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Abstract 

There are surprisingly few studies in humid temperate forests which provide reliable 

evidence that soil permeability is enhanced under forests. This work addresses this research 

gap through a detailed investigation of permeability on a hillslope in the Eddleston 

Catchment, Scottish Borders UK, to evaluate the impact of land cover, superficial geology 

and soil types on permeability using measurements of field saturated hydraulic conductivity 

(Kfs) supported by detailed topsoil profile descriptions and counting of roots with diameters 

>2mm. Kfs was measured at depth 0.04 to 0.15m using a constant head well permeameter 

across four paired landcover sites of adjacent tree and intensely grazed grassland. The 

measured tree types were: 500-year-old mixed woodland; 180-year-old mixed woodland; 45-

year-old Pinus sylvestris plantation; and 180-year-old Salix caprea woodland. The respective 

paired grids of trees and grassland were compared on similar soil texture and topography.  
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This study highlights the significant impact of broadleaf woodland at a hillslope scale on Kfs 

in comparison to grassland areas: median Kfs values under 180-year-old Salix caprea  

woodland (8 mm hour-1), 180-year-old mixed woodland (119 mm hour-1)  and 500-year-old 

Broadleaf woodland (174 mm hour-1) were found to be respectively 8, 6 and 5 times higher 

than neighbouring grazed grassland areas on the same superficial geology.  Further 

statistical analysis indicates that such Kfs enhancement is associated with the presence of 

coarse roots (>2 mm diameter) creating conduits for preferential flow and a deeper organic 

layer in the topsoil profile under woodlands.  By contrast the P. sylvestris forest had only 

slightly higher (42 mm hour-1), but not statistically different Kfs values, when compared to 

adjacent pasture (35 mm hour-1). In the grassland areas, in the absence of course roots, the 

superficial geology was dominant in accounting for differences in Kfs, with the alluvium 

floodplain having a significantly lower median Kfs (1 mm hour-1) than surrounding hillslope 

sites, which had a range of median Kfs from 21 to 39 mm hour-1.   

The data were used to infer areas of runoff generation by comparing Kfs values with 

modelled 15 minute maximum intensity duration rainfall with a 1 in 10 year return period. 

Infiltration prevailed in the 180 and 500 year old mixed and broadleaf woodland, whereas 

some grassland areas and the floodplain were inferred to generate overland flow. The 

significantly higher Kfs under deciduous mature forests suggest that the planting deciduous 

woodlands on hillslopes in clusters or as shelterbelts within grasslands would provide areas 

of increased capacity for rainfall infiltration and arrest runoff generation during flood-

producing storm events.  

Keywords: Soil hydraulic conductivity, overland flow, infiltration, flood management, 

landcover 
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1. INTRODUCTION 

With recent incidents of severe flooding events throughout Northern Europe, flood 

prevention and mitigation has become a high priority on the public agenda.  However, in the 

context of the current financial crisis, building ever higher flood defences no longer seems to 

be the way to solve the problem. Instead a combination of restricting development within 

floodplains and using natural management methods, such as afforestation and wetlands 

may be a more sustainable way to mitigate future floods (Nisbet and Broadmeadow, 2003). 

An important criteria in Natural Flood Management (NFM) is understanding and improving 

the surface soil permeability (or field, saturated hydraulic conductivity, Kfs; Bouwer, 1966; 

Reynolds et al, 1985; Talsma, 1987) of natural ground surfaces with the view of increasing 

rainfall infiltration and storage capacity (Bens et al., 2007; Marshall et al., 2009). At the local 

scale, infiltrability and surface soil permeability (or field, saturated hydraulic conductivity, Kfs; 

Bouwer, 1966; Reynolds et al, 1985; Talsma, 1987) are key soil properties as they activate 

surface and near-surface flow paths (Hillel, 1980) that influence runoff generation 

(Elsenbeer, 2001; Bonell et al., 2010). Such soil hydraulic properties control dominant storm 

flows (defined in Chappell et al., 2007) and can provide preliminary understanding of runoff 

generation when linked with rainfall characteristics (Bonell and Bruijnzeel, 2005). 

As noted by Chandler and Chappell (2008), there is a general acceptance that permeability 

of forest soils is higher than that of soils supporting other vegetation types, but their review of 

the scientific literature revealed that there are surprisingly few studies that test this 

hypothesis. Such remarks apply in particular to humid temperate forests as in recent times 

there has been an escalation of such work in the tropics (Deuchars, et al., 1999; Elsenbeer, 

et al., 1999; Bonell, 2005; Germer, et al., 2010; Bonell, et al., 2010; Hassler, 2011) linked 

with the extensive forest conversion since the mid- 20th Century (Drigo, 2004; 2006). These 
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studies suggest that trees overall enhance permeability, but there are also exceptions, as 

reviewed in Chandler and Chappell (2008) and elsewhere (Bonell et al., 2010; Ghimire et al., 

2013).  

The few studies that have been done in temperate areas suggest that forests have higher 

infiltration rates and also near-surface, field saturated hydraulic conductivities than grassland 

cover, because of enhanced incorporation of organic matter from litter fall, a greater diversity 

of soil fauna, as well as higher root densities and root diameters; all of which in turn, 

enhance soil macroporosity and soil structure (Beven and Germann, 1982; Alaoui et al., 

2011; Schwärzel et al., 2012). It has also been found in a small French catchment study that 

land use had a significantly greater impact on Kfs than differences within pedologic units and 

the highest Kfs values were associated with broad-leaved forests and small woods rather 

than pasture land (Gonzalez-Sosa et al., 2010). Older forest stands have also been found to 

have higher rates of Kfs than recently planted trees (Leiva et al., 2009 and Hümann, et al., 

2011) or adjacent agricultural areas (Peng et al., 2012).  

Forested areas however, do not always give higher Kfs values.  Investigations of soils under 

recent afforestation have shown that the upper soil layers still possess physical conditions 

and similar runoff formation processes of the former agricultural soils (Bonell et al., 2010; 

Hümann et al., 2011, Krishnaswamy et al., 2012). Soil acidification from the decomposition 

of acidic litter, particularly in conifer plantations can lead to reduced soil structural ability 

(e.g., collapse of soil aggregates) and thus reduced macro-porosity (Chappell, 1996). 

Moreover microbial soil activity can cause hydrophobicity in soil macropores, thus reducing 

soil permeability (Morales et al., 2010). Factors which cause soils to be hydrophobic are 

viewed negatively for rainfall infiltration. On the other hand, in south- east Australia, Nyman 
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et al., (2010) suggests a synergy between effect of macropore flow and water repellency, 

where water repellency induces ponding at increasing scale, activating flow through 

macropores, which then raises effective infiltration rates at larger scales. 

Planting trees on degraded land is not sufficient in itself to restore the permeability and 

hydrological functions of degraded catchment areas, but management of forests is also 

important. For example, Ghimire, et al. (2013) found that repeated collections of litter from 

the forest floor supplemented by continuous cattle grazing in community forests in Nepal 

caused a reduction of soil organic matter that could not be incorporated into the soil to form 

larger soil pore networks. This caused a decrease in permeability in the upper 0.25 m soil 

depth. 

The preceding discussion shows that natural processes of soil permeability which develops 

under forestation is complex.  Moreover there are practical implications.  For example  when 

implementing NFM as an approach to flood risk management particularly at a legislative 

level such as , the Flood Risk Management (Scotland) Act 2009 (Scottish Government, 

2009), it is very important, to better understand the dynamic relationship of hydraulic 

conductivity developed under forests of different species and ages. 

1.1. Scope and aims of the work 

The study will therefore evaluate in situ Kfs  measurements taken at the soil surface and 

below ground (either to 0.15m or 0.25m depth) at sites across a range of  superficial geology 

and soil types (previously glaciated); and land cover of adjacent grazed grassland and 

woodland cover linked with an experimental transect in the Eddleston catchment. The tree 

cover areas include old-growth remnant broadleaf woodland; a 180 mixed broadleaf/conifer 

woodland, a 45 year old pine plantation; and a mature willow woodland within a riparian 
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wetland.  In addition, improved grazed grassland adjacent to woodland areas on both a 

hillslope transect and within a floodplain are considered. The Kfs survey should be 

considered as ‘snapshots’ in time as it is well known since the 1980s (e.g., Gish and Star, 

1983; Bonell and Williams, 1986) that temporal variability of Kfs at a point can be statistically 

significant as is spatial variability.  

The primary aim of the work: 

i. is to evaluate the impacts of superficial geology and soils vis-a-vis land cover on Kfs. 

Such steps are intended to indicate possible differences of Kfs between grassland 

and different types of woodland of different ages; and thus contribute towards a better 

understanding of the positive and negative impacts of forest on Kfs, in response to 

Chandler and Chappell (2008). This work will be supported by detailed soil 

descriptions including some root characteristics. 

Additional aims of the work:  

ii. Subsequently in the absence of hillslope hydrology experimentation, some 

consideration will be given to whether infiltration-excess overland flow (Chorley, 

1978) can be inferred, or not, over specific land covers linked with intensity-

frequency-duration (IDF) developed for the experimental area. For a limited number 

of sites, the possible occurrence of other stormflow pathways (i.e., using the 

definitions of Chorley, 1978) will also be briefly considered where Kfs  data are 

available for two soil depth ranges (i.e., 0-0.15m, 0.15-0.25m). 

iii. Finally some consideration will be given to possible contributions of the work in the 

context of Natural Flood Management. 
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2. EXPERIMENTAL SITE 

2.1. Location 

The site is located on a hillslope that has an altitudinal range from 192 m to 255 m above 

Ordnance Datum (OD) with a slope gradient varying from 1 to 22 %. The field area is 

approximately 0.5 km2 and extends to the floodplain of the Eddleston Water, a tributary of 

the River Tweed in the Scottish Borders (55º42.9'N, 3º13'W). It is within the Eddleston Water 

monitoring catchment, which has been established to assess the effectiveness and 

efficiency of NFM (Fig. 1). 

2.2. Historical land cover 

The environmental evolution of the site area is typical of much of the Scottish Borders. 

Anaylsis of pollen samples, taken from an area to the north of the catchment, (Ashmole and 

Tipping, 2009) suggests that the region was well wooded at the Holocene ‘climatic optimum’, 

around 6800 to 4800 years ago. These woods were dominated by Alnus, Ulmus, Fraxinus 

and Quercus, with Sorbus, Crataegus, Populus, Ilex and Prunus as minor components. Most 

of the trees were removed to create the grazing needed to sustain increased stocking levels 

that began during Medieval times (Ashmole and Tipping, 2009). This mainly pastoral 

landscape has been maintained to the present day.  Today forestation is biased towards fast 

growing conifer species as shown by the National Inventory of Woodlands and Trees, where 

most forestation in recent times in the Scottish Borders has been dominated by conifer 

woodland and represents about 78% of all woodland area (Anon, 1999). For the remainder 

“…broadleaved woodland represents 7%, mixed woodland 3% and open space within 

woodlands 9%” (Anon., 1999, p. 2).  
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2.3. Soils and geology 

According to the Soil Survey of Scotland Map (Scotland Soil Survey Staff, 1975), the site is 

dominated by two soil associations; Yarrow soils on the hill slope and Alluvium on the 

floodplain. The Yarrow association, which are classified as Cambisols (WRB, 2006), 

comprise brown forest soils developed on gravels that are mainly derived from weakly 

metamorphosed argillaceous sandstones (greywackes). A subsequent more detailed field 

survey of the superficial geology and morphology of the study site (and its surroundings) was 

undertaken by Ó Dochartaigh et al. (2012). Using the soil classification of the Soil Survey of 

Scotland (Bown and Shipley, 1982), the survey indicated that this Yarrow association 

(Cambisols) could be further subdivided into two series in some areas based on drainage. 

Thus some areas were not so freely draining and tended to be more closely related to the 

Kedslie soil series, while other areas were more freely draining except for some gleying and 

were more closely relates to the Linhope soil series. The alluvial soils (known as Fluvisols in 

the WRB classification, 2006) are developed on relatively recent freshwater sediments that 

mainly comprise mixtures of silt, with varying amounts of sand and clay; fine- to coarse-

grained gravels are present as subordinate components throughout their soil profiles. 

The above mentioned work of Ó Dochartaigh et al. (2012) included the production of a 1: 25 

000 scale map of the superficial geology and landforms of the whole catchment, between 

Penicuik and Pebbles (British Geological Survey, 2011). The site area is underlain by 

Ordovician meta–sandstones of the Portpatrick Formation that are typical of this part of the 

Scottish Borders. These rocks comprise brittle but resistant strata which crop out near to the 

surface of the soil on parts of the hillslope. 

Six superficial (unlithified) geological units occur in the field area, as shown in Fig. 2. First, 

‘Head’ or colluvium, is the most widespread. It is typically a ‘gravelly’ sediment, derived from 
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underling materials (commonly bedrock or glacial till) by solifluction, creep and slope wash 

and   produces poorly sorted stony soils. Second, ‘glaciofluviaI ice-contact deposits’ are 

sediments that were laid down at the margin of the last (Late Devensian) ice sheet  as it 

retreated across the area, some 15, 000 to 13, 000 years ago. They comprise thick 

accumulations of sand and gravel that occupy the valley floor now drained by the Eddleston 

Water and, within the floodplain, they are mantled by later Holocene alluvial sediments.  

Similar  ‘ice-contact deposits’  also form gravel mounds that blanket much of the western 

side of the valley upstream and downstream of the study transect. Here, they produce well 

drained gravelly soils. Glacial meltwater drainage also created a ravine (the Fairy Dean), 

largely cut into bedrock, to the south of the site.  These meltwaters also laid down the 

‘glaciofluvial sheet deposits’ (third superficial geological unit) of finer-grained sand and 

gravel within the ravine, upon which sandy soils developed.  

As the fourth superficial geological unit, glacial ‘till’ is widely developed, mantling bedrock on 

many of the valley sides in the catchment, but only a single surface exposure is present 

within the slope transect . However, geological modelling and geophysical profiling (Ó 

Dochartaigh et al., 2012) indicate that this compact, silty, gravelly material is widespread 

beneath the ‘head’ and ‘ice-contact deposits’ on the hillslope.  ‘Alluvial’ deposits (fifth unit) 

are dominant beneath the floodplain, where they comprise fine-grained material, mainly silt 

(formed as overbank deposits during flooding events) as well as beds of coarse gravel and 

sand that were laid down by laterally migrating river channels. The final sixth geological unit 

is an area of shallow ‘peat’ which is present near the western side of the river, where a 

sedge plant community is present and drainage is poor. Similar humic units commonly occur 

as lenses at depth, interbedded within the sandy and silty alluvial sediments.  
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3. METHODOLOGY 

3.1. Locating Kfs grid areas within the hillslope and floodplain 

To test whether land cover causes a significant difference to Kfs, it was essential that the 

chosen areas with different land covers were located in areas with the same parent material. 

As the more recent  superficial geology survey and resulting map (British Geological Survey, 

2011; Ó Dochartaigh et al., 2012; ) better reflected the spatial differences of soil 

characteristics than the older soil survey map (Soil Survey of Scotland Staff, 1975 ), then the 

former was used to locate land cover pairs (i.e. grassland and woodland). Detailed selection 

of the grids was also based on a combination of position on the hillslope and floodplain (i.e. 

ensuring that they were located within the same contour line, as shown in Fig. 1) as well as 

the location of the same superficial geological unit (Fig. 2). 

Fig. 1.  Aerial Photo and cross-section of the field study site, showing Site 1 which contains Site 1 grazed 

grassland (G1) and 500 year old broadleaf woodland (DW1) situated at the top of the slope, site 2 contains 

grazed grassland (G2) and 180 year old broadleaf woodland (DW2) located on a relatively flat part of the slope, 

site 3 containing grazed grassland (G3) and 45 year old conifer plantation (CW3) is on the steepest part of the 

slope and site 4 is located on the floodplain and contains floodplain woodland (FW4) and grazed grassland (G4). 

 

Fig. 2. Superficial geology of study area, showing the eight areas of Kfs measurements. Black lines are 10 m 

contour lines and open white areas are rock outcrops occurring within 1 m of the soil surface.G1 is grazed 

grassland, DW1 is 500 year old broadleaf woodland G2 is grazed grassland, DW2 is 180 year old broadleaf 

woodland, G3 is grazed grassland and CW3 is 45 year old conifer plantation FW4 is floodplain woodland and G4 

is grazed grassland. 

In this way four sites were chosen containing two different land covers, i.e. grazed, improved 

grassland cover and tree cover at different altitudinal locations (Fig. 1). All grassland areas 

were heavily grazed by cattle and/or sheep between early spring in April and autumn. A 

study of historical maps covering the area suggests that all the existing grassland has been 
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under this land cover for at least 250 years. All wooded areas were fenced and protected 

from grazing. The descriptions of sites are:  

 Site 1 has a slope from 0 to 5% and is located on the highest slope (elevation 250 m 

OD) of the site area. It includes an area of improved grazed grassland (G1) and old 

remnant woodland dating back to 1536, when Barony Castle was built and set in 10 

hectares of broadleaf woodland (DW1). The woodland area contains mature trees, 

comprising Fagus sylvatica, Prunus spinosa, Quercus petraea, Betula pendula, Acer 

pseudoplatanus and a few Fraxinus excelsior and Pinus sylvestris randomly spaced 

from 3 to 15 m. 

 Site 2, lower down the slope (elevation 240 m OD), includes an area of improved 

grazed grassland (G2) and a mixed woodland (DW2), that is part of the Barony 

Estate, and has been partially felled during the last 180 years. The slope ranges from 

0 to 10%. The woodland in DW2 is randomly spaced from 3 to 20 m and is more 

mixed than DW1 with P. sylvestris and there are fewer F. sylvatica  present.  

 Site 3 is on the steepest part of the hillslope (between 5 to 22 % slope). It ranges in 

elevation from 230 to 210 m OD and contains improved grazed grassland (G3) and 

part of a 45-year old P. sylvestris plantation (CW3). G3 and CW3 are separated by a 

topographical depression (as shown in Fig. 1). The trees in CW3 were planted by 

hand in lines 1 to 5 m apart.  

 Site 4 is on the floodplain (0 to 2% slope), at 197 m OD. It is divided into improved 

grazed grassland (G4), and a small area of wetland dominated by Salix caprea. 

(FW4) randomly growing together as a small clump of woodland.  
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A sampling grid was established in each of these eight areas to position the in-situ 

permeability measurements. Depending on the size of area being evaluated, individual grid 

cells ranged in size from 4 m2 to 625 m2. In order to avoid edge effects, caused by land 

cover changes, the edge of all grids were placed a minimum of 5 m inside of the margin of 

each land cover type. A summary of site characteristics, site area, sampling grid size and 

soil measurement depths are given in Table 1. 

Table 1) Site description, grid sampling size, and Kfs measurement depths. G1 is site 1 grazed grassland, DW1 is 

500 year old broadleaf woodland G2 is site 2 grazed grassland, DW2 is 180 year old broadleaf woodland, G3 is 

site 3 grazed grassland and CW3 is 45 year old conifer plantation FW4 is floodplain woodland and G4 is site 4 

grazed grassland. 

 

3.2. Measurement of hydraulic conductivity (Kfs) 

3.2.1. The Constant Head Well Permeameter 

A hole was augered within 1 m of each grid intersection and the soil depths and numbers of 

sample points (i.e. grid intersections) are given in Table 1. Kfs was measured using a 

constant head well permeameter (CHWP) as designed by Talsma and Hallam (1980). A 

stony layer below 0.15 m at sites G2, W2, G3, and W3 restricted augering below 0.15 m.  To 

ensure a comparative data set across all grid areas, the auger hole depth was therefore set 

to 0.15 m for all sites. To avoid interaction of the soil surface on the steeper slopes, the 

constant falling head level was set to 0.04 m below the soil surface, thus providing a head 

(h) of 0.11 m for all measurements at soil depths 0.15 m. In grid areas G1, W1 and G4, it 

was possible to auger to 0.25 m. Therefore, for these sites a second hole was augered 

within 1 m of a sample point and a CHWP measurement was taken from 0.15 m to 0.25 m. A 

0.06 m diameter auger was used throughout the investigation. The auger hole radius (a) was 

generally between 0.0325 to 0.035 m.  This gave an H/a value of approximately 3. To reduce 

the problem of smearing the wall of the auger hole during augering, a stiff nylon brush was 
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used to gently brush the auger hole walls (McKay et al, 2005). A pre-wetting phase of 20 

minutes was then carried out before starting the permeameter test. This reduced the time to 

reach steady state flow and ensure that each measured point was saturated (Talsma and 

Hallam, 1980). 

In the floodplain, the water table in some areas was found to be within 0.2 m of the ground 

surface, therefore the grassland grid area was located where the water level was deeper 

than 0.6m at the time of Kfs measurements. In the floodplain woodland, the cavities were 

augered to a maximum depth of 0.15 m, because the water table was rarely deeper than 0.5 

m. 

Following a comparative study of CHWP formulae, as described elsewhere (Archer et al., 

2013), the Glover solution with a correction for the effect of gravity (Reynolds et al., 1983), 

was chosen to be the best solution to estimate Kfs. 

3.2.2. The Ponded disc permeameter  

Kfs  was measured using the  ponded version of disc permeameter (PDP), as designed by 

Perroux and White (1988) at only DW1 and G4, because the topography at other sites were 

insufficiently level to take measurements.  An initial soil core was taken and weighed in the 

field before measurements commenced. Following each PDP measurement, surface water 

was allowed to drain from the soil surface, and then a sample from the top 5 mm of soil was 

removed. These soil samples were taken to the laboratory and the volumetric water content 

for each soil sample was estimated using gravimetric procedures. Measurements 

commenced the moment the ponded reservoir in the PDP had filled, and in this way the soil 

sorptivity could be measured, as described by Coughlan et al. (2002). Measurements were 
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taken until steady state infiltration was achieved and Kfs was calculated using equation 1 

(White and Sully, 1987). 

 

          Equation: 1 

Where q/πr0
2 is steady state flow (mm hr-1) and is calculated from the slope of the linear 

portion of cumulative infiltration against hours; b is a constant (0.55); S0 is sorptivity; 

calculated from the initial linear slope of Q/πr0
2 against hours ½; r0 is the radius of the metal 

ring where water infiltrates directly into the ground; θ0 is the initial volumetric moisture 

content before the start of measuring and θn is the final volumetric moisture content at the 

soil surface after the measurement has finished. 

The location of measurements followed the same grid system as the CHWP measurements 

so that the Kfs values could be compared to the same locations of Kfs measurements. 

3.2.3. Soil descriptions for each grid area 

For each hole augered for the CHWP measurements, soil descriptions of soil horizons were 

noted and included soil colour, depth of organic horizons and gravel size (including depths of 

gravel layers). Gravel was categorized using the British Standard range of particle sizes 

(British Standards Institution, 1990) into fine gravel (2 to 6 mm), medium gravel (6 to 20 mm) 

and coarse gravel (20 to 60 mm). The auger holes were divided into 0.05 m increments to a 

depth of 0.15 m and presence of fine roots (≥2mm) were noted. Any roots above 2 mm were 

counted into two categories 2 to 5 mm, and >5 mm for 0.05 m soil depth increments. In this 

way, each Kfs measurement related to a soil profile description, number of gravel size and 

𝐾𝑓𝑠 = 𝑞/𝜋𝑟0
2 4𝑏𝑆0

2

𝜋𝑟0 𝜃0−𝜃𝑛  
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root size which allowed regression analysis to compare possible statistical associations of 

Kfs values against gravel size as well as root characteristics. 

Bulk samples were collected, from four auger holes in each grid area, for particle-size 

analysis. The latter was undertaken by dry sieving the material > 2 mm diameter; the particle 

size distribution of material < 2 mm was measured using a Beckman and Coulter LS13 320 

Laser Diffraction Particle Size Analyzer.  

3.3. Data analysis 

3.3.1. Geostatistical analysis: test for autocorrelation between Kfs values 

To test for significant differences of Kfs between grid sites, the data for each grid was first 

checked for autocorrelation using Ordinary Kriging in ESRI® ArcMap™ 9.3.1. Generally at 

shallow depths at sample locations (lags) of 25, 10, 1 and 0.25 m, Kfs has been found to 

have little to no spatial structure in other studies, as discussed by Sobieraj et al. (2004). To 

investigate such possible spatial structure at smaller scales, five extra sampling points were 

nested within the grassland and woodland grid areas, at lags 0.25, 0.5, 1, 3 and 5 m, within 

site 1 following the sampling methodology of Zimmermann and Elsenbeer (2008). The 

strength of spatial variability was estimated using the ratio of nugget to sill (total 

semivariance), which provided a percentage to classify spatial dependence using the 

following criteria : <25% indicates strong spatial dependence, between 25 and 75% indicates 

moderate spatial dependence and >75% indicates weak spatial dependence (Cambardella 

et al., 1994). Using an exponential Simple Kriging model, strong autocorrelation was found 

to exist at a range within 2 m in the grassland and woodland area at site 1. Taking into 

account  this result, the chosen grid points (distance between Kfs sampling points) for all 

sites were significantly greater than 2 m apart and thus ranged from a minimum of 2.5 m to 

25 m, as shown in Table 1. 
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3.3.2. Statistical analysis 

Using the Anderson-Darling and Kolmogorov-Smirnov statistical tests for normality, it was 

determined that Kfs values measured in all the grass areas and the floodplain woodland 

(FW4) were log normally distributed. The data was therefore transformed using log10 before 

further analysis, which is common for such datasets (Bonell et al., 2010; MacDonald et al., 

2012). All transformed Kfs values for each grid area was tested for homogeneity of variance 

using Bartletts test.  

To determine significant differences of log10 Kfs values between paired grid areas (which had 

normally distributed data and equal variances), paired t-tests were used. Where mean 

variances were not similar, the nonparametric equivalent of the paired t-test that is, the 

Wilcoxon’s signed rank test was adopted using the procedure of Dytham (1999, p. 76).  

To test the null hypothesis that all site locations (Sites 1 to 4) have the same mean under 

grassland and woodland, one-way ANOVA was used if the grid area Kfs  was normally 

distributed and had equivalent mean variances. If the mean variances were unequal, the 

Kruskal-Wallis non-parametric test was used. If the ANOVA gave a significance difference, 

the data was further interpreted using descriptive statistics and Fisher’s Least Significant 

Differences to determine which of the grid locations had the most significantly different Kfs 

values. 

3.3.3. Rainfall intensity-duration-frequency analysis (IDF) and inferring 
dominant hillslope hydrological pathways during storms 

There are an increasing number of studies particularly in the tropics and subtropics 

suggesting that the vertical distribution of Kfs and prevailing rainfall intensities are driving 

factors that determine the dominant stormflow pathways (as defined by Chappell et al, 2007) 

during and shortly after a rainfall event (Gilmour et al., 1987; Zieglar et al., 2006; 
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Zimmermann and Elsenbeer, 2008; Germer et al., 2010; Bonell et al., 2010; Hassler et al. 

2011; Chandra et al., 2013). All these investigations infer stormflow pathways (e.g., 

infiltration – vertical percolation, infiltration –excess (IOF, Horton, 1933) or saturation-excess 

(SOF) overland flow, subsurface stormflow, SSF; Chorley, 1978) by selecting percentiles of 

maximum rainfall intensities (Imax), which are then superimposed on measured datasets of 

Kfs values. 

In this study Imax for different rainfall durations for the field site were derived using the Flood 

Estimation Handbook (FEH) depth-duration-frequency (DDF) model on a 1 km grid, as 

described by Faulkner (1999) to fit rainfalls aggregated over 15 to 360 minute rainfall 

durations for 2, 5, 10, 20 and 100 year return periods (Fig. 3). The rainfall database spanned 

at least 10 years and used local rainfall gauges within 8 km of the study area. The values 

modelled for DDF curves, 1 in 2, 5, 10, 50 and 100 year return periods over I15max were 

converted to rainfall intensity-duration–frequency (IDF) values and then superimposed on 

boxplots to illustrate the spread of Kfs values for each measured grid area. The choice of 

I15max of different return periods was to conceptualize how short–duration, high intensity 

storms may cause IOF in relation to the range of measured Kfs under different land cover. As 

Kfs was measured at several depths (soil surface, 0.04-0.15m and 0.15-0.25m) at sites 1 

and 4, thus the possible inference of subsurface stormflow (SSF) could also be considered 

at these sites, as described by Bonell (2005). 

Fig. 3 Modelled DDF curves using the Flood Estimation Handbook (Faulkner, 1999) aggregating rainfalls over 15 

to 360 minute rainfall durations for 2, 5, 10, 20 and 100 year return periods. 
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4. RESULTS 

4.1. Comparison of Kfs values 

4.1.1. Kfs between different land covers at 0.04 to 0.15 m depth. 

The Kfs values measured between depths 0.04 and 0.15 m for each grid area are displayed 

in Fig. 4 and also graphed as a box plot (Fig. 5) to illustrate the spread of data and the 

median for each grid area. The oldest forest area (DW1) shows the highest range of Kfs 

values (60 to 482mm hr-1) than any other grid area, whereas the floodplain (G4) shows the 

lowest range of Kfs values (0.4 to 12 mm hr-1).  

Fig. 4. Spatial display of Kfs measured points within each grid area. Grid areas are identified as abbreviations and 

contour lines are shown as black full lines, ranging from 210 m to 260 m. G1 is grazed grassland, DW1 is 500 

year old broadleaf woodland G2 is grazed grassland, DW2 is 180 year old broadleaf woodland, G3 is grazed 

grassland and CW3 is 45 year old conifer plantation FW4 is floodplain woodland and G4 is grazed grassland. 

Grid areas G1, DW1 and FW4 are enlarged to show the Kfs categories more clearly. 

Fig. 5. Box plots of measured Kfs for each field site measured between 0.04 to 0.15 m soil depth. Kfs median 

values are given in the table. The superimposed black and dashed lines I15max rainfall intensity events  for 

selected return periods of 1 in 2 years (22.0 mm hr-1), 1 in 5 years (29.8 mm hr-1) 1 in 10 years (36.3 mm hr-1), 1 

in 50 years (56.4 mm hr-1) and 1 in 100 years (68.0 mm hr-1).  

 

Highly significant differences between tree cover and grassland areas were found for all 

sites, except between G3 and CW3 (Table 2). The median Kfs values in the grid areas DW1, 

DW2 and FW4 are respectively 5, 6, and 8 times more than the corresponding adjacent 

grass areas. Such characteristics can be seen in the extreme values between grass and 

woodland areas, as shown in Fig. 4 and 5, and the means and standard error given in Table 

2. In summary the rank of median Kfs for the 0.04 to 0.15 m soil layer is DW1 > DW2 > CW3 

> G1 > G3 > G2 > FW4 > G4. 

Table 2. Results of the paired t-test and Wilcoxon’s test, which compare the differences between the tree and 

grassland grid areas within each site. SE of mean is the standard error of the mean, *** indicates highly 

significant differences between the grid areas within each site. G1 is site 1 grazed grassland, DW1 is 500 year 
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old broadleaf woodland G2 is site 2 grazed grassland, DW2 is 180 year old broadleaf woodland, G3 is site 3 

grazed grassland and CW3 is 45 year old conifer plantation FW4 is floodplain woodland and G4 is site 4 grazed 

grassland.  

4.1.2. A comparison of Kfs within grassland and woodland areas at the 0.04-

0.15m depth 

One-way ANOVA log10 transformed Kfs values showed very highly significant differences 

between the grassland sites (G1, G2, G3 and G4) (F ratio = 97.7, d.f. = 3 and P value < 

0.001). Fisher’s Least Significant Difference showed that the most significantly different (P < 

0.05) grassland area was in the floodplain (G4), where the median Kfs value of G4 was 

between 17 and 33 times lower than the respective mean Kfs values for G2, G3 and G4  

(also shown as mean values in Table 2 and Fig. 4). During the summer when stocking 

densities were high, it was observed that in the floodplain the soil surface became pitted with 

hoof prints and during high intensity rainfall, surface- ponding occurred. 

The Kruskal-Wallis nonparametric test was used to test for significant differences between 

woodland areas (DW1, DW2, CW3 and FW4). The results showed that the Kfs values were 

very high significantly different for the four woodland areas (H-value = 26.19, d.f = 3 and P 

value < 0.001). Summary statistics and the box plot (Fig. 5) suggest that the highly 

significant differences lie between CW3 and FW4, which have much lower Kfs values than 

DW1 and DW2. 

4.1.3. A comparison of Kfs where measurements were made at three different 

soil depths (soil surface, 0.04-0.15 and 0.15-0.25m) for DW1, G1 and G4. 

The spread of Kfs values are illustrated as box plots (Fig. 6) for the three grid areas for each 

measured soil layer. The surface soil Kfs measurements using the PDP are shown for grid 

areas G4 and DW1 and Kfs values for the soil layers 0.04 to 0.15 m and 0.15 and 0.25 m, 

were measured by CHWP method. 
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One-way ANOVA was used to investigate significant differences of Kfs between soil layers. 

The results are shown in Table 3 and include mean Kfs and standard error values for each 

grid and soil depth.  Very highly significant reductions of Kfs are indicated with increasing soil 

depth, particularly below 0.15 m in DW1 and G1.  In G4 the 0.04 – 0.15 m soil layer has the 

lowest Kfs values, whereas the deeper layer has higher Kfs values. 

Fig. 6. Box plots of measured Kfs for DW1, G1 and G4 at three different soil depths: 0 m, 0.04 – 0.15 m, 0.15 – 

0.25 m. The superimposed black and dashed lines are I15max rainfall intensity for selected return periods of 1 in 2 

years (22.0 mm hr-1), 1 in 10 years (36.3 mm hr-1) and 1 in 100 years (68.0 mm hr-1). 

Table 3. Results of one-way ANOVAs, comparing log10 Kfs values for different depths for each grid DW1, G1, G4. 

*** means that the P-value is very highly significant and ** means the P-value is highly significant. The table also 

includes the mean and standard error (SE) of Kfs values for each soil layer. G1 is site 1 grazed grassland, DW1 is 

500 year old broadleaf woodland and G4 is site 4 grazed grassland. 

 

4.2. Soil and root characterisation of grid areas  

The auger hole soil profiles showed that the main differences in the topsoil (0 to 0.3 m) 

between different grid areas are the depth of gravel and organic layers within this upper 

surface soil profile. These differences are shown as simplified surface soil profiles in Fig. 7, 

using the horizon nomenclature from the Soil Survey of Scotland Handbook (Macaulay 

Insitute for Soil Research, 1984). The shallow soil survey found that fine to coarse gravels 

came to the surface in some areas on the steep hillslope section within CW3 and G3. The 

gravel layer was deeper in DW1 and G1 (below 0.25 m) than DW2 and G2. Gravel was also 

found in a very few patches within the floodplain (FW4 and G4). 

Soil particle size analysis of the < 2 mm fraction indicated that the silt and clay fraction 

increases downslope onto the floodplain at G4 and FW4 and the sand fraction increases 

upslope, and is the highest in DW1 and G1 (this is illustrated in Fig. 8). 
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The deeper organic layers under all woodlands were a sharp contrast with the adjacent 

grassland areas, the latter of which were characterised as having a 40 to 50 mm dense root 

mat comprised of fine roots less than 2mm diameter (see Fig. 7). The vertical profiles of 

these broadleaf woodland soils indicated a high level of biological activity, because of the 

presence of a large number of tree and shrub roots and a deep organic layer. The deepest 

organic layer was in DW1 and was shallower in the conifer plantation (CW3). DW2 had a 

thinner organic layer and a shallower A horizon than DW1.  

Table 4. Generalised soil descriptions and their relationship with the superficial geology for all grid areas. 

 

Large mature tree roots (diameters > 5mm) were found close to trees in all wooded sites 

(DW1, DW2 CW3 and FW4). The coarse root counts in Fig. 7, show that DW1 had the 

largest number of coarse roots (classified between 2 to 5 mm and >5 mm) than any of the 

other grid areas. Also the distribution of these coarse roots in DW1 was more homogenous 

at depth in comparison to DW2 and CW3, where coarse roots decreased at 0.15 m.  In the 

floodplain woodland (FW4), the 2 to 5 mm roots were highly clumped and found mainly in 

the top 0.10 m of the soil. Within the grass areas the 0 to 0.05 m soil depth was dominated 

by a thick grass root mat. No coarse roots (>2mm) were observed in the soil profiles in the 

grass areas. 

Fig. 7. The graphs in the row labelled ‘roots’, show the number of coarse roots within a soil profile. The y axis is 

soil depth (cm) and the x-axis is the number of coarse roots; the black bar indicating average number of roots 

with diameters between 2 to 5 mm and the grey bars indicating number of roots > 5 mm. Error bars show the 

standard error for each grid area. The row labelled ‘Kfs’ shows the Kfs (mm hr-1) for each sampled point within 

each grid. The row labelled ‘soil’ shows the soil profile from 0 to 0.25 m for grid areas G1, DW1 and G4 and 

RW1, all other profiles are for soil depths 0 to 0.2 m. The L horizon is fresh annual litter, the F horizon is 

decomposed litter, H is well decomposed matter under aerobic conditions, A is a mineral horizon incorporating 

organic matter, B is a mineral horizon and C is a mineral layer of unconsolidated material. The black fragments 

indicate the depth of coarse gravels. 
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Fig. 8. Average percentage clay, silt and sand measured for each grid area. 

 

4.2.1. Relationship of Kfs versus gravel content and presence of roots 

The Kfs values higher than 120 mm hr-1 all had roots >5 mm present within the auger hole 

(Fig. 9). Regression analysis was used to test correlations of Kfs measured from 113 auger 

holes and their corresponding soil descriptions which contained, total root numbers, number 

of roots >5 mm, number of roots between 2 and 5 mm, humus depth, gravel size, depth of 

gravel layer. As shown in Fig. 9a, analysis using logarithmic regression gave positive 52% 

correlation (R2) between Kfs values and total root numbers >2 mm diameter  (F = 41.82, P-

value < 0.001). On the other hand using regression analysis, no correlation was evident 

between gravel size (Fig. 9b) and Kfs. Using Minitab version 16.2.3 best subset regression 

showed that  the inclusion of additional independent variables (i.e., humus depth, stone size 

total root size) with total root numbers >2mm did not greatly improve R2 and thus the 

prediction of Kfs. For example, the additional inclusion of humus depth, and stone size with 

total root numbers >2mm into the best subset regression predicted only an increase of 5% in 

R2, i.e., from 50% to 55 % of the Kfs values. This analysis corroborates the results of 

MacDonald et al. (2012), who found that log Kfs had a low correlation to material descriptions 

using the largest fractions (e.g. sand or gravel).   

Fig. 9. a) Kfs for all auger holes versus number of coarse roots (>2 mm). The linear regression line is: Kfs = 25.94 

– 3.434roots + 1.482 roots2 – 0.03648roots3. P<0.001 and R2 is 52.2%. b) Kfs for all auger holes versus maximum 

gravel size. No statistical significance (P = 0.891 and R2 is -0.88%). 
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4.3. Rainfall intensity-duration-frequency (IDF) analysis for different land 

covers 

Fig. 5 illustrates that the range of Kfs values of the oldest woodland (DW1) and 180 year old 

mixed woodland (DW2) exceeds I15max events for 1 in 100 year storm events. On the other 

hand the upper quartiles of Kfs values in all grazed grassland areas are below the I15max, 1 in 

100 IDF.  Further the whole range of Kfs values remains well below the I15max, 1 in 10 IDF in 

G2, and for the paired floodplain sites G4 and FW4. Such features infer that the grassland 

areas and particularly the floodplain will have infiltration-excess overland flow occurring 

during such storm events. 

Where it was possible to measure Kfs at 0.15 to 0.25 m soil depths (i.e., at DW1, G1 and 

G4), it was found that the range of Kfs values were much lower in this layer when compared 

to the <0.15m depth (as shown in Fig. 6). Such reductions in the 0.15 – 0.25m layer were 

particularly marked under the woodland area (DW1) where Kfs   ranged from 8 to 51 mm h -1, 

i.e., by up to 2 orders of magnitude when compared to the Kfs <0.15m depth Thus during 

I15max for both 1 in 100 and 1 in 10 IDF, impedance to percolation is indicated and thus will 

lead to subsurface stormflow particularly within DW1. 

Fig. 6 also shows that within the floodplain all soil layers are highly impermeable, because 

the range of Kfs values for all soil depths are well below the I15max, 1 in 10 IDF. Thus IOF 

would prevail. Moreover, even under grassland at the top of the slope (G1), the deeper soil 

layers are also more impermeable than the surface layer, inferring that rainfall percolating 

through the more permeable layer above, will be impeded by the lower Kfs corresponding to 

the 0.15 to 0.25 m layer.  Thus the occurrence of subsurface stormflow is likely even under 

grassland. 
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Using the in-situ Kfs measurements for 0.04 to 0.15m depths and modelled IDF values for an 

I15max 1 in 10 IDF (36 mm hr-1); a conceptual spatial diagram inferring possible areas of 

infiltration and IOF was generated in ESRI® ArcMap™ 9.3.1 (Fig. 10). Areas showing 0 mm 

hr-1 runoff (blue points in Fig. 10) infer that the in-situ Kfs measured at these points are 

greater than 36 mm hr-1, so all rainfall can infiltrate. When there is IOF, the in-situ measured 

Kfs is less than 36 mm hr-1 and at these points the quantity of overland flow depends on how 

high (or low) is the in-situ Kfs. Following this concept (Fig. 5 and Fig. 10), the two broadleaf 

woodland areas (DW1 and DW2) have the greatest capacity to accept high intensity rainfall 

events, whereas the floodplain (including most of the points in the Wetland woodland, FW4) 

have the least capacity to infiltrate high intensity rainfall. 

Fig. 10: Conceptual diagram of runoff during an I15max 1 in 10 year rainfall event (36 mm hr-1) relating to Kfs 

measured at 0.04 to 0.14 soil depth. When runoff is 0 mm hr-1, the total rainfall will infiltrate because the Kfs 

measured at a point is greater than 36 mm hr-1. If the in-situ Kfs is less than 36 mm hr-1, a portion of the rainfall 

will become infiltration excess overland flow and generate runoff. Grid areas are identified as abbreviations and 

contour lines are shown as black full lines, ranging from 210 m to 260 m. G1 is grazed grassland, DW1 is 500 

year old broadleaf woodland G2 is grazed grassland, DW2 is 180 year old broadleaf woodland, G3 is grazed 

grassland and CW3 is 45 year old conifer plantation FW4 is floodplain woodland and G4 is grazed grassland. 

DW1, G1 and FW4 are enlarged to show the full variation of Kfs spatial variation. 

 

When investigating the deeper soil depths (0.15 to 0.25 m) within the adjacent grassland and 

woodland areas (G1 and DW1), and using the same concept as discussed in Fig. 10, the 

lower Kfs values at depths 0.15 to 0.25 m in G1 would be impermeable to the high intensity 

rainfall (36 mm hr-1) that has previously percolated through the upper soil layer (Fig. 11). 

Thus both SSF and SOF could occur in the grassland. In contrast, DW1 shows a mosaic of 

some impermeable deeper areas (at 0.15 – 0.25m.) in combination with other areas of 

higher Kfs. Such circumstances would allow high intensity rainfall to percolate to greater 
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depths in some parts and concurrently be impeded in others parts of DW1, on the lines 

highlighted above.  

Fig. 11. Conceptual diagram of runoff during I15max 1 in 10 year rainfall event (36 mm hr-1) relating to Kfs measured 

at 0.15 to 0.25. When runoff is 0 mm hr-1, the total rainfall will infiltrate to deeper depths because the Kfs 

measured at a point is greater than 36 mm hr-1. If the in-situ Kfs is less than 36 mm hr-1, a portion of the rainfall 

will become infiltration excess overland flow and generate runoff or subsurface storm flow. The light grey area is 

grassland (G1) and the dark grey area is 500 year old broadleaf woodland (DW1). 

 

5. DISCUSSION  

5.1. Effect of land cover and Kfs 

Considering that each paired grid is located on the same superficial geology (Fig. 2), the 

very high Kfs values under woodland, which are also highly significant (P < 0.001) different 

from the grassland areas, provides a marked contrast in Kfs  between these adjacent 

woodland and grassland pairs. This difference between higher Kfs values under woodland 

can be seen to occur within a relatively short spatial distance (as shown in Fig. 4), where Kfs 

increases in the forest areas (DW1 and DW2) at the boundary line between woodland and 

grassland.  Large differences of Kfs between pasture land and broadleaf woodland have also 

been found in other temperate studies, such as Wales, UK (Marshall et al., 2009) and Mont 

du Lyonnais, France (Gonzalez-Sosa et al., 2010). 

The absence of surface litter layer and a shallow organic horizon in the grazed grassland 

grid areas (e.g. G1, G2, G3 and G4, as shown in Fig. 7) can be expected when grassland is 

heavily grazed, because little organic material will be available for incorporation into the soil 

surface, unlike within the forest areas, which are not grazed. Within the woodland areas, 

there is an active supply of dead organic material that is retained at the soil surface and 

subsequently is incorporated into the organic horizon. The topsoil of the grassland areas is 
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therefore characterised more by the local superficial geology. The latter contrasts with the 

woodland areas, which have a clear biological component, as shown by the topsoil profiles 

having a clear litter layer and relatively deep organic horizon (Fig. 7 and Table 4).  

The moderate correlation of coarse root (> 2 mm) presence and increasing Kfs, may indicate 

that the presence of coarse roots is not necessarily a factor increasing Kfs, but rather the 

roots are part of the biological process within the topsoil that interacts with other biological 

factors (for example, increased organic matter, bioturbation and mycorrihizal fungi network) 

that in turn, increase Kfs. The deeper organic layer within the topsoil profile under woodland 

in DW1 and DW2, plus the higher root numbers and diameters, especially under DW1 (Fig. 

7), infers that macropores and preferential pathways could be present. These circumstances 

are likely to cause the significantly higher Kfs values under broadleaf woodland. Such 

evidence corroborates other investigations that have observed preferential flow from 

irrigated experiments following root conduits below trees (Jost et al., 2012; Schwärzel et al., 

2012).  

The work has highlighted the significantly lower Kfs (median 42 mm hr-1) under the conifer 

plantation (CW3) when compared to the other broadleaf woodland areas (P <0.001). The 

similarity of Kfs in grassland and woodland in Site 3 (as shown in Fig. 5) is probably due to 

the higher gravel content at Site 3 causing higher Kfs under grassland (G3). However, it is 

surprising that Kfs under the conifer plantation (CW3) is low considering that root number and 

diameter under CW3 is similar to the 180 year old broadleaf forest (DW2), as is shown in 

Fig. 7. In CW3, the mean standard error (SE) for Kfs values was higher than the adjacent 

grassland area (G3) and it is possible that the litter layer, which was predominantly P. 

sylvestris needles, provided organic colloids (Table 4), which is likely to enhance illuviation in 

the topsoil areas and reduce soil permeability. Evidence of such a process has been 
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described under Picea sitchensis, in Wales, UK (Chappell, 1996). The soil surface under 

conifer- dominated forests in north-western USA have also been found to have a ‘natural 

background’ water repellency (WDPT >5 s) on air-dry samples (Doerr et al., 2009). 

The variance of Kfs in the floodplain woodland (FW4) was also not equal to any other 

woodland area, because it had two unusually high outlier values (247 and 178 mm hr-1, as 

shown in Fig. 5). In both cases it was observed that the auger holes where these high Kfs 

values were measured had coarse diameter roots. Otherwise the auger holes were 

dominated by compacted silt and clays, a situation more in common with the floodplain 

occupied by grassland. Consequently much lower Kfs values (median 1 mm hr-1 under 

grassland and median 8 mm hr -1 under woodland) occur in the floodplain when no coarse 

roots (> 2mm diameter) are present. The shallow root depths under Salix caprea (in FW4) is 

typical when soils are water logged and soil aeration can at times be minimal for root survival 

(Jackson and Attwood, 1996). The net result is a heterogeneous root distribution. 

5.2. Effect of superficial geology and Kfs 

The superficial geology survey illustrates the complex geomorphology of the study site that 

has been developed on a confluence between the Fairy Dean Burn and the main tributary 

being the Eddleston Water (Fig. 2). Although these rivers are today relatively small, the 

effects of glaciation and fluvial transport are the major drivers that have deposited and sorted 

the diverse textural content from clay, silt, sand and gravel within the hillslope and floodplain 

of this area. Considering, MacDonald et al.’s (2012) conclusion, that “permeability of 

superficial deposits is most strongly related to the finest fraction”, the Kfs results for each site 

under grassland can be compared to presence of fine material (shown in Fig. 8). For 

example, the highly significantly lower Kfs values (i.e. median1 mm hr-1) measured in the 

grassland areas in the floodplain (G4), could be attributed to the dominant clay and silt 
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particle size (shown in Fig. 8), derived from Alluvium soils (Fig. 2). Site 1 (G1) on the other 

hand was least dominated by the finest fraction and had significantly higher Kfs values 

(median 39 mm hr-1) than any other grassland area. 

Soils that have been subjected to glacial processes in Scotland, associated with different 

superficial geological units, have been observed to have a wide range of Kfs, using the 

Guelph permeameter (Elrick et al., 1989). For example, Lilly (2000) measured a range of Kfs 

values from 0.025 to 432 mm hr-1 for sub-soils under permanent grassland and cultivated 

fields and MacDonald et al. (2012) measured sub-soil Kfs ranging from 0.042 mm hr-1 to > 

1667 mm hr-1 of in-situ material from sub-soils comprising mainly of glacial material.  

5.3. Possible stormflow pathways under tree and grass cover 

Because the Kfs at 0.04 to 0.15 m depth under broadleaf woodlands (DW1 and DW2) 

exceed the I15max, 1 in 100 IDF, these wooded areas are more likely to act as a ‘sink’  (i.e., 

infiltration-vertical percolation dominates) to high intensity rainfall (Fig. 5 and Fig. 10). For 

example, the measurements of surface Kfs in the oldest broadleaf forest (DW1), as shown in 

Fig. 6, provides evidence that the soil surface provides little barrier to high intensity rainfall 

infiltrating which could percolate to the lower 0.15 m. Below this depth however, the median 

Kfs under broadleaf woodland (DW1) decreased by six fold when compared to Kfs measured 

in the upper soil layer. Such a decrease in permeability within the sub-soil is likely to cause 

subsurface storm flow, during high intensity rainfall events. Conceptualising spatially the in-

situ Kfs measurements as possible areas for runoff generation (as illustrated in Fig. 10) infers 

how the different land covers could act as ‘sources’  of flood-producing overland flow under 

high intensity rainfall. IOF is most likely to occur on the floodplain and over some grassland 

areas. The particularly low surface Kfs values in the floodplain grassland (i.e., median Kfs 
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range from 1 to 12 mm hr-1 , Fig. 5) illustrates that ponding of water in the floodplain is very 

likely to occur during most rain events. 

Spatial differences of Kfs at depth, will cause some high intensity rainfall to percolate beyond 

0.25 m (as shown in DW1, by the blue dots in Fig. 11). On the other hand, the point 

measures of relatively lower Kfs values between 0.15 to 0.25 m depth will most likely act as 

impeding layers and could cause subsurface storm flow. 

The high stocking densities observed during the summer  cause soil surface compaction and 

possibly also contribute towards the decrease of Kfs at the shallow soil depth, 0.04 to 0.15 m 

soil depth (Fig. 6) (as reviewed in Hamza and Anderson, 2005). Elsewhere decreased Kfs 

was also found to be lower between 0.05 to 0.10 m depth than when compared to a  0.15 to 

0.20 m layer on Fragic Pallic soil in New Zealand after cattle grazing during winter (Drewry 

and Paton, 2005). 

5.4. Using woodland for NFM 

The aim of using woodland cover as a NFM technique focuses on the ability for trees to 

accept  rainfall with the effect of reducing the quantity of fast stormflow  pathways (e.g., 

IOF,SOF),and its timing on entry of into river tributaries and groundwater aquifers. In turn, 

the objective is to reduce quickflow and the peak hydrograph response. This investigation 

indicates that broadleaf woodland cover (as shown by DW1 and DW2) could significantly 

facilitate soil hydraulic conductivity and may allow high intensity storm rainfall to infiltrate and 

subsequently percolate into the topsoil. However, not all tree cover significantly increased 

Kfs.  Although the conifer plantation (CW3) had a comparatively higher Kfs than the adjacent 

grassland (G3), such differences in absolute values statistically were not significant. There 

was evidence of illuviation within the topsoil profile, which could be due to the effect of 
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colloids from the conifer litter which, in turn, decreased Kfs. This process has been 

suggested in other investigations under conifer plantations (e.g. Chappell, 1996).  

This investigation suggests that mature broadleaf forest significantly increases rainfall 

infiltration and could be planted as a means to facilitate the infiltration of heavy rainfall. This 

raises the practical issue that following tree-planting with broadleaf species, what is the time 

scale before an organic soil horizon has sufficiently developed to significantly enhance Kfs. 

The two broadleaf tree areas were 500 and 180 years old, while the surrounding grazed 

grassland areas had existed for at least 250 years. On the other hand, although DW1 is 

approximately 320 years older than DW2, the higher Kfs of DW1 is statistically not 

significantly different to DW2. Thus there are indications that a significantly older broadleaf 

forest (greater than 180 years old) will not necessarily significantly increase Kfs  much more. 

On the other hand up to ~180 years from planting, a significant increase of Kfs will occur 

during the growth of such broadleaf woodland. Such trends in Kfs are much less apparent for 

the 45 years P. sylvestris plantation. To more comprehensively understand if there is a 

possible threshold of forest age and the development of soil hydraulic conductivity, requires 

more baseline research  to be undertaken under both  broadleaf and conifer woodland that 

are older than 45 years old, but younger than 180 years old. 

6. CONCLUSIONS 

Overall this study highlights the significant impact of broadleaf woodland on a hillslope that 

increases Kfs in comparison to grassland areas. In particular, Kfs under 180 and 500 year old 

broadleaf forest was found to be respectively 6 and 5 times higher than neighbouring grazed 

grassland areas on the same superficial geology. This was attributed to the significantly 

deeper organic layer in the topsoil profile providing greater available water storage and the 
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presence of coarse roots (>20 mm diameter) creating conduits for preferential flow. On the 

other hand, the Kfs under P. sylvestris had only slightly higher Kfs values than the adjacent 

grassland area, and were statistically not significantly different. This result is surprising 

considering that root numbers and diameter under P. sylvestris is similar to the 180 year old 

broadleaf forest.  Causal factors may have been due to enhanced illuviation of available 

organic colloids from pine needles, which could cause soil repellency, ultimately reducing 

Kfs. The floodplain broadleaf woodland had significantly lower Kfs values than the other 

woodland area, illustrating the problem of poor soil drainage relating to the gley soils in the 

floodplain. The coarse roots that did exist within the floodplain woodland were shallow and 

were spatially less extensive (in clumps), but they did provide some high outlying Kfs values 

and an associated large mean variance in this parameter. The low median Kfs values at 0.04 

to 0.15 m soil depth under all four measured grassland ranged from median 1 to 39 mm hr-1, 

where the highest Kfs values were in head deposits (high gravel content) and the lowest in 

the alluvium floodplain deposits (higher silt and clay content). The diverse particle size 

distribution of clay, silt, sand and gravel within the hillslope indicated the significant effect of 

glaciation and fluvial transport in depositing and sorting which in turn affected the topsoil Kfs 

under grassland. Moreover no coarse roots (>2mm diameter) were observed in the soil 

profiles in the grass areas. Thus at these sites the superficial geology was a more dominant 

influence on Kfs than biological factors, which were more dominant in broadleaf woodland. 

Low Kfs values in the floodplain were also observed to be influenced by soil compaction 

caused by high stocking rates. Of all the soil description parameters (total root numbers, 

number of roots >5 mm, number of roots between 2 and 5 mm, humus depth, stone size, 

depth of gravel layer), an increase in Kfs  was determined by regression analysis to be most 
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associated with total root numbers >2 mm diameter. By contrast no statistical relationship 

between gravel size and Kfs was evident. 

Mapping in-situ Kfs measurements inferred possible areas of sources and sinks for overland 

flow during high intensity duration rainfall (the example used was I15max 1 in 10 year rainfall 

event). A source of overland flow (infiltration-excess and saturation-excess) occurs in most 

grassland areas and particularly in the floodplain silty soils. Broadleaf woodland areas are 

likely to act as sinks to overland flow during high intensity rainfall, but at a depth >0.15 m 

subsurface storm flow is likely to occur. 

In terms of NFM, this study suggests that older broadleaf forests on pastoral hillslopes could 

mitigate local flooding because of the significantly higher infiltration rates and subsoil Kfs 

under these forested areas in contrast to the heavily, grazed grasslands. However, as 

indicated earlier, such deciduous forests occupy only ~7% of woodland in the Scottish 

Borders (Anon, 1999) and a paradigm shift in forestation practice in terms of species is thus 

required. 
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List of Figures 

Fig. 1.  Aerial Photo and cross-section of the field study site, showing Site 1 which contains 

Site 1 grazed grassland (G1) and 500 year old broadleaf woodland (DW1) situated at the top 

of the slope, site 2 contains grazed grassland (G2) and 180 year old broadleaf woodland 

(DW2) located on a relatively flat part of the slope, site 3 containing grazed grassland (G3) 

and 45 year old conifer plantation (CW3) is on the steepest part of the slope and site 4 is 

located on the floodplain and contains floodplain woodland (FW4) and grazed grassland 

(G4). 

Fig. 2. Superficial geology of study area, showing the eight areas of Kfs measurements. 

Black lines are 10 m contour lines and open white areas are rock outcrops occurring within 

1 m of the soil surface.G1 is grazed grassland, DW1 is 500 year old broadleaf woodland G2 

is grazed grassland, DW2 is 180 year old broadleaf woodland, G3 is grazed grassland and 

CW3 is 45 year old conifer plantation FW4 is floodplain woodland and G4 is grazed 

grassland. 

Fig. 3 Modelled DDF curves using the Flood Estimation Handbook (Faulkner, 1999) 

aggregating rainfalls over 15 to 360 minute rainfall durations for 2, 5, 10, 20 and 100 year 

return periods. 

Fig. 4. Spatial display of Kfs measured points within each grid area. Grid areas are identified 

as abbreviations and contour lines are shown as black full lines, ranging from 210 m to 260 

m. G1 is grazed grassland, DW1 is 500 year old broadleaf woodland G2 is grazed 

grassland, DW2 is 180 year old broadleaf woodland, G3 is grazed grassland and CW3 is 45 

year old conifer plantation FW4 is floodplain woodland and G4 is grazed grassland. Grid 

areas G1, DW1 and FW4 are enlarged to show the Kfs categories more clearly. 



  

Fig. 5. Box plots of measured Kfs for each field site measured between 0.04 to 0.15 m soil 

depth. Kfs median values are given in the table. The superimposed black and dashed lines 

I15max rainfall intensity events  for selected return periods of 1 in 2 years (22.0 mm hr-1), 1 in 5 

years (29.8 mm hr-1) 1 in 10 years (36.3 mm hr-1), 1 in 50 years (56.4 mm hr-1) and 1 in 100 

years (68.0 mm hr-1). 

Fig. 6. Box plots of measured Kfs for DW1, G1 and G4 at three different soil depths: 0 m, 

0.04 – 0.15 m, 0.15 – 0.25 m. The superimposed black and dashed lines are I15max rainfall 

intensity for selected return periods of 1 in 2 years (22.0 mm hr-1), 1 in 10 years (36.3 mm hr-

1) and 1 in 100 years (68.0 mm hr-1). 

Fig. 7. The graphs in the row labelled ‘roots’, show the number of coarse roots within a soil 

profile. The y axis is soil depth (cm) and the x-axis is the number of coarse roots; the black 

bar indicating average number of roots with diameters between 2 to 5 mm and the grey bars 

indicating number of roots > 5 mm. Error bars show the standard error for each grid area. 

The row labelled ‘Kfs’ shows the Kfs (mm hr-1) for each sampled point within each grid. The 

row labelled ‘soil’ shows the soil profile from 0 to 0.25 m for grid areas G1, DW1 and G4 and 

RW1, all other profiles are for soil depths 0 to 0.2 m. The L horizon is fresh annual litter, the 

F horizon is decomposed litter, H is well decomposed matter under aerobic conditions, A is a 

mineral horizon incorporating organic matter, B is a mineral horizon and C is a mineral layer 

of unconsolidated material. The black fragments indicate the depth of coarse gravels. 

Fig. 8. Average percentage clay, silt and sand measured for each grid area. 

Fig. 9. a) Kfs for all auger holes versus number of coarse roots (>2 mm). The linear 

regression line is: Kfs = 25.94 – 3.434roots + 1.482 roots2 – 0.03648roots3. P<0.001 and R2 is 



  

52.2%. b) Kfs for all auger holes versus maximum gravel size. No statistical significance (P = 

0.891 and R2 is -0.88%). 

Fig. 10: Conceptual diagram of runoff during an I15max 1 in 10 year rainfall event (36 mm hr-1) 

relating to Kfs measured at 0.04 to 0.14 soil depth. When runoff is 0 mm hr-1, the total rainfall 

will infiltrate because the Kfs measured at a point is greater than 36 mm hr-1. If the in-situ Kfs 

is less than 36 mm hr-1, a portion of the rainfall will become infiltration excess overland flow 

and generate runoff. Grid areas are identified as abbreviations and contour lines are shown 

as black full lines, ranging from 210 m to 260 m. G1 is grazed grassland, DW1 is 500 year 

old broadleaf woodland G2 is grazed grassland, DW2 is 180 year old broadleaf woodland, 

G3 is grazed grassland and CW3 is 45 year old conifer plantation FW4 is floodplain 

woodland and G4 is grazed grassland. DW1, G1 and FW4 are enlarged to show the full 

variation of Kfs spatial variation. 

Fig. 11. Conceptual diagram of runoff during I15max 1 in 10 year rainfall event (36 mm hr-1) 

relating to Kfs measured at 0.15 to 0.25. When runoff is 0 mm hr-1, the total rainfall will 

infiltrate to deeper depths because the Kfs measured at a point is greater than 36 mm hr-1. If 

the in-situ Kfs is less than 36 mm hr-1, a portion of the rainfall will become infiltration excess 

overland flow and generate runoff or subsurface storm flow. The light grey area is grassland 

(G1) and the dark grey area is 500 year old broadleaf woodland (DW1). 

 

List of Tables 

Table 1) Site description, grid sampling size, and Kfs measurement depths. G1 is site 1 

grazed grassland, DW1 is 500 year old broadleaf woodland G2 is site 2 grazed grassland, 



  

DW2 is 180 year old broadleaf woodland, G3 is site 3 grazed grassland and CW3 is 45 year 

old conifer plantation FW4 is floodplain woodland and G4 is site 4 grazed grassland. 

Table 2. Results of the paired t-test and Wilcoxon’s test, which compare the differences 

between the tree and grassland grid areas within each site. SE of mean is the standard error 

of the mean, *** indicates highly significant differences between the grid areas within each 

site. G1 is site 1 grazed grassland, DW1 is 500 year old broadleaf woodland G2 is site 2 

grazed grassland, DW2 is 180 year old broadleaf woodland, G3 is site 3 grazed grassland 

and CW3 is 45 year old conifer plantation FW4 is floodplain woodland and G4 is site 4 

grazed grassland. 

Table 3. Results of one-way ANOVAs, comparing log10 Kfs values for different depths for 

each grid DW1, G1, G4. *** means that the P-value is very highly significant and ** means 

the P-value is highly significant. The table also includes the mean and standard error (SE) of 

Kfs values for each soil layer. G1 is site 1 grazed grassland, DW1 is 500 year old broadleaf 

woodland and G4 is site 4 grazed grassland. 

Table 4. Generalised soil descriptions and their relationship with the superficial geology for 

all grid areas. 
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Grid 
Site 

Description No. of 
sampled 
points 

Distance 
between 
Kfs points 
(m) 

Total size 
of grid 
area (m2) 

Depth of 
augered  
holes 

G1 Improved 
grassland >265 
years 

13 10 m 400 m2 0.04-0.15m, 
0.15-0.25m 

DW1 Deciduous 
Woodland, 
mature Beech > 
500 years 

15 10 m 400 m2 0.04-0.15m, 
0.15-0.25m 

G2 Improved 
grassland >265 
years 

16 25 m 5625 m2 0.04-0.15m 

DW2 Deciduous 
mixed woodland 
<160 years 

15 25 m 5625 m2 0.04-0.15m 

G3 Improved 
grassland >265 
years 

16 25 m 5625 m2 0.04-0.15m 

CW3 Conifer 
plantation 50 
years 

16 25 m 5625 m2 0.04-0.15m 

G4 Improved 
grassland >265 
years 

16 25 m 5625 m2 0.04-0.15m, 
0.15-0.25m 

FW4 Deciduous 
Woodland, 
mature Willows 
< 180 years 

12 2.5 m 155 m2 0.04-0.15m 

 

Table 1 
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Site Grid area Mean (mm 

hr-1) 

Sample 

number 

SE  

(mm hr-1) 

Statistical test P-value 

1 DW1 224 11 ∓ 41.9 Paired t-test 0.0002*** 

1 G1 43 11 ∓ 9.2   

2 DW2 152 15 ∓ 28.1 Paired t-test 0.0000*** 

2 G2 24 15 ∓ 3.7   

3 CW3 56 16 ∓ 9.5 Paired t-test 0.3769 

3 G3 43 16 ∓ 6.1   

4 FW4 42 12 ∓ 23.6 Wilcoxon’s test 0.004*** 

4 G4 2 12 ∓ 0.7   

 

Table 2 
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Grid area MS F-

ratio 

d.f. P-value Soil depth (m) Mean (mm 

hr-1) 

SE (mm 

hr-1) 

DW1 16.99 27.06 2 <0.001*** Soil surface 407 ∓ 108 

     0.04 – 0.15 224 ∓ 41.9 

     0.15 – 0.25 30 ∓ 5.21 

G1 12.72 35.57 1 <0.001*** 0.04 – 0.15 43 ∓ 9.15 

     0.15 – 0.25 9 ∓ 1.92 

G4 5.02 6.55 2 0.003 ** Soil surface 7 ∓ 2.03 

     0.04 – 0.15 3 ∓ 0.69 

     0.15 – 0.25 4 ∓ 0.73 

 

Table 3 
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Grid site Topsoil Description Superficial Geology Soil Association and 
series 

G1 
(profiled to 
0.30 m) 

0 to 0.04 m grass root mat. 
Silty sand A horizon extends 
from 0.05 to 0.25 m and 
grades into a silt/ gravel B 
Horizon. Gravels exist 
throughout, but coarse gravel 
increases in the B horizon 
below 0.25 m depth. 

Glaciofluvial gravel 
and sand 

Ettrick Linhope. Brown 
Forest soils, freely 
draining 

DW1 
(profiled to 
0.30 m) 

0 to 0.10 m litter layer. Humus 
layer can be up to 0.05 m. 
Organic, sandy silt A horizon 
extends between 0.15 m to 
0.30 m and grades into 
silt/gravel B Horizon. Organic 
horizons variable depending 
on distance from trees. 
Gravels exist throughout, but 
increase around 0.25 m 
depth. 

Glaciofluvial gravel 
and sand 

Ettrick Linhope. Brown 
Forest soils, freely 
draining 

G2 
(profiled to 
0.20 m) 

Dense grass root mat 0 to 
0.05 m. Silty clay and sandy 
silt A horizon to 0.20 m. 
Coarse gravel throughout 
profile, increasing from 
0.20m.  

Till occurring within 
the upper half of the 
site area. The rest of 
the area underlain 
by Head. 

Ettrick Kedslie/Linhope 
Mixed Non-Calcareous 
gleys, imperfectly 
draining and brown 
forest soils, freely 
draining 

DW2 
(profiled to 
0.20 m) 

0 to 0.05 m litter layer. Humus 
layer variable thickness from 
0.01 to 0.05 m. Organic silty 
clay or sandy silt A horizon 
extends between 0.10 m to 
below 0.20 m depth. Organic 
horizons variable depending 

Till occurring within 
the lower half of the 
site area. The rest of 
the area is underlain 
by Head. 

Ettrick Kedslie/Linhope. 
Mixed Non-Calcareous 
gleys, imperfectly 
draining and brown 
forest soils, freely 
draining 
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on distance from trees. 
Gravels exist throughout, but 
increase around 0.20 m. 

G3 
(profiled to 
0.20 m) 

Dense grass root mat 0 to 
0.05 m. Silty A horizon 
extends to around 0.20 m. 
Coarse gravel throughout 
profile, increasing at 0.20 m. 

Gravels derived from 
bedrock 

Yarrow soils. Brown 
Forest soils, freely 
draining 

CW3 
(profiled to 
0.20 m) 

0 to 0.05 m litter layer. Dark 
humus layer variable 
thickness from 0.01 to 0.05 m. 
Organic silt A horizon extends 
from 0.10 m to below 0.15 m 
and colour changes to red-
brown, showing possible 
illuviation of organic colloids. 
Cobbles present from 0.15 m 
grading into a B horizon and 
in some points reaching a 
shallow C horizon. 

Gravels derived from 
bedrock 

Yarrow soils. Brown 
Forest soils, freely 
draining 

G4 
(profiled to 
0.30 m) 

0 to 0.04 m organic layer. 
Clay silt A horizon extends 
between 0.04 m to below 
0.3 m. Gravel occasionally 
present from 0.2 m. Some 
gleying below 0.02 m. 

Recent riverine 
alluvial deposits 

Alluvial soils, freely to 
poorly draining  

FW4 
(profiled to 
0.30 m) 

0 to 0.08, highly 
heterogeneous organic layer. 
Silt A horizon extends from 
0.08 m to below 0.3 m. 
Gleying occurs around 
0.015 m soil depth. 

Recent riverine 
alluvial deposits 

Alluvial soils, freely to 
poorly draining 

 

Table 4 
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Highlights: 

  We evaluate woodland/grassland cover and soil types to reduce local flooding 
  We measured field saturated hydraulic conductivity under grassland and woodland 
  Established broadleaf woodland had significantly higher infiltration rates than 
  grassland 
  1 in 10 year storm events would cause infiltration-excess overland flow on grassland 
  We suggest deciduous shelterbelts upslope could locally reduce overland flow 

 

 




