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Abstract 

Submarine gullies are common features of high latitude continental slopes and, over the last 

decade, have been shown to play a key role in continental margin evolution, submarine 

erosion, downslope sediment transport, slope deposits, and the architecture of petroleum 

reservoirs. However, the processes that form these gullies, the timescales over which they 

develop, and the environmental controls influencing their morphology remain poorly 

constrained. We present the first systematic and comparative analysis between Arctic and 

Antarctic gullies with the aim of identifying differences in slope character, from which we 

infer differences in processes operating in these environments.   

Quantitative analysis of multibeam echosounder data along 2469 km of the 

continental shelf and upper slope and morphometric signatures of over 1450 gullies show that 

six geomorphically distinct gully types exist on high latitude continental margins. We 

identify distinct differences between Arctic and Antarctic gully morphologies. In the Arctic 

data sets, deep relief (> 30 m gully incision depth at 50 m below the shelf edge) and shelf-

incising gullies are lacking. These differences have implications for the timescales over 

which the gullies were formed and for the magnitude of the flows that formed them. We 

consider two hypotheses for these differences: (1) some Antarctic gullies developed through 

several glacial cycles; and (2) larger Antarctic gullies were formed since the Last Glacial 

Maximum as a result of erosive flows (i.e., sediment-laden subglacial meltwater) being more 

abundant on parts of the Antarctic margin over longer timescales.  

A second difference is that unique gully signatures are observed on Arctic and on 

Antarctic margins. Environmental controls, such as the oceanographic regime and 

geotechnical differences, may lead to particular styles of gully erosion observed on Arctic 

and Antarctic margins.  
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1. Introduction  

Submarine gullies are small-scale, confined channels in the order of tens of meters deep and 

form one of the most common morphological features of high latitude continental slopes. 

Gullies also occur on mid- and low latitude margins and on hillslopes in the terrestrial 

environment (e.g., Hartmann et al., 2003; Micallef and Mountjoy, 2011; Vachtman et al., 

2012; Lonergan et al., 2013). Different gully types are recognised on Arctic and Antarctic 

continental margins (Fig. 1) (Vorren et al., 1989; Laberg and Vorren, 1995; Laberg et al., 

2007; Noormets et al., 2009; Pedrosa et al., 2011; Gales et al., 2013), but a distinct lack of 

knowledge remains about their formation processes and differences that exist between these 

regions. In Antarctica, gullies vary in length, width, incision depth, branching order, 

sinuosity, shelf-incision, cross-sectional shape, and mean gully spacing, with gully 

morphology influenced by environmental controls such as local slope character (i.e., slope 

gradient, geometry), large-scale spatial characteristics (i.e., drainage basin size, location of 

cross-shelf troughs, regional heat flow), ice sheet history and sediment yield (Gales et al., 

2013). For Arctic gullies, no systematic studies have to our knowledge been undertaken. By 

quantitatively examining Arctic and Antarctic gully morphology, we aim to identify 

variations in slope character that suggest differences in processes operating in these 

environments, factors influencing slope instability, and the timescales over which these 

features evolved. 

Although small-scale variations in high latitude slope morphology remain largely 

unknown, studies examining the large-scale morphology show important differences 

(Dowdeswell et al., 1998; Ó Cofaigh et al., 2003; Nielsen et al., 2005). One striking 
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difference between some Arctic and Antarctic continental margins is a distinct lack of 

modern large-scale features of slope instability (i.e., submarine slides) on the latter (Barker et 

al., 1998; Dowdeswell and Ó Cofaigh., 2002; Nielsen et al., 2005). Large-scale submarine 

slides are known to have occurred in the geological past (i.e., Miocene, early Pliocene) on the 

Antarctic margin, but modern examples are few (Barker and Austin., 1998; Imbo et al., 2003; 

Diviacco et al., 2006). In contrast, slides are abundant on northern high latitude slopes 

(Damuth, 1978; Bugge et al., 1988; Laberg and Vorren, 1993, 2000; Dowdeswell et al., 1996; 

Vorren et al., 1998; Laberg et al., 2000; Evans et al., 2005; Nielsen et al., 2005). These 

differences have been attributed to variations in (i) the underlying geology, such as the 

presence of weak contouritic/hemipelagic layers present on many Arctic continental margins 

that are mainly controlled by the ocean circulation (Long et al., 2003; Nielsen et al., 2005; 

Laberg and Camerlenghi, 2008); (ii) pore pressure, with Antarctic slopes displaying a greater 

stability owing to ice sheet compaction (Prior and Coleman, 1984; Larter and Barker, 1991); 

(iii) episodic and high quantities of sediment delivered to the shelf edge (Dowdeswell and Ó 

Cofaigh, 2002); and (iv) the timing of particular stages of glaciation (Nielsen et al., 2005).  

Currently, there is a distinct lack of knowledge of the causes behind different gully 

morphologies observed on high latitude continental slopes. One potential gully-forming 

mechanism is erosion by hyperpycnal flows initiated as a result of discharges of sediment-

laden subglacial meltwater (Wellner et al., 2001, 2006; Lowe and Anderson, 2002; Ó Cofaigh 

et al., 2003; Dowdeswell et al., 2004, 2006; Heroy and Anderson, 2005; Noormets et al., 

2009). Studies of freshwater discharge (such as rivers, jökulhaups, and lahars) and laboratory 

experiments show that a critical sediment concentration of 1-5 kg m-3 is needed to initiate a 

hyperpycnal flow (taking into account fine-scale convective instability) (Parsons et al., 2001; 

Mulder et al., 2003). If enough sediment is entrained into subglacial meltwater released from 

beneath an ice sheet, and a critical sediment concentration is reached, then sediment-laden 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

5 

 

subglacial meltwater may initiate a hyperpycnal flow with the potential to erode the seafloor. 

Extensive relict subglacial meltwater channels are present on the Antarctic inner shelf, 

including the Marguerite and Pine Island troughs (Lowe and Anderson, 2002; Domack et al., 

2006; Anderson and Oakes-Fretwell, 2008; Graham et al., 2009; Nitsche et al., 2013), 

potentially the outer shelf at the Belgica trough (Noormets et al., 2009), and the inner shelf of 

the NW Barents Sea (Hogan et al., 2010). Studies of modern ice sheets, however, show that 

basal meltwater generated is in the range of millimetres per year (e.g., Beem et al., 2010; 

Pattyn, 2010), with larger discharges suggested to result from processes such as subglacial 

lake outbursts or subglacial volcanic activity (Goodwin, 1988; Wellner et al., 2001; 

Dowdeswell et al., 2006; Fricker et al., 2007; Bell, 2008; Nitsche et al., 2013).  

Other potential gully-forming mechanisms include erosion from mass flows initiated 

by factors such as gas hydrate dissociation, tidal pumping beneath ice sheets, shelf and 

contour currents, iceberg scouring, and large accumulations of glacigenic debris deposited at, 

or near to, the shelf edge during glacial maxima (Larter and Cunningham, 1993; Vanneste 

and Larter, 1995; Shipp et al., 1999; Dowdeswell et al., 2006; Dowdeswell and Bamber, 

2007). Gullies may develop by aggradation between gully thalwegs (Field et al., 1999; 

Chiocci and Casalbore, 2011), with deposits forming from avulsing turbidity currents or 

levees of debris flows arising from their nonlinear rheology. Fine sediment, such as silt and 

clays may be deposited during low shear stress conditions, but may become eroded 

(resuspended) along gully thalwegs during the passage of the flows. Evidence from 

subbottom acoustic data from the Antarctic margin, however, shows that in most cases gullies 

form in poorly stratified or acoustically impenetrable layers, contrasting good subbottom 

penetration that is expected on the gully interfluves formed by the aggradation (Gales et al., 

2012). Gullies are suggested to be the first features to form on steeply dipping slopes in 
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relation to mass wasting (Laberg et al., 2007), similar to terrestrial settings where gullies are 

known to represent the first step in the fluvial dissection of landscapes (Bloom, 1991). 

The cascading of dense bottom water produced through sea-ice freezing and brine 

rejection may influence seafloor morphology (Vorren et al., 1988). However, recent studies 

find that in an area of active dense water overflow in the southern Weddell Sea, Antarctica, 

deeply incised gullies are absent. This suggests that this mechanism does not form the deeply 

incised and V-shaped gullies observed over much of the Antarctic continental margin (Gales 

et al., 2012).  

 By examining similarities and differences between high latitude gully morphologies, 

we aim to better understand what predisposes some slopes to particular styles of erosion, 

while other slopes appear relatively stable. We find that the variation in high latitude gully 

morphology has important implications for slope processes operating in these environments: 

the timing and rate of deglaciation and factors influencing slope stability.   

 

2. Study areas  

The study includes data along 1919 km of the Antarctic continental shelf and upper slope 

(Fig. 2),  including data from the western Antarctic Peninsula, Bellingshausen, Amundsen 

and Weddell seas and 550 km of Arctic data from western Svalbard, the southwest Barents 

Sea, and the northern Norwegian continental margins (Fig. 3). The tectonic history and 

geology of both regions have been extensively studied (e.g., Kenyon, 1987; Hübscher et al., 

1996; Livermore and Hunter, 1996; Eagles et al., 2004, 2009; Evans et al., 2005; Stoker et al., 

2005; Faleide et al., 2008). The uppermost beds comprise predominantly Quaternary 

sediment that is glacially derived or glacially influenced (i.e., glacigenic debris flows, 

glacigenic muds, and ice rafted debris) (e.g., Bonn et al., 1994; Vorren and Laberg, 1997; 
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Vorren et al., 1998; Dahlgren et al., 2002, 2005; Dowdeswell et al., 2004, 2006; Hillenbrand 

et al., 2005; Cooper et al., 2008; Laberg et al., 2010). One key difference is the greater 

prevalence of thin hemipelagic/contouritic sediments on parts of the Arctic continental slope, 

which form weak interglacial layers interbedded between the glacigenic sediments (Laberg 

and Vorren, 1995, 2000; Laberg and Camerlenghi, 2008). Although large mounds, interpreted 

as sediment drifts produced by bottom currents, occur on some areas of the Antarctic 

continental rise (Rebesco et al., 1996, 2007; Weber et al., 2011), little evidence exists for 

weak geological layers on the Antarctic upper slope (Nielsen et al., 2005).  

Ice has covered much of Antarctica for the last 34 Ma (Barrett, 2008), advancing 

across the continental shelf from the early Oligocene in east Antarctica and from the late 

Miocene on the west Antarctic margin (Nitsche et al., 1997). During the Last Glacial 

Maximum (LGM), the maximum extents of ice have been placed at, or near to, the shelf edge 

in areas off the western Antarctic Peninsula (Pudsey et al., 1994; Vanneste and Larter, 1995; 

Heroy and Anderson, 2005), Bellingshausen Sea (Ó Cofaigh et al., 2005; Hillenbrand et al., 

2010b), Amundsen Sea (Lowe and Anderson, 2002; Evans et al., 2006; Graham et al., 2010), 

and the Weddell Sea, although this remains disputed (Hillenbrand et al., 2012; Larter et al., 

2012). In the Arctic, the onset of glaciation occurred during the middle to late Miocene, with 

glacial-interglacial cycles along the Norwegian margin commencing from around 2.6 Ma 

(Thiede et al., 1998). The most extensive northern hemisphere ice sheets are suggested to 

have developed around 600-700 ka (Berger and Jansen, 1994; Wright and Flower, 2002), and 

have retreated during interglacial periods and since the LGM.   

The Arctic and Antarctic have distinctive oceanographic regimes. The northern 

Norwegian and western Svalbard margins are influenced by the Norwegian and Barents seas. 

The Barents Sea is dominated by three major currents: the Arctic Current, the Norwegian 

Atlantic Current (NAC), and the Norwegian Coastal Current. The NAC affects the upper ~ 
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800 m of the water column and transfers warm and saline water northeastward along the 

continental slope of the Norwegian Sea, with a branch entering the Barents Sea along with 

warm coastal waters (Orvik et al., 1995; Blindheim, 2004). The main branch becomes the 

West Spitsbergen Current to the west of Svalbard (Blindheim, 2004). In winter, cold, dense 

water forms through brine rejection during sea-ice production (Ivanov and Shapiro, 2005). 

Bottom current velocities of ~ 0.2 m s-1 have been measured by current meters along the 

northern Norwegian slope (Heathershaw et al., 1998), with velocities of 0.2-0.8 m s-1 inferred 

from modelling studies, reaching maximum velocities of 1 m s-1 on the outer continental shelf 

of northern Norway (Bøe et al., 2009).  

Cold, dense water overflow is also produced in the southern Weddell Sea, Antarctica 

(Nicholls et al., 2009). The cold dense water contributes to Weddell Sea Deep Water, which 

flows around the northern tip of the Antarctic Peninsula (Fig. 2; Nowlin and Zenk, 1988). 

Maximum flow velocities of 1 m s-1 were recorded at 2075 m water depth in the southern 

Weddell Sea (Foldvik et al., 2004). Southwestward flowing bottom currents are also 

documented on the slope and rise off the western Antarctic Peninsula margin (between 1000 

and 4000 m deep) (Camerlenghi et al., 1997; Giorgetti et al., 2003), with maximum current 

velocities of 0.2 m s-1. As currents with velocities > 0.06 m s-1 are able to transport silt- and 

clay-sized particles (Young and Southard, 1978; Singer and Anderson, 1984), bottom 

currents may influence the surface morphology by resuspension and transport of fine-grained 

sediment (Camerlenghi et al., 1997). Episodic and high energy currents, for example, 

produced by the sporadic presence of barotropic eddies, will increase shear stress and may 

cause short-term increases in sediment resuspension (Giorgetti et al., 2003). 

 

3. Data and methods 
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Multibeam echosounder data used in this study are summarised in Table 1. The data were 

gridded to cell sizes of 25 to 50 m using either Kongsberg Simrad NEPTUNE software or 

public-access MB-System software (Caress and Chayes, 1996). In this study, a gully is 

considered to have an incision depth > 5 m, and a gullied slope is one where gullies occur 

with a mean gully spacing of > 0.1 gully/km. Gully parameters were measured along 

transects parallel to the shelf edge at 50 m below the shelf edge. Analysis of the Trænadjupet 

region (Fig. 3) required measurements to be taken at 250 m below the shelf edge because of 

limited data availability. Measured parameters include gully width (distance between points 

of maximum curvature of gully flanks), incision depth (vertical distance from gully base to 

line defining gully width), length, branching order, sinuosity (distance measured along 

gully/straight line distance), mean gully spacing (gully/km), shelf-indentation (cutback), 

slope angle, and cross-sectional shape (U/V index). Cross-sectional shape was measured 

using the General Power Law (GPL) programme (Pattyn and Van Huele, 1998). GPL 

approximates the cross-sectional shape of a gully according to 

y - y0 = a | x - x0 |b     (1) 

where a and b are constants and x and y are the horizontal and vertical coordinates taken from 

a cross-sectional profile of a gully. The programme automatically determines xo and yo as the 

coordinates of the point of inflection of the gully profile. The b value gives a measure of the 

cross-sectional shape of the gully and ranges from 1 (V-shape) to 2 (parabolic, commonly 

referred to as U-shape) on the U/V index. Branching order was calculated using the ArcGIS 

automated Stream Order application based on Strahler’s (1957) method. Gullies were 

categorized according to their quantitative geomorphic signature based on the classification 

proposed by Gales et al. (2013). According to this classification, the following gully 

parameters are considered as ‘high’: incision depth > 30 m, sinuosity > 1.04, and length > 10 

km.  
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The statistical significances of the results were calculated using the T-test that tests 

whether differences between Arctic and Antarctic gullies were significant. Standard 

deviations were calculated to test whether the variances between gully parameters were 

greater between Arctic and Antarctic gullies than within the data sets.  

 

4.  Results  

Six geomorphically distinct gully types exist along the 2469 km of high latitude continental 

shelf and upper slope data analysed, with unique gully types recognised on both Arctic and 

Antarctic slopes. Five geomorphically distinct gully types occur on the Antarctic continental 

margin (Fig. 1). These are described by Gales et al. (2013) as type I: nonbranching with low 

incision depth (< 30 m), sinuosity (< 1.04), and length (< 10 km) and a V-shaped cross 

section; type II: nonbranching with low incision depth, sinuosity, and length and a U-shaped 

cross-section; Type IIIa: branching with high incision depth and length, low sinuosity and a 

V-shaped cross section; type IIIb: branching with a high incision depth, sinuosity, and length 

and a V-shaped cross section; and type IV: branching with a low incision depth, sinuosity, and 

length and a U-shaped cross section.  

On the Arctic margins analysed, all gullies have average incision depths of < 30 m, 

measured at 50 m below the shelf edge. Five geomorphically distinct gully types are 

identified when gully incision depth is excluded from the identification criteria (Fig. 4), 

including type I, IIIa, IIIb, IV, and a previously unclassified gully type V, which is not 

observed in the Antarctic margin data analysed. Type V is characterised by a nonbranching, 

U-shaped, high length (> 10 km), low incision depth (< 30 m) and low sinuosity (< 1.04) 

signature. Gully type I covers 23 % of the Arctic and 21 % of the Antarctic margin data 

analysed; type II is not observed in the Arctic but covers 12 % of the Antarctic margin data 
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analysed; type IIIa covers 9 % of the Arctic and 15 % of the Antarctic margin data analysed; 

type IIIb covers 31 % of the Arctic and 11 % of the Antarctic margin data analysed; type IV 

covers 6 % of the Arctic and 2 % of the Antarctic margin data analysed; and type V covers 12 

% of the Arctic, but is not observed on Antarctic margins analysed (Antarctic values from 

Gales et al., 2013). Smooth continental slope, defined in this study as having a topography 

with gully depth incisions < 5 m, or a mean gully spacing of < 0.1 gully/km, covers 19 % of 

the Arctic continental margin analysed and 39 % of the Antarctic continental margin 

analysed. Mean gully spacing is similar between some gully types observed on the Arctic and 

Antarctic margin including types I and IIIb, although spacing varies for types IIIa and IV with 

Arctic gullies generally occurring in lower densities (Table 2).  

Two distinct differences in gully morphology are recognised between the Arctic and 

Antarctic datasets. Firstly, deeply incised gullies within the Arctic data are absent, with mean 

gully depths in each area studied not exceeding 30 m, measured at 50 m below the shelf edge 

(Fig. 5). Mean gully incision depth from the Antarctic margin is 48 m compared to 12 m for 

Arctic gullies. Secondly, there is a distinct lack of gullies incising the shelf edge, with a mean 

shelf-indentation of 35 m on the Arctic margins, compared to 324 m on Antarctic margins. 

The statistical significances of these differences were tested by calculating the standard 

deviations of the means and by using the T-test. The standard deviations of the mean gully 

incision depths and shelf-incisions for Arctic and Antarctic gullies were less than the 

difference between the means. This shows that the differences between Arctic and Antarctic 

gullies are greater than variances within each dataset. The results of the T-test shows that the 

P value is < 0.05,  and so lies within the 95 % significance level, suggesting that a significant 

difference exists between Arctic and Antarctic gully incision depth and shelf-incision.  

Differences also exist in gully spatial distribution. On Antarctic margins, sinuous but 

long gullies (type IIIb) are located at the mouths of cross-shelf troughs, with less sinuous 
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gullies (type IIIa) occurring in inter-trough areas (Table 3). However, on the Arctic margins 

analysed, sinuous gullies (type IIIb) are observed in inter-trough regions and at the mouths of 

cross-shelf troughs (Fig. 6). Additionally, type IV gullies, which are only observed on an 

isolated inter-trough region offshore from Alexander Island, western Antarctic Peninsula 

(Fig. 1E), are observed more widely on Arctic margins and occur at the mouths of cross-shelf 

troughs and in inter-trough areas (Fig. 6).   

 

5. Discussion  

Quantitative analysis of over 1450 high latitude continental slope gullies show that gullies 

share similar morphologies and, excluding gully depth, fit a common classification scheme. 

However, we identify two distinct differences between Arctic and Antarctic gullies. Firstly, 

there is a significant lack of deeply incised gullies within the Arctic data analysed. Secondly, 

there is a distinct difference in shelf-indentation with Antarctic gullies displaying greater 

cutback into the shelf edge. Like submarine canyons, gullies likely evolve through either 

downslope erosion driven by flows of turbidity currents, which may be initiated by 

discharges of sediment-laden subglacial meltwater, or through headward erosion by 

retrogressive mass failures (i.e., slides, slumps), or a combination of both (Harris and 

Whiteway, 2011). The differences in gully incision depth and shelf-indentation have 

implications for the timescales over which these features were formed and for the magnitude 

of the flows that potentially formed them. Questions still remain regarding the processes that 

form submarine gullies and whether they are formed over multiple glacial cycles by steady-

state flows or develop over shorter timescales by larger episodic releases (Ó Cofaigh, 2012).  

We suggest two hypotheses for the observed differences in gully incision depth and 

shelf-indentation: (i) some Antarctic gullies were formed over multiple glacial cycles, dating 
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back to before the LGM; and (ii) the stages in which they were formed (i.e., glacial maximum 

and early deglaciation) prevailed over longer time periods in Antarctica than on Arctic 

margins during the last glacial cycle. Environmental controls, such as the oceanographic 

regime and geotechnical differences may also lead to particular styles of gully erosion on 

Arctic and Antarctic margins.  

5.1. Long-term versus short-term gully formation  

Ice sheets are known to have advanced and retreated within cross-shelf troughs over many 

glacial cycles, and as a result of this, gullies may have formed during earlier glacial periods 

when ice was previously grounded at, or near to, the shelf edge. The significant differences in 

gully incision depth and shelf-indentation observed between some Arctic and Antarctic 

gullies may therefore reflect differences in the timing of initial glaciation and the number of 

subsequent glacial cycles. Ice has covered much of Antarctica for over 34 M.y. (Barrett, 

2008), although onset of the west Antarctic glaciation is thought to have begun after 26 Ma 

(Barker et al., 2007) compared to 2.6 Ma on parts of the northwest European margin (Thiede 

et al., 1998). The difference in gully incision depth and shelf-incision may reflect a longer 

period of development over multiple glacial cycles for the larger gullies on the Antarctic 

margin. Recent studies using three dimensional seismic data of submarine canyons on the 

northwest Mediterranean margin show that canyons may develop over longer timescales 

during continental margin construction (Amblas et al., 2012). Gullies present on mid-

Pleistocene palaeocanyon flanks are maintained through to the modern canyon morphology 

(Amblas et al., 2012), demonstrating that the gullies can be preserved during slope 

progradation. If gullies on the Antarctic margin acted as conduits for glacigenic sediment, 

which was transported to the shelf edge during successive ice sheet readvances, and were 

reactivated in successive  glacial stages, gully morphology may have been preserved and 
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enhanced during slope progradation over multiple glacial cycles, leading to greater gully 

depths observed on parts of the Antarctic margin.  

However, unlike the northwest Mediterranean margin, high latitude margins are 

influenced by huge quantities of glacigenic sediment transported by ice sheets to the shelf 

edge during glacial periods. This may have filled any shelf-edge depressions present, 

masking palaeogullies, and resulting in new gullies forming with each new glacial cycle. 

Subbottom data from some high latitude margins (e.g., Storfjorden TMF, northern Barents 

Sea; Belgica Fan, Bellingshausen Sea, Antarctica) show that submarine gullies incise glacial 

debris flow deposits, suggesting that erosion of some gullies likely post-dates the last glacial 

advance to the shelf edge (Vorren et al., 1989; Laberg et al., 2007; Pedrosa et al., 2011; Ó 

Cofaigh, 2012). As the most recent episodes of gully erosion (since LGM) may obscure 

previously developed gullies, it is difficult to rule out gully formation over longer timescales 

without high resolution three-dimensional seismic datasets from glacial margins.  

5.2. Timing and rate of deglaciation  

The length of time that ice was grounded at the shelf edge during the LGM and the 

timing of particular glacial stages may affect gully size and shelf-incision. If the dominant 

mechanism forming V-shaped and deeply incised high latitude gullies are erosive flows 

initiated by sediment-laden subglacial meltwater (Lowe and Anderson, 2002; Ó Cofaigh et 

al., 2003; Dowdeswell et al., 2004, 2006, 2008; Heroy and Anderson, 2005; Noormets et al., 

2009; Ó Cofaigh, 2012; Gales et al., 2013), this suggests that either these processes were 

operating over longer time periods in Antarctica, were more frequent, or occurred in larger 

events, for example owing to larger drainage basin sizes or from the outer shelf morphology 

facilitating flow toward the shelf edge.  
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Gullies with the greatest incision depth and shelf-incision (types IIIa and IIIb) are 

located along the Bellingshausen and Amundsen Sea margin and at the mouths of the Pine 

Island West (PIW) and Belgica trough, Antarctica (Figs. 1C and D; Table 3). The difference 

between the closely spaced and smaller type I gullies observed on some Arctic margins and 

the larger, more widely spaced type III gullies may reflect a difference in the length of time 

that the gullies developed over, perhaps owing to differences in the length of time that ice 

was present near to the shelf edge and the effective drainage areas associated with the palaeo-

ice streams. A larger drainage basin size and/or longer presence of ice near the shelf edge 

may increase the size and frequency of flows down the gully thalwegs. 

Although only limited sediment cores are available from the outer shelf of Belgica 

and PIW troughs, ice streams within these troughs are suggested to have undergone slow and 

episodic retreat, with mean retreat rates of ~ 15 m y-1 for Belgica trough and 18 m y-1 for the 

Amundsen Sea Embayment outer shelf (Lowe and Anderson, 2002; Ó Cofaigh et al., 2008; 

Graham et al., 2010; Hillenbrand et al., 2010a; Smith et al., 2011; Kirshner et al., 2012; 

Livingstone et al., 2012). Conversely, some Arctic ice streams underwent significantly more 

rapid and later retreat. Studies suggest that deglaciation commenced around ~ 17.5 cal. ky BP 

on the western Barents Sea margin and Norwegian continental shelf and 20.5 + 5 cal ky BP 

on the outer western Svalbard shelf (Jessen et al., 2010), with core evidence showing that 

deglaciation was relatively rapid, occurring over a period of ~ 2000 years, with retreat rates 

of 60 m y-1, increasing to 275 m y-1 for the Bjørnøyrenna ice stream (Vorren and Plassen, 

2002; Landvik et al., 2005, 2012; Winsborrow et al., 2012). A longer duration of grounded 

ice at the shelf edge and/or slower initial ice sheet retreat history would have exposed the 

shelf edge to more continuous turbidity-current or subglacial meltwater activity for longer 

time periods, facilitating the development of larger features over time. 
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Belgica and PIW troughs are characterised by large drainage basin sizes, with areas of 

417,000 km2 for Pine Island trough (Rignot et al., 2008) and 217,000-256,000 km2 for 

Belgica trough (Livingstone et al., 2012). Although Bjørnøyrenna Ice Stream is also 

associated with a large drainage basin (576,000 km2; Elverhøi et al., 1998), other Arctic 

margins analysed are characterised by significantly smaller drainage basin sizes, e.g., 

Kongsfjorden trough (1426 km2; Elverhøi et al., 1998) and by narrow continental shelves 

along the northern Norwegian margin. Ice streams within larger drainage basins are 

associated with slower or more episodic retreat rates in Antarctica (Livingstone et al., 2012) 

and greater sediment yields (Elverhøi et al., 1998). The difference in drainage basin size may 

therefore influence the rate of ice retreat as well as potentially influencing the abundance or 

frequency of subglacial meltwater discharged from beneath an ice sheet. Mechanisms for the 

production of subglacial meltwater include strain heating and geothermal heat flux at the base 

of the ice sheet (Joughin et al., 2004). The generally longer ice stream flow paths in larger 

drainage basins may have resulted in warmer basal ice and therefore higher abundances of 

subglacial meltwater, although studies of modern systems have shown that basal meltwater 

generated is in the range of millimetres per year (e.g., Beem et al., 2010; Pattyn, 2010).  

The PIW and Belgica troughs have relatively unique outer shelf morphologies (Figs. 

7A and B). The PIW trough is characterised by a re-entrant feature where the outer shelf is 

slightly seaward-sloping compared to most other Antarctic outer shelves that slope landward 

because of erosional over-deepening of the inner shelves by palaeo-ice sheets and 

lithospheric flexture caused by ice sheet loading (ten Brink and Cooper, 1992; Bart and Iwai, 

2012). This may encourage the gravity-driven flow of subglacial meltwater toward the shelf 

edge, leading to larger and more deeply incised gullies located at the mouths of these troughs. 

The outer shelf of Belgica trough is also slightly seaward sloping and asymmetric, with a 

subtrough to the west of the trough axis (Graham et al., 2011). The unusual trough 
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bathymetry may have enabled slower rates of glacial retreat and may have funnelled flows of 

subglacial meltwater toward the shelf edge during early stages of glacial retreat.  

5.3. Environmental controls 

Although large-scale variations in high latitude gully morphology may result from varied 

glacial histories, local differences in gully morphology may result from different 

environmental controls, including slope gradient, oceanographic, and geotechnical 

differences. Within the data analysed, the most deeply incised gullies (type IIIa; mean 

incision depth of 81 m at 50 m below the shelf edge) occur on relatively low slope gradients 

of ~ 4-5.5° in Antarctica. The deepest gullies on Arctic margins (type IIIb; mean incision 

depth of 21.5 m at 50 m below the shelf edge) occur on higher slope gradients of ~ 7.5º (Fig. 

8). No relationship is observed between mean gully incision depth or shelf-indentation and 

slope gradient, suggesting that gradient is unlikely to be influencing the differences observed 

between high latitude margins.  

The occurrence of a previously uncharacterised gully type identified on the Arctic 

margin (type V; Baeten et al., 2013) suggests that different processes are operating in this 

region that are absent from the Antarctic margin. Type V covers 61 km of the northern 

Norwegian continental shelf and upper slope and is found on relatively low slope gradients (~ 

2°). Although no shelf edge data is available for this region at present, backscatter data show 

that the gullies are filled with sediments that are characterised by high backscatter (Baeten et 

al., 2013), suggesting that sediment within the gullies is coarser grained than the surrounding 

sediment. Seismic data from this region show that a glacigenic wedge formed of debris flow 

deposits is present on the upper slope, with gullies initiating within, or at the boundary of the 

wedge (Baeten et al., in prep.). The type V gullies may therefore have been formed by 

deposition on to the wedge during past glaciations that initiated sediment gravity flows. The 
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local oceanographic regime may also influence the unique gully morphology, for example, by 

strong contour current activity activating sediment flows over the shelf edge and potentially 

allowing sediment gravity flows to develop. More detailed oceanographic data is needed 

from this region to confirm this. 

Along the northern Norwegian margin, variation in along-slope sedimentation may 

influence differences in local sedimentation rates (Laberg et al., 2002). This may affect gully 

infilling leading to a reduction in the apparent incision depths on Arctic margins and may be 

one factor influencing the large discrepancy in high latitude gully incision depths. On the 

outer shelf offshore from Vesterålen (Fig. 3), bottom current velocities of 0.7-0.8 m s-1 have 

been suggested from modelling studies, reaching maximum velocities of 1 m s-1 (Bøe et al., 

2009). The presence of strong bottom currents influences local sedimentation, with erosion 

occurring in high-energy environments and fine-grained sediment accumulating within 

sheltered environments (Bøe et al., 2009). However, even if some Arctic gullies did undergo 

significant infilling, this would not explain the distinct difference in shelf-incision. 

Subbottom acoustic data from the Arctic and Antarctic margins show that gullies are not 

significantly influenced by sediment infilling and largely maintain their original gully 

morphologies (Vorren et al., 1989, 1998; Gales et al., 2012, 2013). Additional subbottom data 

from Arctic margins are needed to rule out this possibility. 

5.3.4. Continental slope instability  

Type IV gullies are relatively rare on high latitude continental margins, covering 6 % of the 

shelf edge of Arctic margins analysed and 2 % of Antarctic margins analysed. In Antarctica, 

type IV gullies are only observed in an inter-trough region and are absent from the mouths of 

cross-shelf troughs. New data from the Arctic show that similar gully morphologies occur on 

inter-trough margins and at the mouths of a cross-shelf trough (i.e., Rebbenesdjupet trough; 
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Fig. 6). Here, type IV gullies occur adjacent to an area of deeply incised and dendritic type 

IIIb gullies. Type IV gullies may indicate a continental slope that has undergone subsequent 

gradual modification through mass-wasting processes (Gales et al., 2013) and show 

characteristics similar to small-scale slides, demonstrating small-scale escarpments and an 

absence of a well-defined gully thalweg (Kenyon, 1987). The greater occurrence of type IV 

gullies on the Arctic margins may indicate a higher susceptibility to mass-wasting processes, 

for example, owing to the presence of weak geological layers on parts of the Arctic upper 

slope.   

 

6. Conclusion  

The mechanisms involved in gully formation and the factors that influence this are highly 

complex and poorly constrained. This study identifies key differences between high latitude 

submarine gullies and provides insight into the causes behind the different morphologies 

observed and the processes operating in these environments. The major findings of this study 

are as follows: 

 Quantitative analysis of over 1450 gullies from multibeam bathymetric data along 

2469 km of high latitude continental shelf and upper slope identifies six gully types 

from a common gully classification scheme. 

 Two distinct differences exist between some Arctic and Antarctic continental slopes. 

There is a lack of deeply incised (> 30 m gully incision depth at 50 m below the shelf 

edge) and shelf-incising gullies in the Arctic continental margin datasets that we 

examined. Secondly, unique gully signatures are observed on Arctic and Antarctic 
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margins, with type II gullies absent from Arctic margins and type V gullies absent 

from Antarctic margins analysed.  

 We suggest two hypotheses for the distinct differences in gully incision depth and 

shelf-incision: (i) some Antarctic gullies were formed over multiple glacial cycles, 

dating back to before the LGM; and (ii) the stages in which gullies were formed 

prevailed over longer time periods in Antarctica than on Arctic margins, during and 

since the LGM. A longer period of grounded ice at the shelf edge and/or slower and 

more episodic retreat history of ice streams within Belgica and PIW troughs may have 

allowed the deeply incised type IIIb gullies to develop over longer timescales. 

Environmental controls, such as the oceanographic regime and geotechnical 

differences, likely influenced particular styles of gully erosion (i.e., type IV and V).   

 The unique outer shelf morphology of both the Belgica and Pine Island West troughs 

may have encouraged the gravity-driven flow of subglacial meltwater toward the shelf 

edge as the ice sheet retreated. Further research is needed in reconstructing detailed 

ice sheet history, as flow switching within ice streams and glacial readvance may also 

have influenced gully morphology.  

 Our study highlights the need for three-dimensional seismic datasets from the 

Antarctic continental margin, in particular for the outer shelf and upper slope regions. 

These data would constrain the evolutionary stages of high latitude gullies and the 

timescales they develop over, as well as providing insight into the mechanisms 

influencing submarine erosion and slope instability on high latitude continental 

margins.  
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Figures 

Fig. 1. Antarctic slope geomorphology. Different morphological gully styles observed across 

the Antarctic continental margin. (A) Gully type I; (B) gully type II; (C) gully type IIIa; (D)  

gully type IIIb; (E) gully type IV; (F) cross-shelf profiles at 50 m below the shelf edge for 

gullies A-E. Profile locations are marked by black dashed lines and lower case letters on each 

figure above. For location of (A)-(E), see Fig. 2. Colour scale is the same for (A)-(E). For 

colour bar, see (D). Adapted from Gales et al. (2012).   

Fig. 2. (A) Study areas from the western Antarctic Peninsula, Bellingshausen, Amundsen and 

Weddell Seas. (B) Inset showing location of (A) in relation to the Antarctic continent. Thick 

black lines mark extent of multibeam bathymetric data along the continental shelf edge. 

Regional bathymetry is from Bedmap2 (Fretwell et al., 2013). The Antarctic continent is 

Landsat Image Mosaic of Antarctica (LIMA) (U.S Geological Survey, 2007). Black squares 

mark location of Figs. 7A and 7B. Red squares mark location of Figs. 1A-E. Arrows mark 

general direction of bottom currents including: Weddell Sea bottom water (WSBW), Weddell 

Sea deep water (WSDW), and Ice Shelf water (ISW; black) and modified Weddell Sea deep 

water (MWSDW; red). The Antarctic Circumpolar Current (ACC) is marked by a white 

arrow.  
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Fig. 3. Study areas from western Svalbard, southwest Barents Sea and northern Norwegian 

continental margins. Inset (upper right) locates the map within the Arctic. Solid black lines 

mark extent of multibeam bathymetric data along continental shelf edge. Regional 

bathymetry is from IBCAO (Jakobsson et al., 2012). Dashed black lines mark boundaries of 

cross-shelf troughs analysed. Red squares mark locations of Figs. 4A-E.  

Fig. 4.  (A)-(E). Arctic gully morphologies from the northern Norwegian, Barents Sea, and 

western Svalbard margin. (F) Cross-shelf profiles taken at 50 m* below the shelf edge (*E is 

taken at 250 m below shelf edge because of data limitations). Profile locations are marked by 

black dashed lines and lower case letters on each figure above. For location of (A)-(E), see 

Fig. 3. Colour scale is the same for (A)-(E). For colour bar, see (A).  

Fig. 5. Arctic and Antarctic gully parameters: length (km), width (m), incision depth (m), 

sinuosity, U/V, and cutback (m). Red circles = Arctic gullies; black circles = Antarctic 

gullies.  

Fig. 6. Spatial distribution of Arctic gully types. Solid black lines indicate segments of shelf 

edge included in analysis. Pie charts represent percentage of sea floor covered by different 

slope types. Numbers within chart segments represent kilometres of seafloor each gully type 

covers. Dashed lines mark cross-shelf troughs reaching the shelf edge in the areas analysed. 

Regional bathymetry is from IBCAO (Jakobsson et al., 2012). 

Fig. 7. (A) Pine Island West (PIW) trough, Amundsen Sea. (B) Belgica trough, 

Bellingshausen Sea. Bathymetry data is from Bedmap2 (Fretwell et al., 2013). Antarctic 

continent is shaded Landsat Image Mosaic of Antarctica (LIMA) data (U.S Geological 

Survey, 2007). WAIS is West Antarctic Ice Sheet. Dashed lines mark boundaries of cross-

shelf troughs.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

39 

 

Fig. 8. Mean cutback (m) and gully incision depth (m) versus slope gradient (º) for Arctic 

(hollow circles) and Antarctic (filled circles) gully types (I, II, IIIa, IIIb, IV, V).  
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Table 1 

Multibeam data analysed  

Data set Reference System 

Cruise / ID Year 

ANT23-4 

JR59 

2006 

2001 

Gohl (2006); Nitsche et al. (2007) 

Dowdeswell et al. (2004) 

Atlas Hydrosweep DS-2a 

Kongsberg EM120b 

JR71 2002 Ó Cofaigh et al. (2005); 

Dowdeswell et al. (2004) 

Kongsberg EM120b  

JR84 2003 Evans et al. (2006) Kongsberg EM120b 

JR97 2005 Gales et al. (2012); Larter et al. 

(2012) 

Kongsberg EM120b 

JR104 2004 Ó Cofaigh et al. (2005); 

Dowdeswell et al. (2008) 

Kongsberg EM120b 

JR141 2006 Noormets et al. (2009); Graham et 

al. (2010) 

Kongsberg EM120b 

JR157 2007 Noormets et al. (2009) Kongsberg EM120b 

JR179 2008 Graham et al. (2010) Kongsberg EM120b 

JR244 2011 Gales et al. (2012); Larter et al. 

(2012) 

Kongsberg EM120b 

NBP9902 1999 Wellner et al. (2001, 2006); Lowe 

and Anderson (2002) 

Seabeam 2112c 

NBP0001 2000 Nitsche et al. (2007) Seabeam 2112c 

NBP0103 2001 Bolmer (2008) Seabeam 2112c 
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NBP0104 2001 Bolmer (2008) Seabeam 2112c 

NBP0201 2002 Wellner et al. (2006) Kongsberg EM120b 

NBP0202 2002 Bolmer (2008) Kongsberg EM120b 

NBP0702 2007 Graham et al. (2010) Kongsberg EM120b 

MAREANO  www.mareano.no  

R/V Jan 

Mayen 

R/V Jan 

Mayen 

R/V Jan 

Mayen 

2004/5 

 

2010 

 

2006/7 

2008/9 

Laberg et al. (2007) 

 

Baeten et al. (2013) 

 

Hustoft et al. (2009) 

Forwick (2009a,b) 

Kongsberg EM300d 

 

Kongsberg EM300d 

 

Kongsberg EM300d 

Kongsberg EM300d 

aFrequency of 15.5 KHz and swath width of up to 120°. 

bFrequency range of 11.75-12.75 kHz and beam width up to 150°.  

cFrequency of 12 kHz and swath width of up to 120°.  

dFrequency of 30 kHz and swath width of up to 150°.  
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Table 2 

Mean gully spacing (gully/km) from parts of the Arctic and Antarctic continental shelf and 

upper slopes 

Gully type Mean gully spacing (gully/km) 

Arctic Antarctic 

I 1.56 1.54 

 II - 0.74 

IIIa 0.74 1.37 

IIIb 1.07 1.16 

IV 0.7 1.32 

V 0.5 - 
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Table 3 

Comparison of submarine gully coverage (km) from high latitude continental margins 

 Western 

Antarctic 

Peninsula 

Bellingshausen 

Sea 

Amundsen 

Sea 

Filchner 

trough 

(Weddell 

Sea) 

Kongsfjorden 

trough 

(western 

Svalbard) 

Southwest 

Barents Sea  

Northern 

Norway 

a b c d e f   g h i j k m 

Type I 75 281  8  35  42 53    26  

Type II    98 3 64 68        

Type 

IIIa 

   127  163     48    

Type 

IIIb 

  152 6 52     106  28 28  

Type IV  31          26  7 

Type V              61 

Smooth 11 68  145  467 63 12  18 9  44 12 

Inside 

trough 

X - - X - X X X X - - - X - 

Inter-

trough 

X X X - X - - - - - - - - X 

Slide 

scars 

present 

- - - - - - - X X - - - X X 
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Canyon 

present 

- - - - - -  - - - - - X - 

Gradien

t >5° 

X X - - - - - - - - - - X - 

Density 

(gully/k

m) >1.3 

X X - X - X - X - - - X X - 

a = Marguerite trough; b = west Antarctic Peninsula inter-trough; c = Belgica trough; d = 

Bellingshausen Sea margin; e = Pine Island West trough; f = Amundsen Sea margin; g = 

Bjørnøyrenna trough; h = SW Barents Sea margin; i = Håkjerringdjupet Trough; j = 

Rebbenesdjupet Trough; k = Andfjorden (Andøya) Trough; l = Trænadjupet. Values for 

Antarctic gully coverage taken from Gales et al. (2013).  
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Highlights 

 

 We provide a quantitative comparison of Arctic and Antarctic submarine gullies  

 Six quantitatively distinct gully types occur on high latitude continental slopes 

 Distinct differences exist between Arctic and Antarctic gullies 

 Unique gully types are observed on Arctic and Antarctic margins   


