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ABSTRACT 
 

Executive Summary 
 
Purpose and scope 
 
A diverse range of candidate ocean biogeochemistry models exists for addressing scientific 
questions of societal importance in an Earth system context. Limitations imposed by 
computer resources favour the use of simpler models. However, there are recognized benefits 
of supporting different levels of complexity, not least because the appropriate level of 
complexity for a given application is an open research question. An important aim is to 
ensure that when simplifications are made there is a traceable link between models so that the 
implications are understood. 
 
A pilot study in traceability of model performance is presented in which the ability of a 
simple surrogate model, based on HadOCC, to emulate the behaviour of the intermediate 
complexity MEDUSA model is investigated. Adjustable HadOCC parameter values are 
optimized to fit MEDUSA output for an array of sites representing a range of oceanic 
conditions.  
 
Method 
 
Parameter optimization experiments were performed in an experimental framework, 
comprising an array of 12 North Atlantic sites, using the Marine Model Optimization Testbed 
(MarMOT), a NERC software tool for computationally intensive analyses of biogeochemistry 
models. Synthetic data for calibration were taken from MEDUSA output for a single year. 
Predictive skill of the calibrated surrogate model was determined with reference to 
independent annual cycles at the calibration sites and on a meridional transect along 20W. 
 
Results 
 
The calibration process substantially improved the surrogate model’s performance as an 
emulator of MEDUSA. There was a high degree of parameter redundancy: the number of 
adjustable parameters in the surrogate model was reduced from 17 to 10 with minimal effect 
on the emulation performance. Despite weak prior parameter constraints, posterior parameter 
values were broadly consistent with a mechanistic interpretation of the simpler model, 
although some deviated strongly from accepted values.  
 
The calibrated model performs well in terms of annual cycles of primary production as well 
as their annual means and inter-annual variability. Performance for sinking particle flux is 
generally good although seasonal cycles were less well replicated than for primary 
production. The most notable deficiencies were biases in primary production and sinking 
flux, which although small were consistent over large geographic regions, and a tendency to 
underestimate inter-annual variability in sinking particle flux. Both are potentially significant 



but should be judged relative to the performance of the more complex model against real-
world data 
 
Recommendations 
 
Replacement of plankton functional type models by a simpler surrogate with objectively 
constrained parameters should be considered for representing biogeochemical cycles in Earth 
system simulations where computational resources are limiting. Output from the reference 
model should be used to constrain parameters and the emulation uncertainty quantified using 
independent output so that results from the simpler model can be used to make inferences 
about the expected behaviour of the reference model. 
 
The parameters of the surrogate model should not be subject to strong prior constraints. 
Posterior values outside accepted ranges should be tolerated if they are shown to improve 
predictive skill but treated as an indicator of deficiency in the model design, the correction of 
which, if feasible, could lead to more reliable predictions in the long term.  
 
Different levels of biogeochemical complexity are best supported within a single community 
model in the form of a traceable hierarchy. Careful consideration should be given to the 
design of such a hierarchy to strengthen traceable links by ensuring that common process 
formulations are applicable at different complexity levels wherever possible and maximize 
the number of equivalent parameters between the alternative model configurations. 
 
Present assessments of model design are compromised by parametric uncertainty. A 
capability for objective evaluation of design is needed that allows adequate exploration of 
large multi-dimensional spaces associated with models’ adjustable parameters. This 
introduces computational demands that directly oppose those required for realistic 3-D 
simulations. Progress will depend on the use of 1-D modelling capabilities and statistical 
emulators in conjunction with 3-D modelling tools. 
 
Establishing a traceable link between biogeochemistry models and reality will require 
process-based assessment of model response to physical drivers as well as assessment of 
performance when coupled to other ESM components. A global testbed facility is needed, 
comprising co-incident biogeochemical and physical observations. Robust statistical 
treatment of uncertainty in the physical environment will be a pre-requisite for reliable 
calibration of the biogeochemistry component. 
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1 Introduction

A diverse range of candidate models exists for representing ocean biogeochemistry
and ecosystem function in Earth system models. These sub-component models,
referred to as mechanistic models, are designed to capture the dominant response
of the biogeochemical system to its physical and chemical drivers. A representative
group of models is currently being examined by the i-MarNet research network to in-
form a decision by NERC and the Met Office on the baseline model that will be used
as the ocean biogeochemistry component of the next generation UK Earth System
Model. They range from the Hadley Centre Ocean Carbon Cycle model (HadOCC),
a simple “NPZD” model based on a 4 compartment nitrogen cycle, through to the
European Regional Seas Ecosystem Model (ERSEM) and the PlankTOM10 model,
which are relatively complex plankton functional type models.

NPZD models like HadOCC represent the flow of nitrogen between nutrient (dis-
solved inorganic nitrogen), phytoplankton, zooplankton and detritus reservoirs. In
the more complex models, the 2 plankton pools are replaced by up to 10 functional
groups. Additional tracers represent other nutrients and bacteria as well as differ-
ent elements within the organic pools for modelling stoichiometric variability. As a
consequence of the large number of tracers, these models are too computationally
demanding to be integrated routinely in ESM simulations. Nevertheless, complex
models have a role for two reasons. Firstly, they can be used to address questions
that cannot be tackled by the simpler models where the latter do not include the
relevant outputs. Secondly, it is possible that they may have greater predictive
skill by virtue of a more accurate mechanistic representation of important biogeo-
chemical processes. Some tentative evidence of this is provided by Friedrichs et
al (2007) in a particular experimental context. However, the generality of their
conclusions remains unproven; the optimal level of complexity required to repre-
sent ocean biogeochemistry for answering particular scientific questions is an open
research question.

All of the mechanistic ocean biogeochemistry models are necessarily semi-empirical,
relying on adjustable parameter values to compensate for missing biogeochemical
complexity and variability and incomplete ecological knowledge. Parametric uncer-
tainty thus complicates any comparative assessment of model design. Uncertainty
in the physical environment, to which many biogeochemical processes are particular
sensitive, is a further barrier to model assessment since a poor fit to biogeochemical
observations can be the result of interaction of errors in ocean biogeochemistry and
physics models on a range of time scales. Acknowledging these issues, i-MarNet
will need to develop a strategy for assessing suitability of different biogeochemistry
sub-component models for addressing priority science questions in an ESM context.
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There are recognized benefits of supporting different levels of complexity within a
new biogeochemistry module for UKESM. The approach will give the flexibility for
running more biologically complex simulations for limited regions or time periods or
at higher resolution for particular applications or for detailed development work. Re-
sults from such simulations will inform the interpretation of global simulations with
simpler biogeochemistry. An important aim is to ensure that where simplifications
are made there is a clear, traceable link between models of different complexity so
that the implications of these simplifications can be understood. Although we can-
not assume a priori that a particular, more complex representation will necessarily
give better predictive skill than a simpler one, the ability to explore the sensitivity
of predictions to model structure and process formulations is important.

The idea of traceability between models of different complexity embraces different
concepts. We can easily establish a basic level of structural traceability if it is pos-
sible to map compartments of one model onto those of another. Attempting to es-
tablish traceability between process formulations affecting the inter-compartmental
flows is less straightforward but can in principle be addressed by model design; we
can make design decisions that make it easier to see how one model’s representa-
tion of a process relates to another’s, using common formulations wherever possible.
However, if we want to assess traceability between the performance of model de-
signs we need to investigate model behaviour and how this varies with the models’
adjustable parameters. Establishing traceability to nature is a related but more
challenging problem.

A pilot study in traceability of model performance is presented here, investigating
the ability of a simple surrogate model to emulate the dynamics of an intermediate
complexity model, the Model of Ecosystem Dynamics, nutrient Utilisation, Seques-
tration and Acidification (MEDUSA 1.0; Yool et al 2011). A version of HadOCC,
described in Appendix A, is used as the surrogate model. HadOCC parameter val-
ues are first optimized in an attempt to obtain a best fit to MEDUSA output over a
set of North Atlantic sites representing a wide range of oceanic conditions. The ex-
perimental details are preceeded by a comparison between the two models in Section
2.

2 Comparison of Model Designs

2.1 Structural Traceability

MEDUSA 1.0 has 11 tracers of which 6 are nitrogen tracers. These can be mapped
onto the 4 nitrogen compartments represented in HadOCC: dissolved inorganic nitro-
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gen N , phytoplankton P , zooplankton Z and detritus D. DIN and detrital nitrogen
are common to both models. The phytoplankton pool in HadOCC corresponds to
the sum of MEDUSA’s non-diatom phytoplankton and diatom pools and zooplank-
ton corresponds to the sum of MEDUSA’s microzooplankton and mesozooplankton
pools. The remaining tracers in MEDUSA are 2 chlorophyll tracers representing the
chlorophyll content of the 2 phytoplankton types, one representing diatom silicon
and 2 more representing dissolved silicon and iron. HadOCC models local variation
in chlorophyll composition of the phytoplankton but does not carry chlorophyll as
a tracer. It has no representation of silicon or iron cycles.

2.2 Process Formulations

The focus of the study is to examine traceability between different model structures.
Some minor modifications were therefore made to the HadOCC design and default
parameter values to remove differences that are unrelated to the differences in model
structure and would unnecessarily complicate interpretation of the results. In par-
ticular, MEDUSA-like temperature dependency was introduced in phytoplankton
growth and remineraliztion rates, carbon:nitrogen ratios were made uniform across
all organic components and a common light transmission and photosynthesis sub-
model was used (with differences from the native sub-models in both HadOCC and
MEDUSA). The version of HadOCC used in the optimization experiments is de-
scribed in Appendix A. The remaining differences in process representation between
the two model designs are outlined here.

Temperature dep introduced to allow HadOCC to avoid major differences between
the models induced purely by physical forcing

2.2.1 Photosynthesis

In MEDUSA, photosynthetic rate is a function of PAR Ed, temperature T , DIN
N and dissolved iron. In the case of diatoms it is also affected by the concentra-
tion of dissolved silicon in the form of silicic acid. Iron concentrations can directly
limit total primary production while silicate concentration affects the partitioning of
photosynthesis between diatoms and non-diatoms. This has a more subtle effect on
total production via the differential growth rates of diatoms and non-diatoms and
the interactions between different ecosystem compartments. Neither iron or silicon
are represented in the simpler HadOCC model so nutrient limitation is a function
of DIN only and the range of environmental factors to which HadOCC can respond
is reduced.
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Ignoring iron and silicon limitation, photosynthesis for each phytoplankton type in
MEDUSA is given in terms of the initial P-E curve slope α, the maximum growth
rate VP and the DIN limitation factor QN by

µP = J̄ [α(αchl, θchl), VP(V0, T ), Ed] ·QN(kN) (1)

where model parameters αchl, V0 and kN are dependent on the phytoplankton type
and θchl is the applicable C:Chl ratio. This contrasts with the HadOCC formulation

µP = J̄ [α(αchl, θchl), VP(V0, T,QN(kN)), Ed] (2)

The HadOCC functions J̄ , α, VP and QN are given in Appendix A. The MEDUSA
forms are identical except for the absence of the nitrogen limitation factor QN factor
from VP which defines the maximum of the photosynthesis-PAR response curve (P-
E curve) for saturating light. In MEDUSA, QN applies as a scaling factor to the
overall light response, whereas in HadOCC it only limits the maximum growth rate.

This difference in co-limitation by light and nitrogen means that HadOCC would
tend to exhibit higher photosynthetic rates than MEDUSA if both models had the
same photosynthesis parameters. The effect is compensated for by lower prior pa-
rameter values for the chlorophyll-specific slope αchl and the half saturation concen-
tration kN: αchl = 5.56 mg C (mg Chl)−1 (E m−2)−1, compared with 37.8 and 28.4
mg C (mg Chl)−1 (E m−2)−1 for non-diatoms and diatoms respectively in MEDUSA
(taking 1 E d−1 to be 2.52 W for the PAR spectrum integral); kN = 0.1, com-
pared with 0.5 and 0.75 mmol N m−3 for non-diatoms and diatoms. The prior V0 in
HadOCC is chosen to be the same as the non-diatom value 0.53 d−1. For diatoms
it is 0.5 d−1. The difference in formulation means that there is no equivalence of
parameters between models so comparison of alternative formulations requires that
parameters are subjected to external constraints. This is a good example of where
design might be rationalized by either adopting a single formulation that is judged
to be preferable on theoretical grounds or by making both options available in both
models to facilitate sensitivity studies and inter-comparison.

2.2.2 Grazing

The MEDUSA grazing formulation for zooplankton of either type grazing on food
type X is

GX = gmaxpX ·
X2

k2F + Σ(pXX2)
· Z (3)
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where pX is the prescribed preference for food type X and Σ represent summation
over all food types.

The equivalent HadOCC formulation is

GX = gmax ·
X

ΣX
· F 2

k2F + F 2
· Z (4)

where

F = max(0,ΣX − Fthreshold) (5)

The squared half-saturation constant kF can be expressed as gmax

εF
where εF is a prey

capture rate parameter.

For Fthreshold = 0, the HadOCC grazing formulation would be identical to the
MEDUSA formulation for a single food source but not when both phytoplankton
and detritus are present. The parameters gmax and εF are functionally equivalent
in both models but the MEDUSA values differ between the two zooplankton types
so there are no equivalent HadOCC values. The prior HadOCC value for gmax is
0.8 d−1, compared with 2 and 0.5 in MEDUSA for micro- and meso-zooplankton
respectively. For εF it is 3.2 d−1 (mmol N m−3)−2), compared with 3.12 for micro-
zooplankton and 5.56 for mesozooplankton.

The partitioning of grazed material between zooplankton biomass, DIN and detritus
can be made identical between the two models by setting the relevant HadOCC
parameters to the corresponding MEDUSA values, i.e. φI = 0.8, βP = 0.69, βD =
0.69 and φmfN = 1. (For HadOCC priors, see Table 5.)

2.2.3 Phytoplankton Losses

Both HadOCC and MEDUSA have linear and density-dependent loss terms for the
phytoplankton. However, the formulation for density dependency differs as does the
way in which losses are partitioned between DIN and detritus.

In HadOCC, the total phytoplankton loss is MP + ηP where the density-dependant
mortality term

MP = mP 2. (6)
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m = mo for P >= 0.01 mmol N m−3 (otherwise mortality is suppressed). All of
the linear loss is associated with metabolism and goes to DIN. Density dependent
losses are intended to represent mortality. A fraction φMPN of the density-dependent
mortality goes to DIN and the remainder to detritus.

MEDUSA has an equivalent linear loss term, with η = 0.02 d−1, for both phyto-
plankton types, but the density-dependent mortality is

MP = 0.1
P 2

0.5 + P
. (7)

As in HadOCC, all of the linear loss goes to DIN but the density-dependent mortality
goes exclusively to detritus.

The prior value for φMPN in HadOCC is very low at 0.01, so the parameterizations
are superficially very similar. The similarity is greatest at low phytoplankton con-
centrations. However, the MEDUSA formulation for density dependency diverges
from a P 2 HadOCC-like term with m ≈ 0.2 d−1(mmol N m−3)−1 as the concentra-
tion increases, tending towards a linear term at high concentrations relative to the
half-saturation concentration of 0.5 mmol N m−3. The effect is that at high concen-
trations linear losses dominate in MEDUSA with fractions going to both DIN and
detritus. In the limit, the DIN fraction of linear losses tends to 0.17 as P 2 losses tend
to zero. In HadOCC, P 2 losses dominate, leading ultimately to greater losses, with
φMPN effectively controlling the partitioning. Once again the differences mean that
there is no direct equivalence of parameters in the phytoplankton loss formulations
between the two models.

2.2.4 Zooplankton Losses

As for phytoplankton, both models have linear and density-dependent loss terms.
Total losses in HadOCC are

MZ = m1Z +m2Z
2 (8)

with a fraction φMZN going to DIN and the remainder to detritus. Linear loss rates
for both zooplankton types in MEDUSA are the same as those for the phytoplankton
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(0.02 d−1). The formulation of density-dependant mortality is also the same but with
different coefficients for the mesozooplankton. For microzooplankton

MZ = 0.1
P 2

0.5 + P
. (9)

For mesozooplankton

MZ = 0.2
P 2

0.75 + P
. (10)

As with the phytoplankton, there is no direct equivalence of parameters in the loss
formulations between the two models.

2.2.5 Sinking and Remineralization of Detritus

Although HadOCC and MEDUSA have the same detritus pools, part of the detritus
production in MEDUSA by-passes this pool. Two types of detritus are represented in
MEDUSA: slow-sinking detritus, which enters the detritus pool and fast-sinking de-
tritus which is parameterized by removing material at one model level and instantly
re-distributing it among deeper levels as DIN according to a remineralization scheme
based on the ballasting model of Dunne et al. (2007). The slow-sinking fraction of
detritus production comprises all material egested by zooplankton, all of the density-
dependent mortality of the smaller plankton types (non-diatom phytoplankton and
microzooplankton) and 25% of the density-dependent diatom mortality. The fast-
sinking fraction comprises all of the density-dependent mesozooplankton mortality
and the remaining 75% of the density-dependant diatom mortality. The parameter-
ization of sinking and remineralization for detritus in HadOCC is identical to that
for slow-sinking detritus but the prior value for the sinking velocity parameter is
higher than the MEDUSA value: 10 m d−1 compared with 3 m d−1.

The additional complexity of the MEDUSA parameterizations is motivated primarily
by the importance of accurately modelling the vertical flux of carbon that drives the
biological pump. The requirement for separate representation of small slow-sinking
detritus and large fast-sinking detritus is, in turn, a key motivating factor for sub-
dividing phytoplankton and zooplankton types.
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2.2.6 Carbon:Chlorophyll Ratio

Photo-acclimation in both models is introduced by varying the biomass-specific
chlorophyll concentration in response to the ratio of realized photosynthesis µP to
αEd. In MEDUSA, this is done by adjusting the chlorophyll tracers associated with
each phytoplankton type. The implementation in HadOCC is very different in that
an iterative approximation to a steady state model of the carbon:chlorophyll ratio
is used (with one iteration per time step). Chlorophyll is not handled as a tracer so
the ratio is based purely on local conditions. The differences in implementation of
photo-acclimation inhibit direct comparison between the two parameterizations. Ex-
periments are performed here with both variable and fixed C:Chl ratios in HadOCC.

3 Method

3.1 Experimental Framework

To provide a range of oceanic conditions for the experiments, 12 sites were selected
located on a meridional transect along 20W in the North Atlantic from 5N to 60N.
This spans the sub-tropical gyre and temperate regions further north where large
spring blooms are typical, extending into the sub-polar gyre south of Iceland. To the
south, it also crosses a high productivity region off the East African coast between
the shelf break and the Canary Islands.

The experiments were performed in a 1-D framework using the Marine Model Opti-
mization Testbed (MarMOT) system (Hemmings and Challenor, 2012). MarMOT
was developed with NERC support via the National Centre for Earth Observation
as a flexible, user friendly software tool to enable computationally intensive biogeo-
chemical model analyses for which 3-D tools like NEMO are unsuited.

The evolution of a biogeochemical tracer concentration Ci in a MarMOT water
column simulation is given by

dCi
dt

= −(wp + wi)
∂Ci
∂z
− ∂wi

∂z
Ci +

∂

∂z

(
Kρ

∂Ci
∂z

)
+SMSi(~C, ~F ) + pi(Ci, p

?
i ) + ri(C

ref
i − Ci). (11)

The first three terms represent the tendencies due to vertical flux divergence. wp is
the vertical velocity of the water, wi is the active vertical velocity of the biological
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material relative to the water (if any) and Kρ is the turbulent diffusion coefficient.
Note that any vertical divergence in wi changes the concentration, whereas vertical
divergence in the flow is balanced by fluid continuity so that the associated con-
centration tendency is zero, assuming homogeneity of tracer concentration in the
horizontal. SMSi is the source-minus-sink term from the selected biogeochemistry
model which is a function of the state vector ~C and a forcing vector ~F . In this
study, ~F comprises local photosynthetically available radiation and temperature.
The biogeochemistry model also provides wi. In both MEDUSA and HadOCC, wi
is non-zero for detritus only and the detrital sinking rate is constant so term 2 diss-
appears. pi is a perturbation term (potentially concentration dependent) driven by
an applied perturbation p?. The final term is a relaxation term given by the product
of a rate ri and the deviation of Ci from a reference concentration Cref

i .

Physical forcing data for the experiments, in the form of vertical velocity, vertical
diffusivity and temperature are taken from 5 day mean output of a 3-D NEMO-
MEDUSA simulation running at 1◦ horizontal resolution (Yool et al., 2011). 5 day
mean time series of downwelling solar radiation at the sea surface are taken from
the same simulation. In addition, mixing layer depth is required for the variable
carbon:chlorophyll parameterization in HadOCC. This was taken to be the 5 day
mean NEMO turbocline depth. 10 years of output from 1996-2005 were used.

Comparisons are shown in Figure 1 for DIN between MEDUSA running in the 3D
general circulation model and in the 1D MarMOT testbed with and without cor-
rections for lateral advection. Without these effects there are major differences at
some sites, notably 40N, 35N, 20N and especially at 10N where DIN remains de-
pleted in the 3D simulation, contrasting with the occurrence of periodically high
concentrations in the absence of advective effects. The missing advective tendencies
are the product of the horizontal current velocity and the upstream tracer gradients.
By adding advective flux divergences diagnosed from NEMO-MEDUSA output as
tracer perturbations pi = p?i (z, t) we can correct for the differences between 1D and
3D simulations to a large extent at most of the sites. This suggests that much
of the discrepancy is due to the absence of horizontal advection in the 1D simula-
tions. However, adding advective perturbations seems to over-compensate at 20N
and 60N. The failure at these sites requires further investigation but may be due to
other sources of error such as the absence of horizontal diffusion. The reduced time
resolution of the forcing is another potential source of error.

In skill assessments where model results are to be compared with real-world data,
it would be necessary to properly account for the impact of lateral fluxes. However,
applying the NEMO-MEDUSA flux divergence tendencies in HadOCC simulations
is not generally appropriate because such tendencies depend on the upstream bio-
geochemical tracer gradients which typically co-vary to some extent with the local
concentration (Hemmings and Challenor, 2012). The desired tendencies are thus
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Figure 1: Surface level DIN concentration (mmol N m−3) from the 3-D MEDUSA
simulation in NEMO (black) and 1-D simulations in MarMOT with advective ten-
dencies from the 3-D simulation (blue) and without (red). Plots are for each cali-
bration site on the 20W transect. The ORCA1 grid reference is shown in brackets.
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model-dependent. The NEMO-MEDUSA tendencies could not therefore be consid-
ered compatible with the HadOCC simulation results. Relatively small concentra-
tion differences can potentially introduce drift as a result of inadequate handling
of concentration dependencies in biogeochemical gradients. This may explain the
problem exhibited in the MEDUSA simulation at 60N. We would expect horizontal
DIN gradients to be reduced at very high and very low concentrations associated
with the gyre interiors. The sustained increase in DIN is a possible consequence of
initially small positive errors occurring with no corresponding reduction in advective
tendency.

Research is on-going to quantify uncertainty in lateral fluxes associated with varia-
tion in model biogeochemistry with a view to effectively managing this source of un-
certainty in model calibration and assessment procedures. The introduction of such
uncertainty in the context of the idealized synthetic data experiments required for
the present study would be an unnecessary complication. No tendencies associated
with lateral processes were therefore applied. As a consequence, there is significant
drift at some sites when the simulation is run for multiple years. This could in
principle be corrected for by relaxation to a MEDUSA climatology. However, this is
unnecessary here and would complicate the interpretation of the HadOCC results.

3.2 Simulation Details

Parameter optimization experiments are computationally intensive, requiring many
thousands of model integrations. While longer simulations are desirable for removing
transient effects, shorter simulations are desirable for reducing run-time. They are
also less susceptible to the effects of long-term drift. As a compromise, the simulation
period was chosen to be 2 years with the synthetic observations taken from the
second year.

1-D simulations use the same vertical grid as the 3-D NEMO simulation. The
dynamics of interest are largely confined to the upper ocean. The deeper nutrient
distribution is affected by the flux of sinking particles and their remineralization rate
but these effects tend to be correlated down the water column so that the inclusion
of deep observations is unlikely to provide useful independent constraints. On this
assumption, a depth threshold of 1000 m was chosen for the simulations, reducing
the number of model levels from 63 to 37 with consequent computational savings.
The bottom of level 36 is below the threshold. The vertical velocity and diffusion
at the bottom of this level were set to zero to prevent any interaction between level
37 and the water column above. Sinking detritus is remineralized in the bottom
level so level 37 was included as a sink for detritus entering from above. Zeroing the
vertical velocity does have the effect of introducing an anomalous divergence in the
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vertical flow but the effect on the overall simulation is negligible. The upper ocean
levels have boundaries at approximate depths 6, 12, 19, 25, 32, 39, 46, 54, 62, 71,
80, 90, 100, 112, 124, 137, 152, 168, 187, 207, 229, 254, 281, 312, 347, 386, 429, 477,
531, 591, 656, 729, 809, 896 and 991 m. An implicit scheme is used for diffusion and
the MUSCL scheme for advection. The time step is 2 hours (forward Euler).

3.3 Data Constraints

A calibration data set of synthetic observations was created from 1997 MEDUSA
output taken from a 2 year simulation initialized from the 3-D NEMO-MEDUSA
simulation at the beginning of 1996. The data set comprises concentrations of DIN,
total phytoplankton nitrogen and total zooplankton nitrogen at each of the 35 model
levels (spanning 0 - 1000 m). Additionally, the flux of particulate organic nitrogen
(PON) at the bottom of each level was used as an additional constraint in a subset
of experiments. This includes contributions from both slow-sinking and fast-sinking
detritus and is directly related to the flux of particulate organic carbon (POC) by
the Redfield ratio (6.625). Each variable was sampled at 5 day intervals, taking a
daily mean value.

Any assessment of predictive skill requires validation against independent data not
used in parameter fitting. For validation purposes, a series of 2 year simulations was
used with data taken from the second year to create a validation data set comprising
data from years 1998-2005. Column integrated primary production was included as
an additional validation variable.

3.4 Parameter Optimization

3.4.1 Cost Function

The parameter optimization procedure used to calibrate HadOCC as an emulator of
MEDUSA relies on a cost function that summarizes the misfit between the HadOCC
simulation and the synthetic observation data set. The MarMOT system supports
a generic cost function for multiple variable types and multiple simulation cases of
the form
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J =
1

N

C∑
k=1

m∑
j=1

nk∑
i=1

pijkwijk(xijk − yijk)2 (12)

N =
C∑
k=1

m∑
j=1

nk∑
i=1

pijk (13)

where C is the number of cases (here equivalent to calibration sites), nk is the
number of observation points for case k (in space and time) and m is the number
of observed variables; xijk is the simulated value of the j-th variable at the i-th
observation point and yijk is its observed value. We refer to the squared residual
(xijk − yijk)2 as the model misfit. The coefficient pijk is 1 if the variable is present
in the observation set or 0 otherwise. Since the present study is based on synthetic
data, we have values for all calibration set variables at all observation points so pijk
is always 1. wijk is a weighting factor to be applied to the misfit. If wijk is the
reciprocal of the expected residual variance for a perfect simulation then the cost
function value for a perfect simulation should approach 1 for large N .

In the present study where we are calibrating a surrogate model with reference to
a known true solution, so can consider both observation and simulation error to be
zero. The residual variance for a perfect simulation will therefore be that associated
with model discrepancy, originally introduced as model inadequacy (Kennedy and
O’Hagan, 2001). Model discrepancy is defined as the difference between the simu-
lation output for the best possible parameter set, which is unknown, and reality (in
our case the MEDUSA output).

Prior knowledge of model discrepancy for the surrogate model here is considered
insufficient to justify differential weighting for individual observations. In general
though, different weights are appropriate for observed variables having different
units. A widely used approach, the Characteristic Scale method (e.g. Friedrichs et
al., 2007), uses the overall variance of the variable in the observation set as a scaling
factor. This can be particularly useful for balancing misfit contributions from differ-
ent variables to avoid results that depend on arbitrary relationships between units.
However, it is essentially a pragmatic solution as the variance in the data set is not
directly related to the expected error variance. The r.m.s errors obtained here with
respect to the sinking particle flux data are of a similar magnitude numerically to
those for the state variables without any scaling. For simplicity, a uniform weighting
wijk = 1 was therefore applied to each variable.

For real-world calibration exercises, Hemmings and Challenor (2012) recommend
the eventual replacement of the Characteristic Scale method by a more explicit
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treatment of observation and simulation uncertainties. The recommended method is
demanding in terms of the physical data and uncertainty quantification effort it will
require but is strongly supported by a demonstration of its potential in experiments
with synthetic data.

3.4.2 Optimization Procedure

The MarMOT optimizer combines a genetic algorithm for identifying promising
areas of a bounded parameter space and a non-gradient direction set algorithm for
bounded or unbounded local minimization. The genetic algorithm is a global method
in the sense that it is able to locate multiple minima in the cost function by sampling
the global parameter space. However, it searches the parameter space in discrete
intervals, limiting the accuracy with which it can locate a particular minimum. In
contrast, the direction set algorithm navigates towards a local minimum from a
given starting point, making it unsuited to finding the global minimum in a cost
function with complex topography, but can give greater accuracy.

The genetic algorithm is a micro-genetic algorithm (µGA) (Krishnakumar, 1989),
based on an implementation by Carroll (1996). It has been applied to the problem
of plankton model optimization by Schartau and Oschlies (2003) and subsequently
by other workers including Ward et al. (2010) who compared its performance with
the local variational adjoint technique employed by Friedrichs et al. (2007).

The direction set algorithm was designed by Powell (1964) to locate a cost function
minimum in a continuous unbounded free parameter space. The implementation of
bounded minimization is described by Hemmings and Challenor (2012). The version
of Powell’s algorithm used is that described in Press et al. (1992), with reference to
Acton (1970). Line minimization is performed using Brent’s method (Brent, 1973).
No gradient information is used so it does not require the provision of an adjoint
code for calculating the cost function gradient with respect to the model parameters.
It is therefore more straight-forward to apply than the variational adjoint method in
situations where the formulation of the plankton model is not fixed. The algorithm
has been applied in a number of plankton model calibration studies (e.g. Fasham
and Evans, 1995; Hemmings et al., 2004; Dadou et al., 2004; Fasham et al., 2006).

The optimization procedure was identical for each set of optimization experiments.
Initial optimization was performed with the µGA which was run for a minimum
of 1000 generations to provide a pre-conditioned set of parameter vectors for local
searches with the direction set algorithm; the best 5 parameter vectors from the
population were selected. On any convergence in the parameter vector population,
defined by uniformity across the population in at least 95 % of the bits in the bi-
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nary code describing the parameter vectors, a new random population is generated,
retaining the best individual. Additional generations after Generation 1000 were
run until the next convergence. The algorithm was configured with a single-point
cross-over between bit strings at a probability of 1. Each parameter was represented
by 8 bits in the µGA, giving 256 possible values prior to refinement by the local
searches.

The population size for the µGA was chosen to match the number of free parameters
following the recommendation of Schartau and Oschlies (2003). Initial parameter
vectors in the original population were distributed in parameter space according to a
Latin hypercube design (McKay et al., 1979). For improved coverage, a “maximin”
criterion (Johnson et al., 1990) was applied to 500 randomly generated hypercubes:
the hypercube design is selected that maximizes the smallest Euclidean distance
between parameter vector pairs in terms of their positions on the 256n grid.

The direction set algorithm was applied to each unique parameter vector in the final
population returned by the µGA and the lowest cost result selected. To investigate
the sensitivity of the result to the initial parameter vectors, each application of the
optimizer was repeated for 10 alternative designs, choosing those with the largest
minimum Euclidean distances from a sample of 500 randomly generated hypercubes.

3.5 Parameter Ranges

Parameter bounds are required for the µGA and can be prescribed or omitted in
the MarMOT implementation of the Powell algorithm. Some parameters must nec-
essarily be restricted: rate parameters must be positive; fractions must be between
0 and 1. Ranges are also often used to ensure that parameters have biologically
meaningful values. Whether this is desirable depends on the the experimental goals.
Useful information about the limitations of a model design can be gained from re-
sults in which posterior parameter values lie outside the range of plausible values
consistent with the parameter’s description. Out-of-range values are problematical
if we want to interpret the model mechanistically but should not be ruled out if the
purpose is to use the model as an emulator to best predict the results of another
model. Neither should we necessarily rule out such values in the context of a real
world experiment if they lead to better predictive skill, although a change of model
design would be preferable.

In the present study, the aim is to find a HadOCC parameter set that allows it
to best emulate the behaviour of MEDUSA. Broad parameter ranges are chosen to
avoid introducing constraints at an early stage that could compromise this goal. The
MEDUSA data are used as the primary constraint. For each of the rate parameters,
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Table 1: HadOCC parameter ranges for optimizer

Parameter Symbol Prior Lower bound Upper bound Log flag
photmax0 V0 0.53 0.05 5 1
alphachl αchl 5.56 0.5 500 1
kdin kN 0.1 0.01 10 1
presp η 0.05 0.005 0.5 1
pmortdd mo 0.05 0.005 0.5 1
fpmortdin φMPN 0.01 0 1 0
gmax gmax 0.8 0.1 10 1
epsfood εF 3.2 0.3 30 1
fingest φI 0.77 0.1 1 0
betap βP 0.9 0.1 1 0
betad βD 0.65 0.1 1 0
fmessydin φmfN 0.1 0 1 0
zmort m1 0.05 0.005 0.5 1
zmortdd m2 0.3 0.03 3 1
fzmortdin φMZN 0.67 0 1 0
dsink wD 10.0 0 30 0
remin0 λ0 0.016 0.0015 0.15 1

with the exception of detrital sinking rate, parameter optimization was performed
in log space to avoid negative values, the transformation being applied before dis-
cretization. For these parameters, the lower and upper bounds for the µGA were
initially set a factor of 10 lower or higher than the prior parameter value and the
bounds were removed for subsequent local optimization with the Powell algorithm
to avoid imposing artificial constraints. Detrital sinking rate was constrained to
remain below 30 m d−1 to avoid numerical instability. Two parameters, αchl and kN
tended to be forced outside the prescribed range in preliminary experiments leading
to rather higher final values. For these parameters, the upper bound was increased
by another order of magnitude. Identical ranges were used in all subsequent exper-
iments. These are shown in Table 1. (Refer to Table 5 for parameter descriptions
and units.)
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Table 2: Posterior parameter values.

Parameter PRIOR OPT17-NPZ OPT13-NPZ OPT13CC-NPZ OPT13CC-NPZF OPT10CC-NPZF
photmax0 0.53 0.222 0.133 0.269 0.273 0.268
alphachl 5.56 87.2 106 17.9 18.4 16.3
kdin 0.1 0.62 0.494 0.856 0.923 1.33
presp 0.05 0.0901 0.05 0.05 0.05 0.05
pmortdd 0.05 0.148 0.05 0.05 0.05 0.05
fpmortdin 0.01 0.27 1.75e-13 0.184 0.156 0.299
gmax 0.8 0.828 0.878 0.805 0.786 0.817
epsfood 3.2 0.326 0.264 0.403 0.381 0.254
fingest 0.77 0.905 0.56 1 0.979 0.8
betap 0.9 1 1 0.86 0.995 0.69
betad 0.65 0.173 0.286 0.1 0.115 0.69
fmessydin 0.1 0.849 0.1 0.1 0.1 1
zmort 0.05 0.0231 0.0166 0.0137 0.0146 0.00538
zmortdd 0.3 0.123 0.0887 0.172 0.189 0.149
fzmortdin 0.67 0.509 0.721 0.613 0.572 0.245
dsink 10 7.45 6.41 6.54 6.62 6.98
remin0 0.016 0.0181 0.016 0.016 0.016 0.016

4 Results

4.1 Parameter Optimization Experiments

4.1.1 Sequence of Experiments

Some preliminary experiments were performed with 17 adjustable parameters. In
these experiments, clear correlations were noted between certain pairs of parame-
ters in the posterior parameter set over the 10 optimization runs. In particular,
phytoplankton metabolic loss rate η (presp) and density-dependent mortality mo

(pmort) were both positively correlated with the base phytoplankton maximum
growth rate V0 (photmax0) and there was a strong positive correlation between de-
trital sinking rate wD (dsink) and the base remineralization rate λ0 (remin0). The
two phytoplankton loss parameters and the remineralization rate were excluded from
the optimization procedure in subsequent experiments. In general, the parameters
controlling partitioning of losses and the by-products of grazing between DIN and
detritus appeared to be poorly constrained. Three separate parameters φMPN (fp-
mortdin), φMPZ (fzmortdin) and φmfN (fmessydin) all perform essentially the same
role, albeit associated with different processes. The potential for parameter inter-
actions was reduced by also excluding φmfN, the DIN fraction of material resulting
from messy feeding, in subsequent experiments.

The posterior parameter sets corresponding to the experimental results presented
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here are given in Table 2 with the values of the optimized parameters shown in bold.
One of the preliminary 17 parameter experiments is included for comparison. This
is referred to as OPT17-NPZ, the suffix “-NPZ” indicating that the observational
constraints comprised DIN, phytoplankton and zooplankton. The equivalent 13 pa-
rameter experiment is OPT13-NPZ. These two experiments were performed on the
model version with fixed C:Chl ratio. In Experiment OPT13CC-NPZ, identical con-
straints to those in OPT13-NPZ are applied to the variable C:Chl ratio version. The
altered model design led to some important differences in posterior parameters. In
particular, the value of αchl (alphachl) is very much greater in both experiments with
fixed C:Chl. This is explained by the lack of potential in the fixed C:Chl version to
increase the quantum efficiency of the photosynthetic response at low light levels by
increasing the biomass-specific chlorophyll. To compensate, the chlorophyll-specific
response is increased by increasing αchl. There appears to be an interaction with
the base temperature-dependent maximum growth rate V0 (photmax0): a particu-
larly low value of 0.133 d−1 in Experiment OPT13-NPZ is apparently required to
avoid the high αchl value causing excessive production at higher light levels. V0 is
reduced by 75% from the prior. The remaining experiments were all performed on
the variable C:Chl model which is more directly comparable with MEDUSA.

In experiment OPT13CC-NPZF, the effect of introducing the sinking particle flux
data as an additional constraint was explored. The resulting parameter set was
surprisingly similar, suggesting strong coupling between the particle flux and the
state variables used.

In the 13 parameter experiments, many parameters still appear to be poorly con-
strained (see Appendix B) consistent with an under-determined problem. The ap-
parent scope for arbitrary parameter adjustment prompted a final experiment to
investigate the possibility of achieving similar or improved emulator performance
by using MEDUSA-specific values. In OPT10CC-NPZF, the parameters controlling
the partitioning of grazed material between zooplankton biomass, DIN and detritus
were set to their MEDUSA equivalents accordingly. These are parameters φI (fin-
gest), βP (betap), βD (betad) and φmfN (fmessydin). The experiment is otherwise
identical to OPT13CC-NPZF.

The performance with respect to the calibration variables in the independent vali-
dation data set is shown in Table 3 which gives the mean intra-annual r.m.s values
for the years 1998-2005. The overall misfit for the nitrogen concentration variables
are also shown for comparison with the flux values and the two sets of values are
broadly comparable despite the different units. The misfits of these variables to the
calibration data were likewise similar indicating that the optimization process in
the last two experiments was not unduly distorted by the relative contribution of
variables with different units.
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Table 3: Goodness-of-fit to MEDUSA data (1998-2005): calibration set variables.

Experiment N r.m.s.e. P r.m.s.e. Z r.m.s.e. N ,P ,Z r.m.s.e. PON flux r.m.s.e.
mmol N m−3 mmol N m−3 mmol N m−3 mmol N m−3 mmol N m−2 d−1

PRIOR 1.27 0.15 0.132 0.74 0.66
PRIORCC 1.18 0.143 0.125 0.692 0.621
OPT17-NPZ 0.238 0.0542 0.0714 0.147 0.284
OPT13-NPZ 0.265 0.0688 0.0654 0.163 0.307
OPT13CC-NPZ 0.237 0.0685 0.0471 0.145 0.298
OPT13CC-NPZF 0.24 0.07 0.0495 0.147 0.292
OPT10CC-NPZF 0.257 0.0824 0.0534 0.159 0.305

The performance against the validation data is similar for all posterior parameter
sets. There is a substantial improvement in r.m.s. error for all variables over the
corresponding results for the uncalibrated model, indicating improved predictive
skill. Errors for DIN are generally high relative to the plankton concentrations,
although this difference is reduced from an order of magnitude to a factor of 4 or 5
after calibration. It is interesting to note that there is little difference in performance
with respect to the particle flux when it was added as an additional constraint. This
suggests that the extra constraint is largely redundant, given perfect observations
of the state variables.

4.1.2 Posterior Parameter Sets

A number of patterns are common to all experiments. The values of αchl (alphachl)
and kN (kdin) are always much higher in the posterior parameter set, reducing
light limitation and nitrogen limitation respectively. The value of V0 (photmax0) is
correspondingly low, avoiding excessive production.

On the other hand, the maximum ingestion rate gmax (gmax) seems better behaved,
remaining close to the prior value a little below the geometric mean of the MEDUSA
values for the different zooplankton types. However, the prey capture rate εF (eps-
food) is an order of magnitude lower than the prior indicating that grazing is much
more strongly limited by food concentration in the calibrated model. This is com-
pensated for by low values of the zooplankton mortality parameters (zmort and
zmortdd).

Another interesting pattern is the consistent tendency for the optimization procedure
to cause divergence in the values of the different assimilation efficiencies for the
different food types betap for phytoplankton and betad for nitrogen. This seems
unrealistic, especially since differences in food quality as represented in the model
have been removed by the use of a uniform C:N ratio for both.
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Table 4: Goodness-of-fit to MEDUSA data (1998-2005): production and export
(Convert PON to POC)

Experiment R.m.s. error Bias
P. Production 100 m PON flux 531 m PON flux P. Production 100 m PON flux 531 m PON flux

mmol C m−2 d−1 mmol N m−2 d−1 mmol N m−2 d−1 mmol C m−2 d−1 mmol N m−2 d−1 mmol N m−2 d−1

PRIOR 22.1 0.733 0.209 -3.38 -0.262 0.0645
PRIORCC 20.9 0.686 0.192 -2.18 -0.242 0.0693
OPT17-NPZ 11.2 0.278 0.13 6.58 0.00424 0.00683
OPT13-NPZ 8.36 0.336 0.134 -0.118 -0.015 -0.00115
OPT13CC-NPZ 8.58 0.336 0.139 1.77 -0.0329 0.00124
OPT13CC-NPZF 9.11 0.335 0.138 2.68 -0.0352 0.00427
OPT10CC-NPZF 8.51 0.366 0.142 -0.0535 -0.047 0.0145

In summary, calibration of the surrogate model has introduced a number of anoma-
lies in parameter values that are inconsistent with the model’s intended mechanistic
interpretation. The anomalously low value of photmax0 was improved to some
extent by using the variable C:Chl version of the model. A further anomaly was re-
moved by fixing the assimilation efficiencies to MEDUSA values. This was possible
with minimal effect on the overall performance of the resulting emulator, although
it does lead to some increases in a tendency towards positive DIN bias in the olig-
otrophic regions. (See Figure 14 in Appendix C for more details)

4.2 HadOCC Performance as an Emulator

To assess the performance of HadOCC as an emulator of MEDUSA we focus on
primary production and export of organic material associated with the sinking par-
ticle flux. Overall statistics for the set of experiments are given in Table 4. All of
the calibrated model results show substantial improvements over the results given
by the prior parameter sets. The one exception is that OPT17-NPZ shows a larger
bias in primary production, suggesting that there is little advantage in optimizing
as many as 17 parameters. The OPT10CC-NPZF parameter set gives an extremely
small primary production bias, although it also gives a positive bias in the sinking
particle flux at 531 m which is relatively large compared with the other posterior
parameter sets.

4.2.1 Annual Cycles of Primary Production and Sinking Particle Flux

More detail of the performance is shown by analysis of the seasonal variability. This
is shown for the years 1997-2005 in Figures 2, 3 and 4 for the variable C:Chl version
of the model.
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The seasonal patterns of primary production (Figure 2) are well represented by
HadOCC after calibration with only very minor differences between the individual
posterior parameter sets. This contrasts with generally poor representation before
calibration, particularly at lower latitudes from 10-20N, although primary produc-
tion in the sub-tropical gyre (25-35N) is better reproduced by the prior parameter
set. Despite exceptionally good emulation of the seasonal signal south of the sub-
tropical gyre and for most of the year in the north too, one notable deficiency is
evident: there is a tendency for the surrogate model not to capture the early phase of
the temperate spring bloom in MEDUSA. This difference in timing is most evident
at 55 and 60N and there is clearly a negative bias in primary production at these
sites. It is compensated for by an obvious positive bias in the subtropical gyre.

Patterns in the 100 m particle flux (Figure 3) are strongly linked to the productivity
and are well reproduced by HadOCC after calibration, although there are some
exceptions at lower latitudes where there is a tendency to underestimate the annual
peaks. There is no obvious bias in the sub-tropics, despite the positive bias in
primary production. However, there is a tendency for a lagged response, consistent
with the lack of fast-sinking detritus in the surrogate model. The effect is greater
and more widespread at 531 m (Figure 4) and the performance of HadOCC as an
emulator for the particle flux at this depth is generally worse, particularly at the
lower latitudes south of the gyre (5-20N). Nevertheless, the signal is well reproduced
in the sub-tropical gyre where calibration leads to a major reduction in bias. If we
ignore the lag, the overall seasonal pattern is fairly well reproduced at high latitudes
where the effect of calibration is to remove the sharp peaks and spread the particle
flux out more over the year. The lagged response of the surrogate model provides a
likely explanation for the relatively high r.m.s. values for DIN, compared with those
for the plankton.

In general, calibration has a major effect on the seasonal patterns of production
and export. The patterns are apparently well determined by the data constraints
even though there are differences in final parameter values, particularly between
OPT13CC-NPZF and OPT10CC-NPZF (suggesting that parameter redundancy
rather than lack of data constraints is the cause of poorly constrained parameters).
The figures do not show any difference in performance for the calibration year, 1997,
so there is no evidence of over-fitting.

4.2.2 Annual Mean Primary Production and Sinking Particle Flux

Figures 5 and 6 summarize the performance for the annual mean primary production
and the particle flux at 3 depth levels (100 m, 207 m and 531 m). The data are from
the calibration sites for years 1997-2005. The presentation in Figure 5 focusses on
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Figure 2: Primary production (mmol C m−2 d−1) from second year of 2 year simula-
tions: MEDUSA (black); HadOCC with prior parameters (orange), OPT13CC-NPZ
parameters (red), OPT13CC-NPZF parameters (cyan), OPT10CC-NPZF parame-
ters (blue). Plots are for each calibration site on the 20W transect. The ORCA1
grid reference is shown in brackets.
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Figure 3: PON flux at 100 m (mmol N m−2 d−1) from second year of 2 year simula-
tions: MEDUSA (black); HadOCC with prior parameters (orange), OPT13CC-NPZ
parameters (red), OPT13CC-NPZF parameters (cyan), OPT10CC-NPZF parame-
ters (blue). Plots are for each calibration site on the 20W transect. The ORCA1
grid reference is shown in brackets.
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Figure 4: PON flux at 531 m (mmol N m−2 d−1) from second year of 2 year simula-
tions: MEDUSA (black); HadOCC with prior parameters (orange), OPT13CC-NPZ
parameters (red), OPT13CC-NPZF parameters (cyan), OPT10CC-NPZF parame-
ters (blue). Plots are for each calibration site on the 20W transect. The ORCA1
grid reference is shown in brackets.
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Figure 5: Comparison between 1997-2005 HadOCC and MEDUSA output for pri-
mary production and POC flux at 100 m, 207 m and 531 m (mmol C m−2 d−1) for
parameter sets: PRIOR (cyan circle), PRIORCC (orange circle), OPT13-NPZ (blue
‘+’), OPT13CC-NPZ (red ‘+’). Data are from second year of 2 year simulations at
the calibration sites.
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Figure 6: Comparison between 1997-2005 HadOCC and MEDUSA output for pri-
mary production and POC flux at 100 m, 207 m and 531 m (mmol C m−2 d−1) for
parameter sets: PRIORCC (orange circle), OPT13CC-NPZ (red ‘+’), OPT13CC-
NPZF (cyan ‘+’), OPT10CC-NPZF (blue ‘+’). Data are from second year of 2 year
simulations at the calibration sites.
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Figure 7: 9 year mean and standard deviation (1997-2005) of annually averaged
primary production and POC flux at 100 m, 207 m and 531 m on 20W meridion
for parameter sets: PRIORCC (orange), OPT13CC-NPZ (red), OPT13CC-NPZF
(cyan), OPT10CC-NPZF (blue). Data are from second year of 2 year simulations
at 1 degree intervals.
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Figure 8: 9 year bias, r.m.s. error and R2 (1997-2005) for annually averaged pri-
mary production and POC flux at 100 m, 207 m and 531 m on 20W meridion
for parameter sets: PRIORCC (orange), OPT13CC-NPZ (red), OPT13CC-NPZF
(cyan), OPT10CC-NPZF (blue). Data are from second year of 2 year simulations
at 1 degree intervals.
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the difference between the fixed and variable C:Chl versions of the model. Figure 6
presents the results for the variable C:Chl version under the different experimental
constraints.

The overall performance of the calibrated emulator appears good, with only minor
differences between the different parameter optimization experiments. However,
some deficiencies remain after calibration. There is a persistent over-estimation of
the 531 m flux at lower flux values. For all the posterior parameter sets there is a
contrasting negative bias for higher values despite the existence of a strong positive
bias in both versions of the uncalibrated model. Using the MEDUSA parameters
controlling the fate of grazed material (OPT10CC-NPZF) improves the situation for
the higher values (above about 1.5 mmol C m−2 d−1) without having much effect
on the lower values, suggesting that further improvement might be possible with a
more exhaustive exploration of parameter space. Note that the higher overall bias
in Table 4 for Experiment OPT10CC-NPZF is actually the result of reduction in
the negative bias, rather than the indication of poorer performance, highlighting the
risks of any reliance on summary statistics.

Figures 7 and 8 show the performance of HadOCC, with variable C:Chl, against
MEDUSA in a range of simulations at 1◦ intervals along the 20W transect from
5-60N. The data analyzed are annual means for each year from 1997-2005 (taking
the second year of a set of 2 year simulations as before). Even without calibration,
HadOCC does a reasonable job at reproducing the dominant meridional patterns of
primary production and POC flux, although the inter-annual variability of the POC
flux is less well represented that the primary production (as shown by the divergence
in the standard deviations and the lower R2 values). While bias in POC tends to be
relatively small at 207 m, at the more productive latitudes it tends to be strongly
negative at 100 m and strongly positive at 531 m before calibration. (The negative
bias appears linked to a similar bias in production at high latitudes but not in the
low latitude high productivity region.) The change with depth indicates a tendency
for lesser attenuation in POC flux from grazing and remineralization in HadOCC
than in MEDUSA between 100 and 531 m. The biases are largely corrected for by
calibration, as is the negative bias in production.

The performance of the calibrated model over the transect is generally good with
only small biasses remaining in primary production and sinking particle flux. How-
ever, these biases tend to have large spatial extents, persisting across regions of
similar climatic conditions so they cannot be ignored, even though they are greatly
improved as a result of calibration. There are some notable differences in primary
production biasses between simulations with different posterior parameter sets. In
particular, the application of the MEDUSA parameter values affecting the parti-
tioning of grazed material in Experiment OPT10CC-NPZF tends to reduce primary
production, leading to a reduction in bias at low latitudes and an increase in nega-
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tive bias at high latitudes. However, it has the opposite effect on the 531 m particle
flux, leading to a reduction in the negative bias present over most of the regions
affected.

The emulator’s ability to simulate the inter-annual variability is an important deter-
minant of its ability to respond correctly in a climate change scenario. Examination
of the standard deviations (Figure 7) and R2 values (Figure 8) shows that the
calibrated model generally performs well with respect to both the magnitude and
patterns of variability. The uncalibrated model also represents the inter-annual vari-
ability in primary production fairly well but does a poor job at capturing the spatial
pattern in the scale of the sinking flux variability between years. This deficiency is
largely corrected by calibration. However, HadOCC cannot reproduce the magni-
tude of inter-annual variability in the particle flux in the most productive waters at
low latitudes where the transect passes close to the North African coastal region.
This is true at all 3 depth levels. The flux variability at 530 m is also underestimated
in the high productivity region above 45N, although in the northernmost part of this
region (55-60N) it tends to be over-estimated in the shallower levels, probably as
a result of high inter-annual variability in production relative to MEDUSA in this
area. The R2 values are generally much lower here for both production and particle
flux, indicating poor representation of the inter-annual variability by the surrogate
model. At 531 m they are actually lower for the calibrated model.

5 Discussion

The feasibility of using a simple biogeochemistry model as an emulator to reproduce
the behaviour of a more complex model has been demonstrated in this study, show-
ing how a relatively fast model suited to long ESM integrations might be linked
to a more detailed model. Good performance of such a surrogate model can be
achieved by calibration, using output from the more detailed model to constrain
parameter values. The specific results for the HadOCC model should be seen as pro-
visional. The emulation performance would need to be assessed over a wider range
of environmental conditions to assess traceability of performance in the context of
global simulations. Also, it must be recognised that the experimental framework
is designed to constrain relatively short time-scale responses to physical drivers, in
particular the seasonal response of the system, we cannot rule out the possibility
of interactions with the ocean circulation that would compromise performance in
longer simulations. Further tests would be needed, within a 3-D NEMO simulation
or ideally the fully coupled ESM, to fully determine suitability.

Some deficiencies were noted in the performance of the calibrated model. Probably
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the most important for Earth system modelling applications are (i) the distribution
of biases in primary production and sinking flux which were consistent over large
geographic regions, apparently correlated with regional climatic conditions, and (ii)
the underestimation of inter-annual variability. Nevertheless, these anomalies are
relatively minor and the associated uncertainty can be quantified and its impact on
predictions assessed. The significance of this source of error should ultimately be
judged relative to the performance of the more complex model against real-world
data.

5.1 Interpretation of Parameter Values

Another observation was that calibration led to parameter values that in some cases
deviated strongly from accepted values. This is not unusual in the calibration of
biogeochemistry models if strong prior constraints on parameters are omitted, irre-
spective of whether the data constraints are from another model or from observations
of nature, but is it a problem?

Brynjarsdóttir (2013, submitted) differentiate between physical parameters and tun-
ing parameters. Physical parameter are those which have meaning within the science
underlying the mechanistic model, while tuning parameters do not. They are typ-
ically used to approximate some more complex un-modelled process. Their ‘true’
values are then interpreted as the values which give the best fit to reality. They can
play an important role in interpolation for predicting system responses to observable
conditions but, unlike physical parameters, they do not help us to extrapolate to
new conditions for which we have no observations. In ecosystem modelling, most
parameters are somewhere in-between. They do not correspond to values that are
constant in nature. The equivalent values in nature are usually highly variable in
space and time and across different taxanomic groups, but most are expected to
have fairly well-defined ranges determined by what is biologically possible. Outside
of these ranges their meaning becomes lost and they can no longer be considered as
physical parameters. They are then of limited use in extrapolation.

While the ability to extrapolate is desirable for ESM predictions, the lack of well-
defined physical parameters in biogeochemistry models will inevitably make reliable
extrapolation elusive. However, given the wide range of climatic conditions across
the present day Earth system from which we can sample, much can be achieved
by interpolation using a model with well-calibrated tuning parameters particularly
for medium-term predictions (years to decades) where we might not expect to see
widespread environmental conditions that have no present-day analogue. With this
in mind, it can be argued that it is preferable for posterior parameters to have phys-
ically meaningful values but not essential. Form a pragmatic viewpoint, different
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values should be tolerated if they are shown to empirically improve predictive skill.
However, if out-of-range value are necessary, a deficiency in the model design is in-
dicated and correcting this deficiency is likely to lead to more reliable predictions in
the long term.

5.2 Model Design Considerations

Parameter adjustment is one way to improve traceable performance between models.
Another way is to improve direct traceability between the designs in terms of struc-
ture and process formulation. Structural traceability between the two models in
this study is good, there being a direct correspondence between the aggregated phy-
toplankton and zooplankton compartments in MEDUSA and the the two plankton
compartments in HadOCC. However, direct traceability in process representation is
severely compromised because of differences in process formulations. This limits the
number of parameters that can be usefully compared between the two models.

One of the aims of i-MarNet is to develop a new community model supporting differ-
ent levels of biogeochemical complexity as options within a traceable hierarchy. This
should provide an opportunity to develop common formulations wherever possible.
In some cases, where there is significant uncertainty regarding the best theoretical
formulation, more than one formulation could be included but should be made avail-
able to all model structures to allow proper inter-comparison. This approach should
reduce the number of parameters that require adjustment if we set parameters in the
simple surrogate model to their equivalents in the more complex model. It cannot
necessarily be assumed that this approach will give the best performing emulator
but the limited application of the method in this pilot study did not appear to have
significant adverse effects. Importantly, it should make it much easier to under-
stand the inter-model relationships. Furthermore, any reduction in the number of
parameters to be considered leads to major computational savings and should result
in better constrained posterior values as the potential for parameter interactions is
reduced.

5.3 Handling Parametric Uncertainty

The results presented here emphasize the extent to which model behaviour can be
modified by adjusting parameters with reference to appropriate data constraints,
either from another model or from observations of nature. However, they also high-
light some of the issues that must be addressed if we are to be able to use model’s
adjustable parameters effectively. The most obvious of these is the demands that
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investigation of large multi-dimensional parameter spaces place on our computer re-
sources. The 5 parameter optimization experiments in the present study involved a
total of approximately 139 000 simulations. Despite this, coverage of the parameter
space is generally poor considering that for a 17 parameter space 217 or approxi-
mately 130 000 simulations would be required to examine all parameter interactions
on the basis of just one low and one high value. There is no way of knowing whether
we have found a global minimum in the cost function and even if there were it is
not clear how significant the global minimum would be without a more systematic
exploration of the shape of the cost function in parameter space.

Modern Bayesian calibration methods, following Kennedy and O’Hagan (2001), pro-
vide a more comprehensive statistical framework for addressing issues of parametric
uncertainty as well as uncertainty from other sources. These allow joint posterior
distributions for model parameters and the model discrepancy term to be estimated
at the expense of increasing computational requirements still further in terms of the
number of simulations. Nevertheless, they have been taken up widely in many fields
including modelling of aquatic ecosystems (e.g. Arhonditsis, 2008; McDonald et al.,
2012).

The computational demands of investigating parameter space are in direct opposi-
tion to those for realistic 3-D simulations which require high resolution and long spin-
up times, particularly for the carbon cycle. A practical solution is to improve the
realism of our 1-D modelling capabilities. This has been the driving force behind the
development of MarMOT. Fast statistical emulators of model outputs or cost func-
tions can be used for more comprehensive exploration of parameter space (O’Hagan,
2006). Such emulators have been constructed for HadOCC outputs using MarMOT
ensemble simulations to provide the required training data (Oxlade, 2012). A useful
resource introducing Bayesian calibration, statistical emulators and other state-of-
the-art methods used to analyze the uncertainty in outputs produced by models
of complex processes has been created under the RCUK project “Managing Uncer-
tainty in Complex Models”. This is the MUCM Toolkit at http://mucm.ac.uk/.

5.4 Establishing a Traceable Link to Reality

Here we have examined the idealized problem of how to establish traceability be-
tween one model and another. Ultimately our aim is to establish traceability between
a hierarchy of models and the Earth system. Inadequacy of the global observing
system and the consequent uncertainties make this a much more challenging prob-
lem. Capabilities are needed to assess both the fidelity of model response to its
physical drivers and its performance when coupled to an ocean, climate or Earth
system model. Assessing the model response to physical drivers against biogeochem-
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ical observations is particularly difficult because of the sensitivity of biogeochemical
processes to highly uncertain physical variables, in particular those controlling access
to light and nutrients required for primary production.

Developing a capability for assessing the model representation of biogeochemistry
separately from that of ocean physics will require a synthesis of a diverse set of
biogeochemical and physical observations from many different locations. The most
useful of these are time-series data. Both Eulerian time-series from fixed observato-
ries and Lagrangian time-series from Argo/Bio-Argo floats can be used, in conjunc-
tion with satellite data. The uncertain physical environment would ideally be repre-
sented by the best statistical description that can be achieved using the observations
available in combination with high resolution physical simulations. Hemmings and
Challenor (2012) describe how this type of information can be used in the MarMOT
system to drive ensembles of water column simulations for model assessment and
calibration in the presence of environmental uncertainty. Using 1-D simulations,
with a realistic 3-D context provided by analysis of auxiliary data allows computa-
tional effort to be focused on data-rich sites or float tracks to address environmental
and parametric uncertainties. A global testbed capability constructed in this way
would provide a skill assessment facility for model representations of upper ocean
biogeochemistry. Posterior parameter distributions obtained would serve as prior
distributions to be refined by a limited number of 3-D experiments with reference
to subsurface nutrient distributions before application in the ESM.
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A HadOCC Model Description

The HadOCC model described here is a modified version of the model of Palmer
and Totterdell (2001) incorporating subsequent developments to the Met Office ver-
sion and some minor modifications introduced specifically for the present study.
The nitrogen tracers are phytoplankton P , zooplankton Z, detritus D and dissolved
inorganic nitrogen N . The main differences from the original version are (i) the ap-
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plication of nitrogen limitation to the photosynthesis-PAR curve maximum, rather
than as a scaling factor for the whole curve, reducing its effect at low light lev-
els, (ii) introduction of a variable carbon:chlorophyll ratio and (iii) changes to the
pathways of material originating from grazing and mortality (Totterdell, personal
communication, 2005).

For the present study, MEDUSA-like temperature dependency was introduced in
phytoplankton growth and remineralization rates. In the case of remineralization,
for which the standard HadOCC version uses a constant depth-varying profile, the
dependency on temperature replaces depth dependency. MEDUSA and HadOCC
use different light-transmission and photosynthesis sub-models in their respective
standard configurations. These were replaced by a common formulation for the
purposes of the traceability experiments. The two models also differ in their handling
of stoichiometry. These differences are removed here by using uniform Redfield
carbon:nitrogen ratios of 6.625 for all organic components in both models, as in the
reference MEDUSA simulation (Yool et al., 2011).

Process parameterizations and source-minus-sink terms are defined below. Refer to
Table 5 for parameter values.

Phytoplankton Growth

The photosynthesis sub-model gives the level mean biomass-specific growth rate J̄ as
the depth integral over each model level of the photosynthesis-PAR response curve

J =
VPαEd√

V 2
P + (αEd)2

(14)

where α is the low-light response, dependent on the carbon:chlorophyll ratio θchl:

α =
αchl

θchl
. (15)

The maximum photosynthetic rate VP is given by the product of the base growth
rate at 0◦ C, an exponential function of temperature T and a nitrogen limitation
factor QN:

VP = (V0 · 1.066T )QN (16)

41



where

QN =
N

N + kN
. (17)

Downwelling PAR is determined by the light transmission sub-model

Ed(z) = Ed(0) exp(−(kwater + kpig · 1.25Chl)z) (18)

A ratio of chlorophyll to total pigment concentration of 0.8 is assumed and Ed(0) is
taken to be 43 % of total downwelling solar radiation at the sea surface.

Zooplankton Grazing

Phytoplankton and detritus losses due to herbivorous zooplankton activity are GP =
hP and GD = hD respectively, where h is the grazing rate per unit food concentra-
tion:

h =
Z

Ftot

gmax
F 2

F 2 + k2F
; (19)

F = max(0, Ftot − Fthreshold), where Ftot = P +D and Fthreshold = 0.01 mmol N m−3.

k2F =
gmax

εF
(20)

Phytoplankton Mortality

MP = mP 2; m = 0 for P <= 0.01 mmol N m−3, otherwise m = mo.

Zooplankton Mortality

MZ = m1Z +m2Z
2.
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Detrital Remineralization

λ = λ0 · 1.066TD

Nitrogen Equations

SMSP = J̄P −MP − ηP −GP (21)

SMSZ = φI(βPGP + βDGD)−MZ (22)

SMSD = (1− φMPN)MP + (1− φMZN)MZ

+aPDGP + (aDD − 1)GD − λD (23)

SMSN = φMPNMP + ηP + φMZNMZ

+φmfN(1− φI)(GP +GD) + λD − J̄P (24)

where aPD = (1−φmfN)(1−φI)+(1−βP)φI and aDD = (1−φmfN)(1−φI)+(1−βD)φI.

The active vertical velocity of detritus relative to the water is equal to the sinking
velocity parameter wD. It is zero for all other tracers.

Phytoplankton Carbon:Chlorophyll ratio

For simulations with fixed C:Chl ratio θchl = 40 gC (gChl)−1. In variable C:Chl
ratio simulations

θchl = min

(√
θmin

αchlEd

Jcc(θchl)
, θmax

)
(25)

Jcc(θchl) = VP

[
1− exp

(
−αchlEd

θchlVP

)]
(26)

where θmin and θmax are the minimum and maximum C:Chl ratios and Jcc is the
carbon-specific photosynthetic rate. J and Jcc are approximately equivalent rep-
resentations of the same P-E curve. θmin is 20 gC (gChl)−1 and θmax is 2000 gC
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Table 5: HadOCC model parameters.

Parameter Symbol Prior value
Maximum photosynthetic rate at 0◦ C V0 0.53 d−1

Initial slope of photosynthesis-PAR curve αchl 5.56 mg C (mg Chl)−1 (E m−2)−1

Half-saturation conc. for DIN uptake kN 0.1 mmol N m−3

Phytoplankton metabolic loss rate η 0.05 d−1

Phytoplankton density-dependent mortality mo 0.05 d−1(mmol N m−3)−1

Fraction of phytoplankton mortality to DIN φMPN 0.01
Maximum grazing rate gmax 0.8 d−1

Prey capture rate εF 3.2 d−1 (mmol N m−3)−2

Fraction of grazed material ingested φI 0.77
Assimilation efficiency for phytoplankton βP 0.9
Assimilation efficiency for detritus βD 0.65
Fraction of messy feeding to DIN φmfN 0.1
Zooplankton linear mortality m1 0.05 d−1

Zooplankton density-dependent mortality m2 0.3 d−1(mmol N m−3)−1

Fraction of zooplankton mortality to DIN φMZN 0.67
Detrital sinking velocity wD 10 m d−1

Detrital remineralization rate at 0◦ C λ0 0.016 d−1

(gChl)−1. The upper limit is raised from the standard HadOCC value of 200 gC
(gChl)−1 to improve compatibility with MEDUSA which does not impose a maxi-
mum.

The model is based on the steady state solution of the Geider et al. (1997) photo-
acclimation model, describing the light dependency of the C:Chl ratio under bal-
anced growth conditions. Such conditions are rarely achieved in the upper boundary
layer because of the interaction between acclimation and vertical mixing. Concep-
tually, the upper boundary layer defined by the variable is treated as fully-mixed.
So, for levels wholly within the boundary layer

θchl = min

(√
θmin

αchlEd

Jcc(〈θchl〉1..kmld
)
, θmax

)
(27)

where 〈.〉1..kmld
indicates averaging over the levels above the turbocline depth.
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B Cost Function Evaluations and Repeatability

Figures 9 - 13 show trial cost function evaluations for each experiment on parameter
axes. Each plot is a window on the multi-dimensional parameter space showing cost
function values calculated by both the µGA and Powell algorithms during the opti-
mization process. The final results for each of 10 different optimizer initializations
are shown to give an indication of repeatability.

C Emulation Results for HadOCC State Variables

Figures 14 - 18 show the annual cycles for the model state variables in the surface
level for the years 1997-2005.
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Figure 9: Cost function evaluations for Experiment OPT17-NPZ. Final results for 10
different optimizer initializations are shown by red crosses. See Table 5 for parameter
units.
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Figure 10: Cost function evaluations for Experiment OPT13-NPZ. Final results
for 10 different optimizer initializations are shown by red crosses. See Table 5 for
parameter units.
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Figure 11: Cost function evaluations for Experiment OPT13CC-NPZ. Final results
for 10 different optimizer initializations are shown by red crosses. See Table 5 for
parameter units.
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Figure 12: Cost function evaluations for Experiment OPT13CC-NPZF. Final results
for 10 different optimizer initializations are shown by red crosses. See Table 5 for
parameter units.
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Figure 13: Cost function evaluations for Experiment OPT10CC-NPZF. Final results
for 10 different optimizer initializations are shown by red crosses. See Table 5 for
parameter units.
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Figure 14: Surface level DIN (mmol N m−3) from second year of 2 year simulations:
MEDUSA (black); HadOCC with prior parameters (orange), OPT13CC-NPZ pa-
rameters (red), OPT13CC-NPZF parameters (cyan), OPT10CC-NPZF parameters
(blue). Plots are for each calibration site on the 20W transect. The ORCA1 grid
reference is shown in brackets.
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Figure 15: Surface level phytoplankton (mmol N m−3) from second year of 2
year simulations: MEDUSA (black); HadOCC with prior parameters (orange),
OPT13CC-NPZ parameters (red), OPT13CC-NPZF parameters (cyan), OPT10CC-
NPZF parameters (blue). Plots are for each calibration site on the 20W transect.
The ORCA1 grid reference is shown in brackets.
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Figure 16: Surface level zooplankton (mmol N m−3) from second year of 2 year sim-
ulations: MEDUSA (black); HadOCC with prior parameters (orange), OPT13CC-
NPZ parameters (red), OPT13CC-NPZF parameters (cyan), OPT10CC-NPZF pa-
rameters (blue). Plots are for each calibration site on the 20W transect. The ORCA1
grid reference is shown in brackets.
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Figure 17: Surface level detritus (mmol N m−3) from second year of 2 year simula-
tions: MEDUSA (black); HadOCC with prior parameters (orange), OPT13CC-NPZ
parameters (red), OPT13CC-NPZF parameters (cyan), OPT10CC-NPZF parame-
ters (blue). Plots are for each calibration site on the 20W transect. The ORCA1
grid reference is shown in brackets.
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Figure 18: Surface level C:Chl ratio (gC gChl−1) from second year of 2 year simula-
tions: MEDUSA (black); HadOCC with prior parameters (orange), OPT13CC-NPZ
parameters (red), OPT13CC-NPZF parameters (cyan), OPT10CC-NPZF parame-
ters (blue). Plots are for each calibration site on the 20W transect. The ORCA1
grid reference is shown in brackets.
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