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Abstract 9 

Many of the commonly used analytical techniques for assessing the properties of fluvial suspended 10 

particulate matter (SPM) are neither cost-effective nor time-efficient, making them prohibitive to 11 

long-term high-resolution monitoring. We present an in-depth methodology utilising two types of 12 

spectroscopy which, when combined with automatic water samplers, can generate accurate, high-13 

temporal resolution SPM geochemistry data, inexpensively and semi-destructively, directly from 14 

sediment covered filter papers. A combined X-ray fluorescence spectroscopy (XRFS) and diffuse 15 

reflectance infrared Fourier transform spectroscopy (DRIFTS) approach is developed to estimate 16 

concentrations for a range of elements (Al, Ca, Ce, Fe, K, Mg, Mn, Na, P, Si, Ti) and compounds 17 

(organic carbon, Aldithionate, Aloxalate, Fedithionate, and Feoxalate) within SPM trapped on quartz fibre filters 18 

at masses as low as 3 mg. Calibration models with small prediction errors are derived, along with 19 

mass correction factor models to account for variations in retained SPM mass. Spectral pre-processing 20 

methods are shown to enhance the reproducibility of results for some compounds, and the importance 21 

of filter paper selection and homogeneous sample preparation in minimising spectral interference is 22 

emphasized. The geochemical signal from sediment covered filter papers is demonstrated to be time 23 

stable enabling samples to be stored for several weeks prior to analysis. Example results obtained 24 

during a heavy precipitation event in October 2012, demonstrate the methodology presented here has 25 

considerable potential to be utilized for high-resolution monitoring of SPM geochemistry under a 26 

range of in-stream hydrological conditions.  27 
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 29 

1. Introduction 30 

During the past century, intensification of agriculture and extensive urbanisation have resulted in 31 

widespread sediment and nutrient enrichment of environmentally sensitive freshwater environments 32 

(Wilkinson, 2005; Cordell et al., 2009). Sustained high suspended particulate matter (SPM) 33 
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concentrations can cause significant fluvial degradation through the smothering of gravel salmonid 34 

spawning grounds, clogging of fish gills, elevation of turbidity, and abrasive scouring of macrophytes 35 

and periphyton (Bilotta and Brazier, 2008). SPM is also the main vector for the transport of 36 

phosphorus and other pollutants through stream systems (Russell et al., 1998; Bowes et al., 2003), 37 

and therefore enhancing our understanding of the spatial and temporal variations in SPM 38 

geochemistry is essential if sustainable ecosystem functioning is to be achieved.  39 

Previous investigations of SPM have typically used time-integrated samplers (Phillips et al. 2000) as a 40 

way of obtaining sufficiently large volumes of sediment (>10 g) to facilitate detailed analysis (e.g. 41 

Panuska et al., 2011). However, the problem with this technique is that the SPM properties are 42 

integrated over time making them unsuitable for resolving important catchment processes (e.g. Jordan 43 

et al., 2007). An alternative is to use automatic water samplers that can be programmed to capture 44 

samples at defined time intervals during high-flow storm events when SPM transport is greatest (e.g. 45 

Oeurng et al., 2010). Unfortunately, the masses of sediment captured are often too low (<100 mg) for 46 

traditional analysis such as loss-on-ignition (LOI), colorimetry, acid digestion and Inductively 47 

Coupled Plasma (ICP), techniques which also tend to be expensive, time-consuming, and destructive. 48 

Therefore, there is a requirement for an alternative cost-effective and time-efficient technique capable 49 

of dealing with low SPM concentrations that can be used in conjunction with automatic water 50 

samplers to generate high-temporal frequency geochemistry data for a range of hydrological 51 

conditions (Evrard et al., 2011; Guzmán et al., 2013). Two candidates for this role are X-ray 52 

Fluorescence Spectroscopy (XRFS) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy 53 

(DRIFTS). These spectrometers can be calibrated to directly estimate the properties of SPM trapped 54 

on filter papers with minimal prior preparation at masses as low as a few milligrams. Furthermore, 55 

because XRFS is non-destructive, it can be used in conjunction with DRIFTS on a single SPM sample 56 

to generate an array of geochemical and mineralogical data. Several studies have demonstrated the 57 

capability of XRFS (Barnhisel et al., 1969; Cann and Winter, 1971) and infrared spectroscopy 58 

(Martínez-Carreras et al., 2010a; Tremblay et al., 2011) to analyse SPM directly on filter papers. 59 

However, until now there has been no detailed methodology published demonstrating how the two 60 

techniques can be used consecutively to yield a wider range of high-temporal resolution geochemistry 61 

time-series. We therefore present an in-depth methodology for a combined XRFS and DRIFTS 62 

approach which considers the sensitivity of the two approaches to sediment mass retention on filter 63 

papers, methods of sample preparation, homogenisation and storage, and discusses the effects of 64 

spectral pre-processing on calibration model performance.  65 

 66 

2. Methods 67 

2.1 Selecting Filter Papers 68 
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Choosing the appropriate filter papers for spectral analysis is an important first step, since using filters 69 

with a complex chemical structure will increase the risk of spectral ‘noise’ originating from the filter 70 

paper overwhelming the signal derived from the trapped SPM. Traditionally, glass fibre filter papers 71 

made from borosilicate glass are used for the laboratory filtration of stream water samples (e.g. 72 

Oeurng et al., 2011). However, whilst it would still be possible to use these filters after careful 73 

calibration to remove background noise, we opted to use Millipore 100% quartz fibre filter (QFF) 74 

papers (Merck Millipore, Billerica, MA, USA) as their simple chemistry (only Si-O bonds) generates 75 

less spectral interference than typical glass fibres. These QFF papers are traditionally sold as a filter 76 

for air pollution monitoring and therefore only had a particle retention rating for aerosolized Dioctyl 77 

Phthanlate (DOP) particles of 99.998% at 0.3 μm. We therefore tested the average aqueous particle 78 

retention by mixing 25 mg of a streambed sediment sample (Johnson et al., 2005) with 1 litre of Milli-79 

Q water (18.2 MΩ.cm; Merck Millipore, Billerica, MA, USA) and vacuum filtered it through a single 80 

QFF paper. This process was repeated 40 times. The resulting 40 litres of filtrate were bulked together 81 

and centrifuged at 5000 rpm for 15 minutes to concentrate the colloidal particles into a 500 ml 82 

solution. The concentrated filtrate was analysed in a Beckman Coulter LS13320 Laser Diffraction 83 

Particle Size Analyser (Beckman Coulter, CA, USA) with 20 drops of Calgon added and 2 minutes of 84 

sonication (18 W) used to disperse aggregated flocs. Total sediment mass retention was also 85 

determined gravimetrically by weighing all filters after oven drying at 105oC for 2 hours.  86 

  87 

2.2 XRFS Calibration 88 

X-ray fluorescence spectroscopy was chosen as a method for the geochemical analysis of SPM due to 89 

it being a highly accurate, non-destructive and reproducible analytical tool capable of estimating 90 

concentrations of all elements from beryllium to uranium in a sample down to ppm levels (Norrish 91 

and Hutton, 1969). Calibrations were made for a total of 10 major elements (Al, Ca, Fe, K, Mg, Mn, 92 

Na, P, Si, Ti) and the rare earth element cerium (Ce), using 42 randomly selected, certified sediment 93 

standards from various locations to form a global calibration. Cerium was selected due to it being 94 

naturally enriched in phosphorus-bearing apatite minerals and therefore also being enriched in the 95 

inorganic phosphate fertilizers derived from these (Land et al., 1999; Reynard et al., 1999). 25 mg of 96 

each standard was separately mixed into suspension with 1 L of Milli-Q water in a sealed flask and 97 

vacuum filtered through individual QFFs to yield 42 filter paper standards. Dispersing the sediment 98 

this way ensured that each QFF had a homogeneous covering of sediment after filtering, an essential 99 

step because surface roughness, uneven sediment distribution, differing densities and mixtures of 100 

different particle sizes can all produce spectra that deviate from the expected theory making them 101 

difficult to interpret quantitatively (Tiwari et al., 2005; Maruyama et al., 2008). The sediment loaded 102 
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filters were dried at 105oC for 2 hours before being re-weighed to determine the mass of trapped 103 

sediment. 104 

Each sediment covered filter paper was loaded into a wavelength-dispersive XRFS (Bruker S4 105 

Pioneer, Bruker AXS, Germany) and bombarded with short wavelength X-rays for between 100-300 106 

seconds per element. A blank filter paper was also loaded to provide a set of background counts at 107 

each X-ray peak position that could subsequently be subtracted from counts measured on the sediment 108 

covered filters. As the X-rays are emitted, some pass straight through the sample, some are back 109 

scattered by Compton or Rayleigh scattering when photons collide with electrons, whilst the rest is 110 

absorbed by the sediment. This absorbed fraction excites electrons within the sediment resulting in the 111 

ionisation of elemental constituents by ejecting one or multiple electrons from the inner K- and L-112 

orbitals. This destabilises the electron structure causing the outer shells to collapse inwards filling in 113 

the vacancy left by the ejected electrons. The transition of electrons from higher to lower energy 114 

atomic shells releases X-ray fluorescence radiation with wavelengths and energies characteristic of 115 

the orbitals involved and the atoms present within the sample (Bruker, 2008). These fluorescence 116 

spectra were recorded and a mathematical ‘peak search’ technique was employed to find spectral 117 

peaks, whilst a ‘peak match’ procedure determined the elements to which each peak belongs by 118 

referring to a database of reference values (Brouwer, 2003).  119 

Of the 42 prepared standards, 26 were used to develop the calibration model which took the general 120 

form (Brouwer, 2003): 121 

(1) Cx = (Ax + Bx * Ix) *Mx / MCF 122 

where Cx is the estimated concentration of element x, Ax and Bx are the gradient and intercept 123 

determined by linear regression from the reference standards, and Ix is the measured intensity. Mx is 124 

the matrix correction factor which corrects for various effects that impact upon the number of photons 125 

being ejected from a sample (Enzweiler and Vendemiatto, 2004). These include the partial elemental 126 

absorption of X-rays attenuating the resulting fluorescent emission, as well as the enhancement of 127 

emission spectra by fluorescent X-rays of heavy elements stimulating further secondary fluorescence 128 

of lighter elements. Further corrections for Compton matrix scattering and spectral peak line overlaps 129 

(deconvolutions) were applied using the Bruker S4 Pioneer software, reviewed in more detail in 130 

Brouwer (2003). MCF is the mass correction factor which accounts for the inability to obtain exactly 131 

25 mg of SPM (the calibration mass) on each filter paper every time a stream water sample is filtered. 132 

Barnhisel et al. (1969) and Cann and Winter (1971) previously demonstrated that individual mass 133 

correction adjustments are required for each element because the XRFS procedure assumes all 134 

samples are of equal mass. Therefore, deviations between the mass of SPM retained and the mass 135 

used for calibration will strongly impact upon elemental concentrations predicted by XRFS. 136 

Individual MCFs were developed for each element by dividing the estimated percentage concentration 137 
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of four reference standards at a range of masses (3-60 mg) by the percentage concentration at the 138 

calibration mass (Equation 2):  139 

(2) MCF = Cx / CxCM 140 

where Cx is the estimated concentration of element x at any given mass, and CxCM is the concentration 141 

of element x at calibration mass (i.e. 25 mg). This yields MCF fractions with values <1 for sediment 142 

masses below 25 mg and >1 for masses higher than 25 mg. A regression model was then formulated 143 

to explain the relationship between the MCF and sediment mass, from which adjustments can be 144 

made to the estimated concentration by dividing by the appropriate MCF value (Equation 1).  145 

Calibrations were subsequently verified against the remaining 16 independent standards using an 146 

iterative predictive model that works by first predicting element n=1, then n=1, 2, and so on 147 

continuously up to n=11, with the final iteration taken as the elemental composition of the sample as 148 

this accounts for all of the various aforementioned matrix interactions between each element 149 

(Brouwer, 2003). 150 

 151 

2.3 DRIFTS Calibration  152 

2.3.1 Sample Selection 153 

Alongside XRFS, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is proposed 154 

as a complementary, semi-destructive, analytical technique capable of determining concentrations of 155 

various compounds present within SPM. Covalently bonded molecules have a characteristic 156 

rotational-vibrational structure unique to the mass of the atoms and strength of the bonding between 157 

them. DRIFTS exploits this by targeting a beam of multi-frequency mid-infrared (4000-400 cm-1) 158 

light onto a ground SPM sample, where upon infrared light that matches the resonant frequency of the 159 

molecular bonds is absorbed producing a characteristic absorption spectrum at a specific wavelength 160 

unique to the vibrational frequency of that particular bond. The remainder of the light is either 161 

reflected or refracted, with only the diffusely reflected fraction utilised in the DRIFTS procedure 162 

(Tremblay and Gagné, 2002).  163 

Numerous studies have already demonstrated the effectiveness of infrared spectroscopy in the 164 

geochemical analysis of both soils (Viscarra Rossel et al., 2006; Rawlins, 2011b; Stumpe et al., 2011) 165 

and stream sediments (Poulenard et al., 2009 & 2012; Martínez-Carreras et al., 2010a,b; Rawlins, 166 

2011a). The advantage here being it can be used directly on SPM covered filter papers after the 167 

elemental composition has been derived by XRFS. Calibrations were made for a total of 5 compounds 168 

(organic carbon, Aldithionate, Aloxalate, Fedithionate, and Feoxalate) selected based on the well documented 169 

organo-mineral associations that occur within soils and stream sediments (e.g. Evans et al., 2004; 170 
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Wagai et al., 2009; Hartikainen et al., 2010). However, in contrast to XRFS, which can be accurately 171 

calibrated using globally derived certified standards, Minasny et al. (2009) demonstrated that the 172 

regional transferability of mid-infrared spectra measurements is relatively weak. Therefore, local 173 

calibrations had to be derived using a selection of 92 dry ground soils (Rawlins, 2011b) and 174 

streambed sediment samples (Johnson et al., 2005) from the River Blackwater catchment in Norfolk, 175 

UK (52o47’N, 1o07’E). This site was chosen as part of a wider Department for Environment, Food and 176 

Rural Affairs (DEFRA) funded River Wensum Demonstration Test Catchment initiative (Wensum 177 

Alliance, 2012), which aims to investigate how on-farm mitigation measures can reduce diffuse water 178 

pollution whilst maintaining food production capacity. Because the soil types within the catchment 179 

range from sandy and chalky boulder clays in the west, to sands and gravels in the east (Rawlins, 180 

2011b), a reasonable degree of geochemical and mineralogical variability was provided for 181 

calibration.  182 

Organic carbon (OC) contents for each calibration sample were derived gravimetrically following 183 

combustion of 1 g of dry ground sediment at 450oC for 8 hours, with OC taken to be 58% of the LOI 184 

(Broadbent, 1953). Crystalline Fe and Al oxyhydroxides concentrations were determined via 185 

dithionite extraction (McKeague and Day, 1966) by weighing out 1 g of sediment into a 30 ml 186 

centrifuge tube along with 20 ml of 25% (w/v) sodium citrate (Na3C6H5O7.2H2O) and 5 ml of 10% 187 

(w/v) sodium dithionite (NaS2O4) before shaking overnight. Samples were centrifuged at 2500 rpm 188 

for 20 minutes before a 15 ml aliquot of the supernatant was extracted and filtered through a 0.45 µm 189 

Whatman membrane syringe filter prior to ICP-AES analysis to determine the concentrations of 190 

dithionate extractable iron (Fedi) and aluminium (Aldi). Amorphous iron and aluminium mineral phase 191 

concentrations were determined via oxalate extraction by adding 25 ml of ammonium oxalate (0.2 M; 192 

C2H8N2O4) and oxalic acid (H2C2O4 – 15.76 g l-1) to 1.5 g of sediment in a centrifuge tube. The 193 

resulting mixture was shaken for 2 hours and processed as for the dithionite extraction to yield 194 

concentrations of oxalate extractable iron (Feox) and aluminium (Alox). 195 

 196 

2.3.2 Sample Preparation  197 

Once OC and oxyhydroxide concentrations had been determined for all 92 calibration samples, 25 mg 198 

of each sample was transferred onto individual QFF papers using the same procedure as for the XRFS 199 

calibration. Unlike infrared transparent potassium bromide (KBr), which is traditionally used as the 200 

sole background matrix for DRIFTS analysis not on filter papers, quartz fibres produce strong 201 

absorption features in the region 1200-1000 cm-1 (Masserschmidt et al., 1999). This can reduce 202 

infrared beam penetration depth to as little as 10 µm meaning only sediment at the sample cup surface 203 

will be analysed and spectral band intensities will be suppressed. Consequently, the way in which the 204 

absorbing matrix material is prepared will affect the degree of scatter, the amount of Fresnel 205 
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reflectance, and the interaction between sediment and infrared radiation making it easy to misinterpret 206 

changes in the spectra due to matrix effects as genuine changes in the sediment chemical composition 207 

(Brimmer and Griffiths, 1986). There were therefore four key preparation factors that had to be 208 

considered in order to obtain good quality reproducible spectra with a high degree of interpretational 209 

accuracy (Pike Technologies, 2011): 210 

1- Particle size: large particles >50 µm result in major Fresnel reflection off particle surfaces 211 

which increases scattering and yields noisy spectra with wide bandwidths and low absorption 212 

intensities (Brimmer and Griffiths, 1986).  213 

2- Packing: samples were loosely and evenly packed into cups every time to both maximise 214 

infrared beam penetration and to minimise spectral distortions and irregularities caused by 215 

Fresnel reflections off compacted sample surfaces. 216 

3- Grinding: the degree of grinding can affect spectral properties by destroying chemical bonds 217 

and thereby reducing the specific light absorption of those molecules (Stumpe et al., 2011).  218 

4- Homogeneity: spectra from non-homogeneous samples will be severely affected by matrix 219 

scattering causing spectra to lose crucial reproducibility and making them difficult to 220 

quantitatively interpret.  221 

With these points in mind, each sediment covered filter was uniformly ground for 50 seconds into a 222 

fine homogeneous powder using a ShakIR steel ball mill (Pike Technologies, Madison, WI, USA). A 223 

small amount of KBr was added to act as an infrared transmitting matrix and an effective abrasive 224 

agent helping to reduce particle sizes. The resulting powders were lightly hand packed into steel 225 

sample cup holders and scanned 40 times at 4 cm-1 resolution across the wave-number range 4000-226 

400 cm-1 in a BIO-RAD Excalibur Series FTS-3000 FTIR (Cambridge, MA, USA) fitted with an 227 

AutoDiffTM automated diffuse reflectance accessory (Pike Technologies, Madison, WI, USA). Sample 228 

cups were rotated through 90o after the first scan and rescanned another 40 times so that spectra could 229 

be averaged to offset any potential spectral reflectance noise generated by the orientation of the 230 

powdered particles. A background spectrum of the QFF and KBr matrix was also collected and 231 

subtracted from all subsequent sample scans to isolate the sediment signal using the Resolutions Pro 232 

spectral processing software (Agilent Technologies, CA, USA).  233 

 234 

2.3.3 Chemometrics 235 

Having carefully prepared and scanned all samples, a multivariate partial least squares (PLS) 236 

regression model with leave-one-out (LOO) cross-validation was developed using the ‘pls’ package 237 

(Mevik et al., 2011) in the R environment (R Development Core Team, 2012). Such multivariate 238 

model calibration is beneficial over univariate regression as the wavelength at which the signal is 239 
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present does not have to be generated exclusively by the target compound. Instead, PLS regression 240 

models exploit the fact that different compounds have different absorbance at a range of wavelengths 241 

which can then be used to decipher information from multiple overlapping spectral bands without 242 

prior band assignment (Alaoui et al., 2011). Because concentration estimates derived from DRIFTS 243 

are a reflection of the relative proportion of ground SPM to filter paper within the sample cup, mass 244 

correction factors again had to be developed in the same way as for XRFS.  245 

 246 

2.3.4 Spectral Pre-processing  247 

A potential limitation of using DRIFTS on filter papers is the inability to obtain highly reproducible 248 

spectra when considerable noise is generated from the quartz fibre matrix. Four methods of spectral 249 

pre-processing were therefore assessed to determine whether applying certain filters or corrections 250 

prior to developing the PLS regression would enhance model strength, and more specifically, whether 251 

it would enhance the reproducibility of the resulting concentration estimates. These four methods 252 

were: i) no pre-processing, ii) mean centring and 15 point first order Savitzky-Golay filtering 253 

(Savitzky and Golay, 1964; Martínez-Carreras et al., 2010a), iii) Multiplicative Scatter Correction 254 

(MSC), and iv) mean centring, filtering, and MSC (Figure 1). Savitzky-Golay filtering was applied 255 

using the ‘signal’ package in R (Short, 2011) to reduce high frequency variations associated with 256 

matrix noise whilst still preserving the line shape and lower frequency trends associated with the 257 

sediment signal. Prior to applying the low-pass filter, the spectra were mean centred such that they all 258 

had a common baseline, thereby removing any potential drift effects of the spectrometer. MSC was 259 

applied using the ‘pls’ package which, theoretically, distinguishes between and separates absorption 260 

features of the actual sediment from the random light-scattering noise generated by the background 261 

matrix (Martens et al., 2003). 262 

 263 

2.4 Temporal Degradation  264 

An advantage of utilising both XRFS and DRIFTS directly on filter papers is that, once dried, large 265 

numbers of samples from automatic samplers can be stored for an extended period of time prior to 266 

analysis, thereby removing the need for analytical facilities to be immediately available once the 267 

stream water samples have been returned to the laboratory. Whilst it is known that oven dried 268 

sediment samples can be stored for many months, or even years, prior to elemental analysis without 269 

degrading (e.g. USEPA, 2001), we decided to test whether this remains the case when only a few 270 

milligrams of sediment is distributed across a filter paper. The reason being that a small mass of 271 

sediment exposed on the relatively large surface area of the filter paper could make the samples more 272 
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susceptible to biological or chemical degradation than traditionally stored bulk sediment samples with 273 

a lower surface area to mass ratio. For XRFS, this was tested by re-analysing three of the calibration 274 

standards at 39, 68, 80, 94, 109 and 122 days since the filters were initially prepared. The results for 275 

the three standards were then averaged together and the concentrations expressed relative to the day 276 

the standards were prepared. During this time, the oven dried sediment-covered filters were 277 

individually stored at room temperature in a sealed air-tight box with silica gel desiccant beads. For 278 

DRIFTS it was not possible to re-analyse the initial calibration samples as, once ground, the resulting 279 

powders readily absorb water which alters the resulting spectra. As such, two new calibration samples 280 

were prepared at 49, 42, 29, 22 and 4 days prior to DRIFTS analysis. The results where then averaged 281 

to offset any variability in concentration estimates arising from slight differences in the preparation of 282 

the ten new standards. Once prepared, these standards were stored in a dark cupboard at room 283 

temperature in individual air-tight plastic bags. 284 

 285 

3. Results and Discussion 286 

3.1 Filter Papers 287 

The bulked particle size distribution of the filtrate revealed an average aqueous particle retention 288 

rating of 99.26% at 0.45 µm (99.04% at 0.7 µm) for the forty QFF papers (Figure 2), with an average 289 

mass retention of 94.5 + 5.2%. This confirms the suitability of these filters for SPM investigation with 290 

respect to their ability to retain nearly all clay and silt-sized fractions from suspension. Importantly, 291 

this includes particulates at 0.7 μm, operationally defined as the threshold between SPM (0.7-63 µm) 292 

and dissolved constituents (<0.7 μm), as well at 0.45 µm which marks the transition between 293 

dissolved and particulate P fractions. Very fine colloidal material (1-100 nm) may still pass through, 294 

although as the pores become blocked by larger particles, retention of colloids will be enhanced. 295 

 296 

3.2 XRFS  297 

The XRFS calibration results are displayed in Figure 3 as the actual versus predicted percentage 298 

concentrations of all 11 elements. Of the 26 prepared calibration standards, a few provided weak 299 

correlations and were therefore rejected from the final regression model. In most cases, rejected 300 

standards had either visibly uneven sediment distribution or poor sediment retention (i.e. filters had 301 

retained less than 25 mg of sediment), with some elements (e.g. Fe) more affected by this 302 

inhomogeneity in sample preparation than others. All calibrations, derived from between 13 to 25 303 

standards, are statistically significant (P<0.001) with adjusted variance explained statistics ranging 304 

from 93.4% for Si to 99.7% for K (Table 1). All validation estimates are also statistically significant 305 
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(p<0.001), with adjusted variance explained statistics ranging from 63.9% for Si to 95.9% for Ca. The 306 

weaker validation shown for Si arises from the imperfect removal of the silicon-rich QFF paper 307 

background, and as such, caution needs to be exercised when using the Si data. As is typical with 308 

regressions of this type, the uncertainty around the calibration increases towards the upper end of the 309 

concentration range where there are fewer reference standards, particularly for both Mn and P where 310 

validation samples deviate substantially from expected values. Despite this, the 95% confidence 311 

intervals are relatively narrow and the majority of the validation samples fall within a small range of 312 

the calibration line.  313 

For the mass correction factors (MCFs), strong, positive logarithmic (Al, Mg, Na, P) and power law 314 

(Ca, Ce, Fe, K, Ti) relationships were established for 9 out of 11 elements, being strongest for Ca (R2 315 

= 0.992) and weakest for Ce (R2 = 0.934) (Figure 4). The non-linearity between sediment mass and 316 

the MCF arises because as the sediment mass on the filter paper increases, the intensity of fluorescent 317 

X-ray generation from each element per milligram of sediment declines due to an increasing influence 318 

of matrix attenuation. As such, increases in sediment at small masses have a greater impact on 319 

fluorescent X-ray generation than an increase in sediment at large masses. In contrast, Si exhibits a 320 

strong negative logarithmic relationship with increasing sediment mass which reflects the fact that 321 

smaller sediment masses are associated with increased X-ray penetration depth and therefore 322 

enhanced fluorescence generation originating from the QFF. For Mn, the relationship between 323 

sediment mass and the MCF is much weaker and best fitted by a linear relationship. It is not clear why 324 

the Mn MCF regression performs poorly by comparison with the other elements, but it may relate to 325 

stronger matrix interactions with other elements. The results demonstrate that variations in SPM mass 326 

can be corrected by simple regression models.  327 

 328 

3.3 DRIFTS  329 

The impact of applying various spectral pre-processing techniques to the DRIFTS spectra can be seen 330 

in Figure 5, which shows the concentration estimates for OC, Aldi, and Fedi in six batches of the same 331 

sediment standard. No plots are shown for either Alox or Feox as these exhibited near identical patterns 332 

to Aldi and Fedi respectively. Both no pre-processing (NPP) and mean centring and Savitzky-Golay 333 

filtering (MCSG) methods yield significantly higher reproducibility than multiplicative scatter 334 

correction (MSC) or a combination of all methods (ALL). Whilst several authors have used MSC as a 335 

pre-processing tool in infrared spectroscopy (e.g. Vogel et al., 2008; Martínez-Carreras et al., 2010), 336 

the simplicity of the technique means that it can erroneously remove spectral signals derived from the 337 

sediment chemical bonds, thereby yielding poorly representative spectra that worsen the multivariate 338 

model calibration, as has occurred here. For both OC, and in particular the iron compounds, MCSG 339 

yields higher reproducibility and was therefore chosen as the spectral pre-processing method for these 340 
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compounds. For both Aldi and Alox, there was little difference in the performance of NPP and MCSG, 341 

however NPP yielded a stronger calibration model (lower root mean squared error of prediction 342 

(RMSEP)), negating the need to pre-process the spectra for aluminium compounds. Also shown is the 343 

reproducibility of spectra prepared by hand grinding the filter papers in an agate pestle and mortar as 344 

opposed to the ShakIR ball mill. The wide variability in concentration estimates emphasises the 345 

importance of producing homogeneously ground and mixed sample powders prior to analysis if 346 

precise results are to be obtained, something that manual hand grinding is unable to achieve. 347 

The DRIFT model calibrations are displayed (Figure 6) as measured versus predicted concentrations 348 

for OC, Aldi, Alox, Fedi, and Feox with leave-one-out cross validation. Rather than allow the PLS model 349 

to be run over the full spectrum (4000-400 cm-1), discrete spectral regions were selected for each 350 

compound to enhance model calibrations. For OC (3975-1300 cm-1) this included a very strong 351 

absorption feature in a band around 2950-2845 cm-1 caused by symmetric and asymmetric stretching 352 

and vibration of various aliphatic and aromatic C-H bonds, as well as bands around 1300-1125 cm-1 353 

associated with ester, ether and phenol groups, and at 2035-1975 cm-1 due to aromatic rings (Alaoui et 354 

al., 2011; Tremblay et al., 2011). For Fedi (3704-3189 cm-1) and Feox (1727-1320 cm-1) this included 355 

numerous absorption features in the regions 2500-1666 cm-1 and 3800-3200 cm-1 associated with iron 356 

bearing minerals such as hematite, maghemite, lepidocrocite, goethite, and magnetite (Namduri and 357 

Nasrazandani, 2008). For Aldi (3903-2202 cm-1) and Alox (3849-2879 cm-1) the major absorption 358 

features occur in a band around 3800-3200 cm-1 associated with the stretching of O-H bonds in 359 

aluminosilicates (Tremblay et al., 2011). Although other relevant absorption features are known to 360 

occur in the region 1200-400 cm-1, this band was avoided because it is dominated by matrix noise 361 

from the QFF that make quantitative interpretation impossible. The optimum number of principal 362 

model components selected for each calibration (n= 7-10) was based on the lowest achievable 363 

RMSEP following leave-one-out cross-validation. All five calibrations are statistically significant, 364 

with variance explained statistics for the cross-validated models ranging from 74.6% for Alox to 365 

96.6% for OC (Table 2). However, the limited number of high Fedi and Feox concentration standards 366 

does increase model uncertainly at larger concentrations. 367 

Strong linear regression MCF models with narrow confidence intervals have been developed for OC 368 

(R2 = 0.935), Aldi (R
2 = 0.918), Fedi (R

2 = 0.925) and Feox (R
2 = 0.884) (Figure 7). As with the XRFS, 369 

uncertainty increases towards the extremes of the concentration range. A weaker association was 370 

established between Alox and sediment mass (R2 = 0.860) that is best fitted by a power law 371 

relationship. This likely arises due to the weaker PLS calibration model derived for Alox, and as such, 372 

there is greater uncertainty in adjusting for retained SPM mass. Despite this, the strong regression 373 

models developed here demonstrate the ability of the DRIFTS MCF values to adjust for fluctuating 374 

in-stream SPM concentrations.      375 
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 376 

3.4 Temporal Stability 377 

Relative concentrations for the XRFS standards vary by less than 5% for all elements expect Mn 378 

during the 122-day period over which they were analysed (Figure 8). This level of variability is within 379 

the range of the calibration uncertainty, which, along with the absence of any apparent temporal 380 

trends in the data, strongly suggests the filter paper standards do not degrade over time. The largest 381 

amount of temporal variability occurs for Ce and P, although this reflects small changes in the 382 

estimated actual concentration of these low abundance elements (Ce = ~0.0062% and P = ~0.068%) 383 

having a comparatively large impact on their estimated relative concentrations. For DRIFTS, relative 384 

concentrations vary by less than 8.5% during the 49-day period over which they were analysed, with 385 

no longer term trends apparent in the data. Although temporal variability is greater than observed for 386 

the XRFS, it is within the range of calibration uncertainty. The higher DRIFTS variability also reflects 387 

the fact that the same calibration samples are not being analysed each time, and as such, some noise is 388 

introduced by sample preparation. We can therefore conclude that once oven dried at 105oC for 2 389 

hours, sediment covered filters can be reliably stored at room temperature in an air-tight environment 390 

for several months without risk of degradation.   391 

 392 

3.5 Example Application 393 

The effectiveness of these two techniques is demonstrated using data from a heavy precipitation event 394 

in October 2012 within the 20 km2 lowland, intensive arable, River Blackwater catchment, Norfolk 395 

(Figure 9). ISCO automatic water samplers (Teledyne ISCO, Lincoln, NE) were activated to sample 1 396 

litre of water every hour for 24 hours at the beginning of a 10 hour period during which 10.6 mm of 397 

precipitation was recorded. The storm event is characterised by increases in the concentrations of 398 

SPM, clay associated elements (e.g. Al, Fe, Mg, K), and organic carbon, coupled with a sharp decline 399 

in the concentration of calcium. These changes in geochemistry, which begin ~6 hours after the onset 400 

of precipitation, occur approximately concurrently with the rise in stage. As the rainfall event ends 401 

these trends reverse, with declines in stage, clay associated elements and OC combined with increases 402 

in calcium. These temporal patterns in geochemistry reflect spatial changes in SPM source areas 403 

within the catchment. The catchment geology is characterised by the Upper Cretaceous Chalk 404 

formation overlain by sandy and chalky boulder clays of the Quaternary Sheringham Cliffs Formation 405 

which become less weathered with depth. Before and after the event, SPM is rich in calcium 406 

indicating sediment is predominantly derived from the deeper less-weathered subsoils exposed in 407 

eroded stream channel banks. In contrast, during heavy rainfall, the generation of overland flow, 408 

particularly from road runoff, carries large quantities of highly weathered, calcium-depleted, clay-rich 409 
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topsoil into the stream. The identification of these temporal fluctuations in SPM geochemistry 410 

exemplifies the advantage of using a combined XRFS/DRIFTS technique with automatic water 411 

samplers, as such results would be impossible to obtain using time-integrated samplers. Note, the 412 

apparent large uncertainties around Mg and Na measurements are a reflection of the low 413 

concentrations of these elements in the River Blackwater relative to the calibration standards.      414 

 415 

3.6 Experimental Limitations 416 

Despite the strong calibration results for both XRFS and DRIFTS, there are limitations to analysing 417 

SPM geochemistry directly on filter papers. Principally, when using time-integrated samplers, a 418 

sufficiently large mass of SPM (>10g) can be captured, sieved and fractionated, thereby enabling the 419 

importance of the colloidal, clay, silt and sand fractions, as well as algal and detrital material, to be 420 

assessed independently. Clearly, when analysing masses of 25 mg in-situ on filter papers such size 421 

fractionation is impossible. However, given that the majority of SPM is <63 µm in diameter 422 

(averaging 86% by volume in the River Blackwater under both high and low flow conditions), this is 423 

not a major analytical limitation. Additionally, unlike XRFS which is a truly non-destructive 424 

analytical technique, the DRIFTS procedure outlined here is best described as semi-destructive. 425 

Whilst the grinding of SPM covered QFFs does not affect the chemistry of the sample, which can still 426 

be analysed by other laboratory methods, the fact that it is now in powdered form does prevent the 427 

samples from being reanalysed by XRFS using the same procedure. Finally, in selecting DRIFTS 428 

standards spatially restricted to the River Blackwater catchment, the resulting calibrations are 429 

regionally specific to this particular lowland intensive arable environment. To apply this technique 430 

further afield would require the addition of samples from catchments local to the study region 431 

(Minasny et al., 2009). 432 

 433 

4. Conclusions 434 

Many commonly used methods for determining the properties of suspended particulate matter (SPM), 435 

both in the field (e.g. time-integrated samplers) and in the laboratory (e.g. ICP, LOI), are neither cost-436 

effective nor time-efficient, making them prohibitive for long-term high-resolution monitoring. We 437 

have demonstrated an alternative method using two types of spectroscopy applied directly to sediment 438 

covered filter papers to quickly generate accurate geochemistry data without altering the SPM 439 

chemistry. By utilising a combination of XRFS and DRIFTS, it is possible to obtain concentration 440 

estimates for a range of elements (Al, Ca, Ce, Fe, K, Mg, Mn, Na, P, Si, Ti) and compounds (organic 441 

carbon, Aldi, Alox, Fedi, and Feox) from a single SPM covered filter paper at masses as low as a few 442 
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milligrams, thereby removing the requirement for the collection of large sample volumes in the field. 443 

When combined with automatic water samplers, large numbers of SPM covered filter paper discs can 444 

be cheaply produced via simple vacuum filtering, thereby enabling hydrologically dynamic storm 445 

events to be monitored in high-resolution. We have demonstrated that QFF papers are appropriate for 446 

this type of analysis by minimising spectral interference and retaining nearly all SPM greater than 447 

0.45 µm. Homogeneous sample preparation was shown to be essential if accurate and reproducible 448 

results are to be obtained, whilst local DRIFTS calibration is necessary for the technique to be applied 449 

in other catchments due to the weak regional transferability of mid-infrared spectra measurements. 450 

Pre-processing the infrared spectra by mean centring and Savitzky-Golay filtering prior to developing 451 

PLS regression models proved to be the most effective way to generate reproducible concentration 452 

estimates for both OC and iron oxyhydroxide complexes, whilst aluminium compounds did not 453 

require processing. The development of property-specific mass correction factor (MCF) models 454 

enables variations in retained SPM mass from that used during calibration to be corrected for by 455 

simple regression. The temporal stability of filter paper standards prepared up to 122 days prior to 456 

analysis indicates that it is possible to store batches of sediment covered filters for several months if 457 

necessary. The example application presented here demonstrates considerable potential for a 458 

combined XRFS and DRIFTS approach to be used in conjunction with automatic water samplers as a 459 

tool for the high-resolution analysis of SPM geochemistry in a range of fluvial systems.  460 
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TABLES: 663 

 664 

Table 1: Summary XRFS calibration and validation statistics for the percentage concentration of 11 elements (Al, Ca, Ce, 665 
Fe, K, Mg, Mn, Na, P, Si, Ti) in 42 certified sediment standards determined directly on filter papers. n standards refer to 666 
the fraction of available standards used. SE is the standard error 667 

  Calibration    Validation 

Element  n standards  Adjusted R
2 

SE (%)    n standards  Adjusted R
2

SE (%)  P‐value 

Al  22/26  0.971  0.494 16/16 0.941 1.290  3.5e
‐10

Ca   25/26  0.996  0.418 16/16 0.959 0.627  2.2e
‐11

Ce  24/26  0.966  0.001 14/16 0.901 0.001  1.3e
‐7

Fe  13/26  0.994  0.264 16/16 0.923 0.943  2.1e
‐9

K  25/26  0.997  0.106 16/16 0.958 0.479  3.0e
11

Mg  19/26  0.988  0.345 15/16 0.707 0.320  5.1e
‐5

Mn  22/26  0.951  0.019 14/16 0.749 0.076  3.8e
‐5

Na  20/26  0.985  0.143 16/16 0.978 0.196  3.1e
‐13

P  22/26  0.947  0.012 15/16 0.818 0.073  2.2e
‐6

Si  18/26  0.934  2.128 16/16 0.639 3.564  1.2e
‐4

Ti  16/26  0.996  0.038 16/16 0.840 0.097  3.6e
‐7

 668 

 669 

Table 2: Summary DRIFTS partial least squares regression statistics for concentrations of organic carbon, Aldi, Alox, Fedi, 670 
and  Feox  in  calibration  samples determined directly on  filter papers.  n  PCs  are  the number of principle  components 671 
selected, RMSEP is the Root Mean Square Error of Prediction, MC is mean centred, and SG is Savitzky‐Golay smoothed. 672 

Compound  n 
standards 

Pre‐
processing 

Spectral Region 
(cm

‐1
) 

n  PCs Calibration  
R
2  

Calibration 
RMSEP  

 
Validation 

R
2
   

Validation 
RMSEP 

Organic Carbon 
(%) 

50 
 

MC, SG  3975‐1300 10 0.990 0.326 
 

0.966  0.589 
 

Aldi (mg/kg) 
 

59  None  3903‐2202 10 0.978 67.46  
 

0.842  179.97 
 

Alox (mg/kg) 
 

62  None  3849‐2879 10 0.993 33.79  
 

0.746  211.51 
 

Fedi (mg/kg)  57  MC, SG  3704‐3189 10 0.971 970.20 
 

0.893  1865.10
 

Feox (mg/kg) 
 

51  MC, SG  1727‐1320 7 0.945 536.90   0.823  956.90

 673 
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 684 

Figure 1: Mid-infrared (4000-400 cm-1) DRIFT spectra for 92 River Blackwater catchment standards showing 685 

the impact of various spectral pre-processing methods on the resulting spectral shape. (a) No pre-processing; (b) 686 

mean centred and Savitzky-Golay smoothed; (c) multiplicative scatter corrected; (d) multiplicative scatter 687 

corrected, mean centred, and Savitzky-Golay smoothed. 688 

 689 

 690 
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 691 

Figure 2: Average particle size distribution of the Millipore quartz fibre filtrate, shown alongside the unfiltered 692 

streambed sediment sample. Inset shows a scanning electron microscope (SEM) image of a Millipore quartz 693 

fibre filter paper at 500 times magnification, highlighting the random structure of the quartz fibres. 694 

 695 
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 696 

Figure 3: XRFS calibration and validation plots for the percentage concentration of 11 elements (Al, Ca, Ce, Fe, 697 

K, Mg, Mn, Na, P, Si, Ti) in 42 sediment standards. 95% confidence intervals refer to the regression calibration. 698 

Adjusted R2 and standard error (SE) statistics refer to the validation dataset. 699 

 700 

 701 

 702 
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 703 

Figure 4: XRFS mass correction factor (MCF) calibration plots for 11 elements (Al, Ca, Ce, Fe, K, Mg, Mn, Na, 704 

P, Si, Ti) in four certified sediment standards of varying mass. 705 

 706 
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 707 

Figure 5: Box-plots demonstrating the impact of various DRIFTS spectral pre-processing methods on the 708 

reproducibility of concentration estimates for organic carbon, Aldi, and Fedi in six batches of a calibration 709 

sample. HG are hand ground samples with no pre-processing; the others are ShakIR ball mill ground samples, 710 

whereby NPP is no pre-processing; MCSG is mean centred and Savitzky-Golay filtered; MSC is multiplicative 711 

scatter correction; ALL is MCSG and MSC combined. The solid black line is the measured concentration in the 712 

calibration sample, the solid line at the centre of the box is the median, the top and bottom of the boxes represent 713 

the interquartile range, and the whiskers are the maximum and minimum values. 714 

 715 

 716 

 717 

Figure 6: DRIFTS partial least squares calibration plots with leave-one-out (LOO) cross validation for organic 718 

carbon, Aldi, Alox, Fedi, and Feox. 719 
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 720 

Figure 7: DRIFTS mass correction factor (MCF) calibration plots for five compounds (organic carbon, Aldi, 721 

Alox, Fedi, Feox) in four calibration samples of varying mass. 722 

 723 

 724 

 725 

Figure 8: Time series plots showing the relative geochemical concentrations in 16 calibration samples against 726 

the number of days between filter paper preparation and analysis. XRFS concentrations are expressed relative to 727 

the day the filter paper standards were prepared, whilst DRIFTS concentrations are expressed against filter 728 

paper standards prepared four days prior to analysis. 729 

 730 

 731 
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 732 

Figure 9: Time series plot demonstrating the effectiveness of the XRFS and DRIFTS procedures in monitoring 733 

the temporal variability of SPM geochemistry in the River Blackwater during a heavy rainfall event in October 734 

2012. Points relate to the times automatic water samplers captured samples. Shading represents the 95% 735 

confidence intervals based on calibration uncertainty.  736 
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