km2) within the core of the former Laurentide 79 

ice sheet.  80 
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Landscapes of glacial erosion versus no-glacial erosion have been used effectively by numerous 81 

workers examining the thermal regime and (minimum) thickness of former ice masses (e.g., Sugden, 82 

1977; Kleman, 1994; Kleman et al., 1999; Briner et al., 2006; De Angelis and Kleman, 2008; Fabel et 83 

al., 2012; Trommelen et al., 2012). However, reconstructions of former ice dynamics (i.e., velocity, 84 

ice rheology, flow mechanics, etc.) from erosional landform evidence are far less common (Gordon, 85 

1979; Hall and Glasser, 2003; Roberts and Long, 2005; Bradwell et al., 2008a, Eyles, 2012). The 86 

relative paucity of research in this field probably stems from four main reasons: (i) it is still unclear 87 

how some glaciological processes are reflected in the erosional landform record; (ii) bedrock 88 

properties can mask or influence landform evolution, especially in areas of strong structural control; 89 

(iii) glacio-erosional evidence is sometimes difficult to discern in remotely sensed imagery; and (iv) 90 

complex glacio-erosional forms can relate to more than one erosional event.  91 

In this paper we examine, in detail, the geomorphic signature of ice-sheet flow on a hard bed with 92 

major topographic obstacles — the dissected mountain range of the NW Scottish Highlands. We use 93 

a geomorphological approach to classify and map erosional bedrock bedforms, on the outcrop scale 94 

(1-100 m) chiefly on a single rock type, across a large study area in NW Scotland. The field area 95 

includes ca. 200 km2 of glaciated Precambrian shield rock terrain. This rugged cnoc and lochan 96 

topography (Linton, 1963) is often taken to be a classic landscape of ‘areal scour’ — thought to be 97 

the result of widespread and laterally unconfined ice-sheet erosion over several glacial cycles 98 

(Sugden and John, 1976; Haynes, 1977; Sugden, 1978; Rea and Evans, 1996; Benn and Evans, 2010). 99 

However, this idea has not been rigorously tested. Crucially, our new approach takes outcrop-scale 100 

bedforms, which yield point information about the basal processes operating at the local scale, and 101 

synthesises this data over a wider area in an attempt to understand ice-sheet processes and patterns 102 

on a broader landscape scale (cf. Sugden, 1978; Trommelen et al., 2012). This empirical field-based 103 

approach, examining relatively small features (~ 101 m2) over wide spatial scales (~ 108 m2), is rarely 104 

practised in palaeoglaciology. 105 
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 106 

2. Study area 107 

2.1.  Physiography, geology, and palaeoglaciology  108 

The study area is defined by a rectangular box, 13 km north-south by 22 km east-west, centred on 109 

the head of Loch Laxford in NW Scotland (Figs. 1, 2) and includes part of the ancient dissected 110 

mountain range of the NW Highlands [Laxford = laxfjord: from the norse for salmon inlet]. The field 111 

area stretches from Badcall Bay in the south to Loch Inchard in the north, and east almost as far as 112 

the geographical watershed — a total land area (including inshore water bodies) of ca. 200 km2 (Fig. 113 

2). The influence of bedrock geology and structure on the large-scale landscape of this part of NW 114 

Scotland is strong and well established (Peach et al., 1907; Krabbendam and Bradwell, 2010). The 115 

landscape can be divided into two physiographic types: (i) the cnoc-and-lochan terrain of the 116 

Lewisian gneiss complex, comprising around 80% of the study area; and (ii) the quartzite-capped 117 

mountains (inselbergs), comprising around 20%. The cnoc-and-lochan terrain is a low-lying, 118 

extremely rugged, undulating landscape of rock basins (lochans) and rock hills (cnocs) rarely 119 

exceeding 200 m in elevation with relief typically around 100 m (Fig. 3). The inselberg of Ben Stack 120 

(721 m) and the broad hills Ben Dreavie (501 m) and Ben Auskaird (387 m) are the only notable high 121 

points within the Lewisian gneiss terrain. The quartzite-capped mountains are the two (conjoined) 122 

massifs of Arkle and Foinaven, the latter reaching 915 m in elevation. The mountains are ancient 123 

upstanding masses of Lewisian gneiss unconformably capped by gently dipping, tectonically 124 

thickened strata of Cambrian quartzite. Ben Stack also has a very small residual cap of Cambrian 125 

quartzite at summit level (> 700 m asl). The island of Handa is geologically distinct from the mainland 126 

and comprises a generally featureless gently dipping slab of Torridon sandstone, with 100-m high 127 

vertical cliffs along its western coast. 128 
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The ‘cnoc and lochan’ terrain of NW Scotland is an example of a deglaciated, rough, hard ice-sheet 129 

bed. The roughness  of a glacier’s bed can be determined by the number, size, and spacing of 130 

bedrock bumps and irregularities — although no standardised definition exists. Topographic profiles, 131 

drawn parallel to and perpendicular to former ice flow, show typical bed roughness within the study 132 

area (Fig. 3). For simplicity these were calculated using the NEXTMap Britain digital elevation model 133 

(DEM) and are expressed as the total length of the surface profile divided by the planar or ‘map’ 134 

distance. Values for both transects are between 1.02 and 1.03. These bed-roughness profiles 135 

underline the rugged, highly undulating nature of the Lewisian gneiss shield rock terrain in NW 136 

Scotland (Fig. 3). 137 

The bedrock geology of the study area can be simply classified into two main units. The Lewisian 138 

Gneiss Complex, a residual fragment of the Laurentian Shield, comprises felsic to intermediate 139 

orthogneiss (coarse-grained, crystalline, meta-igneous rock) with occasional lenses of mafic 140 

orthogneiss (typically finer grained), all of Archaean age. The gneisses are characterised by mineral 141 

layering (felsic and mafic), typically on a centimetre-scale. The gneisses are cross-cut by dolerite 142 

dykes with a strong WNW-ESE trend, part of the Scourie Dyke Swarm (Fig. 2). In the vicinity of Loch 143 

Laxford, a marked WNW-ESE trending, 2-3 km wide, ductile shear zone occurs.  This shear zone 144 

includes a number of thin granite sheets; together with the Scourie dykes these give the appearance 145 

of a strong structural ‘grain’ in this part of NW Scotland. Several sets of large-scale brittle structures 146 

occur (faults and joints), which are now associated with zones of locally intense fracturing (Beacom 147 

et al., 2001).  In addition, NNE-SSW and NNW-SSE trending conjugate fracture sets cut the gneisses 148 

on a range of scales (typically from 102-103 m).  149 

The Cambrian Strata comprise generally medium- to coarse-grained, cross-bedded, almost pure 150 

quartzite (metamorphosed sandstone).  The rock contains <10% feldspar grains and is tightly packed 151 

with very little matrix.  The Cambrian quartzite has been thickened considerably (up to 500 m) to 152 

form the upper parts of the mountains of Arkle and Foinaven. Within the study area, Neoproterozoic 153 
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rocks of the Torridon Group occur only on the island of Handa where they comprise thickly bedded, 154 

coarse-grained sandstones with a clay–hematite matrix (Fig. 2).  155 

The glacigenic superficial deposits in the study area are thin and patchy, forming discontinuous 156 

spreads and isolated patches of glacial diamict, morainic debris, and outwash gravel. With the 157 

exception of the large body of glaciofluvial (outwash) gravel at the head of Loch Laxford extending 5 158 

km inland to Loch Stack, the superficial deposits are typically small in area (>0.5 km2) and thin (<5 m 159 

thick). Recent mapping shows that the glacigenic superficial deposits cover < 15% of the total land 160 

area under study (BGS, 2009). However, considerable Holocene peat accumulations occur 161 

particularly in the east, concealing bedrock outcrops in topographic hollows.  162 

In a now-seminal geomorphological study of Scotland, Haynes (1977) classified the cnoc-and-lochan 163 

terrain in the study area as a landscape of “areal scouring” representing an area of “very high 164 

modification by ice sheets”. The high ground to the east was classified as “mountains and plateaux 165 

heavily dissected by troughs and corries” representing an area of very high “modification by local 166 

alpine glaciations” and “low (or no) modification by ice sheets” (Fig. 4). Recent detailed mapping has 167 

shown that the study area lies just outside the area covered by Younger Dryas ice-cap glaciation 168 

(Benn and Lukas, 2006; Lukas and Bradwell, 2010) but was covered by the last ice sheet to affect the 169 

British Isles, during the Late Pleistocene (~35-15 ka BP) (Bradwell et al., 2008a). The whole study 170 

area lies within the inferred catchment of the Minch palaeo-ice stream that drained the NW sector 171 

of the Pleistocene British-Irish Ice Sheet, probably over several glacial cycles (Stoker and Bradwell, 172 

2005; Bradwell et al., 2007).  Hence, the glacial erosional features of the cnoc-and-lochan terrain can 173 

be assumed to relate to Pleistocene ice sheet glaciation(s). Small independent alpine glaciers 174 

probably formed in the northern corries of Arkle and Foinaven at times during the Pleistocene, but 175 

these sites were deliberately not examined as part of this work. 176 

 177 
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2.2.  Rock properties  178 

Studies dealing with glacial erosional forms must have a firm understanding of the bedrock forming 179 

the focus of the study and its mechanical properties.  Although the specific rock mechanics of the 180 

two main rock types (Lewisian gneiss and Cambrian quartzite) have not been analysed in detail as 181 

part of this work, we draw on research recently carried out in the wider area. Krabbendam and 182 

Glasser (2011) examined the hardness and tensile strength of the Cambrian quartzite, Torridon 183 

sandstone, and Lewisian gneiss in order to study their relative susceptibility to glacial plucking and 184 

abrasion. The results of their field studies, incorporating schmidt hammer rebound and joint spacing 185 

measurements, found that Cambrian quartzite in NW Scotland has a typical hardness (r-value) of 60; 186 

whilst Lewisian gneiss has a typical hardness of c. 55. Joint spacing in the quartzite was found to be 187 

close, ~ 0.3 m, compared to the gneiss, which has an average of 1–2 m (within a wide range of 0.5–3 188 

m) (Krabbendam and Glasser, 2011). A detailed study in the Loch Laxford region showed that joint 189 

spacings in Lewisian gneiss could range across two orders of magnitude (0.01–10 m) (Beacom et al., 190 

2001). Krabbendam and Glasser (2011) agreed with previous workers (e.g. Augustinus, 1995; Harbor, 191 

1995; Dühnforth et al., 2010) that the degree to which certain rock types are eroded by 192 

glaciomechanical processes is predominantly a function of rock hardness and joint (or fracture) 193 

spacing. Under the assumption of stable or constant subglacial conditions, they went on to define 194 

rocks based on their dominant erosion mechanism; quartzite fell in the “plucking-dominant” 195 

category whilst Torridon sandstone plotted in the “abrasion-dominant” class. Importantly, field data 196 

for Lewisian gneiss fell between these two categories, where plucking and abrasion are of “broadly 197 

equal dominance” (Krabbendam and Glasser, 2011).  It is therefore likely that in ‘areally scoured’ 198 

gneisses such as the cnoc-and-lochan terrain of NW Scotland, the dominant erosion mechanism will 199 

be largely determined by glacial conditions (i.e., ice thickness, velocity, bed contact, etc.) but with 200 

local variations in rock properties, such as hardness or fracture spacing, also playing a part.     201 

 202 
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2.3.  Landforms of glacial erosion: terminology 203 

In this study we refer to the following glacial erosional landforms, compiled from authoritative 204 

definitions provided elsewhere (e.g., Sugden and John, 1976; Glasser and Bennett, 2004; Benn and 205 

Evans, 2010). 206 

Roches moutonnées are partly streamlined, asymmetrical stoss-lee bedrock eminences, typically 207 

with a smooth curvilinear stoss slope and a steep or truncated lee slope when viewed in longitudinal 208 

cross section.   Stoss slopes are formed by abrasion of rock on up-ice (high pressure) faces; lee slopes 209 

are formed by plucking, fracturing, or block removal of rock in down-ice (low pressure) cavities. 210 

Partly streamlined (stoss-lee) bedrock features have been associated with specific basal conditions in 211 

numerous previous palaeoglaciological studies. Typically, roches moutonnées are equated with 212 

areas where basal sliding velocities are sufficiently high and ice overburden pressures are sufficiently 213 

low to allow cavity formation and hence plucking. It is thought that these conditions are best 214 

satisfied beneath relatively thin, fast-flowing ice, where subglacial cavity pressures are likely to 215 

fluctuate rapidly in response to basal meltwater flux (Boulton, 1979; Iverson, 1991; Sugden et al., 216 

1992; Evans, 1996; Glasser and Bennett, 2004). 217 

Whalebacks are typically (but not always) symmetrical, rounded, often streamlined, bedrock 218 

eminences, with smooth curvilinear stoss slopes and smooth curvilinear ‘lee’ slopes when viewed in 219 

longitudinal cross section. All surfaces are abraded by debris-charged ice flowing over and around 220 

(hence remaining in contact with) the entire rock eminence. They are commonly ornamented with p-221 

forms (see below). Plucking does not contribute to the creation of whaleback forms. Wholly abraded 222 

bedrock forms, such as whalebacks, have been associated with a range of basal conditions in 223 

previous palaeoglaciological studies but typically relate to areas of thicker, softer (warmer) ice under 224 

high effective pressures, as deduced by the absence of cavity development and plucking. These 225 

conditions are envisaged to occur principally in two settings: (i) beneath thick but relatively slow-226 

sliding ice with little basal meltwater (Evans, 1996; Glasser and Bennett, 2004); and (ii) beneath 227 
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thick, relatively fast-sliding ice with stable basal meltwater pressures (Evans, 1996, Benn and Evans, 228 

2010).  229 

P-forms (plastically moulded forms) (Dahl, 1965) are a range of morphologically diverse erosional 230 

surface features, on an outcrop scale (0.1–10 m), including streamlined smooth depressions, 231 

scallops, and grooves. Owing to the presence of internal striated surfaces, most workers attribute p-232 

forms to erosion by soft, debris-charged basal ice deforming under localised high stresses at the bed 233 

(e.g., Boulton, 1979; Rea et al., 2000; Benn and Evans, 2010). Empirical studies have shown how 234 

enhanced plastic flow around bedrock obstacles can cause basal ice layers to flow at highly variable 235 

angles to the main flow direction and erode p-forms, especially when stresses are concentrated 236 

around rock fractures (Rea et al., 2000; Benn and Evans, 2010). Some workers choose to classify 237 

these features as s-forms where, they argue, meltwater is the dominant erosional agent (Kor et al., 238 

1991; Glasser and Bennett, 2004). Water-sculpted forms include potholes, sinuous channels and 239 

undercut ‘half-pipes’ with or without internal striated surfaces.   240 

 241 

3. Methods 242 

3.1.  Field survey 243 

Field surveys in the study area were undertaken over a period of 7 years (between 2003 and 2010). 244 

Data collection was done by transect mapping, with the aim to cover as much of the ground as 245 

possible using a network of ~ 1-2 km spaced field-survey lines.  Field survey involved walking a 246 

course examining every substantial bedrock outcrop encountered for evidence of glacial erosion.  247 

Most transect routes were chosen to optimise bedrock exposure. Bedrock outcrops were mapped as 248 

one of the following three feature classes: wholly abraded forms (smooth, glacially abraded on all 249 

surfaces, plucked faces absent); stoss-lee forms (glacially abraded stoss faces and plucked lee faces); 250 

weak erosional forms (plucked faces; subtle stoss-lee forms; striae). The location and size of p-forms 251 
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(and/or s-forms) and orientation of glacial striae were also recorded where encountered. Although 252 

this landform classification is somewhat subjective, it is based on the best overall representation of 253 

the glacially modified bedrock form and builds on classifications used successfully by others mapping 254 

hard-bed glaciated terrain (e.g., Sugden, 1977; Evans, 1996; Sugden and Denton, 2004; Roberts and 255 

Long, 2005).  256 

In addition to this information, other pertinent geological observations regarding the bedrock itself 257 

(e.g. unusually granitic, mafic, coarse-grained, or brecciated; the degree of surface weathering; etc.) 258 

were also recorded. On the highest ground, where no evidence of glacial erosion was observed, a 259 

single (null) feature class was used for mapping purposes. These areas were defined by mapping the 260 

extent of hilltop regolith or blockfield (where bedrock exposures were absent) along with the 261 

presence of any mature periglacial or pre-glacial landforms (e.g. sorted stone nets, tors, relict fluvial 262 

features, saprolite, etc.) all thought to represent areas of minimal or no glacial erosion (e.g. Stroeven 263 

et al., 2002; Kleman and Glasser, 2007; Fabel et al., 2012) 264 

Owing to the undulating and extremely rugged nature of the terrain, walkover transects involved 265 

‘sweeps’ typically around 100 m wide, taking in as many bedrock outcrops as possible. The exact 266 

course was plotted using hand-held GPS. All field observations, prior to 2010, were noted using GPS 267 

waypoints, a notebook and large-scale (1:25,000) OS topographic maps; in 2010 observations were 268 

made using a field-adapted ruggedised tablet PC running a customised version of ArcGIS. 269 

Unfortunately, owing to time constraints and the remote, rugged, nature of the terrain it was not 270 

possible to visit all the ground within the study area.    271 

 272 

3.2.  Remote sensing data 273 

The NEXTMap Britain digital elevation model (DEM) is the highest resolution elevation model 274 

currently available of the study area in NW Scotland. This airborne radar data set has a horizontal 275 
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resolution of 5 m and a vertical resolution of ca. 1 m. When this DEM is processed and illuminated 276 

(hill-shaded), breaks of slope are clearly visible; vertical exaggeration can also be used to highlight 277 

subtle features. This approach has been successfully used to map large- and medium-scale glacial 278 

bedforms in the UK by numerous workers (e.g. Bradwell et al., 2007; Hughes et al., 2010; Patton et 279 

al., 2012). Mapping experiments in ArcGIS using processed and raw NEXTMap Britain data show that 280 

the existing gridded elevation model is too coarse to capture the surface detail required to map 281 

small-scale bedrock forms (<10 m) (Fig. 4). The addition of colour aerial photographs improves  282 

mapping resolution visually but cannot improve three-dimensional spatial representation of the 283 

bedrock topography without full photogrammetric georeferencing. As this option was not available, 284 

the currently available remotely sensed data was unsuitable for the high-resolution 285 

geomorphological mapping required in this study. However, an outline of the broad physiographic 286 

terrain zones, derived from the NEXTMap DEM (modified from Krabbendam and Bradwell, 2010), is 287 

presented for the study area (Fig. 4). 288 

 289 

3.3.  Spatial data analysis and zonal map generation 290 

The field area was gridded using a 500 x 500 m cell size, conforming to the British National Grid [OS].  291 

Thirty-six survey transects were undertaken in total, which included data in 619 out of a possible 988 292 

cells (i.e. 63% of land within 22 x 13 km rectangular study area).  An overview map was made in 293 

ArcGIS showing the results of the geomorphological mapping: the occurrence of wholly abraded 294 

forms, stoss-lee forms, p-forms, etc., in every cell visited across the whole study area. Each 500 x 500 295 

m cell was then given a value (0, 1, 2, 3, or 4) using a five-zone classification scheme based on the 296 

dominant feature class (i.e. bedrock bedform) and the presence or absence of p-forms. This scheme 297 

is outlined in Fig. 5, with some field examples shown in Fig. 6. The zonal classification system has 298 

been designed with enough flexibility to accommodate mixed categories without distorting the raw 299 

data (i.e. zone 3 = stoss-lee forms and wholly abraded forms both common) (Figs. 5, 6). Where no 300 
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bedrock was encountered in a cell, because of superficial deposit coverage, an ‘s’ was entered.  301 

When no data (or insufficient data points) were recorded in a cell, no value was entered (nv) (Fig. 7). 302 

The results of this exercise are shown as a grid-map in which each attributed cell was colour coded 303 

to visually highlight any spatial trends (Fig. 8). 304 

The final grid-map of spatial data was zoned on a domain scale by generating smooth lines around 305 

areas, or bedform zones, with the same cell value (Fig. 8). Most zone boundaries could be easily 306 

defined based on the sharp transitions between same-value groups of cells (e.g. in the Loch Stack 307 

trough). However, in some places, a degree of user interpretation was required to allow a smooth 308 

line to be depicted at the domain scale. For example, around the mountains of Ben Stack and Arkle 309 

where zone boundaries merged or could not be resolved owing to the 500-m cell size, smooth lines 310 

were interpolated across cells. In areas where zone boundaries became diffuse, owing to lack of 311 

data, projected lines were used (shown dashed). Finally, a distinction was made between the ‘pure’ 312 

zone 4 landscape and the checkerboard mixed zone 3-zone 4 terrain to the NW (Fig. 8).   313 

3.4.  Sampling and uncertainties  314 

Our zonal-classification grid-mapping technique produces a single value for each cell surveyed (or 315 

partially surveyed), allowing a more complete map (63% of possible cells) to be made from an 316 

incomplete ground survey (20-30% ground cover). This was considered the optimum, although not 317 

the perfect, solution to the problem of mapping large areas of bedrock terrain on foot. The main 318 

benefit of this methodology is that it allows observations to be scaled up from the outcrop (<101 m2) 319 

to the regional scale (>108 m2) without compromising the integrity of the data or leaving too many 320 

large data gaps.  The method has potential drawbacks, however; the main ones are listed below. 321 

 Representativeness of the survey lines. Walkover survey of extremely rugged terrain with 322 

few vantage points will, naturally, only include a proportion of the ground within any 500 x 323 

500 m cell and this could introduce a bias. For example, in a single cell with pronounced 324 
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relief, data from low elevation sites may differ from those at high elevation, yet the low 325 

elevation sites may be surveyed preferentially because of ease of access. Clearly, the value 326 

ascribed to the grid cell will ultimately depend on which part of the ground has been 327 

surveyed (or not). To test this hypothesis, and the general reproducibility of the mapping 328 

methodology, we performed a repeat survey experiment in a typical area of 1 km2 with 329 

undulating relief (Fig. 9). A large proportion (>50%) of the total possible ground in each cell 330 

was mapped; firstly by surveying predominantly high elevation sites, and secondly at 331 

generally lower elevations. The results showed that although differences may occur 332 

between high elevation and low elevation settings (Fig. 9), and thus different results could 333 

be obtained (1 cell out of 4, in this instance), the classification scheme is sufficiently flexible 334 

and the nature of the ground is sufficiently varied to average out any survey bias over the 335 

regional scale (>5 km2). 336 

 Optimum cell size for the gridding system. We chose a cell size that allowed the best trade 337 

off between the number of survey lines needed and the ‘blockiness’ of the final data set.  338 

Initial experiments found that 100-m cells were too numerous to populate over such a large 339 

area, and 1000-m cells were too coarse to express the spatial subtleties of the zoned data.  340 

We therefore chose 500-m cells as the best way to convey the empirical data at the 341 

appropriate final map scale, although it is recognised that smaller cells (200 m) could be 342 

used in smaller field areas.   343 

 Attribution of cells based on too few data.  Owing to the nature of the field survey, not all 344 

cell values are based on the same number of data points (field observations).  No weighting 345 

scheme has been adopted in our spatial analysis methodology – with raw field observations 346 

translated directly into cell values. The fewest data points (i.e. outcrops visited) in any cell is 347 

4; fewer than 4 was considered as “no data” for the gridding exercise. The greatest number 348 

of data points in any cell is 34; with most cells having between 8 and 20. A revised 349 

methodology could seek to apply weighting statistics or a ranking scheme to cells with fewer 350 
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or more than the average number of data points. That being said, the number of 351 

observations per cell is sometimes simply dependent on the number of viable bedrock 352 

exposures.  353 

 354 

4. Results 355 

4.1.  Orientation of glacial striae 356 

The orientation of glacial striae provides primary evidence of former ice-flow directions on bedrock 357 

terrain. However, within the study area striae are not well preserved on Lewisian gneiss owing to 358 

surface weathering (Fig. 10). Typically, postglacial surface loss on gneiss outcrops is in the region of 359 

5-20 mm, as seen from the protrusion of quartz veins, although this can exceed 30 mm in mafic 360 

intrusions.  Well-preserved striae were found in certain protected locations by removing a thin cover 361 

of glacial debris or peat (Fig. 10). Glacial striae on Cambrian quartzite outcrops appear unaffected by 362 

surface weathering.  The overall trend of striae is shown as a rose diagram with orientations grouped 363 

in 15° bins and measurement numbers expressed as a percentage (Fig. 8). Measurements from 364 

earlier geological mapping (Geological Survey of Scotland, 1892; BGS, 1998) are also included in this 365 

data set.  The modal class is 285-300, indicating former ice-sheet flow from onshore to offshore in a 366 

WNW direction, as determined by previous work (Gordon and Sutherland, 1993; Lawson, 1995; 367 

Stoker and Bradwell, 2005). Local variations around this general trend were noted especially on the 368 

eastern flanks of Arkle and Foinaven (340/160) and in the deep col between the two mountains 369 

(240/060) (Fig. 10).  370 

 371 

 372 

 373 
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4.2.  Distribution of bedrock forms  374 

Our new mapping shows the presence or absence of various glacial features (primarily stoss-lee vs. 375 

wholly abraded bedforms) on crystalline shield rocks around Loch Laxford and on the surrounding 376 

mountains (Fig. 8). The erosional bedform zones defined in the grid-mapping exercise are clearly 377 

reflected in the landscape on a regional scale. When draped on the topography (NEXTMap DEM), 378 

several key spatial features appear (Fig. 11). The strong correlation between zones 0-1 and elevated 379 

topography (>500 m asl) is not surprising as this geomorphological evidence, relating to little or no 380 

glacial erosion, typically only occurs at high elevation (e.g. Sugden and Watts, 1977; McCarroll et al., 381 

1995; Stroeven et al., 2002; Kleman and Glasser, 2007). However, the tendency for zone 1 to persist 382 

on lower ground (200-400 m asl) to the NW of Ben Stack is an unexpected result. Other interesting 383 

results include the strong zone partitioning around the isolated mountain of Ben Stack, with zones 3 384 

and 4 terrain along the axis of Strath Stack and zone 4 in the Loch Stack trough (<300 m asl) 385 

separated from the summit zones 0-1 by a narrow band of zone 2 terrain at higher elevations. This 386 

zone partitioning is mirrored around Arkle, but the pattern is less clear owing to incomplete survey, 387 

scree cover, and a change in rock type (gneiss to quartzite) on the eastern slopes.  The col between 388 

Arkle and Foinaven is a small ‘hotspot’ of zone 4 terrain at relatively high elevation (~400 m asl), 389 

surrounded by a large area of zone 1 and zone 2 terrain all on Cambrian quartzite (Fig. 11). At lower 390 

elevations (<300 m), within the Lewisian gneiss complex, zone 2 predominates across most of the 391 

ground SW of a line from Ben Stack to Tarbet; zone 3 and 4 predominate to the NE of this line. 392 

Exceptions are around Gleann Scourie where a poorly defined patch of zone 3 terrain occurs and on 393 

the flanks of Foinaven where a narrow band of zone 2 terrain exists. The broad flat-bottomed Loch 394 

Stack trough is characterised by zone 4 terrain stretching far inland, east of gridline 30. To the NW, 395 

beyond a line approximately following the main road (A894), zone 4 terrain becomes less distinct — 396 

essentially comprising a mixed zone, or irregular checkerboard, of zones 3 and 4 terrain (Fig. 11). 397 

Bordering the broad swath of zone 4 terrain, are narrow but clearly defined bands of zone 3 terrain 398 

to the NW and SE.  Handa, an island of Torridon sandstone, is classified as zone 2 terrain, although 399 
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surface bedrock exposures are relatively rare beneath a thin discontinuous cover of glacial debris 400 

and peat. 401 

 402 

4.2  Comparison with bedrock geology 403 

When overlain on the bedrock geology (BGS, 2011), an apparent visual correlation is observed 404 

between zone 4 terrain and the concentration of thick granite sheets associated with the Laxford 405 

Shear Zone (Fig. 11). However, on closer inspection this match is not a strong one, with the granite 406 

sheets extending well into zone 3 to the NW of Ben Stack and on the SW flanks of Arkle. 407 

Furthermore, well-developed zone 4 terrain occurs on Druim na h-aimnhe, around Ardmore Point 408 

and on the islands in Loch Laxford where no substantial granite sheets have been mapped within the 409 

Lewisian gneiss complex. This poor overall match between bedrock lithology and erosional bedform 410 

zone refutes a general causal link between rock type and bedform distribution. Elsewhere patches of 411 

zone 4 terrain in Strath Stack and in the col between Arkle and Foinaven on Cambrian quartzite 412 

make a primary geological control on bedform type look highly unlikely (Fig. 11). Any apparent link 413 

between bedrock lithology and bedform type in the study area may be coincidence, or may simply 414 

reflect the occurrence of granite sheets within a weak, large-scale structural feature (Laxford Shear 415 

Zone) which is also now a topographic depression. However, we do acknowledge the important roles 416 

played by bedrock hardness and fracture spacing on erosional surface form in certain rocktypes (e.g., 417 

Gordon, 1981; Dühnforth et al., 2010; Krabbendam and Glasser, 2011).   418 

 419 

5.  Discussion 420 

5.1.  Spatial variations in ice-sheet flow dynamics: interpreting bedform zones in NW Scotland   421 
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Our empirically derived map of glacio-erosional bedform zones (Fig. 8) has implications for 422 

reconstructing longitudinal, lateral, and vertical variations in palaeo-ice sheet dynamics. In the 423 

following section we explore these in more detail, zone by zone, using the occurrence, type, and 424 

spatial distribution of bedforms to make inferences about the palaeoglaciology of NW Scotland (see 425 

Table 1). 426 

Inland ice sheet flow on hard beds is normally slow because ice is frozen to its bed, or overburden 427 

pressures are high, and ice-bed coupling and hence basal drag are high (Paterson, 1994; Bamber et 428 

al., 2000; Joughin et al., 2002; Clarke, 2005). However, high shear stresses acting at the bed when ice 429 

encounters large topographic obstacles increase the ice temperature through strain heating, 430 

combined with topographic flow focusing, to increase ice rheological softness (decreased viscosity) 431 

and in turn increase ice flow rate (Nye, 1957; Hindmarsh, 2001; Clarke, 2005). Observational and 432 

theoretical studies have shown that these glaciodynamic conditions are associated with a marked 433 

velocity transition on hard beds — the onset from slow sheet flow to fast tributary flow (Payne and 434 

Dongelmans, 1997; Tulaczyk et al., 2000; Joughin et al., 2002; Schoof, 2005, 2010). We envisage 435 

these conditions to have occurred within the study area in zone 4 terrain where the ice sheet was 436 

focused between the mountains and into a subglacial trough. These glaciological conditions would 437 

have resulted in high bedrock abrasion rates and increased flow – by Weertman-sliding, enhanced 438 

ice deformation and ice softening – but little or no basal cavity formation (Weertman, 1957; 439 

Lliboutry, 1968; Schoof, 2005). This is entirely consistent with the mapped predominance of wholly 440 

abraded forms (whalebacks) and p-forms, and little or no evidence of plucked forms within zone 4. 441 

We thereby propose that the mapped extent of zone 4 defines the onset of a palaeo-ice-stream 442 

tributary between the mountains of Ben Stack and Arkle and in the Loch Stack trough (Fig. 12).  443 

Further downstream, zone 4 becomes more spatially diffuse and gives way to a checkerboard of 444 

zone 3 and zone 4 cells in approximately equal amount. We suggest that this mixed zone (zone 3-4), 445 

with an increase in plucked surfaces relative to ‘pure’ zone 4, corresponds to increased subglacial 446 
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cavity formation, decreased ice-bed coupling, and by inference an increase in basal sliding. We 447 

propose that a gradual downstream decrease in ice-sheet thickness, and hence a reduction in ice-448 

overburden pressure, would lead to a relative fall in the basal water pressure threshold required to 449 

decouple the ice from its bed.  Where basal water pressures exceed the separation pressure, initially 450 

in favourable lee-side settings, basal cavity formation leads to an increase in plucking. These lower 451 

effective pressures also decrease ice deformation rates near the bed, further enhancing cavity 452 

formation (Schoof, 2005, 2010).  We therefore envisage fast sliding driven by basal cavity formation 453 

and lowered basal drag in this mixed zone (zone 3-4). These glaciological conditions would result in 454 

high bedrock abrasion rates and high plucking rates, favouring roches moutonnées production over 455 

whaleback forms, entirely consistent with the gradual transition from zone 4 to zone 3-4. We 456 

propose that the mapped distribution of this mixed zone (3-4) represents the geomorphological 457 

signature of a transition from Weertman-sliding to cavity-driven basal sliding on a hard bed. 458 

Theoretical studies have shown these conditions are characteristic of the longitudinal transition to 459 

streaming flow velocities (Tulacyzk et al., 2000; Truffer and Echelmeyer, 2003; Schoof, 2005). 460 

Following on from zone 4, we thereby use zone 3-4 to define the downstream sliding transition from 461 

sheet flow to streaming flow within a palaeo-ice-stream tributary.  462 

Collectively, we suggest that this whole erosional bedform assemblage (zone 4 and zone 3-4) 463 

represents the geomorphological signature of ice stream onset — initially associated with increased 464 

driving stress, decreased ice viscosity and a high degree of ice-bed coupling (zone 4), transitioning 465 

downstream to increased basal cavity formation, decreased driving stress, increased basal water 466 

pressures and a lower degree of ice-bed coupling (zone 3-4). We associate the palaeo-onset zone 467 

with a thermal transition from a cold-based to a warm-based ice sheet flowing over a hard bed (Fig. 468 

12). This is in agreement with certain findings of previous studies on similar bedrock bedforms 469 

elsewhere (Evans, 1996; Hall and Glasser, 2003; Glasser and Bennett, 2004; Ross et al., 2011). 470 
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Currently, zone 3-4 has no defined downstream margin, but we predict that tributary ice streaming 471 

persisted only a relatively short distance offshore in Loch Laxford (<20 km) before coalescing with 472 

the trunk of the Minch ice stream and accelerating to ‘full’ streaming flow velocities (>300 m a-1). 473 

The transitional boundary between zones 4 and 3-4, defined in this study, would be entirely 474 

consistent with the downstream change in basal water pressures necessary to facilitating rapid 475 

sliding on a hard impermeable bed. It is, however, probably no coincidence that this transition also 476 

broadly occurs at the present-day coastline (Loch Laxford) close to the inshore limit of deformable 477 

marine sediments.  478 

Zone 3 is characterised by well-developed roches moutonnées and whalebacks in approximately 479 

equal proportions augmented with p-forms. This zone tends to occur on the flanks of mountains and 480 

in areas of relief change but generally not on the lowest elevation ground. Collectively, this bedform 481 

assemblage suggests a mobile, warm-based ice sheet with a moderate degree of ice-bed coupling 482 

and subglacial cavity formation. Unlike zone 4, these conditions could equate to a range of 483 

glaciological settings, but given zone 3’s topographic distribution within the study area and its spatial 484 

relationship to zone 4, we propose the following optimum glaciological interpretation: relatively high 485 

ice-overburden pressures (but lower than zone 4), relatively high basal pressure waters in places 486 

(fluctuating around the separation pressure), and thus lower effective pressures (relative to zone 4). 487 

Lower effective pressures would decrease ice-bed contact and decrease rates of ice deformation. 488 

Furthermore, the topographic setting of zone 3 would generally not be conducive to such high rates 489 

of strain heating and ice softening as seen in the Loch Stack trough (zone 4). We therefore envisage 490 

widespread basal cavity formation, reduced basal drag, and relatively fast ice flow velocities by 491 

cavity-driven basal sliding in zone 3. These conditions would result in high bedrock abrasion rates 492 

and high plucking rates, favouring roches moutonnées production over whaleback forms, with the 493 

relative abundance of wholly abraded forms between that of zones 2 and 4 probably representing a 494 

transitional setting between suppressed and increased rheological ice softness. We propose that the 495 

narrow linear zones adjacent to zone 4 in the Loch Stack–Loch Laxford trough probably equate to a 496 
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form of englacial shear (or strain) margin — separating ice stream tributary flow from the 497 

surrounding slower flowing ice (Fig. 12). The velocity gradient and high tensile stresses across these 498 

zones would probably have resulted in a highly crevassed ice surface. Under certain stress conditions 499 

large water-filled crevasses can penetrate to the bed of thick glaciers (Benn et al., 2007). 500 

Interestingly, the notable presence of water-sculpted s-forms in isolated localites (Fig. 6) along the 501 

margins of zone 3 may be attributed to this phenomenon.    502 

Zone 2 is dominated by roches moutonnées, with whalebacks and p-forms rare or absent, and 503 

occurs at a wide range of elevations. Higher up, it merges with zone 1 terrain; lower down, it forms 504 

broad swathes and irregular patches typically adjacent to zone 3 terrain. It appears to make up the 505 

majority of the “areally scoured” Lewisian gneiss terrain in the study area, however is notably absent 506 

around Loch Laxford and in the Loch Stack trough. Its glaciological significance is more difficult to 507 

assess than the other zones. However, an abundance of plucked faces indicate that ice flow has 508 

occurred (at least locally) by cavity-driven basal sliding, whilst the co-existence of abraded stoss 509 

slopes and rare p-forms also point to a high degree (at least locally) of ice-bed coupling. As in zone 3, 510 

there is no unique glaciological setting that satisfies the conditions required to generate this 511 

landscape; but given its topographic distribution within the study area and the spatial relationship to 512 

other zones, we propose that zone 2 terrain is best explained by moderate ice-overburden pressures 513 

(lower than zone 3) generally in higher elevation areas, relatively high basal water pressures 514 

(fluctuating around the separation pressure), and thus relatively low effective pressures. Generally, 515 

lower effective pressures suppress ice creep rates at the bed; hence, we suggest, away from the 516 

deep valleys there would have been limited topographic flow focusing with little or no increased ice 517 

softening. We propose that rheologically harder, sliding-dominant ice sheet flow in an unconfined 518 

setting is the most likely genetic origin for the erosional zone 2 terrain (Fig. 12). Interestingly, a small 519 

patch (~ 4 km2) of zone 3 terrain occurs in the topographic depression of Gleann Scourie where 520 

localised flow focusing and ice softening may have occurred. However, the fact that zone 2 occurs 521 

across a wide range of elevation settings (~10-500 m asl) could also point to a polygenetic origin. 522 
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Therefore, we stress that the overprinting or modification of this zone by one or more glaciological 523 

regime cannot be discounted.    524 

Zone 1 is found predominantly on the flanks of mountains and displays only weak erosional 525 

bedforms such as subtle plucked faces and lacks p-forms. Zone 0 shows no evidence of glacial 526 

erosion and occurs exclusively in the highest elevation areas. Both these zones are bounded, 527 

sometimes abruptly, downslope by areas of zones 2, 3, and 4 terrain, where well-developed 528 

erosional forms predominate. We relate zone 0 to subglacial frozen-bed patches, where little or no 529 

glacial erosion has taken place over whole glacial cycles (Fig. 12). In total we map three such areas 530 

and suggest that they represent isolated, immobile, palaeo-frozen bed patches (zone 0) surrounded 531 

by  thicker, faster sliding, warm-based ice (zones 2, 3). We propose that the frozen-to-thawed bed 532 

transition is defined by zone 1, where only subtle subglacial erosion has occurred probably in the 533 

absence of basal metwater. In the study area, we propose that zone 1 is best explained by slow- 534 

flowing, rheologically hard ice, with low ice-overburden pressures (lower than zone 2) and with 535 

limited capacity to erode its substrate. The curious continuation of zone 1 to the NW of Ben Stack on 536 

relatively low ground (200-400 m) probably represents a frozen-bed ‘shadow’ or ‘sticky spot’ where 537 

ice sheet flow and subglacial erosion were restricted in a protected, low shear stress, lee-side setting 538 

(Fig. 12).  539 

Our systematic bedform mapping shows that the summit ridges and plateaux of Ben Stack, Arkle and 540 

Foinaven, characterised by little or no erosional evidence (zone 0), were probably frozen-bed 541 

patches hosting cold-based ice akin to similar high-elevation settings elsewhere (Kleman et al., 1999; 542 

Fabel et al., 2002, Hall and Glasser, 2003).  Some workers have used the absence of glacial evidence 543 

at high elevation and ‘trimlines’ to determine the vertical limits of the last ice sheet in NW Scotland 544 

(e.g. Ballantyne et al., 1998). However, this approach has since been invalidated largely by 545 

cosmogenic-nuclide analyses from above trimlines, and ice-sheet thermal boundaries are now 546 

routinely used to explain these phenomena (e.g. Stroeven et al., 2002; Briner et al., 2006; Phillips et 547 
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al., 2006; Kleman and Glasser, 2007). Such topographically controlled thermal zonation is a feature 548 

of mountain ranges at the periphery of large ice masses where frozen-bed patches on mountain 549 

summits (0.1–5 km2) are thought to be stable features persisting throughout multiple glacial cycles 550 

(Kleman et al., 1999; Kleman and Glasser, 2007). Ongoing work in NW Scotland is seeking to 551 

determine the exposure age and erosion history of these high elevation areas using cosmogenic-552 

nuclide analyses of bedrock and glacially transported boulders. 553 

When compared with the temperature structure of a present-day hard-bedded ice stream (Truffer 554 

and Echelmeyer, 2003), the vertical glacio-erosional zones derived in this study match well with the 555 

expected englacial thermal zonation (Fig. 12). The thermal structure of the ‘Laxfjord palaeo-ice- 556 

stream tributary’ was probably similar to that of Jakobshavn Isbrae and other similar fast-flowing 557 

outlets of the Greenland Ice Sheet, but on a smaller scale. The layer of warmer, rheologically softer, 558 

temperate ice at the bed – maintained by high ice-overburden pressures and strain heating – 559 

coincides with the zones of whalebacks and predominantly abraded forms (zones 4 and 3). By 560 

contrast, the coldest rheologically hard ice occurs at approximately half the maximum vertical ice 561 

thickness — coincident with the mapped upper limit of glacial erosion (zone 1) on the mountains of 562 

Ben Stack and Arkle, assuming an ice sheet thickness of ca. 1000–1250 m (Boulton and Hagdorn, 563 

2006; Hubbard et al., 2009). Above this elevation, stable frozen-bed patches would have existed 564 

(zone 0) (Fig. 12), as suggested elsewhere (e.g. Kleman, 1994; Briner et al., 2006; Kleman and 565 

Glasser, 2007). We infer that preferential preservation of these frozen-bed patches is most likely on 566 

narrow ice-flow aligned summits or in lee-side settings, where basal shear stresses would be lowest.   567 

 568 

5.2.  Summary of palaeo-ice sheet dynamics in NW Scotland 569 

In summary, our zonal bedform mapping suggests that high relief topography in NW Scotland 570 

perturbed the ice sheet into flow-parallel corridors, or ice stream tributaries, with distinct basal 571 
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thermal structures and velocity profiles. This ice sheet structuring — longitudinally, laterally, and 572 

vertically — fundamentally determined the erosional capability of the ice sheet and hence its 573 

geomorphic effect on the landscape, as proposed by others working in glaciated terrain elsewhere 574 

(e.g. Sugden, 1974; Glasser, 1995; Patterson, 1998; Kleman and Glasser, 2007). 575 

Our results suggest that enhanced vertical thermal zonation was associated with this topographically 576 

controlled ice-sheet flow regime. This phenomena was probably exemplified where ice flow was 577 

focused between and the large isolated mountains of Ben Stack and Arkle — with increased shear 578 

stresses, increased ice temperature, and hence increased rheological ice softness suppressing ice-579 

bed separation at low elevation (zone 4); and thinner, cold-based, ice frozen to its bed at high 580 

elevation (zone 0).  A velocity increase downstream (to the NW) was probably governed by a 581 

transition from Weertman-type sliding to cavity-driven basal sliding over a relatively short horizontal 582 

distance (<10 km), as seen in the longitudinal transition from zone 4 to zone 3-4. The glaciodynamic 583 

conditions reconstructed here are all consistent with those found at the onset of contemporary ice 584 

stream tributaries (e.g. Tulacyzk et al., 2000; Truffer and Echelmeyer, 2003; Schoof, 2005; Rignot et 585 

al., 2011). Subtle spatial differences in bedrock bedform assemblages mapped in the Loch Laxford 586 

area have allowed this former ice stream tributary to be defined longitudinally, from its onset (zone 587 

4) through transitional tributary flow (zone 3-4), and also laterally where an inferred velocity 588 

contrast is marked by flow-parallel (shear or strain) margins (zone 3) (Fig. 12). We relate this 589 

geomorphological ‘landscape’ signature to a palaeo-glaciological feature which we call the Laxfjord 590 

ice-stream tributary – a feeder to the Minch palaeo-ice stream. 591 

5.3.  Wider implications for mapping ice-sheet erosion zones 592 

Our field survey and resulting bedrock bedform-zone map allows inferences to be made about the 593 

average glaciodynamic conditions at the ice-sheet bed and highlights how these conditions vary with 594 

height, width and distance beneath a palaeo-ice-stream tributary.  We propose that this new zonal-595 

bedform mapping approach can, in favourable circumstances and with an element of geological 596 



25 
 

control, be used to assess the dominant palaeo-glaciological processes operating on hard beds (e.g. 597 

strong vs. weak ice-bed contact; warm vs. cold ice; Weertman sliding vs. cavity-driven sliding, etc.). 598 

Because basal topography and ice thickness strongly influence the basal temperature of polythermal 599 

ice sheets and because ice temperature and basal meltwater influence ice flow rates (e.g., Nye, 600 

1957; Paterson, 1994; Clarke, 2005), other qualitative thermodynamic inferences could also be made 601 

from the results of this mapping (e.g., relating to ice velocity, ice rheology, effective pressures, etc.).  602 

We suggest that this new approach could be transferred to other areas of glaciated bedrock terrain 603 

worldwide, in particular the geologically similar Precambrian shield rock provinces of Scandinavia, 604 

Greenland, and North America where broad morphological similarities are noted. As in Scotland, 605 

these landscapes have been attributed to widespread ice-sheet erosion by ‘areal scour’ (Linton, 606 

1963; Haynes, 1977; Benn and Evans, 2010) — a concept that could now be refined using the 607 

bedform-mapping erosion-zone scheme outlined here. Our new zone-mapping approach opens the 608 

possibility of exploring the subtle spatial variations in erosional signature on a landscape scale in 609 

order to further our understanding of ice-sheet flow dynamics on hard beds. 610 

We note that making palaeo-glaciological inferences based on the extant landform record is not easy 611 

and can be open to interpretation. Glacio-erosional landforms (in bedrock) are particularly 612 

challenging to study as their form is, by definition, the cumulative product of erosion possibly over 613 

long time periods. We accept that their formation may be time transgressive, may record multiple 614 

events, or may reflect an element of pre-glacial inheritance. Furthermore, bedrock structure and 615 

lithology can exert a strong influence on landform genesis in certain circumstances. But identifying 616 

the degree and pattern of glacial modification in any landscape is the key starting point to 617 

understanding its glacial history. We hope that this work has shown that on certain bedrock 618 

landscapes, where rocktype is largely uniform or lithological variations are controlled — such as on 619 

Precambrian shield rocks — landform assemblages can be used to derive zones of different glacial 620 

erosion that can be related to basal ice-sheet process and hence used to reconstruct former ice- 621 
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sheet dynamics. We hope that our field-based mapping approach and zone-classification scheme 622 

does this in a relatively simple but repeatable way. 623 

 624 

6.  Conclusions 625 

We have mapped, from field investigations, the glacial erosional forms in a large area (ca. 200 km2) 626 

of crystalline shield rock terrain in NW Scotland. We have used a new classification scheme, with a 627 

500-m cell size, to produce a map of glacio-erosional bedform zones. These zones highlight the 628 

cumulative product, spatial distribution, and style of subglacial erosion on a hard-rock former ice-629 

sheet bed with major topographic obstacles. 630 

Using this field data we have made palaeo-glaciological inferences relating to the degree of ice-bed 631 

contact, ice rheology (softness), ice temperature and, by proxy, ice velocity. Consequently, we have 632 

proposed the former existence of an ice-stream tributary on a hard bed in NW Scotland. We have 633 

tentatively defined its onset zone, transitional flow zone (Weertman-sliding to cavity-driven basal 634 

sliding) and lateral margins. We have named this feature the Laxfjord palaeo-ice-stream tributary — 635 

an important feeder to the Minch palaeo-ice stream. This fast-flowing ice-stream tributary, and 636 

others in the wider area, probably governed the strong, vertical, ice-sheet thermal zonation seen on 637 

mountains across NW Scotland. 638 

We suggest that the use of a zonal-classification scheme for mapping erosional bedforms on 639 

crystalline bedrock could be applied elsewhere, with important implications for the reconstruction 640 

of ice rheologies, basal thermal regimes, and fast flow zones in other deglaciated shield rock 641 

provinces (e.g., Greenland, Fennoscandia, Canada). Furthermore, we suggest that glacially 642 

roughened shield rock or cnoc-and-lochan terrain should not be seen as simply a landscape of 643 

widespread areal scour by unconfined ice sheets.  This work indicates that ‘areal scour’ landscapes 644 
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and the surrounding mountains can actually preserve the subtle signatures of former ice-sheet flow 645 

dynamics and thermal regime.  646 
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ACKNOWLEDGEMENTS 648 

This work was funded by the British Geological Survey (NERC), Geology and Landscapes UK 649 

Programme. Maarten Krabbendam, Neil Glasser, Nick Hulton, and Andrew Finlayson are thanked for 650 

comments on an earlier version of this manuscript. The five journal referees and the Editor (R.A. 651 

Marston) are all thanked for their comments, in particular Ian Evans and Martin Ross for their 652 

insightful suggestions that helped to clarify and improve this work. Published with the permission of 653 

the Executive Director, BGS (NERC). 654 

 655 

REFERENCES 656 

Augustinus, P., 1995. Glacial valley cross-profile development: the influence of in situ rock stress and 657 

rock mass strength, with examples from the Southern Alps, New Zealand. Geomorphology 14, 87-97. 658 

 659 

Ballantyne, C.K., McCarroll, D., Nesje, A., Dahl, S.O., Stone, J.O., 1998. The last ice sheet in NW 660 

Scotland: reconstruction and implications. Quaternary Science Reviews 17, 1149-1184. 661 

 662 

Bamber, J.L., Vaughan, D.G.,  Joughin, I., 2000. Widespread complex flow in the interior of the 663 

Antarctic Ice Sheet.  Science 287, 1248-1250. 664 

 665 

Beacom, L.E., Holdsworth, R.E., McCaffrey, K.J.W., Anderson, T.B., 2001. A quantitative study of the 666 

influence of pre-existing compositional and fabric heterogeneities upon fracture-zone development 667 

during basement reactivation. In: Holdsworth, R.E., Strachan, R.A., Macgloughlin, J.F., Knipe, R.J. 668 



28 
 

(Eds.), The Nature and Significance of Fault Zone Weakening. Geological Society Special Publication 669 

186, London, pp. 195-211. 670 

 671 

Benn, D.I., Evans, D.J.A., 2010., Glaciers and Glaciation. Second Edition. Arnold, London. 672 

 673 

Benn, D.I., Lukas, S. 2006.,Younger Dryas glacial landsystems in north west Scotland: an assessment 674 

of modern analogues and palaeoclimatic implications. Quaternary Science Reviews 25, 2390-2408. 675 

 676 

Benn, D.I., Warren, C., Mottram, R., 2007. Calving processes and the dynamics of calving glaciers. 677 

Earth-Science Reviews 82, 143-179. 678 

 679 

Bentley, C.R., 1987. Antarctic ice streams: a review. Journal of Geophysical Research 92(B9), 8843-680 

8858. 681 

 682 

Bindschadler, R., Chen, X., Vornberger, P., 2000. The onset area of Ice Stream D, West Antarctica. 683 

Journal of Glaciology 46, 95-101. 684 

 685 

Boulton, G.S., 1979. Processes of glacier erosion on different substrata. Journal of Glaciology 23, 15-686 

38. 687 

 688 

Boulton, G.S., Hagdorn, M., 2006. Glaciology of the British Ice Sheet during the last glacial cycle: 689 

form, flow, streams and lobes. Quaternary Science Reviews 25, 3359-3390. 690 

 691 

Bradwell, T., Stoker, M., Larter, R. 2007. Geomorphological signature and flow dynamics of the 692 

Minch palaeo-ice stream, NW Scotland. Journal of Quaternary Science 22, 609-617. 693 

 694 



29 
 

Bradwell, T., Stoker, M.S., Golledge, N.R., Wilson, C.K., Merritt, J.W., Long, D., Everest, J.D., Hestvik, 695 

O., Stevenson, A.G., Hubbard, A.L., Finlayson, A.G., Mathers, H.E., 2008a. The northern sector of the 696 

last British Ice Sheet: maximum extent and demise. Earth-Science Reviews 88, 207-226. 697 

 698 

Bradwell, T., Stoker, M.S., Krabbendam, M., 2008b. Megagrooves and streamlined bedrock in NW 699 

Scotland: the role of ice streams in landscape evolution. Geomorphology 97, 135–156. 700 

 701 

Briner, J.P., Miller, G.H., Davis, P.T., Finkel, R.C., 2006. Cosmogenic radionuclides from fiord 702 

landscapes support differential erosion by overriding ice sheets. Geological Society of America, 703 

Bulletin 118, 406-420. 704 

 705 

Briner, J.P., Miller, G.H., Finkel, R., Hess, D.P., 2008. Glacial erosion at the fjord onset zone and 706 

implications for the organization of ice flow on Baffin Island, Arctic Canada. Geomorphology 97, 126-707 

134. 708 

 709 

British Geological Survey (BGS), 1998. Cape Wrath. Scotland Sheet 113. Solid and Drift Geology, 710 

1:50,000 Series. British Geological Survey, Keyworth, Nottingham, UK.  711 

 712 

British Geological Survey (BGS), 2009. NC14, NC24. Superficial Deposits (Laxford Bridge, Loch Stack). 713 

1:25,000 Series. British Geological Survey, Edinburgh, UK.  714 

 715 

British Geological Survey (BGS), 2011. Bedrock Geology of the United Kingdom. DIGMAP50k. Digital 716 

geological map and database. British Geological Survey, Keyworth, Nottingham, UK. 717 

 718 



30 
 

Clark, C.D., Hughes, A.L., Greenwood, S.L., Spagnolo, M., Ng, F.S.L., 2009. Size and shape 719 

characteristics of drumlins, derived from a large sample, and associated scaling laws. Quaternary 720 

Science Reviews 28, 677-692. 721 

 722 

Clarke, G.K.C., 2005. Subglacial Processes. Annual Review of Earth and Planetary Sciences 33, 247-723 

276. 724 

 725 

Clarke, G.K.C., Nitsan, U., Paterson, W.S.B., 1977. Strain heating and creep instability in glaciers and 726 

ice sheets. Reviews of Geophysics and Space Physics 15, 235-247. 727 

 728 

Dahl, E. 1965. Plastically sculptured detail forms on rock surfaces in northern Nordland, Norway. 729 

Geografiska Annaler 47A, 63-140. 730 

 731 

De Angelis, H., Kleman, J. 2008. Palaeo-ice sheet onset zones: examples from the northeastern 732 

Laurentide Ice Sheet. Earth Surface Processes and Landforms 33, 560-572. 733 

 734 

Dühnforth, M., Anderson, R.S., Ward, D., Stock, G., 2010. Bedrock fracture control of glacial erosion 735 

processes and rates. Geology 38, 423-426. 736 

 737 

Duval, P., 1977. The role of the water content on the creep rate of polycrystalline ice. International 738 

Association of Hydrological Sciences Publication (Isotopes and Impurities in Snow and Ice) 118, 29-739 

33. 740 

 741 

Echelmeyer, K.A., Harrison, W.D., Larsen, C., Mitchell, J.E., 1994. The role of the margins in the 742 

dynamics of an active ice stream. Journal of Glaciology 40, 527-538. 743 

 744 



31 
 

Evans, I.S., 1996. Abraded rock landforms (whalebacks) developed under ice streams in mountain 745 

areas. Annals of Glaciology 22, 9-16. 746 

 747 

Eyles, N., 2012. Rock drumlins and megaflutes of the Niagara Escarpment, Ontario, Canada: a hard- 748 

bed landform assemblage cut by the Saginaw-Huron Ice Stream. Quaternary Science Reviews 55, 34-749 

49. 750 

 751 

Fabel, D., Stroeven, A.P., Harbor, K., Kleman, J., Elmore, D., Fink, D., 2002. Landscape preservation 752 

under Fennoscandian ice sheets determined from in situ produced 10Be and 26Al. Earth and 753 

Planetary Science Letters 201, 397-406. 754 

 755 

Fabel, D., Ballantyne, C.K., Xu, S., 2012. Trimlines, blockfields, mountain-top erratics and the vertical 756 

dimensions of the last British-Irish Ice Sheet in NW Scotland. Quaternary Science Reviews 55, 91-102. 757 

 758 

Geological Survey of Scotland, 1892. Lochinver. Sheet 107. Geological map, 1:63 360 scale. British 759 

Geological Survey, Edinburgh, UK. 760 

 761 

Glasser, N.F., 1995. Modelling the effects of topography on ice sheet erosion, Scotland. Geografiska 762 

Annaler 77A, 67-82. 763 

 764 

Glasser, N.F., Bennett, M.R., 2004. Glacial erosional landforms; origins and significance for 765 

palaeoglaciology. Progress in Physical Geography 28, 43-75. 766 

 767 

Gordon, J.E., 1979. Reconstructed Pleistocene ice sheet temperatures and glacial erosion in northern 768 

Scotland. Journal of Glaciology 22, 331-344. 769 

 770 



32 
 

Gordon, J.E., 1981. Ice-scoured topography and its relationship to bedrock structure and ice 771 

movements in parts of northern Scotland and west Greenland. Geografiska Annaler 63A, 55–65. 772 

 773 

Gordon, J.E., Sutherland, G.S., 1993. The Quaternary of Scotland. Geological Conservation Review 774 

Series, HMSO, London. 593pp.  775 

 776 

Hall, A., Glasser, N.F., 2003. Reconstructing the basal thermal regime of an ice stream in a landscape 777 

of selective linear erosion: Glen Avon, Cairngorm Mountains, Scotland. Boreas 32, 191-208. 778 

 779 

Harbor, J.M., 1995. Development of glacial-valley cross sections under conditions of spatially 780 

variable resistance to erosion. Geomorphology 14, 99–107.  781 

 782 

Haynes, V.M., 1977. The modification of valley patterns by ice sheet activity. Geografiska Annaler 783 

59A, 195-207. 784 

 785 

Hindmarsh, R.C.A., 2001. Influence of channelling on heating in ice-sheet flows. Geophysical 786 

Research Letters 28, 3681–3684. 787 

 788 

Hubbard, A., Bradwell, T., Golledge, N., Hall, A., Patton, H., Sugden, D., Cooper, R., Stoker, M., 2009.  789 

Dynamic cycles, ice streams and their impact on the extent, chronology and deglaciation of the last 790 

British-Irish Ice Sheet. Quaternary Science Reviews 28, 758-776. 791 

 792 

Hughes, A.L.C., Clark, C.D., Jordan, C., 2010. Subglacial bedforms of the last British Ice Sheet. Journal 793 

of Maps 2010, 543-563. 794 

 795 

Iverson, N.R., 1991. Potential effects of subglacial water-pressure fluctuations on quarrying. Journal 796 



33 
 

of Glaciology 37, 27–36. 797 

 798 

Joughin, I., Tulaczyk, S., Bindschadler, R., Price, S.F., 2002. Changes in west Antarctic ice stream 799 

velocities: observation and analysis. Journal of Geophysical Research 107 (B11), 2289, 800 

doi:10.1029/2001JB001029. 801 

 802 

Joughin, I., Smith, B.E., Howat, I.M., Scambos, T., Moon, T., 2010. Greenland flow variability from ice-803 

sheet-wide velocity mapping. Journal of Glaciology 56, 415-430. 804 

 805 

Kleman, J., 1994. Preservation of landforms under ice sheets and ice caps. Geomorphology 9, 19-32. 806 

 807 

Kleman, J., Glasser, N., 2007. The subglacial thermal organisation (STO) of ice sheets. Quaternary 808 

Science Reviews 26, 585-597.  809 

 810 

Kleman, J., Hattestrand, C., Clarhall, A., 1999. Zooming in on frozen-bed patches: scale dependent 811 

controls on Fennoscandian ice sheet basal thermal zonation. Annals of Glaciology 28, 189-194. 812 

 813 

Kor, P.S.G., Shaw, J., Sharpe, D.R., 1991. Erosion of bedrock by subglacial meltwater, Georgian Bay, 814 

Ontario: a regional view. Canadian Journal of Earth Science 28, 623-642. 815 

 816 

Krabbendam, M., Bradwell, T. 2010. The geology and landscape of the northwest Highlands: an 817 

introduction. In: Lukas, S., and Bradwell, T. (Eds.), The Quaternary of Western Sutherland and 818 

Adjacent Areas: Field Guide. Quaternary Research Association, London, pp.3-12. 819 

 820 

Krabbendam, M., Glasser, N.F., 2011. Glacial erosion and bedrock properties in NW Scotland: 821 

abrasion and plucking, hardness and joint spacing. Geomorphology 130: 374-383. 822 



34 
 

 823 

Lawson, T.J., 1995. The Quaternary of Assynt and Coigach: Field Guide. Quaternary Research 824 

Association, Cambridge, UK, 162pp. 825 

 826 

Linton, D.L., 1963. The forms of glacial erosion. Transactions of the Institute of British Geographers 827 

33, 1-28. 828 

 829 

Lliboutry, L. 1968. General theory of subglacial cavitation and sliding of temperate glaciers. Journal 830 

of Glaciology 7, 21-58. 831 

 832 

Lukas, S., Bradwell, T., 2010. Reconstruction of a Lateglacial (Younger Dryas) mountain icefield, in 833 

Sutherland, NW Scotland, and its palaeoclimatic implications. Journal of Quaternary Science 25, 567-834 

580. 835 

 836 

MacClintock, P., 1953. Crescentic crack, crescentic gouge, friction crack and glacier movement. 837 

Journal of Glaciology 61, 186.  838 

 839 

McCarroll, D., Ballantyne, C.K., Nesje, A., Dahl, S.O., 1995. Nunataks of the last ice sheet in northwest 840 

Scotland. Boreas 24, 305–323. 841 

 842 

McIntyre, N.F., 1985. The dynamics of ice-sheet outlets. Journal of Glaciology 31, 99-107. 843 

 844 

Menzies, J., Brand, U., 2007. The internal sediment architecture of a drumlin, Port Byron, New York 845 

State, USA. Quaternary Science Reviews 26, 322-335. 846 

 847 



35 
 

Nye, J.F., 1957. The distribution of stress and velocity in glacier and ice sheets. Proceedings of the 848 

Royal Society of London, Series A 239, 113-133. 849 

 850 

Paterson, W.S.B., 1994. The Physics of Glaciers. Third edition. Oxford, Pergamon. 851 

 852 

Patterson, C.J., 1998. Laurentide glacial landscapes: the role of ice streams. Geology 26, 643-646. 853 

 854 

Patton, H., Hubbard, A., Glasser, N., Bradwell, T., Golledge, N., 2012. The last Welsh Ice cap – Part 2: 855 

Dynamics of a topographically controlled ice cap. Boreas, DOI:10.1111/j.1502-3885.2012.00301.x. 856 

 857 

Payne, A.J., Dongelmans, P.W., 1997. Self-organisation in the thermomechanical flow of ice sheets. 858 

Journal of Geophysical Research 102, 12219–12234. 859 

 860 

Peach, B.N., Horne, J., Gunn, W., Clough, C.T., Hinxman, L.W., Teall, J.H., 1907. The Geological 861 

Structure of the North-West Highlands of Scotland. Memoir of the Geological Survey of Great 862 

Britain, HMSO, Glasgow, UK. 863 

 864 

Piotrowski, J.A., Larsen, N.K., Junge, F.W., 2004. Reflections on soft subglacial beds as a mosaic of 865 

deforming and stable spots. Quaternary Science Reviews 23, 993-1000. 866 

 867 

Phillips, W.M., Hall, A.M., Mottram, R., Fifield, L.K., Sugden, D.E., 2006. Cosmogenic 10Be and 26Al 868 

exposure ages of tors and erratics, Cairngorm Mountains, Scotland: time scales for the development 869 

of a classic landscape of selective linear glacial erosion. Geomorphology 73, 222–245. 870 

 871 

Rea, B.R., Evans, D.J.A., 1996. Landscapes of areal scouring in NW Scotland. Scottish Geographical 872 

Magazine 112, 47–50. 873 



36 
 

 874 

Rea, B.R., Evans, D.J.A., Dixon, T.S., Whalley, B.W., 2000. Contemporaneous, localized, basal ice-flow 875 

variations: implications for bedrock erosion and the origin of p-forms. Journal of Glaciology 46, 470-876 

476.  877 

 878 

Rignot, E., Mouginot, J., Scheuchl, B., 2011. Ice flow of the Antarctic Ice Sheet. Science 333, 1427-879 

1429. 880 

 881 

Roberts, D.H., Long, A.J., 2005. Streamlined bedrock terrain and fast ice flow, Jakobshavns Isbrae, 882 

West Greenland: implications for ice stream and ice sheet dynamics. Boreas 34, 25-42. 883 

 884 

Ross, M., Lajeunesse, P., Kosar, K.A., 2011. The subglacial record of northern Hudson Bay: insights 885 

into the Hudson Strait Ice Stream catchment. Boreas 40, 73-91. 886 

 887 

Schoof, C., 2005. The effect of cavitation on glacier sliding. Proceedings Royal Society London, Series 888 

A 461, 609-627. 889 

 890 

Schoof, C., 2010. Ice-sheet acceleration driven by melt supply variability. Nature 468, 803-806. 891 

 892 

Stoker, M.S., Bradwell, T.  2005.  The Minch palaeo-ice stream, NW sector of the British-Irish ice 893 

sheet. Journal of the Geological Society, London 162, 425-428. 894 

 895 

Stokes, C.R., Clark, C.D., 2001. Palaeo-ice streams. Quaternary Science Reviews 13, 1436-1458. 896 

 897 



37 
 

Stokes, C.R., Spagnolo, M., Clark, C.D., 2011. The composition and internal structure of drumlins: 898 

complexity, commonality and implications for a unifying theory of their formation. Earth-Science 899 

Reviews 107, 398-422. 900 

 901 

Stroeven, A.P., Fabel, D., Hättestrand, C., Harbor, J., 2002. A relict landscape in the centre of 902 

Fennoscandian glaciation: cosmogenic radionuclide evidence of tors preserved through multiple 903 

glacial cycles. Geomorphology 44, 145-154.  904 

 905 

Sugden, D.E., 1968. The selectivity of glacial erosion in the Cairngorm Mountains, Scotland. 906 

Transactions of the Institute of British Geographers 45, 79-92. 907 

 908 

Sugden, D.E., 1974. Landscapes of glacial erosion in Greenland, and their relationship to ice, 909 

topographic, and bedrock conditions. Institute of British Geographers Special Publication 7, 177-195. 910 

 911 

Sugden, D.E., 1977. Reconstruction of the morphology, dynamics and thermal characteristics of the 912 

Laurentide ice sheet at its maximum. Arctic and Alpine Research 9, 27-47. 913 

 914 

Sugden, D.E., 1978. Glacial erosion by the Laurentide Ice Sheet. Journal of Glaciology 20, 367–391. 915 

 916 

Sugden, D.E., Denton, G.H., 2004. Cenozoic landscape evolution of the Convoy range to Mackay 917 

Glacier area, Transantarctic Mountains: onshore to offshore synthesis. Geological Society of America 918 

Bulletin 116: 840-857.  919 

 920 

Sugden, D.E., John, B.S., 1976. Glaciers and Landscape. Arnold, London. 921 

 922 



38 
 

Sugden, D.E., Watts, S.H., 1977. Tors, felsenmeer, and glaciation in northern Cumberland Peninsula, 923 

Baffin Island. Canadian Journal of Earth Sciences 14, 2817–2823. 924 

 925 

Sugden, D.E., Glasser, N., Clapperton, C.M., 1992. Evolution of large roches moutonnées. Geografiska 926 

Annaler, 74A, 253-264. 927 

 928 

Trommelen, M.S., Ross, M., Campbell, J.E., 2012. Glacial terrain zone analysis of a fragmented 929 

paleoglaciologic record, southeast Keewatin sector of the Laurentide Ice Sheet.  Quaternary Science 930 

Reviews 40, 1-20. 931 

 932 

Truffer, M., Echelmeyer, K.A., 2003.  Of isbrae and ice streams. Annals of Glaciology 36, 66-72. 933 

 934 

Tulaczyk, S., Kamb, W.B., Engelhardt, H.F., 2000. Basal mechanics of Ice Stream B, west Antarctica. 1. 935 

Till mechanics. Journal of Geophysical Research 105, 463-481. 936 

 937 

Weertman, J., 1957. On the sliding of glaciers. Journal of Glaciology 3, 33-38. 938 

 939 

Whillans, I.M., Bentley, C.R., van der Veen, C.J., 2001. Ice streams B and C. AGU Antarctic Research 940 

Series 77, 257-282. 941 

 942 

Winsborrow, M., Clark, C.D., Stokes, C.R., 2010. What controls the location of ice streams? Earth-943 

Science Reviews 103, 45-59. 944 

 945 

 946 

 947 

 948 



39 
 

Figure Captions 949 

Fig. 1. Location of study area in NW Scotland (red box) and reconstructed British-Irish Ice Sheet 950 

extent at Last Glacial Maximum (LGM). The LGM limit (c. 25-27 ka BP) taken from Bradwell et al. 951 

(2008b).  Thick grey lines are generalised flow lines for major palaeo-ice streams (after Bradwell et 952 

al., 2007, 2008b). MIS – Minch Ice Stream;  offshore grey-shaded areas are trough-mouth fans; SSF – 953 

Sula Sgeir Fan; BDF – Barra Donegal fan. Thin grey lines are bathymetric contours. 954 

 955 

Fig. 2. Extent of study area, around Loch Laxford, NW Scotland. Simplified bedrock geology (BGS, 956 

2011) overlain on hillshaded topographic base (NEXTMap DEM). Key placenames referred to also 957 

shown. Grid ticks [British National Grid] at 5-km intervals 958 

 959 

Fig. 3. (A) Topography of the study area. Oblique view from the west looking toward the mountains 960 

of Arkle and Ben Stack. Generated in GeoVisionaryTM; note 2x vertical exaggeration, scene lit from 961 

NW. [NEXTMap DEM with colour aerial photographs draped over.] Lines show topographic profiles 962 

used to derive roughness values in ArcGIS (lower panels).  (B)  Photograph looking NE across Loch 963 

Laxford, taken from near Cnoc Gorm, showing typical cnoc-and-lochan Lewisian gneiss terrain. 964 

 965 

Fig. 4.  Physiography of the study area. Hillshaded NEXTMap Britain digital elevation model 966 

highlighting the different terrains (upper panel). Landscapes of glacial erosion (after Haynes, 1977) 967 

are shown (red line and font); landscape types (modified from Krabbendam and Bradwell, 2010) also 968 

shown (white line and font). Note Haynes’s line taken from small-scale map, hence boundary is 969 

generalised. Small white box refers to area enlarged in lower panels. Examples of remotely sensed 970 



40 
 

data (lower panels). (left) Hillshaded NEXTMap DSM; (middle) NEXTMap radar reflectance data; 971 

(right) colour, orthorectified, digital aerial photograph.  972 

 973 

Fig. 5. Classification scheme for glacio-erosional bedform zones on crystalline (shield) rocks in NW 974 

Scotland. Arrow in each image denotes former ice-flow direction. 975 

 976 

Fig. 6. Examples of glacio-erosional bedrock bedforms, typical of zones 1-4, in Loch Laxford area, 977 

NW Scotland. All bedforms are on Lewisian gneiss bedrock. (A) Wholly abraded whaleback outcrops 978 

with well-developed p-forms on Creag na Fionndalach; glacially abraded islands in Loch Laxford in 979 

background (zone 4) [British National Grid: 219773, 948726]. (B) Linear undercut s-form channels (s) 980 

and smooth mamillated surfaces (p-forms, p) on Cnoc Gorm; boundary between zones 4-3. Pencil 981 

indicates former ice flow direction (away from viewer) [BNG: 216690, 949804]. (C) Gently concave p-982 

forms on wholly abraded outcrops near Cnoc Grosvenor (zone 4). Notebook for scale [BNG: 228042, 983 

943684]. (D) Subtle, weathered p-forms and undulating abraded surfaces (p) (zone 3); Handa Island 984 

(h) in background showing little bedrock exposure [BNG: 216563, 948466]. (E) Typical zone 2 terrain, 985 

near Gorm Loch. Stoss-lee forms are common but p-forms are rare; glacially transported boulder is 986 

ca. 1 m in diameter. Ben Stack in centre background. Palaeo-ice flow towards viewer [BNG: 220130, 987 

944530]. (F) Typical zone 1 terrain, at 540 m asl on Ben Stack, with weakly abraded stoss surfaces 988 

(st), and some evidence of lee-side plucking (ls). Palaeo-ice flow from left to right. Rucksack for scale 989 

[BNG: 227627, 941667]. 990 

 991 

Fig. 7. Extract of 6-km2 summary geomorphological map centred on Ben Stack. Note the simple 992 

geomorphological mapping scheme. Numbers in cells (bottom right corner) denote cell value 993 
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according to zone classification (see Fig. 5). Some generalisation of field data and survey transects 994 

made to allow map reproduction at appropriate scale.  995 

 996 

Fig. 8.  (A) Compilation map of raw data from field surveys. [Base map = NEXTMap Britain hillshaded 997 

DEM.] Some generalisation made to allow reproduction at appropriate scale, overlapping data points 998 

have been removed for clarity.  Rose diagram of glacial striae measurements (upper left). (B) Final 999 

grid of mapped cells, attributed according to zone classification scheme (see Fig. 5) and colour coded 1000 

to highlight spatial trends. (C) Final colour-coded grid of cells (semi-transparent) with glacio-1001 

erosional bedform zones defined (solid lines = high confidence boundaries; dashed lines = lower 1002 

confidence or inferred boundaries). Grid ticks on all maps at 5-km intervals. 1003 

 1004 

Fig. 9. Small extract of summary map centred around Foindle, on south shore of Loch Laxford. This 1005 

1-km2 site was used to test the mapping methodology, with repeat surveys of the same four grid 1006 

cells employed. Bold numbers in cells (bottom right corner) denote initial zone classification value; 1007 

numbers in brackets denote repeat zone classification value.  1008 

 1009 

Fig. 10.  Preservation of glacial surface features.  (A) Wholly abraded Lewisian gneiss outcrop near 1010 

Badcall Bay. Note the typical degree of surface weathering (~10 mm) that has removed all glacial 1011 

abrasion marks. p = p-forms. Rucksack for scale.  (B) Weakly preserved glacial striae and polish on 1012 

abraded Lewisian gneiss outcrop in Loch na Mnatha. In this instance, the surface features have been 1013 

protected from weathering by submergence below water; f = foliation in gneiss. Pencil for scale. (C) 1014 

Well preserved glacial striae and friction cracks (fc) on quartzite bedrock. These unusually orientated 1015 

striae (240/060) are from ice being deflected through the col between Arkle and Foinaven. (D) 1016 

Marked contrast between weathered bedrock slabs without striae and unweathered bedrock with 1017 
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well-preserved glacial striae. The unweathered surface was revealed by removal of soil and glacial 1018 

debris. Note the unidirectional striae with orientations 310/130; Torridon sandstone, Handa. Arrows 1019 

in images denote former direction of ice flow. 1020 

 1021 

Fig. 11. (A) Glacio-erosional zone map superimposed on topographic (onshore only) digital surface 1022 

model (NEXTMap Britain DEM). (B) Glacio-erosional zone map superimposed on bedrock geology 1023 

base (BGS, 2011). See Fig. 2 for geological key and placenames. Grid ticks at 5-km intervals. 1024 

 1025 

Fig. 12. Interpretation of palaeo-ice sheet dynamics associated with the Laxfjord ice stream 1026 

tributary, NW Scotland. Glacio-erosional zone map superimposed on digital surface model (with 1027 

compressed colour ramp showing elevation). Arrows show general ice-sheet (basal) flow direction; 1028 

arrow size indicates relative ice velocity. Colour scheme is also a proxy for ice sheet basal 1029 

temperature; coldest colours show areas of frozen bed; warmest colours show highest inferred basal 1030 

temperatures. (Elevation data: NEXTMap Britain DEM.) 1031 

 1032 

Fig. 13. (A) Temperature profile (in oC) of Jakobshavn Isbrae, west Greenland, at right angles to flow. 1033 

Redrawn from Truffer and Echelmeyer (2003). Temperatures are relative to the local pressure 1034 

melting point and thus appear as 0oC for the warmest layer. Height axis (in metres) normalised to 1035 

zero at bed. (B) Cross-profile of Loch Stack trough (at right angles to palaeo-ice flow) showing 1036 

inferred thermal (and rheological) zonation within palaeo-ice-stream tributary; glacio-erosional 1037 

zones also shown (0-4). Same horizontal scale as (A) but 2x vertical scale (values in metres). Note 1038 

absolute ice-sheet thickness in NW Scotland is poorly defined; value has been taken from previous 1039 

modelling experiments with ice streaming invoked (Boulton and Hagdorn, 2006 (1250 m); Hubbard 1040 

et al., 2009 (1000 m)). 1041 



Glaciological interpretation of glacio-erosional zones

Zone Thermal Ice rheology Basal cavities Basal meltwater Inferred relative ice velocity

regime near bed [flow dynamics]

4 warm softest rare / absent rare? accelerating [tributary onset]

[strain heating]

3-4 warm soft absent -> common present fast
a
 [tributary flow]

3 warm soft / transitional  common present moderate to fast  [shear/strain margin?]

2 warm hard / transitional common present moderate 

1 cold to warm hard rare / common rare slow [low shear stress?]

[transitional]

0 cold based hardest absent absent nil [frozen to bed]

a
Note: zone 3-4 velocities probably increased downstream.
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