Oceanic hindcast simulations at high resolution suggest that the Atlantic MOC is bistable

Deshayes, J.; Tréguier, A.-M.; Barnier, B.; Lecointre, A.; Sommer, J. Le; Molines, J.-M.; Penduff, T.; Bourdallé-Badie, R.; Drillet, Y.; Garric, G.; Benshila, R.; Madec, G.; Biastoch, A.; Böning, C.W.; Scheinert, M.; Coward, A.C. ORCID:; Hirschi, J.J.-M.. 2013 Oceanic hindcast simulations at high resolution suggest that the Atlantic MOC is bistable. Geophysical Research Letters, 40 (12). 3069-3073.

Before downloading, please read NORA policies.
grl50534_Deshayes.pdf - Published Version

Download (172kB) | Preview


All climate models predict a freshening of the North Atlantic at high latitude that may induce an abrupt change of the Atlantic Meridional Overturning Circulation (hereafter AMOC) if it resides in the bistable regime, where both a strong and a weak state coexist. The latter remains uncertain as there is no consensus among observations and ocean reanalyses, where the AMOC is bistable, versus most climate models that reproduce a mono-stable strong AMOC. A series of four hindcast simulations of the global ocean at 1/12° resolution, which is presently unique, are used to diagnose freshwater transport by the AMOC in the South Atlantic, an indicator of AMOC bistability. In all simulations, the AMOC resides in the bistable regime: it exports freshwater southward in the South Atlantic, implying a positive salt advection feedback that would act to amplify a decreasing trend in subarctic deep water formation as projected in climate scenarios.

Item Type: Publication - Article
Digital Object Identifier (DOI):
ISSN: 00948276
Date made live: 20 Aug 2013 08:50 +0 (UTC)

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...