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Understanding the behaviour of animals in the wild is fundamental to con-

servation efforts. Advances in bio-logging technologies have offered insights

into the behaviour of animals during foraging, migration and social inter-

action. However, broader application of these systems has been limited by

device mass, cost and longevity. Here, we use information from multiple

logger types to predict individual behaviour in a highly pelagic, migratory

seabird, the Manx Shearwater (Puffinus puffinus). Using behavioural states

resolved from GPS tracking of foraging during the breeding season, we

demonstrate that individual behaviours can be accurately predicted during

multi-year migrations from low cost, lightweight, salt-water immersion

devices. This reveals a complex pattern of migratory stopovers: some invol-

ving high proportions of foraging, and others of rest behaviour. We use this

technique to examine three consecutive years of global migrations, revealing

the prominence of foraging behaviour during migration and the importance

of highly productive waters during migratory stopover.
1. Introduction
As biodiversity loss accelerates, identifying key habitats and effective protected

area networks becomes increasingly important [1], but is particularly difficult

for animals with elusive life histories such as many marine and migratory species

[2]. Recent advances in bio-logging technology have helped, but while we are

beginning to understand the patterns of migratory movement in ever smaller

species using simple, lightweight devices such as geolocators, knowledge of

how individual animals behave on migration remains restricted to larger species

able to carry complex measuring devices (e.g. GPS, time-depth or other loggers

[3]). Here, we introduce a novel approach that uses a predictive model (a

neural network) trained using supervised learning on a small, high-resolution

sample of combined tracking data to recognize behavioural states in a larger

sample of animals tracked on migration, i.e. for much longer, using simpler,

lighter devices. Our method will allow researchers to use data from heavier-

weight devices (such as GPS) to infer a richer understanding of behaviour in sim-

pler data. This ethoinformatics approach combines the wealth of bio-logging data

that we have available with a data-driven predictive model to identify complex

patterns of behaviour outside the breeding season, offering a method with

broad applicability for understanding global behaviour distributions in elusive

species relatively cheaply and with minimal impact.
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Figure 1. Behavioural classification of GPS trajectories for birds breeding on Copeland (marked X) in the Irish Sea. (a) All tracks shaded according to their corre-
sponding salt-water immersion (darker representing more time immersed). (b) An example track (ET01744) classified into three behaviours: rest (blue), flight
(green) and foraging (red). (c) Highlights the northeastern section of (b). (d – f ) Show 50% occupancy contours for this classification applied to the entire dataset
((d ), rest; (e), flight; ( f ), foraging).
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We use this method to investigate the migratory behaviour

of the Manx Shearwater (Puffinus puffinus), a small, pelagic,

diving, trans-equatorial migrant seabird exemplifying many

of the limitations faced by modern bio-logging studies of

migration. We demonstrate that we can predict behavioural

classifications derived from rich behavioural data (high-

resolution GPS tracking) solely from simpler data (light/

immersion logging devices). To achieve this, we initially con-

struct a dataset of labelled behaviours from GPS data, then

train a neural network to predict these behavioural classes.

The performance of this prediction is then assessed on inde-

pendent data, and then applied to predict behaviour in data

from multi-year migrations.

Using this method, we are able to predict changes in the

patterns of sustained flight, rest and foraging throughout the

annual cycle. We demonstrate significant behavioural shifts

between three key stages of the annual cycle: breeding,

migration and wintering, and show that the migration of

shearwaters is behaviourally complex, with foraging occur-

ring throughout the migratory journey interspersed with

resting stopovers and periods of flight. We then identify the

location of these behaviours during migration, mapping the

distribution of foraging hotspots, stopover areas and flyways.

Finally, we relate these behaviours globally to underlying

environmental variables.
2. Results
2.1. Behavioural classification of GPS tracks
Our initial labelling of behaviour from 20 GPS-tracked birds

during the breeding season is shown in figure 1, using

speed and tortuosity measures to classify each location (see

§4). As expected, resting behaviour was commonest near

the colony where birds in large social flocks (rafts) wait for

nightfall to visit their burrows in safety, but periods of

night-time roosting away from the colony were also seen.

Flight behaviour was more diffuse, owing to birds commut-

ing between colony and important foraging areas. Finally,

foraging was concentrated both near the colony and in

clusters further north and south.

2.2. Predicting behaviour during annual movements
Our method was able to predict successfully the behaviou-

ral classifications in independent data from salt-water

immersion/light-level alone with an overall success of 74 per

cent, which was significantly higher than expected by

chance. Figure 2 shows the confusion matrix for these

predictions on independent validation data.

Applying these predictions to salt-water immersion

data from year-round tracking of 33 individuals carrying
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Figure 3. Proportion of each day spent in each of three behavioural states for
a sample of individuals tracked during 2007 – 2008. Vertical black lines indi-
cate when the individuals were first (dotted) and last (solid) recorded within
1200 km of the colony or median wintering location. Vertical grey lines indi-
cate the start and end of significant flight bouts as determined by salt-water
immersion (see the electronic supplementary material).
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light-level/immersion loggers over three consecutive years

(8 from 2007 to 2009, 13 from 2008 to 2009 and 12 from 2009

to 2010) showed significant differences in behavioural patterns

between breeding, migration and wintering stages. There were

significant effects of stage, individual and their interaction

(individual: p , 0.001, partial h2¼ 0.03; stage: p , 0.001, partial
h2¼ 0.18; stage � individual: p , 0.001, partial h2¼ 0.04; see

the electronic supplementary material for full statistics).

These effects were evident in multiple years, with differences

remaining significant and stage having a much larger effect

size than individual or the interaction term (see the electronic

supplementary material, table S1). The percentage of time

(median, 25th–75th centile) spent foraging during the breeding

season varied, but was generally greater (11%, 0.04–0.18) than

in winter (7%, 0.01–0.13). The percentage of time spent fora-

ging was higher still during migration (14%, 0.07–0.24), but

more variable. The percentage of time engaged in flight behav-

iour was lower in winter (1%, 0.0–0.06) than during breeding

(8%, 0.01–0.19) or migration (24%, 0.08–0.39). This reduction

in foraging and flight during winter was accompanied by a cor-

responding increase in rest behaviour during the winter (90%,

0.81–0.99) compared with during breeding (75%, 0.61–0.89) or

migration (60%, 0.42–0.74).

Each stage is composed of a complex time series of behav-

iour for each bird (see figure 3 and electronic supplementary

material, figures S1–S3). A general increase in rest and corre-

sponding decrease in foraging behaviour was evident during

winter. We also noted variation in the proportion of foraging

behaviour within each stage (figure 3, red). To examine this,

we divided each of the breeding and wintering stages into

three sub-stages, comprising the first and last 30 days, and

middle of each stage. Although there did not appear to be

an overall difference in behavioural strategy among these

sub-stages (sub-stage: p ¼ 0.273), individual behavioural strat-

egies remained significantly different (individual: p , 0.001),

and this interacted significantly with sub-stage (sub-stage �
individual: p , 0.001).
2.3. Spatial distribution of behaviour
Individuals engaged in high proportions of foraging and rest

throughout migration (figure 4). Locations with a high pro-

portion of rest behaviour (stopovers) were more tightly

clustered than flight behaviours and were more evident near

the start or end of migration. However, locations with high pro-

portions of foraging behaviour were more diffuse, being almost
as evenly distributed along the migratory route as were periods

of flight. We note three discrete areas of clustered foraging

behaviour: (i) the western Atlantic, and (ii) the northeastern

Atlantic, during northbound migrations, and (iii) off the south-

eastern coast of Brazil during southbound migrations. Over

3 years, migratory resting locations were consistently clustered

near the core summer and winter areas, often preceded by

high levels of flight and foraging activity. Use of the western

Atlantic foraging hotspot was consistent in all 3 years, but fora-

ging visits to the north Atlantic hotspot appear to have declined

over the period of observation.
2.4. Environmental correlates of behaviour
Figure 5 shows the changing likelihood of the three behaviours

with respect to key environmental variables at locations dur-

ing migration (see the electronic supplementary material for

details on environmental data sources, processing and statisti-

cal tables). Net primary productivity (NPP) had a significant

effect on behaviour on both migratory directions ( p , 0.001).

Rest behaviour was more likely in locations with higher NPP,

with corresponding reductions in the likelihood of foraging

or flight behaviour. Foraging behaviour initially became

more likely with increased productivity, but then declined,

giving way to rest behaviour. Similarly, chlorophyll a had a sig-

nificant influence on behaviour ( p , 0.001). As chlorophyll a
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Figure 4. Occupancy contours for behaviours during migration. Rows (a – c) show contours for the subset of data containing the top quarter of locations ranked
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increased, rest behaviour became more likely. Furthermore,

over the 3 years of the study, we observed a shift in the

response of foraging behaviours to chlorophyll a with foraging

behaviours appearing less likely in more recent years (2008)

during northbound migration. Sea surface temperature (SST)

also had a significant influence on behaviour ( p , 0.05). As

sea surface temperature increased, rest behaviour became less

likely ( p , 0.01). This relationship also changed over time,

with foraging behaviours appearing less likely in later years

(2008). During the northbound migration, overall SST at

recorded locations also increased across years (2007–2008,

1.58; 2008–2009, 1.788; p , 0.01), but remained similar during

southbound migrations.

During both northbound and southbound migrations,

the distribution of each variable (NPP, SST and CHL-a) at

locations where each behaviour was recorded differed signifi-

cantly from the distribution at locations sampled randomly

from the 95 per cent occupancy contour for that behaviour
( p , 0.05, two-sample Kolmogorov–Smirnov test, see the

electronic supplementary material, table S8 for details).
3. Discussion
Current methods for remote monitoring of individual behaviour

often require complex, heavy, power-hungry transmitters or log-

gers, which can increase the chance of adverse impacts on study

animals [4]. Forexample, GPS loggers can generate very spatially

precise data allowing detailed analysis of individual behaviour

[5]. However, the relatively high-power consumption of this

technology means that compromises must be made with

regard to size, longevity or frequency of measurement of GPS

loggers [6]. Conversely, technologies such as geolocation by

light levels [7] allow positions to be determined with much

lower spatial accuracy (approx. 200 km [8]), but the devices are

smaller and longer-lived, enabling biologists to determine the
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migratory movements of elusive species from albatrosses [9] to

small passerines [10]. However, such studies have generally

focused only on the relationship between position and time.

Gaining insight into behaviour during migration can be much

more problematic (but see [11]).

The impact of deployed devices on behaviour is an impor-

tant consideration in tracking studies. Negative impacts have

been demonstrated across a range of species from tracking

devices of various weights (0.6–5.5% body weight; [12]). We

have recently shown that the devices we deployed here did

not have appreciable effects on reproductive success during

the breeding season at another colony (Skomer Island) and

during a more intensive tracking programme [13]. In the con-

text of this analysis, even if individuals engage in different

behaviour at sea (e.g. more flight behaviour and longer

foraging trips), it is much less likely that the pattern of

immersion within these behaviours will change.

Here, we draw upon our previous work [14,15] to classify

the at-sea behaviour of Manx Shearwaters from GPS data col-

lected from breeding birds into three behavioural states: rest,

flight and foraging. We trained a neural network model to

predict these states from salt-water immersion and light-

level data, and apply these predictions to year-round data

to present a previously elusive view of the global distribution

of different behaviours for a migratory species. We show that

at-sea behavioural distributions varied across the migratory

cycle (see figure 3 and electronic supplementary material,

figures S1–S3). During winter, time spent in both flight

and foraging was dramatically lower than during the breed-

ing season, and almost the entire period in the Southern

Hemisphere was spent mainly at rest. This probably reflects

release from the demands of reproduction (provisioning,

commuting from the nest to forage), and perhaps also the

increased costs of flight during winter moult.

The significant interaction between winter sub-stage

suggests that winter foraging intensity is U-shaped (figure 3)

for some birds with intense periods of foraging during a

post-migration recovery period and preparation for their

return to their northern breeding grounds. Potentially, this

could be used in the future to analyse the sequence of energetic

expenditure and recovery through the migratory cycle and,

possibly, to investigate individual carry-over effects across

years. The spatial distribution of behaviours (figure 4) reveals

the complex nature of pelagic migration. Days with a high pro-

portion of foraging behaviour occur throughout the migratory

journey, with concentrations off southeastern Brazil during the

southbound journey, and in the western Atlantic during the

return. Rest behaviour also occurs throughout the migration,

but the pattern is different, with greater concentrations towards

the very end of the route in both directions. This may reflect

distinct stopover types, with foraging stopovers to exploit

regions of high prey availability, and rest stopovers to recover

from long flight periods, or to wait until conditions for travel

or foraging improve. Alternatively, these locations could arise

as a consequence of moulting when individuals will remain

on the sea surface for extended periods. Appropriate at-sea

conservation measures are likely to differ between different

stopover types.

The significant difference between the distribution of

environmental variables in recorded, compared with ran-

domized, locations indicates that birds are responding to

environmental conditions. This is confirmed by the signifi-

cant relationships between behaviour and environmental
variables such as NPP, chlorophyll a and SST (figure 5).

These environmental parameters covary strongly, with the

measures of productivity (NPP) and chlorophyll a being

highest in colder waters. Rest behaviour appears to be more

likely in cooler and more productive waters. The changing

likelihood of foraging behaviour appears more complex:

initially increasing in cooler, more productive waters and

then declining. This may result from the dynamics of search-

ing and resting behaviour, with searches for prey tending to

take place in less productive environmental conditions and

individuals being more likely to settle in areas of high pro-

ductivity. Some individuals may also be adopting a sit-and-

wait strategy, remaining in productive patches to maximize

their chances of encountering prey. Finding and settling in

areas of high productivity could be particularly important

during moulting, when flight is more energetically costly.

We also noted an increase in SST at recorded locations

during the northbound return in the 3 study years, coinciding

with a major westwards shift in foraging behaviour from the

north Atlantic hotspot towards warmer waters in the

Caribbean (figure 4). In combination with the consistent

targeting of highly productive waters, this suggests the

capacity for a rapid response to changing oceanic conditions.

Our ethoinformatics approach may have very general

applicability to existing datasets. The key is to find some

factor that can be recorded cheaply (e.g. acceleration, light

and immersion) and varies with behaviour and to combine

this with a sub-sample of richer data (GPS, traditional field

observation) in order to classify behaviour. Supervised learn-

ing (e.g. a neural network) can then be used to recognize

behavioural classes from the richer data using only the

information in the cheaper dataset. As the explosion of bio-

logging studies continues, the development and application

of methods such as ours, which allow for low-impact analysis

and discovery of otherwise hidden behavioural patterns in

elusive species or difficult environments, are likely to

become increasingly fruitful.
4. Material and methods
Data were collected from Manx Shearwaters breeding on Light-

house Island, Copeland Islands, Northern Ireland, UK (latitude

54.678 N, longitude 25.528 E), and have not been previously

published. Geolocation devices, each including a salt-water immer-

sion logger, were deployed and recovered over the course of 4 years

resulting in three consecutive periods of migratory behaviour

(2007/2008, 2008/2009, 2009/2010—referred to in the text by

deployment year: 2007, 2008 and 2009). GPS devices were deployed

during the breeding season in 2008. Study burrow entrances were

marked with pegs to determine entry/exit, and regularly inspected

at night to determine the possible return of adults to feed their

chick. When marker pegs were disturbed, burrows were checked

for feeding sounds and if an adult was present it was left until feed-

ing was complete. The adult was then removed and fitted with

a light-level geolocator/salt-water immersion logger (British

Antarctic Survey Mk-14 and Mk-19 devices, weighing 1.8 and

2.5 g, respectively) and customized GPS loggers (modified igot-u

GT-120s, Mobile Action, approx. 14–15 g). Geolocators were

affixed to Darvic leg bands with two cable-ties (Panduit Pan-ty

PLT.6SM-C0) and superglue. GPS loggers were configured to

record geographical location every 5 min, then environmentally

sealed in heat-shrink tubing (Finishrink CLR-20/50) and attached

to four or five small bunches of back feathers with 1–1.5 cm wide
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strips of Tesa Tape. All-inclusive mass of devices and attachments

was less than 17 g (3.5–4.5% body mass).

After a maximum of three trips, 7 days or once the GPS

attachment was no longer secure, GPS devices were removed

by peeling off the tapes. GPS removal took less than 10 min for

each individual. Geolocation devices were downloaded, but left

attached to record light and activity data for the subsequent

migrations and non-breeding season.

In total, GPS tracks from 20 birds were collected, each with

associated light-level and salt-water immersion data for one to

three foraging trips, comprising 39 foraging trips, over 20 indi-

viduals for a total 19 174 data points covering 75.4 at-sea days.

On each logged GPS track, each recorded location was assigned

an immersion value from the nearest recorded value from the

simultaneously recorded salt-water immersion data. Each bird

therefore had one to three sequential foraging trips composed

of GPS locations (latitude and longitude) each with an associated

salt value (0–200), light value (0–64) and time. Year-round geo-

locator deployments resulted in a total of 31 recovered datasets

with both light-level and salt-water immersion data (7 from

2007 to 2009, 12 from 2008 to 2009 and 12 from 2009 to 2010).

4.1. Geolocation data
To determine migration and wintering locations, light-level data

were filtered to exclude noisy light–dark transitions, unrealistically

short dark periods (less than 4 h) and points surrounding the

spring and autumn equinoxes (+10 days). For each year’s data,

the elevation angle that minimized positional error on ground

truth data was found and subsequently applied to the entire

year’s dataset (23.5 for 2007 and 2008, 24.5 for 2009). Data

where the average speed was consistently above 30 ms21 (the

maximum likely flight speed [14]) for 3 days were then removed.

This removed the majority of erroneous locations, but any locations

that remained at very high altitudes were also removed.

Significant flight bouts during migration (vertical grey lines

in figure 4; electronic supplementary material, figures S1–S3)

were estimated separately of behavioural predictions by finding

those periods when daily proportion of salt-water immersion

was first below 0.25 after the individuals were last recorded

near the colony/wintering-grounds or before the birds were

first recorded near the colony/wintering-grounds.

4.2. Behavioural classification
Our aim was to predict these behavioural classes derived from high-

resolution GPS trajectory data during summer breeding solely from

data available from independent geolocation–immersion devices:

light and salt-water immersion data.

GPS tracks from summer foraging behaviour (19 174 data

points for 20 individuals covering 75.4 at-sea days) were initially

labelled into three classes delineating ‘rest’, ‘foraging’ and

‘flight’. Labelling was based on movement parameters, speed s:

the median flight speed measured over six consecutive locations

and tortuosity t: the arc-chord ratio over five consecutive

locations. For tortuosity, the total distance is calculated between

each point (arc-length) and the beeline distance from the first to

the last point is also calculated (chord-length). We divide the

chord-length by the arc-length giving a possible value between

approximately 0 and 1, with 1 indicating a straight line and

greater deviation from a straight line leading to values near

0. We find that a cut-off value of t ¼ 0.98 effectively separates

directed flight from undirected movement (in our data). These

values were derived exclusively from GPS data. We have pre-

viously shown that there are different behavioural modes in

the speed and tortuosity of flights recorded from Manx Shear-

waters (at a different colony) during the breeding season [11].

Examining the GPS tracking data shows a bimodal distribution

of speeds with low-speed locations (s , 2.5 ms21: rest) are
generally associated with resting on the surface of the water,

often during the night, but also during the day when birds are

rafting. High-speed, directed movements (s . 2.5 ms21, t .

0.98: flight) are generally associated with commuting behaviours

between the colony and apparent foraging and rafting locations.

Finally, we observed a more complex process of high-speed, tor-

tuous movements, which we denoted as foraging behaviour (s .

2.5 ms21, t , 0.98: foraging). Here, the labelling of each location

in the tracking data as one of these modes of behaviour was

based on a combination of prior results [14] and expert obser-

vations. Such classification could also be achieved using more

complex techniques (e.g. behavioural change-point analysis, [16]).

Our approach gives similar results to our previous application of

state-space models [13]. Critically, however, the subsequent pre-

diction method we describe is blind to the process that creates

these labels—its aim is simply to predict them.

This labelled dataset was subdivided into three distinct

subsets: ‘training’, ‘test’ and ‘validation’. To avoid problems

associated with unbalanced data (e.g. attaining low prediction

error by simply predicting the more popular behaviour), a

balanced set of data was extracted with an equal number of

examples (total 2000) drawn randomly from each behaviour cat-

egory, then subdivided into training, test and validation subsets

(50%, 25% and 25% of the total, respectively). A feed-forward

neural network was trained to predict these behaviours from

independently, but simultaneously, collected salt-water immer-

sion/light-level data using the ‘training’ subset (see figure 6 for

a schematic), and parameters were optimized to maximize per-

formance on the ‘test’ subset (see the electronic supplementary

material for complete network structure). Predictive performance

was then assessed on the independent ‘validation’ subset and

these values are given in the text (see also figure 2). This model

was then used to predict behaviour on novel data from outside

the breeding season from 33 individuals over 3 consecutive

years. This provides a behavioural prediction for each individual

every 10 min throughout the non-breeding period. We aggregate

these data into days, as the proportion of each day spent engaging



rsif.royalsocietypublishing.org
JR

SocInterface
10:20130279

8
in the three behaviours, in order to explore the relationships

between behaviour and several environmental covariates.

4.3. Kernel density estimations and
behavioural mapping

In both the GPS tracking and geolocation data, kernel density

estimation was used to extract occupancy contours for the

locations. Kernel density estimations and isopleths were calcu-

lated using the Geospatial Modelling Environment (Spatial

Ecology LLC). For geolocation data, kernel density estimations

were calculated using a cell size of 0.18 and a bandwidth of

108. For density estimation of GPS data (figure 1), this was

reduced to a cell size of 0.018 and a bandwidth of 18. Our aim

in these figures was to convey the difference between years in

these data. Rather than estimating parameters independently

for each year, which would result in figures that were hard to

compare, we chose to follow an established approach of select-

ing a consistent set of parameters over all years that produced

contiguous cores without over-smoothing.

When comparing locations where individuals engaged most

in a particular behaviour, the top 25 per cent of locations ranked

according to each bird behaviour were extracted and their
estimated densities mapped (figure 4). This could theoretically

result in each period being identified as possibly in the top quar-

ter of rest, flight or foraging, and any combination of all three.

However, we found that the majority of locations in these subsets

were distinct (61%), appearing only in the top quarter of a single

behaviour, with 6 per cent of locations in the top quarter of two

behaviours, and none in the top of all three. Thirty-three per cent

of locations did not appear in the top quarter of any behaviour.

Of those 6 per cent of locations that appeared in the top quarter

of two behaviours, 95 per cent were composed of flight and fora-

ging, 4 per cent were composed of rest and foraging and none

were composed of rest and flight, making these distributions

generally distinct.

We are especially grateful to Jess Meade, Neville McKee and George
Henderson (fieldwork); Lucy Helme, Rob Holbrook, Andrea Flack,
Benj Petit, Dora Biro and Theresa Burt de Perera (comments); Cope-
land Bird Observatory and the Northern Ireland Environment
Agency (permissions and facilities); Microsoft Research Cambridge,
the UK Natural Environment Research Council and the Northern
Ireland Environment Agency (funding). R.F. and T.G. designed the
study; B.D, H.K, K.L and T.G. collected data; R.F. performed analy-
ses and all authors discussed the results and implications and
commented on the manuscript at all stages.
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