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Abstract 25 

Future oceans are predicted to contain less oxygen than at present.  This is because oxygen is 26 

less soluble in warmer water and predicted stratification will reduce mixing.  Hypoxia in 27 

marine environments is thus likely to become more widespread in marine environments and 28 

understanding species-responses is important to predicting future impacts on biodiversity. 29 

This study used a tractable model, the Antarctic clam, Laternula elliptica, which can live for 30 

36 years, and has a well characterised ecology and physiology to understand responses to 31 

hypoxia and how the effect varied with age. Younger animals had a higher condition index, 32 

higher adenylate energy charge and transcriptional profiling indicated that they were 33 

physically active in their response to hypoxia, whilst older animals were more sedentary, with 34 

higher levels of oxidative damage and apoptosis in the gills. These effects could be attributed, 35 

in part, to age-related tissue scaling; older animals had proportionally less contractile muscle 36 

mass and smaller gills and foot compared with younger animals, with consequential effects on 37 

the whole-animal physiological response. The data here emphasize the importance of 38 

including age effects, as large mature individuals appear less able to resist hypoxic conditions 39 

and this is the size range that is the major contributor to future generations.  Thus the 40 

increased prevalence of hypoxia in future oceans may have marked effects on benthic 41 

organisms abilities to persist and this is especially so for long-lived species when predicting 42 

responses to environmental perturbation.  43 

 44 
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Introduction 49 

The effects of climate change on oceans have many consequences for marine organisms.  The 50 

main factors usually highlighted are higher temperatures which are predicted to affect both 51 

distributions (e.g. Russell et al. 2012) and survival of populations or species (e.g.  Walther et 52 

al. 2001; Thomas et al. 2004).  The main driver of climate warming is elevated CO2 in the 53 

atmosphere derived from anthropogenic sources.  The oceans are absorbing, and have 54 

absorbed roughly one third of the extra CO2 from these sources in recent decades (Takahashi 55 

et al. 2002). This has produced significant concern over the acidification of the oceans for the 56 

survival of marine invertebrates (e.g. Byrne 2011), and this is especially so for early 57 

reproductive stages (e.g. Dupont et al. 2009; Watson et al. 2009). 58 

 59 

Ocean warming has both direct and indirect effects on organisms.  The direct effects via 60 

increases in metabolic rates and in relation to thermal limits have been relatively well studied 61 

(e.g. Peck et al. 2009; Somero, 2010). However, the indirect effects are less well understood. 62 

One of these that is becoming of increasing concern is hypoxia (e.g. Grantham et al. 2004).  63 

The solubility of oxygen in seawater varies inversely with temperature and a 2°C rise in 64 

temperature reduces the oxygen content at saturation by around 5% (Benson & Krause 1984, 65 

Peck & Uglow 1990).  In excess of this stratification of the oceans is expected to become 66 

markedly increased (Capotondi et al. 2012).  Both of these factors reduce oxygen availability 67 

for marine species, while higher temperatures increase the demand for ectotherms through 68 

elevated metabolic rates.  Chronic hypoxia, or hypoxic events will thus be increasingly likely 69 

in marine environment as a consequence of climate change, yet the effects of this on animal 70 

populations and life history characteristics such as age and maturity are poorly understood.  71 

 72 
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Resilience (or sensitivity) to environmental change may vary over the life history of an animal 73 

(Peck, 2011; Philipp & Abele, 2010) and it is particularly important to understand this for 74 

long-lived species, where deferred maturity results in reduced generational turnover, and 75 

therefore phenotypic plasticity will be more important in terms of adjusting to environmental 76 

change, rather than genetic adaptation. Organisms particularly affected include those 77 

inhabiting high latitudes, regions which are currently experiencing rapid change, specifically 78 

the Arctic and the Antarctic Peninsula (IPCC, 2007), as many polar species have long life 79 

spans and have evolved under stable temperature regimes for millenia.  80 

 81 

To date, studies examining the responses of marine species to environmental perturbation 82 

have concentrated on adults (cf. Peck et al., 2009). However, to gain a holistic picture of 83 

climate change effects on species, studies on different life history stages and across a 84 

spectrum of adult ages are needed (Abele, 2012). The paradigm is that early life history 85 

stages, particularly larvae, are the most vulnerable to environmental perturbation (Pechenik, 86 

1999) and many studies in the Ocean Acidification field have concentrated on this area (cf. 87 

Kurihara, 2008). The impact of age and reproductive maturity on physiological resilience is 88 

rarely examined despite physiological capacities often decreasing with age (cf. Kirkwood & 89 

Austad, 2000). Many Antarctic ectotherms show delayed maturity and tend to have longer 90 

lifespans and grow to larger adult sizes than related temperate species. As fecundity in 91 

ectotherms increases with body size (Angilletta et al. 2004), older animals provide the 92 

reproductive stock to ensure population continuity. It is therefore essential to understand the 93 

effects of environmental perturbation on adults of different ages. 94 

 95 

In this respect, the Antarctic clam, Laternula elliptica, presents as an ideal candidate.  It is 96 

highly abundant with a circumpolar distribution and as an infaunal filter-feeder it plays a 97 
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significant role in benthopelagic coupling (Arntz et al., 1994; Momo et al., 2002).  This 98 

species can live for 36 years (Philipp et al., 2005a) with deferred reproduction until the 99 

second quartile of its lifespan and continuous gonad production until death (Urban & Mercuri, 100 

1998; Clark and Peck, unpub). It possesses distinctive annual growth bands in the shell and 101 

whereby individuals can be aged relatively easily (Philipp et al., 2008). Indeed, L.  elliptica 102 

has been proposed as a model species for understanding cellular events associated with ageing 103 

(Abele et al., 2009). It has also been shown that older clams fail first in short term acute stress 104 

tolerance experiments (Peck et al., 2002; 2007; Philipp et al., 2011). Hence the older, sexually 105 

mature animals, which produce the next generation are less resistant to environmental change 106 

compared with younger immature animals, certainly in the context of increasing water 107 

temperatures. Because of the previous studies showing large individuals to fail in warming 108 

experiments before smaller specimens the aim here was to test the hypothesis that larger 109 

mature animals would be less resistant to hypoxia than juveniles, and to put this into context 110 

of consequences for population persistence.  111 

 112 

Biochemical assays were conducted, evaluating condition index, tissue energy status, 113 

accumulation of oxidised proteins and apoptotic activity on treated animals of different ages. 114 

These represent a priori assumptions of biochemical pathways known to be affected under 115 

environmental stress in different species. However to uncover novel pathways and expand our 116 

knowledge of the biochemical and physiological effects of severe hypoxia in low temperature 117 

adapted animals, molecular analyses using a custom-made microarray were also used.  Such 118 

an approach has previously provided a finer scale detail on molecular responses to 119 

environmental challenge in this species (Truebano et al., 2010). Finally tissue scaling was 120 

measured to evaluate whether muscle wasting with age occurs in L. elliptica and contributes 121 

to the effects seen on organism resilience.122 
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Materials and Methods 123 

 124 

Animal collection and sampling 125 

L. elliptica were sampled by divers in January 2006 – February 2007 in Potter Cove, King 126 

George Island, Antarctica (62°13.511`S, 058°39.575`W). After sampling animals were kept at 127 

constant temperature (1°C) with running ambient seawater for one week before experiments 128 

were started. Two non-overlapping size classes were investigated: small sexually immature 129 

animals (33-50mm) with a mean age of 3 years and large sexually mature animals with a 130 

mean age of 19 years (73-92mm). Ages of the animals used were calculated from shell length 131 

using a Von Bertalanffy growth model (VBGM) based on length-at-age data for the Potter 132 

Cove population taken from Philipp et al. (2008).  133 

 134 

Tolerance to the absence or very low concentrations of oxygen (LT50) 135 

To provide the background data for the main experiment, the tolerance of L. elliptica oxygen 136 

deprivation was determined as the time of 50 % survival (LT50) hypoxia (PO2 level of 2kPa: 2 137 

% O2 in nitrogen, equivalent to severe hypoxia) and also anoxia. For the anoxia experiment, 138 

animals (shell length: 74.9mm mean ± 1.5mm (SEM)) were kept in individual sealed glass 139 

jars which were flushed with N2 (AirLiquide, Germany) for 1h prior to inserting the animal. 140 

This system had been previously tested to ensure that all oxygen was depleted. After inserting 141 

the animals the jars were flushed with N2 for 45min daily to ensure constant anoxic 142 

conditions. For the severe hypoxia LT50 experiment a similar system was used (mean shell 143 

length: 75.2mm ± 1.7mm (SEM)), but the seawater was constantly bubbled with oxygen at 144 

2kPa PO2 (AirLiquide, Germany) or air for controls (mean shell length: 74.6mm ± 2.9mm). 145 

All experiments were run in water baths maintained at 1°C using heater/cooler units (Julabo, 146 

Germany). Every morning animal survival was assessed by touch-responsiveness of the 147 
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siphon and mantle. Unresponsive individuals were classified as dead. Ammonia (Tetratest 148 

NH3/NH4
+, Tetra, Germany) and nitrite (Tetratest No2

-, Tetra Germany) levels were 149 

monitored, and water was changed with pre-gassed water for the respective treatment when 150 

values were >0.26mg/l for NO2
-. Values for NH3/NH4

+ were always ≤0.3mg/l. Animal size 151 

was determined after death or termination of the experiment (shell length: range: 67.1mm-152 

84.8mm; mean 76.mm ± 0.8mm SEM; mean age 15 years) and did not differ between the 153 

different treatments.  154 

 155 

Severe hypoxia experiment on different sized individuals 156 

Based on the LT50 result of 17 days for severe hypoxia (oxygen level of 2kPa), a more 157 

extensive hypoxia experiment was designed to last 16 days. Younger/small (36.9mm mean 158 

shell length ± 0.5 SEM; mean age 3 years) and older/large (80.2mm mean shell length ± 1.0 159 

SEM, mean age 19 years) individuals were used. Animals were kept in 2 aquaria per 160 

treatment bubbled with nitrogen at 2kPa or normal air and large and small animals were 161 

equally mixed. NH3/NH4
+ and NO2

- were monitored regularly. Small and large individuals 162 

were sampled at the start of the experiment and after 16 days of severe hypoxia and normoxia 163 

(controls). Animals were dissected into different tissues (gill, siphon and mantle). Each tissue 164 

was weighed and snap frozen in liquid nitrogen and stored at -80°C until required. The target 165 

tissues (which were not necessarily used in all experiments) were chosen with gills as the 166 

most hypoxia relevant target and siphon and mantle as large organs in contact with the 167 

external environment to demonstrate tissue specificity of effect and the latter potentially 168 

acting to buffer internal acidification via shell carbonate mobilisation. Shells were dried for at 169 

least 24h and then weighed and length measured. 170 

 171 

Morphometric parameters 172 
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Condition indices: CI = (soft tissue weight (g) / shell weight (g)) * 100 (Davenport & Chen, 173 

1987). For the severe hypoxia experiment, shell weight to shell length ratios: SWSr = shell 174 

weight (g) / shell length (mm) were also calculated to assess whether shell carbonate was used 175 

to buffer internal acidification due to anaerobic metabolite accumulation under hypoxic 176 

conditions as found in Mytilus edulis by Michaelidis et al. (2005): 177 

 178 

Biochemical analyses 179 

Tissue energy charge: This involved the measuring of adenylates (AMP, ADP, ATP) and 180 

nicotinamide adenines (NAD, NADH, NADP, NADPH) by HPLC using the method after 181 

Lazzarino et al. (2003) described in detail in Philipp et al. (2005b). The tissue energy charge 182 

(EC) of the adenylates and the adenylate pool were calculated after Ataullakhanov & 183 

Vitvitsky (2002).  184 

 185 

Protein oxidation: Measures of oxidative damage using protein carbonyls and lipid 186 

peroxidation were employed. The detection of protein carbonyl groups as a measure of 187 

protein oxidative modifications was carried out after Levine et al. (1990) and as described in 188 

detail in Philipp et al. (2005a). Sample protein contents were determined by the Bradford 189 

method using bovine serum albumin as a standard. The marker for lipid peroxidation 190 

malondialdehyde (MDA) were measured by HPLC after Lazzarino et al. (2003) and described 191 

in detail in Philipp et al. (2005b). 192 

 193 

Apoptotic activity: Activities of key members of the apoptotic pathway (caspases 3 and 7) 194 

were determined in gill and siphon tissue.  Frozen tissues were ground in liquid nitrogen and 195 

processed according to a modified protocol of Liu et al. (2004) using the Caspase-Glo 3/7 196 

Assay (Promega, Madison, USA). Tissue homogenates (1:100 w/v) were prepared in 197 
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extraction buffer (25mM HEPES, pH 7.5, 5mM MgCl2, 1mM EGTA and 1µg*ml-1 of each of 198 

pepstatin, leupeptin and aprotinin). Following centrifugation (15 min, 13000 rpm at 4°C), 199 

equal volumes of supernatant and freshly prepared assay reagent were gently mixed in white 200 

96-well plates. After incubation at 25°C for 60 min, luminescence was measured using a 201 

Microplate Reader (TriStar Multimode Reader LB 941, Berthold technologies GmbH & Co 202 

KG, Germany). Results were measured as protein concentrations in the supernatants 203 

following (Bradford, 1976). Activities of caspases 3/7 were expressed as relative 204 

luminescence units (RLU) * mg-1 protein. 205 

 206 

Biochemical statistical analysis 207 

Survival curves were only produced from older animals with a mean age of 15 years. 208 

Statistical analysis was carried out using GraphPad Prism software (version 5.01). Survival 209 

curves were compared using log-rank (Mantel-Cox) and Gehan-Breslow-Wilcoxon tests. 210 

Animals taken out of the experiment during the LT50 experiment were included in the 211 

calculation and graph generation. Non-parametric Kruskal-Wallis with Dunns PostHoc tests 212 

were used to identify significant differences between three or more groups. Differences 213 

between two groups were detected with Mann-Whitney t-tests.  214 

 215 

Gene expression analyses 216 

Pilot molecular analyses: Expression levels of the inducible heat shock protein genes 217 

(HSP70A and HSP70B) were evaluated in 16 day normoxia younger (shell length 37.8mm ± 218 

1.3 SEM) and older (shell length 80.1mm ± 1.4 SEM) controls against 16 day younger (shell 219 

length 36.8mm ±1.0 SEM) and older (79.6mm ± 2.8 SEM) hypoxia samples (n=6). Q-PCR 220 

using HSP70A and HSP70B primers sets with β actin as a control sequence were used and 221 

analysed following Clark et al. (2008). These data were used as a preliminary proof of 222 
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concept, prior to the microarray experiment, that significantly different gene expression 223 

profiles would be generated under the more extensive molecular analyses. 224 

 225 

Microarray hybridization 226 

Gene expression was analysed in siphon and gill tissue of a sub-set of the animals described 227 

above (n = 6 for each treatment) with ages for normoxic animals: younger (shell length 228 

36.1mm ± 0.92 SEM, mean age 3 years) and older (shell length 80.3mm ±1.58 SEM, mean 229 

age 19 years) and hypoxic animals: younger (shell length 37.6mm ± 1.14 SEM, mean age 3 230 

years) and older (shell length 80.0mm ± 3.34 SEM, mean age 18 years). RNA was extracted 231 

from all individuals using TriSure (Bioline, UK), following manufacturer’s instructions, with 232 

subsequent RNA purification using Qiagen Rneasy minikit spin columns. PCR amplified 233 

labelled cDNA targets were prepared from 1μg total RNA using protocols in Petalidis et al. 234 

(2003) and hybridizations to an 8448 clone cDNA array performed following Purac et al. 235 

(2008) with modifications according to Truebano et al. (2010).  236 

 237 

Microarray data acquisition, normalisation and analysis 238 

Data were extracted using the Genepix Pro software v 6.0.1 (MDS Analytical Technologies, 239 

Berkshire, UK). Anomalous features were excluded following visual inspection. Low 240 

intensity features (median foreground intensity < 3x median background intensity) were also 241 

excluded. The R (R Development Core Team, 2005) limma microarray package (Smyth & 242 

Speed, 2003; Smyth, 2004; 2005; Smyth et al., 2005; Richie et al., 2007) was used for data 243 

analysis. Background subtraction (half), and within (printtiploess) and between (Rquantile) 244 

normalisations were conducted across the arrays. Treatments were compared using a 245 

reference design based linear model (Smyth, 2004). Differentially expressed clones were 246 

selected at an adjusted p-value of <0.01 (Benjamini & Hochberg, 1995) and a minimum two 247 
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fold change. The array design and experiment have been submitted to Array Express: 248 

Experiment name: Laternula elliptica siphon hypoxia treatment ArrayExpress accession: E-249 

MEXP-3613; Experiment name: Laternula elliptica gill hypoxia treatment ArrayExpress 250 

accession: E-MEXP-3611. 251 

 252 

Sequencing of differentially expressed clones and data analysis 253 

The inserts from all cDNAs of interest were PCR amplified and sequenced following 254 

Truebano et al. (2010) and sequence runs performed by Source Bioscience Lifescience 255 

(Nottingham, UK). Trace2dbest (Parkinson et al., 2004) was used to remove and trim poor 256 

quality and vector sequence. The TGI clustering tool (Pertea et al., 2003) was used to 257 

assemble sequences, and Blastx (Altschul et al., 1997) was used to annotate against the non-258 

redundant GenBank database and Swissprot (Bairoch et al., 2007). All sequences have been 259 

submitted to GenBank (Accession numbers JK991088-JK993117). 260 

 261 

Validation of differentially expressed genes by quantitative PCR (Q-PCR) 262 

The microarray was validated previously in Truebano et al. (2010). The current array 263 

experiments were further validated using 6 primer pairs (Supplemental Table 1) tested against 264 

either older versus younger hypoxic animals or older normoxic versus older hypoxic animals, 265 

as appropriate (n=5) using Q-PCR methodology as detailed in Clark et al. (2008). 266 

 267 

Tissue scaling related to age 268 

52 animals ranging from 8mm (<1 year old), through to 101.7 mm length (≥18 years old) 269 

were collected by scuba divers at depths of 10-18m in 2011 at Hangar Cove, Rothera Point, 270 

Adelaide Island, Antarctic Peninsula (67°34’07°S, 68°07’30°W). Despite the geographical 271 

distance to King George Island, where the hypoxia experiment was performed, AFLP 272 
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analyses show both cohorts are genetically undifferentiated (Harper et al., 2012). Animals  ≥ 273 

30mm length were dissected into six separate tissues: siphon, mantle, adductor muscle, gill, 274 

foot and then remaining tissue (largely composed of digestive gland and gonad which could 275 

not be separated) was treated as a single sample. Animals ≤ 30mm were dissected into five 276 

separate tissues: siphon, mantle, adductor muscle, foot, and remaining tissue (gill could not be 277 

separated from digestive gland and gonads were not present). Tissue dry and ash-free dry 278 

masses were evaluated following (Peck, 1993). Shell lengths were measured using vernier 279 

callipers. Contractile tissue was defined as siphon, mantle, adductor muscle and foot. All 280 

statistics and regression analyses were calculated using Minitab v15.0.  281 

 282 

 283 

Results and Discussion 284 

Tolerance to very low concentrations or absence of oxygen 285 

L. elliptica showed a considerable capacity to survive reduced oxygen conditions 286 

(Supplemental Figure S1). The LT50 for anoxia was 10 days, whilst this was extended to 17 287 

days under severe hypoxia at 2kPa oxygen. Only one animal (out of 12) died during 17 days 288 

in the normoxic control treatment, indicating aquarium conditions were suitable for long-term 289 

culture. As a result of these data, an experimental duration of 16 days was chosen for the main 290 

hypoxia experiment. Compared to other bivalves, the L. elliptica  LT50 of 10 days in anoxia 291 

was not unusual; Mya arenaria, a temperate clam has an LT50 of 16 days, whilst Mytilus can 292 

survive 15-30 days of anoxia, and these are not the most hypoxia/anoxia tolerant bivalves on 293 

record (Theede et al., 1969). Lower temperatures, especially below 10ºC can prolong hypoxic 294 

survival in temperate bivalves (Theede et al., 1969). Hence L. elliptica is principally hypoxia 295 

tolerant at low temperatures, but certainly more sensitive than many temperate and even sub-296 

Antarctic species. This may be because L. elliptica regularly adopts hypometabolic strategies 297 
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to reduce energy costs, for example, in winter when food resources are low (Morley et al., 298 

2007), and also spontaneously reduces oxygen uptake (only large old specimens) in response 299 

to environmental challenge e.g. high sediment loads from glacial melt waters (Philipp et al., 300 

2011). These abilities of bivalve molluscs to tolerate significant levels of hypoxia are 301 

adaptations conferring resistance to reduced oxygen and make them ideal for studying 302 

predicted increases in hypoxia, as they represent a robust group and hence effects and 303 

conclusions drawn here should be conservative . 304 

 305 

Morphometric parameters 306 

Animal condition indices (CI) were used as a metric of animal health. These did not vary in 307 

any of the treatments during the experiment, thus data sets of all animals within the different 308 

age groups were taken together and age-specific differences analysed. Older individuals had 309 

CI values of 1.99 ± 0.05 SEM (n=37), whilst the CI of younger individuals was over 10% 310 

higher and this difference was significant(2.21 ± 0.05 SEM; n=45) (t-test, p<0.05). CI varies 311 

with stored food reserves and usually follows a seasonal pattern of increase in spring/summer 312 

and decrease in winter. In filter feeders it often correlates with the phytoplankton abundance 313 

(Bayne et al., 1976; Norkko & Thrush, 2006). Bivalves in particular, use energy reserves over 314 

winter in an effort to maintain size, and temporary reductions of bulk are often replaced by 315 

water (Bayne et al., 1976). Smaller animals are most efficient at converting food to body mass 316 

at low levels of food availability. As this study was carried in early to mid-summer  it is 317 

highly probable that the older animals in this study were still replacing food reserves depleted 318 

over the previous winter. The higher CI in smaller animals therefore is likely to indicate a 319 

healthier state which may contribute to their higher stress tolerance (Bayne et al., 1976). 320 

However, such factors will be highly relevant in future periods of oxygen stress, as in many 321 

environments these will vary seasonally and capacities to replenish reserves after winter will 322 
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be critical in marginal habitats. The better performance of smaller individuals in spring would 323 

also make them more resilient in a warming world as this is the time when temperatures are 324 

increasing and hypoxic events more likely. Shell weight-length ratios did not change over the 325 

16 days of hypoxic exposure (data not shown), indicating shell bicarbonate ions were not 326 

mobilized to regulate internal acid-base balance under hypoxic exposure. Additional 327 

biochemical analyses were employed to understand the details underlying the hypoxia 328 

response at the tissue level. 329 

 330 

Tissue energy status 331 

Adenylate energy charge (AEC) of tissues/organs has been proposed as a direct measure of 332 

organism energetic state (Atkinson, 1977). It usually ranges from 1 in the fully charged, 333 

healthy state to 0.3-0.4, the critical values for survival. Adenylate concentrations in this study 334 

were both tissue and age-specific. Younger L. elliptica had higher AEC and ATP values and a 335 

higher adenylate pool in the investigated tissues (Figure 1 and Supplemental Tables 2 and 3), 336 

indicating more cellular energy was available per unit tissue, which correlates with findings of 337 

decreased mitochondrial respiratory capacity with age (Philipp et al., 2005b). With regard to 338 

tissue-specific differences, in all investigated animals AMP concentration was highest and 339 

ATP and energy charge was lowest in gills compared with mantle and siphon tissue, as 340 

evidenced by large differences in ATP:AMP ratios (Supplemental Table 2). Moreover the 341 

adenylate pool was lowest in gill tissue. Whilst tissue-specific differences have been found in 342 

other species (Giesy, 1988), the results for gill are intriguing. Lower ATP and higher AMP 343 

indicate high energy turnover, probably for ciliary activity. Thus gills might have a higher 344 

requirement for cycling ATP and ADP. Cycling of ADP in gill cells is presumably through 345 

adenylate kinase (AK) activity. It is typically found in ciliated epithelia where a special AK 346 

isoform catalyses ADP transphosphorylation: 2ADP to ATP + AMP + Pi. AK is not inhibited 347 
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by high AMP levels and covers the intimate energy demand of synchronised ciliary 348 

movements (Dzeja &Terzic, 2009). Indeed, the gill is a large surface area where both ciliary 349 

water pumping for ventilation and feeding and active ion pumping for osmotic homeostasis 350 

occur. A higher energy demand in a tissue is likely to translate into greater oxygen 351 

requirement, suggesting that the gills in species like L. elliptica may be expected to be a 352 

critical tissue in a warmer more hypoxic ocean. However, unlike ATP:AMP ratios under the 353 

hypoxia treatment, there were only significant changes in adenylate concentrations in the 354 

mantle tissue of older individuals (Figure 1, Supplemental Table 3). A similar trend was 355 

observed in siphon tissue, but the changes were not significant, whereas in gills no effect of 356 

the 16 days hypoxia treatment was visible (Figure 1 and Supplemental Table 3). Thus in gill 357 

tissue higher cycling of adenylates may prevent reduced AEC under hypoxic conditions. This 358 

might not only occur during environmental low oxygen conditions but also under functional 359 

hypoxia during increased ciliary activity. The lower adenylate pool might therefore be 360 

sufficient for physiological functioning in some tissues, whereas in mantle and siphon tissues 361 

higher levels are needed to buffer sudden hypoxic events.  362 

 363 

ATP formation is tightly coupled to the oxidation and reduction of NADH/NAD+, with a shift 364 

to the reduced state (more NADH) expected under environmental hypoxia (Shofer & 365 

Tjeerdema, 1998). Overall NAD and NADH tissue concentrations declined in the same order 366 

(siphon>mantle>gills) as the ATP and overall adenylate levels, and also showed the same 367 

pattern in the age groups (younger>older) of untreated individuals (Table 1). Conversely 368 

NADP concentrations in all age groups were highest in gill tissue followed by mantle and 369 

siphon tissue, whereas the NADPH concentrations had no tissue specific pattern. The overall 370 

NADP/NADPH and NAD/NADH ratio was again highest in gill tissue. Nicotinamide 371 

nucleotide concentrations did not change in either age group incubated under severe hypoxia 372 
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(Supplemental Table S4) suggesting that anaerobic pathways were not used to generate new 373 

energy (Shofer & Tjeerdema, 1998). This suggests that metabolic suppression rather than 374 

anaerobic energy production is the adaptation to reduced oxygen in groups like L. elliptica. In 375 

a generally lower oxygen world this would lead to a lowered overall level of performance 376 

across the year, the consequences of which would depend on the time of year and duration of 377 

any event. 378 

 379 

Oxidative damage and apoptosis  380 

As the tissues become energetically compromised (e.g. during prolonged hypoxic exposure), 381 

protein turnover decreases as an energy saving strategy related to the overall depression of 382 

metabolic rate (Hochachka et al., 1996). Under these conditions, cells may fail to efficiently 383 

remove cellular oxidative damage products, such as protein carbonyls (oxidised proteins) and 384 

MDA (malonedialdehyde: an initial product of lipid peroxidation) and accumulation of these 385 

products is bound to occur as metabolic rates decline and autophagic and proliferative 386 

activities become reduced (summarized by Philipp and Abele, 2010). MDA concentrations 387 

were similar in younger and older L. elliptica and this did not change under severe hypoxia 388 

(data not shown). Conversely, protein carbonyls significantly increased in gill tissue of older 389 

individuals under severe hypoxia compared to normoxic controls (Figure 2). Hence, there is 390 

an age-dependent effect of hypoxia on protein carbonyl turnover which is slowed in old L. 391 

elliptica. The age effect on autophagic cell clearance has already been observed in other 392 

bivalves even under unstressed conditions, for example as seen in in older cohorts of the 393 

scallop Argopecten ventricosus which presents as failure to remove protein carbonyls from 394 

gill tissue (Guerra et al., 2012). Accumulation of oxidised proteins and the formation of 395 

fluorescent age pigment (lipofuscin) aggregates in cells have been indicated to enhance 396 

cellular senescence through the inhibition of 20S proteasome in a cycle of progressive protein 397 
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damage accumulation (Sitte et al., 2000). This in turn relates to the induction of apoptotic cell 398 

death by dysregulation of pro-apoptotic proteins (Powell et al., 2005). If this fails, cell death 399 

results (Zhang et al., 2008). We therefore measured severe hypoxia effects on the intensity of 400 

apoptosis in gills and siphon in both age groups, and there was a significant induction of 401 

apoptotic cell death in gills of hypoxia treated older animals, which corresponds with the 402 

increased tissue carbonyl levels (Supplemental Figure S2). Thus older individuals, and 403 

especially their respiratory tissues, seem more susceptible to hypoxic exposure and less 404 

capable of controlling damage accumulation resulting in enhanced necessity for apoptotic 405 

removal of terminally damaged cells. These data showing large individuals enter apoptotic 406 

states earlier and have poorer abilities to remove cellular oxidative damage products suggests 407 

that such materials would likely accumulate chronically in adults under increasing hypoxia or 408 

more frequent hypoxic events.  This would mean large adult performance will probably 409 

decline well before small individuals in future change scenarios, with consequences for 410 

amounts of energy available for other physiological processes, especially growth and 411 

reproduction. 412 

 413 

Heat shock protein (HSP70) expression 414 

An initial molecular study investigated expression of HSP70 genes as another indicator of 415 

cellular stress. These analyses were restricted to gill tissue and the two duplicate forms of the 416 

HSP70 genes, based on a previous, more extensive, survey of tissues and HSP70 gene family 417 

members (data not shown). Hypoxia-induced HSP70A expression was marginally significant 418 

in older animals (p=0.058) and HSP70B expression was significant in younger animals 419 

(p=0.04) (Supplemental Table 5). Interestingly HSP70 has an anti-apoptotic function and is 420 

up-regulated under stress to reduce apoptotic cell death. A 2-way ANOVA of age versus gene 421 

showed no significant effect of age on gene expression (F1,1=12.26, p=0.177), although from 422 
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this limited sampling the younger animals showed only 30% to 50% of the expression levels 423 

of the samples from older animals.  424 

 425 

Microarray results  426 

Two tissues were screened on the array: gill, as a hypoxia relevant target, compared with 427 

siphon, to examine any tissue-specific effects. Expression profiles of transcripts were 428 

partitioned into the effects of treatment (hypoxia versus normoxia) and age (younger versus 429 

older animals) as the major variables. In surveying overall numbers of clones that were 430 

significantly up-regulated, the initial results were surprising because  animal age had a far 431 

greater effect than hypoxia (616 compared with 335) (Table 2).  432 

 433 

The effect of environmental treatment 434 

A custom-made microarray was employed to identify gene pathways involved in the hypoxia 435 

response in a discovery lead approach, in addition to the targeted biochemical analyses. 436 

Taking older animal gill tissue as the reference point for the description of the severe hypoxic 437 

response, 75 clones were up-regulated in hypoxia when compared with older animals under 438 

normoxia (Supplemental Table 6). 25 clones were annotated using sequence similarity 439 

searching, with descriptions assigned to 17 putatively different functions (Supplemental Table 440 

6). These annotations indicated that the animals mount a complex defence response to 441 

reduced oxygen conditions. Up-regulation of transcripts with putative functions was 442 

associated with combatting reactive oxygen species, the unfolded protein response and 443 

activation of the immune system. In terms of oxidoreductases, the main active transcript was 444 

represented by thioredoxin peroxidase (= peroxiredoxin), and quinone reductase. The 445 

identification of a small heat shock protein (with potential anti-apoptotic activity) and 446 

peptidyl-prolyl cis-trans isomerase (PID) indicated an enhanced requirement for protein 447 
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folding, with potential mobilisation or redistribution of energy reserves shown by the up-448 

regulation of PCK2, involved in glucose homeostasis and the regulator of  lipid storage gene. 449 

The immune response comprised the activation of the innate immune system via F-type 450 

lectins (fucolectin) (Kawabata & Iwanaga, 1999) and the complement system (adioponectin). 451 

The latter protein has several domains and the L. ellipitca clone aligned with the C1q domain, 452 

a sub-unit of the C1 enzyme complex that activates the serum complement system and is 453 

involved in immune functioning of Mytilus galloprovincialis (Gerdol et al., 2011; Philipp et 454 

al., 2012). Immune response changes with age have previously been demonstrated in L. 455 

elliptica in both the presence and absense of environmental stress. Older animals have more 456 

hemocytes but produce a lower oxidative burst response (normalized to cell numbers) 457 

compared with small individuals (Husmann et al., 2011). Consequently, older animals 458 

exhibited higher mortality rates after injury compared to younger specimens (Philipp et al., 459 

2011). Additionally two transcription factors were identified; an NF-kappa-B inhibitor and 460 

AP-1 protein. The latter is strongly up-regulated in hypoxia responses in some mammals 461 

(Papandreou et al., 2005). NF-kappa-B inhibitor is highly conserved, ubiquitously expressed, 462 

and is normally bound to NF-kappa-B, maintaining this potent signaling molecule in an inert 463 

form (Montagnani et al., 2008).  NF-kappa-B has an immune function, but is also involved in 464 

cell atrophy (Salminen et al., 2008). Up-regulation of the inhibitor  may represent an attempt  465 

to slow down hypoxia-induced apoptosis, which occurred in the gills of the older animals 466 

from the apoptosis analyses. Attempts to combat apoptosis were supported by the up-467 

regulation of transcripts with sequence similarity to tenascin, cadherin, B cell translocation 468 

gene and a tissue-type plasminogen gene,   all of them involved in cell adhesion interactions 469 

and cellular differentiation events. Increased expression of NF-kappa-B inhibitor and the 470 

antioxidant, quinone reductase, in hypoxic animals were both confirmed by Q-PCR 471 

(Supplemental Figure S3). Younger animals appeared to respond more effectively to hypoxia 472 
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(when transcripts from hypoxia-treated younger animals were compared with animals of a 473 

similar age under normoxia), with additional transcripts putatively involved in immune 474 

responses, antioxidant activities (glutathione-s-transferase and tyrosinase) and the unfolded 475 

protein response accompanied by degradation of damaged proteins via ubiquitin and 476 

skeletrophin, which has an E3 ubiqutin-protein ligase activity (Supplemental Table 7). This 477 

supports previous data indicating decreased protein turnover with age in L. elliptica (Philipp 478 

et al., 2005a) and also our study which showed younger animals to accumulate less protein 479 

carbonyls. Similar patterns of up-regulated gene expression were identified in siphon tissue 480 

(data not shown).   481 

 482 

Age-related response  483 

In these analyses, older animals under severe hypoxia were directly compared with younger 484 

animals under severe hypoxia to examine the effect of age. In the siphon experiments 75 485 

clones were up-regulated under hypoxia in older animals compared with younger animals 486 

under hypoxia, but sequence similarity searches primarily revealed matches to proteins with 487 

low complexity repeats. The clones with putative annotation could all be ascribed to elevated 488 

immune system functioning (data not shown). The gene expression pattern in the siphon of 489 

younger animals was completely different to those in older animals under severe hypoxia. 490 

These analyses identified 165 up-regulated transcripts compared with older hypoxic animals, 491 

of which 34 had putative functionality ascribed via sequence similarity searching 492 

(Supplemental Table 8). The vast majority of these (dynein, myosin, tropomyosin, actin, LIM 493 

domain protein and calponin) are involved in cytoskeletal structuring, muscle structure and 494 

function. These were accompanied by transcripts for isocitrate dehydrogenase, ATP synthase 495 

and arginine kinase, which indicated enhanced energy production (validated by Q-PCR 496 

(Supplemental Figure S3). These findings were further supported by the adenylate data 497 
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presented above showing that ATP (and whole adenylate content) decreases in older animals 498 

under hypoxic exposure. Few age effects were evident in gill tissue with only 25 clones up-499 

regulated under hypoxia (data not shown). When the transcription profiles of older animals 500 

under normoxia were compared with younger animals under normoxia, the older animals 501 

showed weak signals of up-regulation of  immune genes and the younger animals, more 502 

muscle genes (data not shown), but not to the extent seen under the severe hypoxia treatment. 503 

Hence, the severe hypoxia transcription profiles demonstrate and magnify the enhanced 504 

susceptibility of older animals and the very different response of the younger animals.   505 

 506 

Overall these molecular data highlight very different age-specific hypoxic responses in 507 

different tissues, with siphon more affected than gill (Figure 3). This contrasts with the 508 

biochemical results for hypoxia, where gill was the most sensitive tissue in some tests 509 

(oxidised proteins and apoptosis). The adenylate data, however, showed more hypoxia 510 

sensitivity in siphon and mantle than gill tissue. It may be that gill cells progress more rapidly 511 

to self-destruction under stress, possibly due to the relatively high energy turnover and 512 

strategy of mitochondrial autophagy to reduce ROS (Zhang et al., 2008), whereas cells in 513 

other tissues are more programmed to resist? Adenylate biochemistry data showed a higher 514 

energy charge in all tissues of younger animals indicating a better phosphorylation capacity 515 

and better conservation of energy reserves under stressful conditions. This more efficient, 516 

robust cellular physiology is corroborated in the microarray data, where the hypoxic response 517 

of younger animals included up-regulation of energy provision and muscle genes, whereas 518 

older animals rather displayed enhanced immune defenses.  519 

 520 

Increased expression of muscle genes in younger animals (and therefore, by implication, more 521 

muscle activity) under severe hypoxia is intriguing and links directly to published 522 
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experiments. It had previously been noted that older L. elliptica lose critical biological 523 

functions (the ability to bury in sediment) when warmed, (Peck et al., 2002; 2007).  In a 524 

warming, more hypoxic world, therefore, larger adults in species like L. elliptica are likely to 525 

suffer a double problem of poorer capacities to perform activity at elevated temperature and 526 

reduced tissue energy availability due to hypoxia. 527 

 528 

Smaller animals show much faster re-burrowing ability compared to larger individuals, which 529 

may relate to body size, but also to decreased muscle activity with increasing age (Philipp et 530 

al., 2011). In our severe hypoxia experiment, sediment was not provided and burying was not 531 

possible, therefore increased muscle activity could be a result of either increased water 532 

pumping to enhance oxygen delivery, or attempted movement away from the stress.  The fact 533 

is, however, that older animals express fewer muscles genes and are physically less active 534 

than young specimens as a consequence of ageing. It has been well documented from 535 

nematodes to humans that older individuals are less active than younger specimens and that 536 

this is accompanied by sarcopenia, the progressive loss of skeletal muscle mass and strength 537 

with age (Nair, 2005;  Grotewiel et al., 2005;  Wolkow, 2006).  538 

 539 

Tissue mass and ageing 540 

AFDM was derived for 5-6 tissues from each of 52 individuals. Whole animal AFDM 541 

increased with size with a regression scaling coefficient of 3.68 (Supplemental Table 9). This 542 

was not consistent with isometric scaling and implied shape changes with size. Indeed shell 543 

dimensions also deviated from isometric scaling where shell height increases more than 544 

length with age (p = 0.035) (SupplementalTable 9). This species thus becomes rounder and 545 

wider with age, increasing more in volume than would occur with isometric scaling. It is 546 

unknown why the change in shell shape occurs, but we hypothesize that a larger volume may 547 
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be needed for reproductive tissues, or to minimise shell production costs at lower calcium 548 

carbonate saturation states (Watson et al. 2012)..   549 

 550 

Beneath this overall relationship there were differences in scaling between tissues. Combined 551 

contractile tissue (siphon, mantle, adductor muscle and foot) AFDM scaled against length, 552 

had a slope of 3.55 (Supplemental Table 9). Consequently the percentage of contractile tissue 553 

in the animal decreased with length (age), with a negative regression slope of   – 0.221 554 

(Figure 4, Supplemental Table 9). Thus the smallest individuals were composed of around 555 

75% contractile tissue, but this decreased by >2% for every 10mm increase in length. The 556 

major reason for the decline in contractile tissue was a reduction in the relative size of the 557 

foot. GLM analyses using tissue as a covariate showed that regressions with size for foot and 558 

gill were significantly different to those of other tissues (P < 0.0001 (data not shown)). 559 

Whereas the tissue scaling relationships with age for the main tissues were between 3.3 and 560 

3.6, that of the foot was only 2.9 (Supplemental Table 9). Similar scaling patterns have been 561 

demonstrated in another soft shell clam, Mya arenaria (Checa & Cadee, 1997). This result 562 

enhances the observations of Peck et al. (2002; 2007) and; Philipp et al. (2011) where older 563 

animals more often fail to re-bury compared with younger individuals. A proportionally 564 

smaller foot in older animals makes re-burying into the sediment more difficult and more 565 

energetically costly per unit foot tissue, especially as they have to re-bury deeper than smaller 566 

animals. The frequency with which an animal has to re-bury also affects their capacity for 567 

reburial. In a comparison of burying behaviour of L. elliptica from sites with different 568 

incidences of ice-berg disturbance, animals from sites where disturbance was common 569 

reburied faster than those from relatively undisturbed sites, indicating an additional 570 

behavioural or training effect (Philipp et al., 2011; Harper et al., 2012). Younger animals are 571 

also more likely to re-bury frequently as they live much closer to the sediment surface and are 572 
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less anchored than larger animals, which can bury to depths exceeding 50cm (Ralph & 573 

Maxwell, 1977). Thus clams, like many other animals, have reduced muscle mass and a more 574 

sedentary life style as they age. The biochemical data can be further elucidated by comparison 575 

with the tissue scaling data. The gills scale with a slope of only 2.51 (Supplemental Table 9), 576 

so older animals have a proportionally smaller gill surface for oxygen extraction. Older 577 

animals have a lower metabolic rate, but tissue scaling probably contributes towards the age-578 

related stress effects seen in older animals.  579 

 580 

Our data indicate that for a wide range of metrics, including tissue energy status, cellular 581 

senescence and apoptosis, immune function and cellular stress, older animals will be 582 

compromised in future more hypoxic marine environments. This problem is further 583 

exacerbated by the poorer performance of older individuals in warmer conditions (e.g. Peck et 584 

al. 2004). Hence, the older animals comply with the disposable-soma-theory theory of ageing 585 

that predicts that in species reproducing all their lives, aged specimens divert energy from 586 

tissue maintenance to reproduction (Abele et al., 2009).   Hence age must become an 587 

important factor in predictions of population level responses to environmental perturbation. 588 

This likely applies not only to L. elliptica, but also other very long-lived polar marine species, 589 

such as the brachiopod Liothyrella uva (>50 years (Peck & Brey, 1996), and the bivalves 590 

Yoldia eightsii (80-100 years (Scourse, pers. comm)) and Adamussium colbecki (>100 years 591 

(Berkman et al., 2004)), where climate change is impacting most rapidly (IPCC, 2007). In 592 

long-lived marine species older individuals often contribute progressively more to population 593 

reproductive effort (Grahame 1973; Peck et al. 1987; Chockley & Mary 2003; Birkeland & 594 

Dayton 2005).  Size also often provides a refuge from predation (e.g. Harper et al. 2009), 595 

producing left skewed size distributions and populations dominated by mature animals. The 596 

loss of the oldest half of the mature individuals in a population would cause a much larger 597 
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impact on numbers of embryos produced and hence recruitment.  This would be one of the 598 

likely outcomes in a warming more hypoxic ocean, especially for long lived slow growing 599 

species.  Whether adaptations producing younger reproductively capable individuals can be 600 

entrained fast enough, or sufficient early maturing individuals survive will depend on the rate 601 

of change and intensity of the combined warming and hypoxic conditions. 602 

 603 
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Figure Legends 838 

 839 

Figure 1: Adenylate energy charge (EC) in mantle, siphon and gill tissue of younger and 840 

older L. elliptica individuals sampled at the beginning of the experiment (controls) and 841 

incubated for 16 days under normoxic (16 days N) or hypoxic (16 days H; 2% O2). Different 842 

letters between treatments with one age group indicate significant differences (non-parametric 843 

one-way ANOVA; p<0.05). * indicate differences between younger and older control 844 

individuals (Mann-Whitney U test). N=4-6 per group. 845 

 846 

Figure 2: Concentration of protein carbonyls in gill tissue of older L. elliptica individuals 847 

incubated for 16 days under normoxic (16 days N) or hypoxic (16 days H; 2% O2) conditions. 848 

* indicate significant differences (p<0.05, Mann-Witney t-test). N=8-12 per group. 849 

 850 

Figure 3:  Schematic diagram summarising hypoxia effects on a general population of L. 851 

elliptica and the specific responses of younger and older animals. 852 

 853 

Figure 4: Graph showing percentage of contractile tissue in individual animals (as derived 854 

from the AFDM of siphon, mantle, foot and adductor muscle tissue) plotted against the length 855 

of shell. Shell length is a proxy of age, with the smallest animals at 8mm being less than a 856 

year old and the largest animals at around 100mm being 18 years or older. 857 

858 
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 859 
 860 
  
  

Tissue 
  

Young Older 

Mean SEM Mean SEM 
NAD Mantle 189.10A* 3.49 150.30A* 6.50 
nmol*gwwt Siphon 214.30B* 10.85 169.60B* 7.89 
  Gills 158.40 36.99 142.50 8.51 
NADH Mantle 11.70 1.55 9.81 0.71 
nmol*gwwt Siphon 19.72 3.85 11.24 3.98 
  Gills 8.94 0.89 8.41 1.80 
  Mantle 22.80 7.40 15.46 0.74 
NAD/NADH Siphon 13.24 2.534 20.73 5.628 
  Gills 20.29 5.54 21.17 6.79 
NADP Mantle 32.48A* 2.01 24.62A* 1.78 
nmol*gwwt Siphon 26.09 2.81 27.26 3.89 
  Gills 94.96B 5.01 81.82B 6.09 
NADPH Mantle 10.84 0.83 6.27 1.76 
nmol*gwwt Siphon 8.50 2.68 11.46 3.11 
  Gills 6.61 1.15 18.58 6.25 
  Mantle 3.09A 0.31 4.88 1.23 
NADP/NADPH Siphon 8.718 5.088 3.545 1.569 
  Gills 16.05B 2.02 7.22 3.35 

 861 

Table 1: Nicotinamide nucleotide concentration (nmol*gram wet weight) and ratios 862 

(NAD/NADH; NADP/NADPH) in the mantle, siphon and gill tissue of the control individuals 863 

of the younger and older animals. Different letters between tissues within one age group and 864 

parameters indicate significant differences (non-parametric one-way ANOVA, p<0.05). * 865 

indicate differences between younger and older individuals within one parameter (Mann-866 

Whitney U test). N = 5-6 (younger individuals) or 4 (older individuals). 867 

 868 

869 
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 870 
Effect of environmental condition 

 Siphon Gill  

Older Younger Older Younger 

Upregulated in normoxia 36 (14) 8 (1) 43 (6) 9 (7) 

No change 5057 5091 5098 5117 

Upregulated in hypoxia 40 (11) 34 (15) 75 (25) 90 (31) 

Total differentially expressed 76 (25) 42 (16) 118 (36) 99 (38) 335 (115) 

 

Effect of age 

 Siphon Gill  

 Hypoxia Normoxia Hypoxia Normoxia 

Upregulated in younger 165 (34) 145 (15) 12 (3) 8 (6) 

No change 4893 4835 5191 5163 

Upregulated in older 75 (8) 153 (9) 13 (6) 45 (1) 

Total differentially expressed 240 (34) 298 (49) 25 (9) 53 (7) 616 (104) 

 871 

 872 

Table 2: Summary of transcripts differentially expressed in the microarray experiments. 873 

Results are partitioned into the effect of environmental condition and age. Numbers in 874 

brackets indicate the number of transcripts that showed a significant match on Blast sequence 875 

similarity searching to genes in other species with ascribed functions. 876 

 877 

 878 











Gene ID Clone ID Primer sequence RSq Efficiency 
Arginine kinase Le_A01_07C03 - F GACGCCGTCACGGAGATGATGAAC 0.997 108.3% 

Le_A01_07C03 - R AAAGGCTGCCTCCTCTAAACCCGT 
Quinone reductase Le_A01_08G05 - F TCCCCTCCCTGACAGTCTGACCTT 0.997 104.0% 

Le_A01_08G05 - R TGACGCTCCGAGGGAGGTTACAAG 
NF-kappa-B Le_A01_11H12 - F ATTGAACCGGACGAAGACGGGGAT 0.993 106.8% 

Le_A01_11H12 - R TAAGCTGGCCCCTGCACAGATCAA 
Isocitrate dehydrogenase Le_A03_01A11 - F CATCAAGTGTGCCACCATCACCCC 0.979 96.1% 

Le_A03_01A11 - R CCGAAAGCGTGACGACCAATGACA 
ATP synthase Le_A03_03B11 - F CACTGAGGGAGGAGTACCTCGTGA 0.999 118.6% 

Le_A03_03B11 - R TGTTCCCACTGCAAGGTGCTTCAA 
Tropomyosin Le_A03_28G03 - F AAACATTCGCTGAACTGGCTGGCT 0.997 118.0% 

Le_A03_28G03 - R ATGTCGACAGCAAGAAAAGGGCGG 
 
Control Le_A02_24A10 - F GCCCGAGGTCAGAAAAGCTCAACG 0.997 107.3% 

Le_A02_24A10 - R TTTATCGTTTGCCACCGACACGGG 
 
 
Supplemental Table S1: Primer sequences used in Q-PCR validation. 

 



 
  
  

 Tissue 
  

Young  Old  

Mean SEM Mean SEM 
ATP Mantle 2.24 0.08 1.76 0.20 
 µmol*gwwt Siphon 3.41A 0.30 2.67A 0.16 
  Gills 1.19B 0.04 0.40B 0.12 
ADP Mantle 0.28A 0.02 0.34 0.04 
 µmol*gwwt Siphon 0.56B 0.08 0.57 0.08 
  Gills 0.36 0.04 0.34 0.03 
AMP Mantle 0.06A 0.02 0.07A 0.01 
 µmol*gwwt Siphon 0.13 0.04 0.10 0.02 
  Gills 0.22B* 0.02 0.59B* 0.13 
Adenylate pool  Mantle 2.57 0.07 2.17 0.19 
µmol*gwwt Siphon 4.09A 0.28 3.33A 0.19 
  Gills 1.77B* 0.05 1.32B* 0.11 
AEC 
  
  

Mantle 0.92A 0.01 0.89A 0.02 
Siphon 0.90 0.02 0.89 0.01 
Gills 0.78B* 0.02 0.43B* 0.08 

ATP:AMP ratio 
 

 
Mantle 37.0 

 
25.0 

 
 

Siphon 26.0 
 

26.7 
 

 
Gills 5.4 

 
0.7 

  
 

Supplemental Table S2: Adenylate concentrations (µmol*gram wet weight) and energy 
charge (EC) in mantle, siphon and gill tissue of young and old L. elliptica control individuals. 
Different letters between tissues within one age group and parameter mark significant 
differences (non-parametric one-way ANOVA, p<0.05). N = 6 (young individuals) or 4 (old 
individuals). * marks differences between young and old individuals of the hypoxia 
experiment within one parameter (Mann-Whitney U test). The ATP:AMP ratios are also 
given, these are calculated from the mean values. 
 



 Treatment 
  

  Young    Old  

Mantle N Mean SEM N Mean SEM 
ATP Normoxia 5 2.18 0.11 5 1.81A 0.16 
µmol*gwwt Hypoxia 5 1.71 0.29 5 0.60B 0.16 
ADP Normoxia 5 0.25 0.03 5 0.32A 0.03 
µmol*gwwt Hypoxia 5 0.48 0.11 5 0.54B 0.04 
AMP Normoxia 5 0.03A 0.00 5 0.08A 0.01 
µmol*gwwt Hypoxia 5 0.16B 0.07 5 0.32B 0.07 
Adenylate pool Normoxia 5 2.46 0.08 5 2.22A 0.13 
µmol*gwwt Hypoxia 5 2.36 0.16 5 1.45B 0.11 
Siphon   N Mean SEM N Mean SEM 
ATP Normoxia 4 3.45 0.47 5 2.53 0.32 
µmol*gwwt Hypoxia 5 3.21 0.51 4 1.17 0.66 
ADP Normoxia 4 0.29 0.03 5 0.35 0.05 
µmol*gwwt Hypoxia 5 0.90 0.32 4 0.72 0.22 
AMP Normoxia 4 0.07 0.04 5 0.05 0.02 
µmol*gwwt Hypoxia 5 0.19 0.14 4 0.87 0.42 
Adenylate pool Normoxia 4 3.82 0.47 5 2.92 0.29 
µmol*gwwt Hypoxia 5 4.30 0.20 4 2.76 0.31 
Gill   N Mean SEM N Mean SEM 
ATP Normoxia 5 0.80 0.09 5 0.27 0.07 
µmol*gwwt Hypoxia 5 0.72 0.19 4 0.13 0.08 
ADP Normoxia 5 0.34 0.04 5 0.29 0.04 
µmol*gwwt Hypoxia 5 0.39 0.05 4 0.28 0.07 
AMP Normoxia 5 0.33 0.09 5 0.69 0.12 
µmol*gwwt Hypoxia 5 0.32 0.07 4 0.52 0.13 
Adenylate pool Normoxia 5 1.47 0.11 5 1.24 0.05 
µmol*gwwt Hypoxia 5 1.43 0.19 4 0.92 0.15 

 

Supplemental Table S3: Adenylate concentrations (µmol*gram wet weight) in mantle, 
siphon and gill tissue of young and old L. elliptica individuals incubated for 16 days under 
normoxic (16 days-N) or hypoxic (16 days_H; 2% O2) conditions. Different letters between 
treatments within one age group mark significant differences (non-parametric one-way 
ANOVA; p<0.05).  
 



 

Treatment 
  Young Old 

N Mean SEM N Mean SEM 
Mantle 
 

 
controls 5 189.10 3.49 4 150.30 6.50 

NAD 16 days-N 5 186.80 5.40 5 160.90 4.07 
nmol*gwwt 16 days-H 5 200.80 12.39 6 131.00 14.65 

 
controls 5 11.70 1.55 4 9.81 0.71 

NADH 16 days-N 5 11.12 1.48 5 10.44 1.77 
nmol*gwwt 16 days-H 4 13.39 0.71 6 8.56 1.31 

 
controls 5 22.80 7.40 4 15.46 0.74 

NAD/NADH 16 days-N 5 17.99 2.37 5 16.95 2.48 
  16 days-H 4 15.87 0.34 6 17.58 3.90 

 
controls 6 32.48 2.01 4 24.62 1.78 

NADP 16 days-N 5 27.48 2.17 5 22.47 2.15 
nmol*gwwt 16 days-H 5 26.29 1.59 6 19.92 2.60 

 
controls 6 10.84 0.83 4 6.27 1.76 

NADPH 16 days-N 5 15.37 1.99 5 9.64 2.13 
nmol*gwwt 16 days-H 5 9.13 1.72 6 8.60 2.77 

 
controls 6 3.09 0.31 4 4.88 1.23 

NADP/NADPH 16 days-N 5 1.97 0.42 5 2.79 0.56 

 
16 days-H 5 4.02 1.61 6 7.46 3.66 

Siphon 
  

 
controls 6 214.30 10.85 4 169.60 7.89 

NAD 16 days-N 5 199.40 47.07 5 148.00 15.88 
nmol*gwwt 16 days-H 5 251.20 20.88 5 173.00 17.85 

 
controls 6 19.72 3.85 4 11.24 3.98 

NADH 16 days-N 5 14.56 1.02 5 16.52 3.01 
nmol*gwwt 16 days-H 5 16.57 3.62 5 14.05 1.98 

 
controls 6 13.24 2.534 4 20.73 5.628 

NAD/NADH 16 days-N 5 14.75 4.28 5 9.842 1.593 

 
16 days-H 5 25.21 12.79 5 14.12 3.627 

 
controls 6 26.09 2.81 4 27.26 3.89 

NADP 16 days-N 5 24.15 3.44 5 20.33 1.88 
nmol*gwwt 16 days-H 5 25.19 3.70 5 21.06 1.07 

 
controls 6 8.50 2.68 4 11.46 3.11 

NADPH 16 days-N 5 9.18 4.98 5 17.54 2.02 
nmol*gwwt 16 days-H 5 11.01 3.57 5 8.22 2.62 

 
controls 6 8.718 5.088 4 3.545 1.569 

NADP/NADPH 16 days-N 4 6.985 4.2 5 1.202 0.1491 

 
16 days-H 5 5.33 3.174 5 11.77 9.066 

Gill 
 

  
 

controls 6 158.40 36.99 4 142.50 8.51 
NAD 16 days-N 5 131.70 13.44 5 102.90 10.59 
nmol*gwwt 16 days-H 5 91.03 20.34 6 91.26 19.02 



 
controls 6 8.94 0.89 4 8.41 1.80 

NADH 16 days-N 5 5.78 1.36 5 5.69 0.84 
nmol*gwwt 16 days-H 5 9.27 1.28 6 5.45 0.92 

 
controls 6 20.29 5.54 4 21.17 6.79 

NAD/NADH 16 days-N 4 20.18 3.81 5 20.35 4.19 

 
16 days-H 5 12.50 5.24 6 21.33 6.42 

 
controls 6 94.96 5.01 4 81.82 6.09 

NADP 16 days-N 5 95.67 17.22 5 58.67 4.32 
nmol*gwwt 16 days-H 5 74.74 15.25 6 39.35 5.35 

 
controls 6 6.61 1.15 4 18.58 6.25 

NADPH 16 days-N 5 16.57 5.22 5 20.34 4.59 
nmol*gwwt 16 days-H 5 12.64 2.64 6 14.71 4.43 

 
controls 6 16.05 2.02 4 7.22 3.35 

NADP/NADPH 16 days-N 5 7.47 2.00 5 3.35 0.56 
  16 days-H 5 10.50 5.94 6 4.28 1.44 

 

 

Supplemental Table S4 : Nicotinamide nucleotide concentration (nmol*gram wet weight) 
and ratios (NAD/NADH; NADP/NADPH) in the mantle, siphon and gill tissue of young and 
old L. elliptica individuals incubated under normoxic, hypoxic (2% O2) and anoxic 
conditions.  
 



Gene Age p-value Relative fold increase in gene 
expression 

Range 

HSP70A Old 0.058 +3.962 0.877-17.893 
HSP70B 0.174 +10.769 1.008-115.034 
HSP70A Young 0.761 +1.194 0.495-2.881 
HSP70B 0.004 +5.530 1.966-15.554 

 

Supplemental Table S5: Changes in HSP expression in gill tissue of younger and older 
individuals incubated for 16 days under hypoxic or normoxic condition. N = 6 per group. 
 



Signature clone Other clones Putative ID Accession 
Number 

Expect 
value 

Le_A01_04B04  Tenascin Q0O546 2.0e-49 
Le_A01_08A11  Thioredoxin peroxidase (peroxiredoxin) P0CB50 4.0e-25 
Le_A01_08B07  AP-1protein P54864 1.0e-12 
Le_A01_08G05  Quinone reductase O97764 2.0e-65 
Le_A01_10D07 Le_A01_13A03 Probable chaperone (HSP31) Q04432 1.0e-27 
Le_A01_11H12  NF-kappa-B inhibitor Q91974 1.0e-25 
Le_A01_18H12  Translation elongation factor 2 Q96X45 3.0e-16 
Le_A01_19H12  Myosin P05945 3.0e-50 
Le_A02_04E04 Le_A02_04F02 Peptidyl-prolyl cis-trans isomerase Q7Q1V1 4.0 e-47 
Le_A02_05B08  Similar to tissue-type plasminogen Q28198 5.0e-14 
Le_A02_10A11  B cell translocation gene Q63073 1.0e-30 
Le_A02_21A07 Le_A02_24A09; 

Le_A02_27C05; 
Le_A02_30B05; 
Le_A03_09G10 
Le_A03_31E10 

Fucolectin Q91927 2.0e-04 

Le_A02_21A01  Cadherin A9U1A7 1.0e-05 
Le_A02_28A08  Adioponectin F0V477 3. 0e-10 
Le_A02_35F01  PCK2 F6SMX0 0.0 
Le_A03_16A06  Regulator of lipid storage A9YVJ0 1.0e-49 
Le_A03_24H10  G-protein coupled receptor family 1 Q0MUS4 7.0e-09 
Matches to uncharacterised proteins Le_A01_01A05; Le_A01_05D06; Le_A02_11D05;Le_ A03_21H02 

 
 
Supplemental Table S6 Clones with putatively ascribed functions identified in gill tissue 
from older animals under hypoxic conditions. 
 



Signature 
clone 

Other clones Putative ID Accession 
Number 

Expect 
value 

Le_A01_03G06 Le_A01_12A05 Ubiquitin P0CG71 1.0e-105 
Le_A01_06H06  Thioredoxin peroxidase P0CB50 4.0e-25 
Le_A01_06H11 Le_A01_18F06 Mnk Q27SZ8 1.0e-164 
Le_A01_08G05  Quinone reductase O97764 2.0e-65 
Le_A01_10D07 Le_A01_13A03 Probable chaperone (HSP31) Q04432 1.0e-27 
Le_A01_11H12  NF-kappa-B inhibitor Q91974 1.0e-25 
Le_A01_13A05 Le_A02_31E06; 

Le_A03_18F10 
Glutathione-s -transferase Q9CPU4 2.0e-29 

Le_A02_05B08  Similar to tissue-type plasminogen Q28198 5.0e-14 
Le_A02_10A11  B cell translocation gene Q63073 1.0e-30 
Le_A02_18C12 Le_A02_24A09; 

Le_A02_27C05; 
Le_A02_30B05; 
Le_A03_09G10 

Fucolectin Q91927 2.0e-04 

Le_A02_30A12 Le_A02_30C01 Tyrosinase Q19673 3.0e-20 
Le_A02_35F01  PCK2 F6SMX0 0.0 
Le_A03_13H07  Skeletrophin B7P3H6 5.0 e-15 
Le_A03_16A06  Adipocyte differentiation-related 

protein 
A9YVJ0 1.0 e-49 

Le_A03_22H09 Le_A03_27A05 Thioester-containing protein D5FT49 3.0e-41 
Le_A03_24H10  G-protein coupled receptor family 1 Q0MUS4 7.0e-09 
 
 
Supplemental Table S7: Clones with putatively ascribed functions identified in gill tissue 
from young animals under hypoxic conditions. 
 



Signature 
clone 

Other clones Putative ID Accession 
Number 

Expect 
value 

Le_A01_06B09  Dynein light chain Q78P75 8.0e-45 
Le_A01_21F01  Autophagy-related protein A5A6N3 1.0e-19 
Le_A02_04A03 Le_A02_05F11; Le_A02_34G09 Calponin Q966V3 5.0e-22 
Le_A02_12G02 Le_A02_14A08; Le_A0319D10 PIF (aragonite binding protein) C7G0B5 2.0e-36 
Le_A02_17E09 Le_A02_29A05; Le_A02_32H04; 

Le_A03_10D04; Le_A03_17F08;  
Le_A03_23A03; Le_A03_24A08; 
Le_A03_26H06; Le_A03_33H02 

Myosin P05945 3.0e-50 

Le_A02_20D04 Le_A02_21H08; Le_A03_03H04; 
Le_A03_14H03; Le_A03_14G05; 
Le_A03_28G03; Le_A03_28G08 

Tropomysin Q9GZ71 3.0e-40 

Le_A03_13A01 A03_27F07 Actin Q7ZZZ0 3.0e-10 
Le_A03_33C04  LIM protein Q2XT33 4.0e-68 
Le_A03_01A11 A03_17F04 Isocitrate dehydrogenase Q5QGY7 2.0e-84 
Le_A01_07C03 A03_30D08 Arginine kinase Q8N0P4 5.0e-07 
Le_A03_03B11 A03_17F04 ATP synthase P19483 3.0e-16 
Matches to uncharacterised proteins Le_A03_06F07 
 
 
Supplemental Table S8: Clones with putatively ascribed functions identified in siphon 
tissue from young animals under hypoxic conditions. 
 



 Intercept (±SE) Slope (±SE) R2 F DF P 
Whole 
animal  

-13.7 (0.37) +3.68 (0.10) 0.97 1422 51 <0.0001 

Contractile 
tissue 

-13.7 (0.38) +3.55 (0.10) 0.96 1306 51 <0.0001 

Shells 
height -1.76 (0.11) +1.06 (0.03) 0.97 1375 44 <0.0001 
width -0.53 (0.07) +1.03 (0.02) 0.99 3282 44 <0.0001 
Tissue 
Mantle -15.1 (0.34) +3.41 (0.09) 0.97 1497 51 <0.0001 
Siphon -14.3 (0.32) +3.62 (0.08) 0.97 1871 51 <0.0001 
Adductor  -15.3 (0.39) +3.35 (0.10) 0.96 1089 51 <0.0001 
Gill -12.0 (1.34) +2.51 (0.32) 0.63 62 36 <0.0001 
Foot -14.6 (0.34) +2.90 (0.09) 0.96 1110 51 <0.0001 
The rest -15.8 (0.37) +3.91 (0.10) 0.97 1595 51 <0.0001 

 
Supplemental Table S9: Regression data for the shell and tissue scaling in L. elliptica. All 
measurements were converted to natural logs and compared with Ln_length. 
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Supplemental Figure S1: Survival curves of L. elliptica incubated under normoxic, hypoxic 
(2% O2) and anoxic  (0% O2) conditions. LT50: 10days for anoxia and 17days for hypoxia. 
N=6 for anoxia, 8 animals for hypoxia and 12 for normoxia.  
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Supplemental Figure S2: Apoptotic activity in gill tissue of older L. elliptica individuals 
incubated for 16 days under normoxic (16 days N) or hypoxic (16 days H; 2% O2) conditions 
and siphon tissue of older and younger individuals under the same treatment. * indicate 
significant differences (p<0.05, Mann-Witney t-test). N=8-12 per group. 
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Supplemental Figure S3: Q-PCR results showing relative gene expression in siphon tissue 
 A: younger versus older hypoxic animals, with up-regulation in young animals of all genes tested 
B: Older hypoxic versus older normoxic animals, with the genes being up-regulated in hypoxic animals. 
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