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Foreword 
This report is the published product of a study by the British Geological Survey (BGS) produced 
as a contribution to EU Framework 6 STREP project TRANSFER Work Package 1. 
TRANSFER (Tsunami Risk and Strategies for the European Region) is a project examining the 
tsunami processes in the European area to assess the tsunami hazard, vulnerability and risk 
assessment, and to identifying how the best strategies to reduce tsunami risk can be delivered to 
local communities and civil defence agencies. This catalogue attempts to list tsunami events and 
events previously reported as possible tsunamis detected around the coast of the UK during the 
Holocene. It includes events detected by their geological evidence, human observations or by 
measurements recorded by tidal gauges. 
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1 Introduction 
It is often thought that as the UK is located on a passive continental margin it is not subjected to 
geohazards usually associated with active margins. One of the most dramatic and unpredictable 
of marine geohazards are tsunamis. They are translational waves that travel at great speed in 
deepwater but as they approach the coastline and enter shallow water the wave slows down but 
increases dramatically in height. When they strike the coast they can be very destructive, both in 
their initial impact and as they withdraw sucking any loose material out to sea.   
 
Any tsunami starts with the rapid displacement of water volume. Therefore, for a tsunami to 
occur, some source is required that causes such a displacement. This can be one of three things: 

• A sudden vertical movement of the sea floor as the result of faulting; 
• Sudden movement of a large amount of material underwater, as in an underwater 
landslide; 
• A large amount of material entering the sea rapidly. 

The first case is mostly restricted to earthquakes that cause fault rupture (vertical or with a 
vertical component) extending to the sea bed. It is also possible for blind thrust faulting to create 
folds or ridges at the free surface, even when the fault itself does not extend to the surface, and 
this could have a similar effect. In the second case, underwater landslides may be triggered by 
earthquakes; even by moderate earthquakes if the slope is sufficiently unstable. However it is 
possible that they may be triggered by other events such as the dissociation of gas hydrates 
(Kvenvolden, 1988), or underwater volcanic eruptions where the material could be quite variable 
e.g. lava, hot waters or gas. In the third case, the most probable circumstance is a large terrestrial 
landslide that enters the sea (volcanic slope collapse, Coastal landslide or cliff fall being a 
possible cause). An alternative cause would be the impact of a large asteroid, but asteroid 
impacts of sufficient magnitude are extremely rare even on a geological time scale. 
 
A recent study for the Department for Environment Food and Rural Affairs (DEFRA), (Kerridge 
et al., 2005) showed that although the risks of a tsunami striking the coasts of the UK are very 
low, they can not be ignored. Even if the likely wave heights are comparable to those of typical 
storm surges and therefore covered in many places by flood defence infrastructures, a tsunami 
wave could occur on top of a storm surge and therefore have the potential to exceed defences. 
Also, if a tsunami struck when conditions were calm communities would not be as prepared as 
they are when a storm had been building up.  

The most significant tsunami to strike Europe in modern times occurred in 1755 when the wave 
caused much devastation to the coasts of Portugal, Spain and Morocco. The wave also struck the 
southwestern parts of the British Isles with local maximum run-ups of 2-3m in the Scilly Isles 
and in Cornwall. Tsunamis generated by earthquakes in the same area west of the Straits of 
Gibraltar of a lesser magnitude have caused much smaller run ups in the UK. The extensive 
continental shelf around the UK slows down such waves. Studies in SW Iberia indicate that 
similar events occur with a frequency of 1000-2000 years (Luque et al., 2001). Therefore there is 
a possibility that a prehistoric tsunami could have struck the southwestern part of the UK. 
 
About 8200 years ago the UK was affected by a tsunami generated by a massive submarine 
landslide off the coast of Norway. Run-ups varied from a few metres in southeast Scotland to 
more than 20m in Shetland. Studies have shown that this slide, the Storegga Slide, is just the 
latest of several megaslides to have affected the continental margin over the last half million 
years. The geological model indicates that another glacial period will be required to allow the 
build out of the volume of sediment needed for failure again in the Storegga area (Solheim et al., 
2005). 
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2 Evidence for tsunamis 

2.1 TSUNAMI DEPOSITS 
When a tsunami wave strikes a coastline it is often heavily laden with sediment entrained from 
the seafloor. Tsunami waves typically disturb the seafloor at greater water depths than storm 
waves and their energy will move material into suspension that is not normally disturbed. When 
the wave strikes the coast and subsequently withdraws it often leaves behind a layer of the 
entrained sediment.  

Sediments have been identified associated with the Holocene Storegga Slide tsunami along the 
coasts of northern UK and the 1755 Lisbon earthquake tsunami in the Scilly Isles (Foster et al., 
1991). These can often be recognized as a thin landward tapering horizon that includes marine 
material (e.g. marine microfossils) within sediments deposited above sealevel, such as lacustrine 
or peat units. The horizon may include ripped-up clasts of the surrounding material and boulders 
possibly source from offshore. 

Physical evidence of a tsunami event provides an opportunity to date events. The Holocene 
Storegga Slide tsunami has been dated by radiocarbon dating of sediments that bracket the event 
(Smith et al., 2004) or of transported material contained in the deposit. In the later case, dating 
moss still containing chlorophyll provides good evidence for an age of material alive when the 
tsunami struck (Bondevik, 2002). Examination of entrained material has even suggested the 
season of the event (Dawson and Smith, 2000; Bondevik et al., 1997). Deposits of the Lisbon 
tsunami in the Scilly Isles have been dated by OSL methods supporting the historic age of the 
deposit (Banergee et al., 2001). 

Deposits also provide an opportunity to measure the extent and other characteristics of a tsunami 
event not observed or reported in historical documents, e.g. using particle size analysis to 
estimate velocity and extent of individual waves within the tsunami. 

2.2 HISTORICAL OBSERVATIONS 
There are many reports of unusual movements of the sea. Some were documented soon after the 
event such as the 1755 Lisbon earthquake and tsunami when the Royal Society gathered together 
numerous reports throughout the UK. Others may have been written down some time later 
reporting second hand events. However even as recently as Victorian times there was often 
uncertainty in phenomena and their correlation or not, including earthquakes, atmospheric 
changes and storms (Melville, 1996). It should be noted that place-names may well have 
changed over the years and positioning observations can be difficult. Also in the past, dates and 
times were not consistent across the country but reflected local conventions. 

2.3 TIDE GAUGES 

Tide gauges provide a record of changes in sea level around the coast, often located on piers. 
Some sites around the UK have records extending back continuously more than 100 years. The 
stations were established and are operated to record low-frequency processes such as tides and 
storm surges. However, tide gauges can record tsunami events that are smaller in amplitude than 
that likely to be noted by human observations. Since the first part of the 18th century tide gauge 
records were in the form of paper charts providing a continuous record, which should have, in 
principle, provided a good source of tsunami information. However, in many places, once the 
charts had been digitised for their tidal information (usually digitised with hourly sampling 
which is too low a frequency to resolve tsunami events), they were often destroyed or allowed to 
decay.  
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Since the 1970s charts have been replaced by electronic sampling at most UK sites, averaging 15 
minutes of measurements, although there are plans to reduce the period averaged to 5 minutes. 
There are also plans for separate pressure sensors measuring very frequently (probably 1 Hz) at 4 
UK sites as part of the Defra study and TRANSFER and the IOC European tsunami activity. 
They are Newlyn, Cromer, Holyhead and either Stornoway or Lerwick (P.Woodworth, POL, 
pers comm.). 

3 Events  
A range of events has been reported at various sites around the UK within the Holocene record 
and attributed to being a tsunami. For some events there is a strong link between the UK coastal 
evidence and the source of the tsunami so there is a high confidence that the event was a 
tsunami. For some it can be shown that the linkage is impossible and therefore the event has 
been wrongly termed a tsunami and can be explained by other causes. For some events there is 
no obvious source of a tsunami and these are classified as uncertain.  

These events have been dated either into years BP (before present, referenced to 1950 AD) 
where an age has been determined from radiocarbon dating and then extrapolated into calendar 
years, which have a level of uncertainty in the region of ±200 years, or as calendar years where 
historical records allow the determination of the actual date.  

3.1 ~8150 BP 
Along the eastern and northern coasts of Scotland numerous sites have been identified with a 
thin continuous layer of marine sediments (Smith et al., 2004). A similar horizon has been 
detected along much of the western coast of Norway (Bondevik et al., 1997), and at sites in the 
Faroes (Grauert et al., 2001), Iceland (Hansen and Briggs, 1991) and Greenland (Wagner et al., 
2007). This is event is attributed to the failure of 3500km3 of sediments on the mid-Norwegian 
margin known as the Holocene Storegga Slide (Dawson et al., 1988; Long et al., 1989). 

The Holocene Storegga Slide is dated offshore to 7250±250 14C yr BP (Haflidason et al, 2005) 
and its associated tsunami deposit is dated onshore to 7250–7350 14C yr BP (Bondevik et al 
1997). This is approximately 8150 calendar years ago. Note this contrasts with previous dating 
results carried out during the 1980s on the Storegga Slide that concluded that there were three 
distinctive slide events (Bugge et al, 1987, and Jansen et al, 1987). The latest interpretations 
indicate that the Holocene Storegga Slide is just the most recent of a series of mega-slides 
(>2000 km2) that have occurred offshore mid-Norway since the end of the Pliocene, with a 
frequency of roughly once every 100,000 years over the last 0.5 Myr (Bryn et al., 2003; Solheim 
et al., 2005).  
 
The deposits generally consist of fine to medium grained sand, often showing a fining upwards 
sequence that can be repeated up to five times interpreted as sedimentation by individual waves 
within the train of waves that comprise the tsunami event. The tsunami deposit layer is generally 
less than 10cm in thickness but may be up to 70cm thick. The sands include microfossils that are 
indicative of shallow marine conditions. These fossils are often broken indicative of turbulent 
conditions. Where the layer has been deposited within coastal peats ripped clasts of peat can be 
seen (e.g. Maryton). At the Maggie Kettle’s Loch section it can be very clearly shown that the 
peat clasts are associated with the second wave indicating that the coastal peats were eroded by 
the first wave, cuasing blocks of peat  to be floating about when they became incorporated within 
the deposits of the second wave (Bondevik et al., 2003). 
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There is a general decrease in run up heights from north to south. The highest sediment run ups 
occur in inlets, (~20m) at sites around Sullom Voe, a large north facing inlet (Bondevik et al., 
2003) reducing to a few metres run up in the vicinity of the Firth of Forth. Lower values may 
exist further south but from Northumbria southwards the former shoreline is now offshore and 
any tsunami deposits from this event would have been vulnerable to erosion and reworking 
during the subsequent marine transgression. However as several of the sites in Shetland show, 
the layer can be preserved below the present day sealevel by subsequent sedimentation even with 
marine transgression. The extent of inundation and altitude can be difficult to estimate but by 
examining how the deposit occurs within lake basins, lake thresholds provide altitude control. In 
coastal sequences where the deposit transgresses from within intertidal muds into coastal peats 
such as at Fullerton (Smith et al., 1980) or Creich (Smith et al., 1992) the transgression provides 
a position for the high water mark on the day the wave struck (Long et al., 1989). The actual run 
up of the wave would have exceeded the extent of preserved sediments so these provide only a 
minimum inundation. 
 
Examination of clasts within the deposit can also indicate the season of the event as well as 
provide dating. The stage in the development of buds (Bondevik et al., 1997) and fruit (Dawson 
and Smith, 2000) and the size of fish bones (Bondevik et al., 1997) at sites in Norway and 
Scotland entrapped within the tsunami deposits suggest that the tsunami struck in late autumn. 
 
This is considered a tsunami event. 

3.2 ~5500 BP 
A thin horizon of marine sand has been found at two sites in Shetland (Garth Loch and Loch of 
Benston) less than half a kilometre apart and attributed to a tsunami event that has been termed 
the Garth Tsunami (Bondevik et al 2005). This tsunami deposit occurs above tsunami deposits 
from the ~8150 BP Storegga Tsunami event and is up to 65cm thick. Dating of a twig within the 
deposit in the Loch of Benston and from just below the deposit at Garth Loch revealed similar 
radiocarbon ages (4965±55 14Cyr BP and 4895±70 14Cyr BP respectively) extrapolated to ~5500 
calendar years BP. According to the constructed sea level curve the runup for this event was 
probably more than 10 m. 
 
A possible tsunami deposit of similar age has been noted on the coast of mid-Norway near 
Bergsøy that may correlate with this ~5500 BP event (Bondevik et al., 2005). No source has 
been suggested for this event other than originating in the North / Norwegian Sea. It is worth 
noting that Halflidi et al. (2005) reported several small slides on the northern flank of the 
Storegga Slide with ages about 5000 14Cyr BP. 
 
This is considered an uncertain tsunami event. 

3.3 ~1500 BP 
A thin sand horizon (up to 5cm thick) has been found at two sites in Shetland, 40kms apart, 
Basta Voe and Dury Voe, extending to 5.5m and 5.6m above high tide respectively, and 
attributed to a tsunami event (Bondevik et al., 2005; Dawson et al., 2006) and termed the Dury 
Voe event but no source for the tsunami has been identified. Dawson et al. (2006) suggest a local 
submarine landslide off the eastern coast of Shetland. However, existing morphological seafloor 
information is not sufficiently detailed enough to test this hypothesis. 

This is considered an uncertain tsunami event. 
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3.4 6TH APRIL 1580 AD 
An earthquake affected southeast England and parts of the near continent for 6th April 1580. As 
many of the reports were from London, this event has been called the “London Earthquake” 
(Davison, 1924) although an assessment of the reports indicates that the epicentre was within the 
Straits of Dover (Neilson et al., 1984). Claims have been made that the earthquake “triggered a 
tsunami that inundated Dover, Boulogne and Calais, leading to hundreds of deaths”. Varley 
(1996) states categorically that the earthquake produced a tsunami (which he refers to as a tidal 
wave) at Calais, Boulogne and Dover. Neilson et al (1984) are more cautious, considering that 
due to uncertainty about the coincidence in time of inundation and earthquake, the flooding 
report may have had some other cause (presumably meteorological). Melville et al (1996) are 
dismissive of the idea of a tsunami from this event. Evidence suggests (Melville et al 1996) that 
contemporary sources conflated descriptions of the earthquake with the effects of a storm that 
occurred very shortly afterwards. This is all the more likely since at this period it was not known 
that earthquakes were very short-lived phenomena, and to a 16th century writer it would have 
been natural to consider the seismic shock and a storm a day later as being part of the same 
occurrence. 

Undoubtedly the earthquake caused agitation of the water in harbours at Dover and Sandwich 
harbours (Neilson et al 1984). It is most likely that this movement was a seiche and not a tsunami 
as there is no evidence of any seabed displacement in the area and the strength of the earthquake 
(5.8 ML (Musson, 1994)) was insufficient to cause a tsunami directly.  

This is considered a non-tsunami event. 

3.5 30TH JANUARY 1607 AD 
At 9am on 30 January 1607, the lowlands surrounding the Bristol Channel suffered the worst 
coastal flooding on record. The floodwaters caused extensive damage to Bristol, many 
surrounding villages on the Somerset levels, and Barnstaple in North Devon. Flooding extended 
some 40km along both banks of the Bristol Channel to a depth of 2–3m. and it has been claimed 
that a tsunami may have been responsible (Bryant and Haslett, 2002; Haslett and Bryant, 2004). 
The exceptional high tide (14.36m above chart datum) combined with the severe weather points 
to a storm surge as the more likely explanation. The most authoritative account says that a 
westerly gale blew for 16 hours although some records state that a strong south-west wind blew 
unbroken for three days (Horsburgh and Horritt, 2005). 
 
It is unlikely that an earthquake could have caused a tsunami directly as seismic events around 
Britain are not expected to be large enough to generate significant surface rupture to initiate a 
tsunami. Also there are no reports of damage to buildings to indicate a local earthquake. If it was 
a distant earthquake and its epicentre located further away then if it triggered a tsunami it could 
be expected that the wave would be wide ranging and not restricted to the Bristol Channel. If the 
origin is a submarine landslide, extensive bathymetric surveys do not reveal any evidence of a 
slide within the Bristol Channel. Large landslides usually occur on the upper slopes of 
continental margin such as seen south of Ireland. A tsunami from such a source could be 
expected to have simultaneously struck the coasts of Ireland, UK and France.  
 
This is considered a non-tsunami event. 

3.6 1ST NOVEMBER 1755 AD 
The largest seismic event to have struck Europe in last few hundred years was noted from 
Scotland to Austria and north Africa, either felt as ground motion or seen as seiches in baths, 
lakes and enclosed harbours. However the greatest damage occurred in western Iberia. The 
earthquake is estimated to have had a magnitude 8.5 Ms and probably centred on the Azores-
Gibraltar boundary between the African and Eurasian plates. The earthquake struck at 9:50am 
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(local time) destroying many buildings in Lisbon, Cadiz and Morocco, however it was followed 
by a tsunami 20 minutes later at Lisbon. The event is referred to as the Lisbon Earthquake. The 
tsunami was observed along the western Iberian coast and Morocco and in the UK and Ireland 
and even across the Atlantic in the Caribbean and South America. The earthquake and tsunami 
killed between 60,000 and 100,000 people. Reports of the event in Britain were gathered 
together by the Royal Society in London and provide useful record. The reports are 
predominantly of the seiche noted about 11 o’clock in the morning in various harbours around 
the UK as well as many lakes and ponds, however there several reports from the coast of south 
west of England and Wales in the afternoon and evening when a series of waves were noted. 

The observations describe dramatic movements of the water. Borlase (1755) described the arrival 
of the waves in Mount’s Bay:  

“…the first and second refluxes were not so violent as the third and fourth waves at 
which time the sea was as rapid as that of a mill-stream descending to an undershot 
wheel, and the rebounds of the sea continued in their full-fury for fully 2 hours … 
alternatively rising and falling, each retreat and advance nearly of the space of 10 
minutes, till five and a half hours after it began”.  

Evidence of sediment deposition is implied by the observations of Huxham (1755) in Stonehouse 
Creek, Plymouth who described the  

“…tearing up of mud and sand banks in a very alarming mannar”.  

Also Foster et al. (1991, 1993) provide clear evidence of sediment deposition in the Big Pool on 
St Agnes in the Isles of Scilly. 

This is considered a tsunami event. 

3.7 31ST MAY 1759 AD 
Dawson et al., (2000) quote Perrey (1849) as saying that an unusual coastal flood took place at 
Lyme Regis on 31st May 1759 where the sea “…flowed in and out three times during an hour…”. 
However no other account have been found to corroborate this report in neighbouring areas, nor 
is any earthquake noted for this date.  

This is first of a set of extreme marine floods events have been identified by Dawson et al (2000) 
who conducted extensive searches in SW England, only some of which have been attributed by 
them to past tsunamis. 

This event is considered a non-tsunami event. 

3.8 31ST MARCH 1761 AD 
A similar suite of reports to that of the 1755 event was noted in south west Cornwall on 31st 
March 1761 (Borlase, 1762). He states that  

“On the Tuesday, the 31st of March 1761, about five o’clock in the afternoon, there 
was a very uncommon motion of the tide in Mount’s-bay, Cornwall. […] After the 
tide has ebbed about four hours and half, (for the time is not determined with 
precision) instead of continuing to retreat gradually, as usual, till it had completed 
the six hours ebb, on a sudden it advanced as it is usually at the time of the Moon, 
at an hour and half high-water. It then retreated nigh to the point of low-water, 
then it advanced again, and retreated, making five advances, and as many recesses, 
in the space of one hour; viz. from about five to six o’clock; which was the whole 
time, that these uncommon stretches of the tide continued. But the first motion was 
most considerable, the sea advancing the first time to a quarter ebb; but the second 
advance was but as far as the sea reaches at half ebb. A small sloop of 30 tons 
burthen, at that time laden and dry in Penzance pier, by the first surge, was fleeted; 

 12 



by which it appears, that the waters rose at this place six feet perpendicular, that 
sloop requiring six feet of water to fleet it. At the pier of St Michael’s mount, three 
miles to the east of Penzance the tide was observed, at the same time, to rise and 
fall about four feet. At Newlyn, (a mile west of Penzance) the tide rose to the same 
height nearly, as at Penzance. At Moushole pier, (three miles SW of Penzance) it 
was only observed, that the sea was in great agitation, and the fishing boats in 
danger. At the islands of Scilly, the sea was judged to raise about four feet; but the 
agitation to have continued longer than in Mount’s-bay, viz. more than two hours”.  

Similar waves were reported at several sites along the southern coast of Ireland, up to 1.2m in 
height and consisting of up to five waves. This event coincides with reports of a tsunami in 
Portugal with waves up to 2.4m in height at Lisbon, following a 7.5Ms earthquake with an 
epicentre at 34.5°N 13°W (Baptista et al., 2006).  

This is considered a tsunami event. 

3.9 9TH OR 10TH AUGUST 1802 AD 
There are several reports in south west England indicating turbulent waters for either 9th or 10th 
August 1802 that was originally suggested as being due to a distant earthquake. With rises and 
falls of 35cm at Weymouth and 60cm at Teignmouth in a very short period of time (Dawson et 
al., 2000).   

This is considered an uncertain tsunami event. 

3.10 31ST MAY 1811 AD 

Dawson et al., (2000) note reports from Plymouth recording sudden rises and falls with an 
amplitude of 4 to 8 feet (1.2 to 2.4m) over a period of four hours from 3am, with further affects 
at 9am. Milne (1844) notes that the event coincided with a period of gales and low pressure. 
Therefore the event is likely to have been storm induced. 
 
This is considered a non-tsunami event. 

3.11 5TH JULY 1843 AD 
Dawson et al., (2000) mention oscillations of the sea around the south west had been reported, 
including Penzance and Plymouth, where it consisted of rises and falls for two to three hours 
(Edmonds, 1845). Flooding was reported in several places but there is no known earthquake 
associated with it and it coincides with a widespread storm (Milne 1844). In addition there are 
extensive reports of agitated seas around Scotland and also Bristol and Tynemouth (Milne, 
1844). 
 
This is considered a non-tsunami event. 

3.12 23RD MAY 1847 AD 
Edmonds (1869) noted that in Mount’s Bay rises and falls of 3 to 5 feet (0.9-1.5m) occurred all 
day and similar effects at Plymouth in the evening. This has been linked with reports of a slight 
tremor felt in the Scilly Isles, Penzance and Mount’s Bay in the night before. Musson (1989) 
suggested that a large offshore earthquake occurred and the abnormal waves are associated with 
it. However locating an epicentre for the earthquake is not possible, nor is determining how that 
induced the size of the tsunami wave reported. Also it is difficult to explain the time delay for an 
wave in the evening at Plymouth to come from the earthquake felt the night before. 
 
This is considered an uncertain tsunami event. 
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3.13 4TH OCTOBER 1859 AD 
Dawson et al., (2000) plot localities where agitation of waves were reported on both the southern 
and northern coasts of Cornwall and Devon, and also further afield in the Bristol Channel 
(Swansea and Bridgewater) were recorded by Edmonds (1860, 1862) and noted by Dawson et 
al., (2000). These rises and falls were noted over several hours. Edmonds also notes that a 
thunderstorm did occur and so it possible that may be assumed that was present. 
 
This is considered a non-tsunami event. 

3.14 29TH SEPT 1869 AD 
Dawson et al., (2000) report that Perrey (1872) records a series of waves seen in the Isles of 
Scilly, Newlyn, Penzance and Truro over a period of 4 – 5hrs. There is no obvious source for this 
event.  

This is considered a non-tsunami event. 

3.15 24TH JANUARY 1927 AD 

A magnitude of 5.7 ML earthquake with an epicentre in the Viking Graben area was attributed to 
having caused a tsunami like event at Helmsdale in eastern Scotland: 
 

At the time of the shock the bar at the mouth of the Helmsdale River was calm, but at 
5.30 a.m. [12 minutes after the earthquake] great rollers began to come in from the 
south-east. (Tyrell 1932) 

 
Ambraseys (1983) searched the available tide gauges, and found no trace of any fluctuation; 
however, his most northerly data set was at North Shields. The distance from the earthquake 
epicentre to Helmsdale is 400 km, so it is inconceivable that waves originating in the Viking 
Graben could have reached Helmsdale in only 12 minutes (Kerridge et al., 2005). 
 
This is considered a non-tsunami event. 

3.16 25TH NOVEMBER 1941 AD 
The tide gauge at Newlyn, Cornwall shows a tsunami occurred on 25th November 1941 
following an earthquake west of Portugal, magnitude 8.2 Ms. The tsunami consisted of seven 
waves with a maximum amplitude of about 20cm and lasted about four hours. Tide gauge 
records, although poor quality, from Le Havre suggest that the tsunami travelled up the English 
Channel (Dawson et al., 2000). 

This is considered a tsunami event. 

3.17 23RD MAY 1960 AD 
A tsunami was generated the by Chile earthquake of 22nd May 1960, at Magnitude 9.6 Mw the 
largest earthquake ever recorded. The tsunami, together with coastal subsidence and flooding, 
caused tremendous damage along the Chile coast, where about 2,000 people died. The waves 
spread outwards across the Pacific, 15 hours later the waves flooded Hilo, on the island of 
Hawaii, where they built up to thirty feet and caused 61 deaths along the waterfront. After 22 
hours the waves flooded the coastline of Japan where 3m high waves caused 200 deaths. The 
waves also caused damage in other parts of the Pacific. Subsequent analysis of tidal gauges has 
shown the waves travelled around the world and were detected in the North Atlantic including 
Newlyn the day after the source earthquake (Van Dorn 1984). 

This is considered a tsunami event. 
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3.18 28TH FEBRUARY 1969 AD 
On 28 February 1969, an earthquake west of Portugal (7.3 Ms) generated a tsunami that was 
recorded along the western coast of Spain and Portugal with a maximum amplitude of almost 1m 
(Baptista et al., 1992). It is probable that this tsunami also reached SW England as Dawson and 
others (2000) note that the tide gauge record for Newlyn for this period reports heavy seiching 
on a day characterized by calm sea conditions. 
 
This is considered a tsunami event. 

3.19 26TH MAY 1975 AD 
The tide gauge at Newlyn, Cornwall shows a tsunami occurred on 26th March 1975 following an 
earthquake west of Portugal, magnitude 7.9 Ms. The tsunami was clearly seen in the Azores, 
Portugal and Spain (Baptista et al., 1992). The tsunami that was measured at Newlyn UK 
consisted of eight waves with a maximum amplitude of about 6cm and lasted nearly four hours 
(Dawson et al., 2000). 

This is considered a tsunami event. 

3.20 27TH DECEMBER 2004 AD 
The magnitude 9.3 Mw Sumatra earthquake of 26th December 2004 initiated a tsunami that 
caused upwards of 225000 deaths in south east Asian. The tsunami travelled around the world 
and was observed on the North American Atlantic coast (Rabinovich et al., 2006) and also on the 
West African coast (Joseph et al., 2006) but seemed to lose steam by the time it reached the 
European Atlantic coastline. It was detected on tide gauges in the English Channel (UK and 
France) more than 30 hours after the triggering earthquake. The tsunami wave was possibly also 
recorded at Milford Haven although there was a moderate storm surge at the time, which may 
have created a confused signal (Woodworth et al., 2005). 
 
This is considered a tsunami event. 

4 Tsunami catalogue 
This catalogue has been created by searches of published papers and examination of existing 
databases. Existing databases include the US National Geophysical Data Center NOAA/WDC 
Historical Tsunami database http://www.ngdc.noaa.gov/seg/hazard/tsu_db.shtml. Reports within 
the Tsunami Runup data base that are known to be reports of seiches have been excluded. Also 
some reports of tsunami run-ups have been mis-positioned e.g. the event of 31st March 1761 at 
Carrick in County Wexford, Ireland has been mis-recorded as occurring at Carrickfergus, UK. 
The catalogue produced for GITEC has also been examined, reports with great uncertainty have 
been ignored.   

Positioning has been recorded to 0.1km accuracy using the British National Grid and 
subsequently converted to geographical co-ordinates using WGS84. This allows sites with 
several boreholes that have recovered a tsunami deposit or containing a coastal section to be 
noted as a single point. It also allows a general location for historical observations respecting that 
only a general area associated with a place name is available. 

The evidence at each site/event is classified as deposits, observations or tidal measurements. The 
deposits are further subdivided into “S” where the deposits are seen in a section or “B” where 
they are buried but recognized in one or more boreholes. 
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The catalogue could be extended by listing additional attributes particularly for tsunami deposits 
by recording the height of deposit, thickness of deposit, its extent inland, uncertainties of the 
dating evidence.  

5 GIS files 
The shape files have been set up for use with ESRI’s ArcGIS so that sites of tsunamis can be 
selected by event, evidence type and degrees of uncertainty. 

This allows distribution maps to be produced for various attributes, e.g. confidence, data type 
and event (Figures 1, 2 and 3 respectively). 
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Figure 1 Location of tsunami events in the UK highlighted by a confidence evaluation 
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Figure 2 Tsunami events in the UK highlighted by the evidence claimed for the event 
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Figure 3 Tsunami events in the UK 
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Table 1 Catalogue of tsunami reports in the UK 
 

site event confidence name 

National 
Grid 
easting 

National 
Grid 
northing 

Latitude 
WGS84 

Longitude 
WGS84 evidence type age time

wave 
height comment reference 

1 1 tsunami Snarravoe, 456900 1201400 -0.9579 60.6923 deposit  B ~8150yr BP    Bondevik et al 2005 

2 1 tsunami Burragarth 457300 1203800 -0.9499 60.7138 deposit B ~8150yr BP    Smith 1993, Smith et al 2004 

3 1 tsunami Norwick 465100 1214100 -0.8035 60.8051 deposit B ~8150yr BP    Smith 1993, Smith et al 2004 

4 1 tsunami Scatsta Voe 439600 1172700 -1.2805 60.4367 deposit S ~8150yr BP   Run up probably >20m above palaeo sea level Birnie 1981, Smith 1993, Smith et al 2004 

5 1 tsunami Garth’s Voe 440900 1174100 -1.2565 60.4492 deposit S ~8150yr BP   Run up probably >20m above palaeo sea level Birnie 1981, Smith 1993, Smith et al 2004 

6 1 tsunami Otter Loch 437600 1172700 -1.3168 60.4369 deposit B ~8150yr BP   Run up probably >20m above palaeo sea level Bondevik 2002 

7 1 tsunami The Houb, Sullom Voe 436500 1174700 -1.3364 60.4550 deposit S ~8150yr BP   Run up probably >20m above palaeo sea level Bondevik 2002 Bondevik et al 2003 

8 1 tsunami Maggie Kettle's Loch 436700 1175600 -1.3326 60.4631 deposit S ~8150yr BP   Sand layer with clasts of peat, run up probably >20m above palaeo sea level Bondevik 2002; Bondevik et al 2003 

9 1 tsunami Garth Loch 447000 1153800 -1.1504 60.2663 deposit B ~8150yr BP    Bondevik et 2005 

10 1 tsunami Loch of Benston 446500 1153600 -1.1595 60.2645 deposit B ~8150yr BP    Bondevik et 2005 

11 1 tsunami Strath Halladale 289000 962600 -3.9069 58.5377 deposit B ~8150yr BP   Intraclast suggests an autumn event Dawson and Smith 1997; Dawson and Smith 2000 

12 1 tsunami Wick River 334200 952200 -3.1276 58.4535 deposit B ~8150yr BP    Dawson and Smith 1997 

13 1 tsunami Smithy House  281100 899100 -4.0100 57.9656 deposit B ~8150yr BP    Smith et al 1992 

14 1 tsunami Creich  264900 888800 -4.2777 57.8685 deposit B ~8150yr BP    Smith et al 1992 

15 1 tsunami Dounie  269600 886100 -4.1971 57.8456 deposit B ~8150yr BP    Smith et al 1992 

16 1 tsunami Munlochy Bay 264700 852900 -4.2609 57.5462 deposit B ~8150yr BP    Firth 1984 

17 1 tsunami Bellevue  253700 848100 -4.4417 57.4997 deposit B ~8150yr BP    Firth 1984 

18 1 tsunami Tomich 252500 847200 -4.4611 57.4912 deposit B ~8150yr BP    Firth 1984 

19 1 tsunami Barnyards 252500 847000 -4.4610 57.4894 deposit B ~8150yr BP   Minimum 2m run-up above palaeo high water mark Haggart, 1982 

20 1 tsunami Moniack 254200 843900 -4.4308 57.4621 deposit B ~8150yr BP   Minimum 4m run-up above palaeo high water mark Haggart, 1982 

21 1 tsunami Castle St., Inverness 266800 845300 -4.2217 57.4786 deposit S ~8150yr BP   Archaeological site "white sand" layer Wordsworth, 1985, Dawson et al 1990 

22 1 tsunami Water of Philorth  401400 864100 -1.9765 57.6670 deposit B ~8150yr BP    Smith et al., 1982 

23 1 tsunami Waterside 400700 826700 -1.9884 57.3310 deposit B ~8150yr BP    Smith et al., 1983 

24 1 tsunami Tarty Burn 398200 827100 -2.0299 57.3346 deposit B ~8150yr BP    Smith et al., 1999 

25 1 tsunami Dryleas  370600 760600 -2.4806 56.7363 deposit B ~8150yr BP   Fine sand layer Smith and Cullingford, 1985 

26 1 tsunami Dubton  370000 760200 -2.4904 56.7326 deposit B ~8150yr BP   Fine sand layer Smith and Cullingford, 1985 

27 1 tsunami Puggieston  369800 760300 -2.4937 56.7335 deposit B ~8150yr BP    Smith and Cullingford, 1985 

28 1 tsunami Old Montrose 366700 756500 -2.5438 56.6992 deposit B ~8150yr BP   Fine sand layer Smith and Cullingford, 1985 

29 1 tsunami Fullerton 367500 756000 -2.5307 56.6947 deposit B ~8150yr BP    Smith et al., 1980 

30 1 tsunami Maryton 368300 756600 -2.5177 56.7002 deposit S ~8150yr BP   Sand layer with clasts of peat Smith et al., 1980 

31 1 tsunami Broughty Ferry 347400 731300 -2.8539 56.4710 deposit S ~8150yr BP   Archeological site of sand layer on Mesolithic - an exceptional flood Hutcheson 1886; Lacaille, 1954, Smith et al 2004 

32 1 tsunami Craigie  345500 724200 -2.8833 56.4070 deposit B ~8150yr BP    Haggart, 1978 

33 1 tsunami St Michael's Wood 345300 723900 -2.8864 56.4043 deposit B ~8150yr BP    Haggart, 1978 

34 1 tsunami Silver Moss 345400 723500 -2.8847 56.4007 deposit B ~8150yr BP    Chisholm, 1971 

35 1 tsunami Goodie Water 262400 700400 -4.2168 56.1764 deposit B ~8150yr BP   Fine sand layer Holloway, 2002 
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site event confidence name 

National 
Grid 
easting 

National 
Grid 
northing 

Latitude 
WGS84 

Longitude 
WGS84 evidence type age time

wave 
height comment reference 

36 1 tsunami Cocklemill Burn 346200 700900 -2.8672 56.1977 deposit S ~8150yr BP    Tooley and Smith, 2005 

37 1 tsunami Over Easter Offerance 257700 696200 -4.2902 56.1373 deposit B ~8150yr BP    Sissons and Smith, 1965 

38 1 tsunami Lochhouses  361600 682100 -2.6162 56.0303 deposit B ~8150yr BP    Newey, 1965 

39 1 tsunami Hedderwick 364000 678700 -2.5773 55.9999 deposit S ~8150yr BP   Fine sand and shell hash layer New data D.E.Smith pers comm 

40 1 tsunami Broomhouse Farm  403700 645200 -1.9411 55.7003 deposit B ~8150yr BP    Horton et al., 1999 

41 2 uncertain Loch of Benston 446500 1153600 -1.1595 60.2645 deposit B ~5,500yr BP    Bondevik et al 2005 

42 2 uncertain Garth Loch 447000 1153800 -1.1504 60.2663 deposit B ~5,500yr BP    Bondevik et al 2005 

43 3 uncertain Basta Voe 451100 1198800 -1.0648 60.6698 deposit S ~1500 BP    Dawson et al 2006, Toothill 1994 

44 3 uncertain Dury Voe 446100 1160100 -1.1653 60.3229 deposit S ~1500 BP    Bondevik 2002; Bondevik et al 2005 

45 4 non-tsunami Sandwich 633600 159000 1.3501 51.2817 observation 6th Apr 1580  most likely a harbour seiche Nielson et al 1984 

46 4 non-tsunami Dover 631700 140700 1.3111 51.1181 observation 6th Apr 1580  most likely a harbour seiche Nielson et al 1984 

47 5 non-tsunami Bristol Channel 250000 160000 -4.1528 51.3188 observation 30 Jan 1607 900  extensive flooding  Bryant and Haslett 2002, Haslett and Bryant, 2004, Horsburgh and Horritt 2006

48 6 tsunami Isles of Scilly, Big Pool 87800 8600 -6.3480 49.8954 deposit B 1st Nov 1755   Banagee et al 2001; Dawson et al 1991, 2000; Foster et al 1993 

49 6 tsunami Stonehouse Creek, Plymouth 246100 54000 -4.1642 50.3651 observation 1st Nov 1755 1600   Huxham, 1755, Dawson et al 2000 

50 6 tsunami Creston, Plymouth 250000 53400 -4.1091 50.3608 observation 1st Nov 1755 1600  Sea withdraw 4-5 ft, sea returns  in 8 mins. Huxham 1755 

51 6 tsunami Crunhill, Plymouth 245400 53400 -4.1738 50.3596 observation 1st Nov 1755 1600  Sea withdraws and returns, breaks cable Huxham 1755 

52 6 tsunami St Mount’s Bay 151700 30000 -5.4738 50.1174 observation 1st Nov 1755 after1400 Sudden advance of the sea, retreat by 6 foot depth, took 5.5 hrs to settle Borlase 1755 

53 6 tsunami Penzance 147800 30200 -5.5284 50.1176 observation 1st Nov 1755 1445  Sea rose 8ft Borlase 1755 

54 6 tsunami Newlyn 146100 28300 -5.5509 50.0998 observation 1st Nov 1755  Sea rose 10ft Borlase 1755 

55 6 tsunami Mousehole 146700 26500 -5.5413 50.0839 observation 1st Nov 1755  Similar to Newlyn Borlase 1755 

56 6 tsunami Gwavas Lake 148000 28500 -5.5245 50.1024 observation 1st Nov 1755  The ketch Happy veer’d round estimate sea velocity at 7mph Borlase 1755 

57 6 tsunami Lands End, Cornwall 134000 25400 -5.7177 50.0685 observation 1st Nov 1755  Agitation perceived Borlase 1755 

58 6 tsunami Larmorna Cove, Cornwall 144900 24000 -5.5647 50.0607 observation 1st Nov 1755  Large blocks of granite deposited above high water Edmonds 1845 

59 6 tsunami St Ives 152000 40900 -5.4767 50.2154 observation 1st Nov 1755  On north side sea rose 8-9ft Borlase 1755 

60 6 tsunami Hayle 155800 37600 -5.4214 50.1874 observation 1st Nov 1755 after 1500 Surge 7 ft high Borlase 1755 

61 6 tsunami Swansea 265100 192300 -3.9485 51.6129 observation 1st Nov 1755 1845  Agitation,  Borlase 1755 

62 6 tsunami Whiterock, Swansea 266300 174700 -3.9245 51.4550 observation 1st Nov 1755 1700-1900 Floating of beached vessels, vessels turned onto river bank Borlase 1755 

63 7 non-tsunami Lyme Regis 334000 92000 -2.9351 50.7233 observation 31st May 1759  sea flowed in and out three times during an hour Perrey 1849 

64 8 tsunami Penzance 147800 30200 -5.5284 50.1176 observation 31st Mar 1761  Sea rose 6 feet Borlase 1761 

65 8 tsunami Mousehole 146700 26500 -5.5413 50.0839 observation 31st Mar 1761  great agitation Borlase 1761 

66 8 tsunami Newlyn  146100 28300 -5.5509 50.0998 observation 31st Mar 1761  Sea rose almost as much as at Penzance Borlase 1761 

67 8 tsunami St Michael's Mount 151700 30000 -5.4738 50.1174 observation 31st Mar 1761  Tide rose and fell 4ft at pier Borlase 1761 

68 8 tsunami Isles of Scilly 90200 10900 -6.3165 49.9172 observation 31st Mar 1761  Sea rose 4 feet and agitation lasted 2 hours Borlase 1761 

69 9 uncertain Weymouth 368000 79000 -2.4523 50.6093 observation 9th Aug 1802 0.35  Dawson et al 2000 

70 9 uncertain Teignmouth 294000 72500 -3.4961 50.5421 observation 10th Aug 1802 0.6  Dawson et al 2000 

71 10 non-tsunami Plymouth 250000 54000 -4.1094 50.3661 observation 31st May 1811 2.4 coincides with widespread gales Dawson et al 2000 

72 11 non-tsunami Penzance 147800 30200 -5.5284 50.1176 observation 5th July 1843   Edmonds 1845 

73 11 non-tsunami Plymouth 250000 54000 -4.1094 50.3661 observation 5th July 1843   Edmonds 1845 

74 12 uncertain St Mount’s Bay 151700 30000 -5.4738 50.1174 observation 23rd May 1847  Rises and fall 0.9-1.5m noted all day following slight tremor felt night before Edmonds 1869 
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Latitude 
WGS84 

Longitude 
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height site event confidence name evidence type age time comment reference 

75 12 uncertain Plymouth 250000 54000 -4.1094 50.3661 observation 23rd May 1847  Waves similar to St Mount’s Bay noted in the evening Edmonds 1869 

76 14 non-tsunami Isles of Scilly 90200 10900 -6.3165 49.9172 observation 29th Sept 1869   Perrey 1872 

77 14 non-tsunami Newlyn 146100 28300 -5.5509 50.0998 observation 29th Sept 1869   Perrey 1872 

78 14 non-tsunami Penzance 147800 30200 -5.5284 50.1176 observation 29th Sept 1869   Perrey 1872 

79 14 non-tsunami Truro 183000 44000 -5.0446 50.2554 observation 29th Sept 1869   Perrey 1872 

80 15 non-tsunami Helmsdale 302900 915200 -3.6483 58.1154 observation 24th Jan 1927  large rollers noted following an earthquake Tyrell, 1932 

81 16 tsunami Newlyn 146800 28600 -5.5413 50.1028 tide gauge 25th Nov 1941 2200 0.2  Dawson et al 2000 

82 17 tsunami Newlyn 146800 28600 -5.5413 50.1028 tide gauge 23rd May 1960 0.025  Van Dorn 1987 

83 18 tsunami Newlyn 146800 28600 -5.5413 50.1028 tide gauge 28th Feb 1969   Dawson et al 2000 

84 19 tsunami Newlyn 146800 28600 -5.5413 50.1028 tide gauge 26th May 1975 1525 0.06  Dawson et al 2000 

85 20 tsunami Newlyn 146800 28600 -5.5413 50.1028 tide gauge 27th Dec 2004 745 0.15  Woodworth et al 2005 

86 20 tsunami St Mary's, Isle of Scilly 90200 10900 -6.3165 49.9172 tide gauge 27th Dec 2004  less certain than at Newlyn Woodworth et al 2005 

87 20 tsunami Milford Haven 188500 205000 -5.0613 51.7034 tide gauge 27th Dec 2004 938 0.16 may be confused by a storm surge Woodworth et al 2005 
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