BRITISH GEOLOGICAL SURVEY

Natural Environment Research Council

TECHNICAL REPORT WD/99/42 Hydrogeology Series

Technical Report WD/99/42

Project FRACFLOW - Report on the Drilling and Completion of Boreholes, Tilmanstone, Kent

M J Bird, J P Bloomfield, D K Buckley, I N Gale, K Griffiths, A T Williams and P Williams

This report was prepared for Project FRACFLOW An EU funded 4th Framework Project

Bibliographic Reference

Bird M J, Bloomfield J P, Buckley D K, Gale I N, Griffiths K, Williams A T and Williams P 1999 Project FRACFLOW — Report on the Drilling and Completion of Boreholes, Timanstone, Kent British Geological Survey Report WD/99/42

BRITISH GEOLOGICAL SURVEY

BRITISH GEOLOGICAL SURVEY KEYWORTH NOTTINGHAM NG12 5GG UNITED KINGDOM

TEL (0115) 9363100 FAX (0115) 9363200

DOCUMENT TITLE AND AUTHOR LIST

Project FRACFLOW - Report on the Drilling and Installation of Boreholes, Tilmanstone, Kent

M J Bird, J P Bloomfield, D K Buckley, I N Gale, K Griffiths, A T Williams and P Williams.

CLIENT	CLIENT REPORT#	
Project FRACFLOW	BGS REPORT#	WD/99/42
	CLIENT CONTRACT REF	
	BGS PROJECT CODE	E80DGD10
	CLASSIFICATION	Open

	SIGNATURE	DATE		SIGNATURE	DATE
PREPARED BY	7001 1:00	12 Agg 99	CO-AUTHOR	Klintu	12/8/99
(Lead Author)	JAHoomfield	121160 (1	CO-AUTHOR	Dave Buchly	13/8/99
PEER REVIEWED		16/8/99	CO-AUTHOR	La Dheli	16/8/99
BY	Jan Ville	16/8/49	CO-AUTHOR	m z la	14 Aug 99
CHECKED BY			CO-AUTHOR	Peder Williams	23/8/99
(Project Manager or deputy)			CO-AUTHOR	AULL	24/8/99
APPROVED BY			CO-AUTHOR		
(Project Director or senior staff)			CO-AUTHOR	:	
APPROVED BY (Hydrogeology Group Manager)	APL		OS Copyright acknowledged		
Layout checked by	Marrall.	24/8/99	Assistant Director clearance (if reqd)		

BRITISH GEOLOGICAL SURVEY

The full range of Survey publications is available from the BGS Sales Desk at the Survey headquarters, Keyworth, Nottingham. The more popular maps and books may be purchased from BGS-approved stockists and agents and over the counter at the Bookshop, Gallery 37, Natural History Museum, Cromwell Road, (Earth Galleries), London. Sales Desks are also located at the BGS London Information Office, and at House. Edinburgh. Murchison The London Information Office maintains a reference collection of BGS publications including maps for consultation. Some BGS books and reports may also be obtained from HMSO Publications Centre or from HMSO bookshops and agents.

The Survey publishes an annual catalogue of maps, which lists published material and contains index maps for several of the BGS series.

The British Geological Survey carries out the geological survey of Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the surrounding continental shelf, as well as its basic research projects. It also undertakes programmes of British technical aid in geology in developing countries as arranged by the Department for International Development.

The British Geological Survey is a component body of the Natural Environment Research Council. Keyworth, Nottingham NG12 5GG

2 0115-936 3100

Telex 378173 BGSKEY G Fax 0115-936 3200

Murchison House, West Mains Road, Edinburgh, EH9 3LA

3 0131-667 1000

Telex 727343 SEISED G Fax 0131-668 2683

London Information Office at the Natural History Museum, Earth Galleries, Exhibition Road, South Kensington, London SW7 2DE

***** 0171-589 4090

Fax 0171-584 8270

☎ 0171-938 9056/57

St Just, 30 Pennsylvania Road, Exeter EX4 6BX ***** 01392-78312 Fax 01392-437505

Geological Survey of Northern Ireland, 20 College Gardens, Belfast BT9 6BS

2 01232-666595

Fax 01232-662835

Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB

***** 01491-838800

Fax 01491-692345

Parent Body

Natural Environment Research Council Polaris House, North Star Avenue, Swindon, Wiltshire SN2 1EU

***** 01793-411500

Telex 444293 ENVRE G Fax 01793-411501

Contents

1.	INTI	RODUCTION	
	1.1	Groundwater Contamination at the Tilmanstone Site	
	1.2	Site and Borehole Location	
2.	DRII	LING PROGRAMME AND BOREHOLE COMPLETION DETAILS	,
	2.1	Lower Venson Inclined (LVI) Borehole	-
	2.2	Lower Venson Vertical (LVV) Borehole	4
3.	PRE	LIMINARY BOREHOLE LOGS	•
4.	PAC	KER TESTING	(
	4.1	Packer Testing Procedure	(
	4.2	Packer Test Programme	8
5.	REFI	ERENCES	8

List of Figures

Figure 1	Location map with simplified geological map of East Kent showing the position of the Tilmanstone mine, the Chalk outcrop and the location of the Tilmanstone study site south west of the village of Eastry (from Headworth et al, 1980).
Figure 2	Plan of the Tilmanstone study site. The positions of the two new boreholes, LVI and LVV, are indicated as well as the location of the three pre-existing Environment Agency boreholes (boreholes 2, 3 and 4).
Figure 3	Schematic illustration of the construction and completion of borehole LVI.
Figure 4	Schematic illustration of the surface completion of borehole LVI.
Figure 5	Schematic illustration of the construction and completion of borehole LVV.
Figure 6	Schematic illustration of the surface completion of borehole LVV.
Figure 7	Schematic illustration of the packer string used during the testing of borehole LVV (after Price and Williams, 1989).
Figure A.1	Geophysical logs for Lower Venson Inclined (LVI) borehole.
Figure A.2	Geophysical logs for Lower Venson Vertical (LVV) borehole.
Figure A.3	Borehole water and centrifuged pore water conductivity profiles from LVV and borehole water conductivity profile from LVI. The figure also shows a normal probability plot of the two LVV conductivity data sets.
Figure A.4	Transmitter calibration

List of Tables

Table A.1	Lower Venson Inclined Borehole (LVI) drillers' log
Table A.2	Lower Venson Vertical Borehole (LVV) drillers' log
Table A.3	Lithological log of core recovered from Lower Venson Inclined (LVI) borehole.
Table A.4	Lithological log of core recovered from Lower Venson Vertical (LVV) borehole.
Table A.5	Diary of the three packer tests performed on the Lower Venson Vertical (LVV) borehole.
Table A.6	Results of packer tests giving calculated hydraulic conductivities for each of the packer tests.
Table A.7	Transmitter calibration

1. INTRODUCTION

This short technical note describes the drilling programme, preliminary logging activities, and hydraulic tests associated with two boreholes that have been drilled at the Tilmanstone Research Site, near Eastry, Kent as part of the FRACFLOW project. FRACFLOW is a project funded by the European Commission under the Environment and Climate Programme 1994–1998 (4th Framework Programme). The full project title is 'Contaminant transport, monitoring techniques, and remediation strategies in cross European fractured Chalk'. Partners in the project are the Geological Survey of Denmark (GEUS), Ben Gurion-University of the Negev (Israel), the British Geological Survey (BGS), Karlsruhe University (Germany) and the Hebrew University of Jerusalem (Israel).

The project is a three-year study, initiated in December 1997, with two overall objectives:

- to characterize flux and transport of organic and inorganic contaminants through fractured Chalk systems in Europe, and
- to identify generic contaminant monitoring and remediation strategies for various contaminant and hydrogeological scenarios in fractured Chalk across Europe.

These objectives are to be achieved by using a range of hydrogeological, geochemical, biological and petrophysical techniques at laboratory and field scale. As part of the study, two contaminated sites are being investigated in the UK. One at Tilmanstone in Kent and another at the Cambridgeshire research site. Two field sites will also be used in Denmark. These are at Sigerslev Quarry and the Drastrup test site.

This short report presents results from the initial stage of the development of the Tilmanstone site. The following sections briefly describe the nature of the contamination in the Tilmanstone area and give details of the borehole locations and drilling programme. These include information on the construction and completion of the two boreholes. There then follows a description of the logs that are available to date, including lithological logs and a range of geophysical logs. The report is concluded with a short description of three packer tests that have been performed on the vertical borehole at Lower Venson Farm.

The aim of the report is to collate all data collected to date for use by partners in the FRACFLOW project as well as University College London (who are also undertaking research at Tilmanstone). No attempt has been made to interpret the data at this stage. This report is to be used as a basis for which other investigations will be undertaken.

1.1 Groundwater Contamination at the Tilmanstone Site

Discharge of minewater from Tilmanstone colliery at the ground surface (onto unconfined Chalk) has resulted in an area of more than 30 km² of the Chalk aquifer becoming contaminated with saline water (Carneiro, 1996). Between 1907 and 1974 an estimated 318 000 tonnes of chloride were discharged, with only a limited amount, about 15% (Headworth et al, 1980) dissipated by stream flow. The plume is estimated to be about 100 m thick with a maximum concentration of 1000 mg/l (Carneiro, 1996).

1.2 Site and Borehole Location

The study area is located in the North and South Stream catchment, east Kent, south-east England, Figure 1, about 2.5 km north east of the discharge area at Tilmanstone. The boreholes were drilled on land owned by Southern Water Services Ltd, at the site known as Lower Venson Farm (TR 303 531). There are three earlier boreholes at the site that were drilled in the mid-1970s by the then National River Authority for the purposes of monitoring the development of the plume. The positions of the

new boreholes, in relation to the pre-existing boreholes at the site and other local features, are shown on the site plan, Figure 2.

Figure 1 Location map with simplified geological map of East Kent showing the position of the Tilmanstone mine, the Chaik outcrop and the location of the Tilmanstone study site south west of the village of Eastry (from Headworth et al, 1980).

Figure 2 Plan of the Tilmanstone study site. The positions of the two new boreholes, LVI and LVV, are indicated as well as the location of the three pre-existing Environment Agency boreholes (boreholes 2, 3 and 4).

Two boreholes were drilled at the Tilmanstone site, with four specific aims. These were as follows:

- To characterize the fracture distributions at the site. This information will be used in the development of conceptual and stochastic models (site specific and generic) of contaminant transport in fractured Chalk.
- To provide pore water and fracture water profiles. These will be used to investigate the present day distribution of chloride contamination at the site.
- To provide boreholes for hydrogeological investigations, such as packer tests, pumping tests and tracer tests. The boreholes will also be used to monitor plume development on completion of the hydraulic tests.
- To provide samples of chalk matrix and chalk fracture surfaces for use in the chemical and microbiological work packages of FRACFLOW.

One of the two boreholes at Tilmanstone was inclined so that there was a greater chance of sampling more sub-vertical fractures should they be present.

2. DRILLING PROGRAMME AND BOREHOLE COMPLETION DETAILS

2.1 Lower Venson Inclined (LVI) Borehole

The first borehole was drilled at an angle of 30 degrees to the vertical in a due north direction and is known as BGS LVI (British Geological Survey, Lower Venson Inclined). It was fully core drilled by the air flush rotary method from 0.5 metres below ground level (mbgl) to a "drilled length" of 100 m. It was terminated at a true depth of 86.6 mbgl, the base being 50 m north of the top of the borehole. Drilling commenced on 2 June 1999 with "TL" being reached on 24 June. Drilling details, including size of core and hole are available from the drilling log (see Table A.1 in the Appendix).

The borehole was completed on 8 July 1999. At the time of drilling, 26 m of 172 mm internal diameter (ID) temporary steel casing was inserted into the hole to keep it open against a collapsing/squeezing formation. On completion, a string of plastic casing 26.26 m long x 141mm ID was inserted down the inside of the steel casing and rested on a ledge down the borehole, provided by reaming during the insertion of the steel casing. The uppermost edge of the casing is c.0.1 mbgl. The steel casing was then withdrawn. A rubber retaining ring was forced down the annulus between the outside of the plastic casing and the borehole wall, to a depth of c.1.5 - 2 mbgl. A layer of bentonite pellets was inserted down the annulus for a few centimetres and a small quantity of water added to allow the pellets to go off and expand. A grout mix of liquid bentonite/cement powder and water was then inserted down the annulus to fill it to just below the top of the casing. A steel borehole wellhead assembly consisting of a tube (of 205mm ID) and cap was then added. The tube was placed over the plastic casing and pushed into the grout before setting, the top of the steel and the top of the plastic being co-incidental. A lockable push-on type cap was then placed over the steel tube and locked with a padlock through matching rings in the tube and cap. Figure 3 illustrates the borehole construction/completion. Note that the casing below a depth of c.1.5-2 mbgl is not grouted and is in contact with collapsed formation and this may be regarded as uncased hole in some circumstances.

The surface completion of the inclined borehole consists of a small, shallow pit covered with a standard, medium duty (5 ton) galvanised steel manhole cover in a plastic frame, set in concrete. The pit may be large enough and deep enough to enable a small piece of equipment e.g. logger box, to be installed in it. This surface completion is intended to be temporary until such time as other project participants provide a replacement structure. Figure 4 is a schematic illustration of the surface completion.

2.2 Lower Venson Vertical (LVV) Borehole

A second borehole was drilled vertically and is known as BGS LVV (British Geological Survey, Lower Venson Vertical). It is sited 30 m along the drilled line of LVI in a northerly direction and 10 m to the east of the borehole line. It was fully core drilled by the air flush rotary method from 0.5 mbgl to a drilled depth of 100 m. Drilling commenced on 25 June 1999 with TD being reached on 7 July. Drilling details e.g. size of core, hole etc., are available from the drilling log (see Table A.2 in the Appendix).

Figure 3 Schematic illustration of the construction and completion of borehole LVI.

Figure 4 Schematic illustration of the surface completion of borehole LVI.

The borehole was completed on 14 July 1999. At the time of drilling, 8 m x 172 mm ID temporary steel casing was inserted into the hole to keep it open. On completion, a string of plastic casing 14.56 m long x 141 mm ID was inserted. The uppermost edge of the casing was at approximately ground level. Unlike the inclined borehole, it was not possible to insert the plastic casing down inside the steel casing as there was no way of holding the plastic whilst the steel was withdrawn. In this case the steel casing was withdrawn, the borehole was reamed out to c.200 mm diameter to the same depth as the plastic casing string length, and the plastic casing inserted. A rubber retaining ring was forced down the annulus between the outside of the plastic casing and the borehole wall to a depth of c. 1.5-2 mbgl. A layer of bentonite pellets was inserted down the annulus for a few centimetres and a small quantity of water added to allow the pellets to go off and expand. A mix of liquid bentonite/cement powder and water was then inserted down the annulus to fill it up to just below the top of the casing. A steel borehole wellhead assembly consisting of a tube (of 205 mm ID) and cap was then added. The tube was placed over the plastic casing and pushed into the grout before setting, the top of the steel and the top of the plastic being co-incidental. A lockable push-on type cap was then placed over the steel tube and locked with a padlock through matching rings in the tube and cap. Figure 5 illustrates the borehole construction/completion. Again, note that the casing below a depth of c.1.5-2 mbgl is in contact with collapsed formation and this may be regarded as uncased hole in some circumstances.

Unlike the surface completion of the inclined borehole, there is no small, shallow pit at the vertical borehole. The wellhead completion is at ground level and is covered with a standard, medium duty (5 ton) galvanised steel manhole cover in a plastic frame, set in concrete. This surface completion is intended to be temporary until such time as other project participants provide a replacement structure. Figure 6 is a schematic illustration of the surface completion.

Figure 5 Schematic illustration of the construction and completion of borehole LVV.

Figure 6 Schematic illustration of the surface completion of borehole LVV.

3. PRELIMINARY BOREHOLE LOGS

Geophysical logs of borehole LVI and LVV were performed on the 28 June 1999 and 8 July 1999 respectively. These included caliper, gamma, resistivity, magnetic susceptibility, temperature, SP, fluid conductivity and flowmeter logs. The logs are presented in Figures A.1 and A.2 in the appendix. Also in the appendix, Tables A.3 and A.4 are the lithological logs of the core from the inclined and vertical boreholes respectively.

During drilling a number of water samples were obtained from various depths. These have been analysed for electrical conductivity (SEC). In addition, material from core from LVV was centrifuged to obtain samples of pore water for chemical analysis of selected major ions. Electrical conductivity measurements have been obtained for these pore water samples. The conductivity profiles are presented in Figure A.3 in the appendix.

4. PACKER TESTING

Two complete packer tests and one partial packer test were performed on borehole LVV on the 13th and 14th July, the inclined borehole, LVI, was not packer tested. The packer string that was used is as described in Price and Williams (1989) and is shown schematically in Figure 7.

4.1 Packer Testing Procedure

The following procedure was adopted for the packer tests

(1) The packer string was lowered to the appropriate depth. This was calculated using the measurements from the top of the interval to the top of the packer string.

- (2) The position of packer string was then confirmed by measuring length of drill rods 'sticking-up' above datum (in the case of these tests the datum was ground-level).
- (3) The water level in the borehole was then measured and monitored for the duration of the test.
- (4) A transmitter was used to measure water level in the test interval. At this stage of the test this was the same as that in the borehole.
- (5) The pressure required to fully inflate packers was calculated (about 6 bars above the pressure in the test interval). However, this did not need to be exact and it was possible to use the approximation of 1 bar for each 10 m of water above test interval.
- (6) When the water level and transmitter reading were steady the packers were inflated slowly. The water level dipper was left in the borehole just above the water table so that it could then give an audible warning if the inflation failed and the gas started air-lifting the hole.
- (7) During inflation of the packers the water level, transmitter readings and inflation pressure were monitored. When the packers sealed there was usually a small but significant change in these readings.
- (8) When all the readings were stable the pump was started. The water level, transmitter reading and flow meter were continually monitored during pumping. The water level in the borehole should not change too much (if it did this would indicate packer leakage). When stable flow rate and transmitter readings were achieved the results were noted and the pump rate was changed. This step was repeated a number of times.
- (9) Before turning the pump off at the end of the test a water sample was taken.
- (10) The pressure readings and water level were monitored after the pump was finally switched off and when the readings were stable the packers were deflated and the packer string moved to a different interval or removed from the borehole.

Figure 7 Schematic illustration of the packer string used during the testing of borehole LVV (after Price and Williams, 1989).

4.2 Packer Test Programme

The first interval tested was between 30.18 and 33.05 mbgl. The criteria for selection of the interval were relatively smooth borehole walls and an absence of flints, to enable a good seal and to reduce the possibility of puncturing the packer. This position was chosen on the basis of the caliper log (Figure A.2) and the lithological log (Table A.4). The diary of the first test interval is given in Table A.5. The test was started with the flow control valve fully open and the pressure stabilized within 15 minutes. The rate was then lowered to 12 l/min and a second stable pressure reading obtained. During the test the water level in the borehole changed by 2 cm compared to 9 cm in the test interval. The calculated hydraulic conductivity is shown in Table A.6.

The second test was in the interval 45.48-48.35 mbgl. The position was chosen as it was suitable for a packer test and was at the limit of the pump cable. The timetable and results are shown in Tables A.5 and A.6. Note that there was some loss of pressure in the packers during the later stages of the test.

The third test was conducted in the interval 75.98–78.85 mbgl. However, this test was not successful, as it was not possible to inflate the packers sufficiently to give a good seal in the borehole. As the drawdown in the borehole (4 cm) was similar to that in the test interval (7 cm) it is felt that the permeability calculated in Table A.6 for the third test should not be relied upon. Nevertheless, the interval was pumped and a water sample was taken.

The transmitter used in the packer tests was calibrated against a standard transducer. The calibration curve is shown in Figure A.4 and the data listed in Table A.7. Also shown in Figure A.4 are the transmitter readings taken at the same time as water level readings taken in the open hole. The linearity of the transmitter is seen to be good.

5. REFERENCES

Carneiro J 1996. The evolution of the Tilmanstone plume. *Unpublished MSc thesis*, University College London.

Headworth H G, Puri S and Rampling B H 1980. Contamination of a Chalk aquifer by mine drainage at Tilmanstone, East Kent, UK. Q. J. Eng. Geol., 13, 105-117.

Price M and Williams A 1989. Using double-packer system to determine hydraulic conductivity and water quality in the alluvium of the Indus Valley, Pakistan. BGS Technical Report WN/88/19.

Figure A.1 Geophysical logs for Lower Venson Inclined (LVI) borehole.

Figure A.2 Geophysical logs for Lower Venson Vertical (LVV) borehole.

Figure A.3 Borehole water and centrifuged pore water conductivity profiles from LVV and borehole water conductivity profile from LVI. The figure also shows a normal probability plot of the two LVV conductivity data sets.

Figure A.4 Transmitter calibration

Table A.1 Lower Venson Inclined Borehole (LVI) drillers' log

Comment			Rig set-up at borehole site to drill at 30 degrees to vertical. Sizes: Rock roller = 159 mm (6.25")	Core bit = 106 mm (4.17") id, 145 mm (5.71") od = SWF Casing = 172 mm (6.77") id, 195mm (7.68") od	ller	Chalk ending on flint	Rock rollered through flint	2 m casing inserted	Chalk and flint	Chalk and flint	4 m additional casing inserted - total now 6 m	Chalk and flint	Chalk and flint	m Chalk and flint First water inflow at 13 m Volume increases from 13m	Chalk and flint	Fint	Broken flint	Chalk and flint	Due to poor condition of rock, with partial borehole collapse and squeeze, borehole reamed and cased to 26m and flushed.
Cond.	hS/sec												2170 (13 m)	No sample at 16m	2650 (19 m)	3010 (22 m)			
Flow	level (mbd)	,																	
Water	level at	end of day (mbd)															9.10	9.50	
Core	recovery				%0	10%	%0		%08	75%		20%	70%	%08	75%	3%	20%	20%	
Core run	(mbd) NB. to	obtain true depth below GL multiply by 0.866			0-0.5	0.5-1.5	1.5-2		2-5	5-7		7-10	10-13	13-16	16-19	19-22	22-25	25-26	
Depth	at end of day	(pqu)			10								22				76		
Date			2/6/99		3/6/99								4/6/99				66/9/L		_

ING agreed to re-circulate water because it would not go down BH2 quickly enough	3320 (29 m) Chalk and flint	3510 (32 m) Chalk and flint	3400 (35 m) Chalk and flint	No drilling – driller called away	Pumping drilling water down inclined borehole after each core run (tanks are full after each run).		3710 (39.35 m) 37.35-37.70 fractured flint, 37.70-39.35 very soft Chalk	3800 (42.35 m) Chalk with flint nodules and soft bands	3860 (45.35 m) Chalk with flint nodules and soft bands.	3420 (48.35 m) Chalk.	Bob Perry returned. One run only - compressor breakdown		3410 (53.35 m) Chalk	3420 (56.35 m) Chalk	3410 (57.35 m) Chalk	3450 (60.35 m) Chalk/flint	3410 (63 m) Chalk	3380 (66 m) Chalk	3400 (69 m) Chalk/flint.		dismantle barrel to free. Poor recovery due to flints	3350 (71 m) Chalk/flint	3340 (71.6 m) Short run ended on flint	3230 (73 m) Chalk	3200 (76 m) Chalk
	332(351(340(77	365(371(380(386(342(341(342(341(345(341(338(340(335(334(323(320(
	78							-		 0		51							0						
	9.20		9.00			9.20	9.00	9.10	9.00	9.10/9.40		9.20			9.30	9.10		9.35	9.10/9.10			9.10	9.35	9.14	
	17%	75%	20%			100%	20%	100%	%86	%08		20%	33%	100%	100%	85%	%02	75%	35%			%06	%08	75%	85%
-	26-29	29-32	32-35			35-37.35	37.35-39.35	39.35-42.35	42.35-45.35	45.35-48.35		48.35-50.35	50.35-53.35	53.35-56.35	56.35-57.35	57.35-60.35	60.35-63	99-69	69-99			69-71	71-71.6	71.6-73	73-76
	35			35	39.35			45.35		48.35		57.35				99			69		:	71.6		08	
	66/9/8			66/9/6	66/9/01			11/06/99		14/06/99		15/06/99				16/06/99			17/06/99	-		18/06/99		51/06/99	:

Chalk	Chalk	Chalk/flint	Chalk/flint	Challs/flint	Chalk/flint	Chalk/flint	Chalk/flint	Chalk	Chalk/flint	Chalk.	Drill rods inserted, borehole flushed prior to geophysical logs	being run by BGS. END OF BOREHOLE	Borehole completed. 27m x 141mm ID plastic casing inserted.	26m temporary casing removed. Plastic casing grouted with	bentonite + bentonite/cement to c. 1.5-2m bgl.
3220 (77 m)	3200 (80 m)	3120 (82 m)	3150 (84.5 m)	3130 (87.5 m)	3250 (90 m)	3170 (92 m)	3140 (95 m)	3150 (97.5 m)	3140 (98.5 m)	3200 (100 m)			MANAGEMENT STATE OF THE STATE O		
	9.40	9.20			9.40	9.30			9.30	9.30/9.35					
100%	75%	20%	100%	%56	%02	%08	%08	%06	100%	100%					
76-77	77-80	80-82	82-84.5	84.5-87.5	87.5-90	90-92	92-95	95-97.5	97.5-98.5	98.5-100					
		06				5.86				100					
		22/06/99				23/06/99				24/06/99			66/L/8		

Table A.2 Lower Venson Vertical Borehole (LVV) drillers' log

			T	T-	-T		\top		Т	T	T	Τ	<u> </u>		<u> </u>
Comment	Rig moved from inclined borehole site and set up at vertical borehole site. Rock rollered through topsoil.	Chalk and flint	Chalk	Chalk	Borehole reamed out, 8m casing inserted	Chalk	Chalk	Rock rollered through flint	Chalk	Chalk	Chalk and flint	Chalk and flint	Chalk and flint	Flint causing poor recovery of Chalk	Rock rollered through flint
Cond. µS/sec									2980	2990	3120 (19 m)	3120	3230	3370	
Flow level (mbd)															
Water level at start and end of day (mbd)										8.45	8.30				
Core	%0	35%	75%	%0%		70%	%56	%0	%56	%58	20%	20%	%02	5%	%0
Core run (mbd)	0-0.5	0.5-3	3-5	5-8	***************************************	8-11	11-13	13-14	14-16	16-18.5	18.5-19.5	19.5-22.5	22.5-24.5	24.5-27.5	27.5-28
Depth at end of day (mbd)	0.5	18.5									35.5				
Date	25/6/99	28/6/99									29/6/99	-			

Chalk	Chalk	Chalk and flint	Chalk and flint	Chalk and flint	Chalk and flint	Chalk and flint	Chalk and flint	Chalk and flint	Chalk	Chalk	Chalk	Chalk	Chalk	Chalk and flint	Chalk	Chalk and flint	Chalk	Chalk and flint	Chalk (soft)				
3320	3330	3360	3380	3340	3400	3410	3400	3400	3390	3380	3360	3360	3340	3380	3350	3260	3220	3090	3130	3110		3110	3110
		8.50	8.40						8.50	8.45				8.50	8.45	8.50	8.45			8.35	8.45		
%08	%08	85%	%06	35%	75%	%59	%5%	%5%	%09	%06	75%	%58	%08	75%	85%	%08	100%	%08	75%	75%	%08	%08	%59
28-31	31-33	33-35.5	35.5-38.5	38.5-41.5	41.5-44	44-47	47-49.5	49.5-52	52-55	55-57	57-59	59-62	62-65	65-66.5	66.5-69.5	69.5-72	72-75	75-77	61-11	79-81	81-82.5	82.5-83.5	83.5-86.5
			55							66.5					72		81				5.06		
		***************************************	30/6/99							1/7/99				Water	2/7/99		66/1/9				66/L/9		

		86.5-88.5	75%		3080	Chalk
		88.5-90.5	%02	8.45	3170	Chalk (very soft)
66/ <i>L</i> // <i>L</i>	100	90.5-93.5	33%	8.45	3140	Chalk with (mainly) flint
						Driller recorded WL as 9.45m but assumed to be 8.45m
		93.5-96.5	%0		3050	No recovery due to flint being forced down borehole by drill bit.
		76-5-97	%0	8.45		Rock rollered through ?flint. Borehole cleaned out.
						Driller recorded WL as 9.45m but assumed to be 8.45m
		97-100	%05		3060	Chalk and flint. Poor recovery - flint damage of plastic liner
						Rock roller inserted to base of hole. Air circulated to clean out
						borehole. END OF BOREHOLE.
66/L/8					3230	Geophysical logs. Borehole pumped for c.2.5 hours at c.17 m3/hr.
					pedund)	Discharge started "milky" but had cleared by 90 minutes
					sample)	pumping. Water level at 1530 hrs (start of pumping) = 8.54 mbgl.
						Maximum drawdown = 0.65m, water level rose during latter stage
						of pumping as hole developed.
13/7/99						Packer testing borehole for transmissivity values and discrete
						water sample collection. 8m temporary casing removed. c.15m x
						141mm diameter plastic casing inserted from GL and bentonite
						and bentonite/cement grouted in from GL to c. 2mbgl. Wellhead
						assembly and manhole cover installed.

Table A.3	Lithological log of core recovered from Lower Venson Inclined (LVI) borehole.

Lithological log for Lower Venson Farm inclined borehole

	1	1				1
Sample	Depth	Date	Core recoverv % Fracture	Graphic log	Descriptive log	Comments
No samples taken	0	3/6/99	0	Core losses		Temporary casing to 6 m depth. Blue nodular flint – ruined drill bit, no recovery
	1					Drill bit used to rock roll between 1.5 and 2 m.
	2			9 00	Unstructured creamy white chalk rubble with broken flint. Roots and soil and small fracture surfaces throughout the interval.	
	3					
	4			4 4 0	Unstructured chalk putty with small broken flint fragments.	60 cm core loss assigned at base
	5		80	Sign.	Chalk rubble with small clasts (< 3 cm), mainly drilling induced. Some irregular natural fractures heavily stained red with soil and roots on their surface	
	6					40 cm core loss assigned at base

British Geological Survey Fracflow July 1999

¹

 $^{^{\}ast}$ "Depth" does not take into account the inclination of the borehole and values are therefore drilled lengths not actual depths.

Sample	Depth	Date	Core	Fracture	Graphic log	Descriptive log	Comments
	7		49		Ŗ,	Chalk putty passing into chalk rubble	
	8						1.52 m core losses assigned to base of run
	9						
	10	4/6/99	77	46 0		10.0 –10.75 unstructured chalk rubble with broken flint fragments. Nodular flint at base. 10.75 – 10.95 single chalk block bounded by inclined fracture on upper surface	
	11				8	(with orange staining). 10.9 – 13.0 chalk rubble with broken flint fragments.	
	12						70 cm core loss at end of the run
	13		77	-	8xx	As above. Light orange stained fracture parallel to the core axis at 13.45 m	

July 1999

 $^{^{\}star}$ "Depth" does not take into account the inclination of the borehole and values are therefore drilled lengths not actual depths.

Lithological log for Lower Venson Farm inclined borehole

Sample	Depth 4	Date	Core	Fracture	Graphic log	Descriptive	Comments
	15				Ø •	Nodular flint at base	70 cm core loss at base after flint horizon
	16		60		000	Chalk rubble with broken flint fragments predominant in the top 20 cm. Good fitted fabric to the chalk rubble between 16.2 and 16.8 but fractures are probably	
	17				80	drilling induced. Chalk rubble	
2	20		6		Ç,	Flint fragments	Very poor recovery.
2	20						

British Geological Survey Fracflow July 1999

 $^{^{\}star}$ "Depth" does not take into account the inclination of the borehole and values are therefore drilled lengths not actual depths.

Sample	2 Depth	Date	Core recovery %	Fracture	Graphic log	Descriptive	Comments
	22	7/6/99	13			Large blue nodular flint	
	23					Markabar terretiya marka santa. 1920 - 1 a marka m	
	24						
	25		52		0 ,	Chalk putty with large nodular blue flint and flint fragments	
	26	8/6/99	17				Hole collapsed at 26 m. Had to be reamed out and cased. Core losses therefore assumed to occur
	27			1.00.00			at the top of the run

⁴

 $^{^{\}star}$ "Depth" does not take into account the inclination of the borehole and values are therefore drilled lengths not actual depths.

,		···					
Complo	8 Depth	Date	Core recovery %	Fracture	Graphic log	staining from 0 to 20 cm	Comments
					595	passing into soft white chalk. Trace fossils present. Last 21 cm are chalk and flint rubble	
	29		67			29.0-29.55 blocky, cream- white chalk with trace fossils. Iron oxide staining in the matrix. Soft. 29.55-29.85 fine chalk rubble.	
	30					29.85-30.30 cream-white chalk with trace fossils 30.30-31.0 chalk rubble with blue flint fragments passing into chalk putty near base. Orange stained.	
	31						1 m core loss at base of the run
	32		55			Soft, creamy-white chalk rubble with blue flint fragments. Orange staining in the matrix associated with trace fossils. Top 35 cm is	
	33					fossiliferous - contains shelly fragments (inoceramids?) 33.20 Large nodular flint. 33.40 Incipient patterned chalk.	1.34 m losses assigned at end of the run where the chalk becomes more rubbly.
	34						

^{* &}quot;Depth" does not take into account the inclination of the borehole and values are therefore drilled lengths not actual depths.

		T	Τ	T	T	T	
Sample	Depth	Date	Core recovery %	Fracture	Graphic log	Descriptive log	Comments
	35	10/6/99	100	/	552	flint passes into soft white chalk, blocky fractured (probably drilling induced – no mineralisation on surfaces). Occasional	
	36				00 U	trace fossils with infrequent orange staining passing into chalk rubble at end of the run.	
	36.4		100			36.4-36.6 Soft, white chalk with trace fossils. Passes into 35 cm of broken chalk (drilling induced). 20 cm of crumbly chalk putty.	
	37		d to to contain to the to the contain to contain to		÷.		
	37.35		18				
	38			N 46 11 (N 46 11) N 46 11 (N 46 11)			1.64 m core losses assumed to have occurred above the flint horizon.
	39				(1)	35 cm thick band of large blue flint fragments	
	39.35	11/6/99	98		رخ	Grey-white chalk with bedding defined by indistinct marls. Trace fossils and orange staining	
pepininining apada, anna anga pagupaga, anga pagapaga anna anna	40			A Table A Table B		in matrix. 39.95 – 40.25 blocks separated by rubbly chalk. At 39.9 bedding plane fracture. Well-developed flaser	
300 300 100 100 100 100 100 100 100 100	41		Marie			marls at 41.1 and 41.25. Blocky fractured (drilling induced). Flint fragments at 40.30 and 40.65.	4 cm loss at base
	41.35		97			Soft white chalk. Trace fossils in matrix. Inclined fracture at 41.95 (25°)	

British Geological Survey

Fracflow July 1999

low

^{* &}quot;Depth" does not take into account the inclination of the borehole and values are therefore drilled lengths not actual depths.

Sample	Depth	Date	Core recovery %	Fracture	Graphic log	Descriptive log	Comments
	42				en fo	Manganese spotting, calcite mineralisation and clay coating on fracture. Matrix heavily orange stained between 41.6 and 41.7 in association with thin flaser marls. 41.91- 42.06 Nodular flint and flint fragments 42.31-42.35 Crushed blue flint.	7 cm core loss at base
	43.35 44 45		99		800	Slightly harder white chalk. Fractured (drilling induced). Chalk rubble at base. Thin flaser marls at 43.93, 44.02, 44.17 & 44.43. 3 cm thick marl at 44.64. At end of 1 st m core broken along marl surfaces- evidence of shearing.	3 cm loss at base
	45.35 46 47	14/6/99	73		2000	Top 30 cm chalk rubble with large broken blue flint fragments. 45.3-45.7 chalk rubble. 45.7-46 white chalk with orange staining in the matrix. Thin marls at 46.2, 46.45, 46.85, 46.9 and 47.2. 47.2 blue flint 47.25-47.35 relatively hard chalk. 47.35-47.55 chalk rubble	80 cm core losses assigned to base
	48 48.35	15/6/99	42		رُون	To 48.7 putty chalk with fine flint fragments &	

July 1999

^{* &}quot;Depth" does not take into account the inclination of the borehole and values are therefore drilled lengths not actual depths.

	7			T			
Sample	epth 64	Date	Core	Fracture	Graphic log	Passing into soft chalk rubble. Last 22 cm of run - putty chalk.	out O 1.17 m loss at base
	50			Andrew Control of the			
	50.35		34		3,	Fine-grained gravel of crushed flint (orange stained) primarily due to drilling damage might indicate open bedding	
	51					plane fracture associated with flint. Moderately hard white chalk with drilling induced fractures. Trace and body fossils with local orange staining in matrix. At 51.2, small flint cast in trace fossil burrow. Last	
	52					few cm's, unstructured chalk rubble.	1.97 m core loss
							at end of run
			98		67 (-)	Massive, moderately hard white chalk. Some orange staining of the matrix. Trace fossils present	
	54				53	throughout. Marl at 53.98. Large nodular flint at 54.65.	

Lithological log for Lower Venson Farm inclined borehole

Sample	Depth	Date	Core recovery %	Fracture	Graphic log	Descriptive log	Comments
	55 56			and manufact of the Wildows November 1	3	Creamy white chalk with orange staining in the matrix. Heavy staining at 55.75 associated with vuggy cavity. Indistinct marl from 55.7 to 55.75	
	56.35		100			Drilling induced flint rubble	5 cm core loss at base.
			100			Drilling induced flint rubble between 56.6 and 56.85. Drilling induced blue flint rubble from 56.95 to 57.35.	
	57	16/6/99	76			57.35 –57.5 and 57.9 – 58 nodular flints. Chalk as above with trace fossils.	
	58					Marl at 58.4, 59, 59.07 & 59.25. Chalk and flint rubble 58.7-58.95. Patterned chalk below marl at 59.25.	
	59					Chalk rubble at base	
	60						72 cm loss at base
	60.35 61		56			Moderately hard white chalk. Trace fossils with iron staining up to 61.15. Passes into soft, white chalk and flint rubble.	1.17 m loss.

British Geological Survey Fracflow July 1999

Sample	S Depth	Date	Core recovery %	Fracture	Graphic log	Descriptive	Comments
	63		68		\$3	Top 10 cm, nodular flint, passes into massive moderately hard creamy white chalk. Orange staining in the matrix with trace and body fossils.	
	64					64-64.15 putty chalk with blue flint rubble passing into moderately soft, creamy white chalk with orange staining in the matrix. Marl at 64.6. From 64.6 to 64.75, hard	
	65					extensively orange stained chalk (hardground?) 64.75 to end of run, chalk rubble and unstructured chalk containing broken flints and orange stained fragments.	95 cm loss at end of run
	66		39		\$ 3	Predominantly chalk rubble and flint passing into creamy white chalk with trace fossils. Fine gravel at base containing crushed flints – may mark an open bedding horizon associated with flints.	
	67		To American Community	an Maria da	793		1.83 m losses assigned at end of run.
	68						

Sample	Depth	Date	Core recovery %	Fracture	Graphic log	Descriptive log	Comments
	69	18/6/99	88			To 69.10, nodular flint. Moderately hard, creamy white chalk with trace fossils passing into locally heavily orange stained, hard, creamy white chalk	
	70				943	with trace fossils from 69.55 to 70.5 (hardground) 70.5 to 70.65 broken, nodular flint.	24 cm loss at base
	71		68		100	Broken blue nodular flint	19 cm lost
		21/6/99	61		Z	Well-fractured (drilling induced?) chalk rubble with crushed flint at 72.05.	
	72					72.25 to 72.45 soft creamy white chalk with trace fossils.	55 cm loss at base
	73		68			Chalk putty to 73.1. 73.1 to 73.6 soft, white chalk with trace fossils and orange staining in the matrix. 73.6 to 73.88 unstructured chalk putty	
	74			William Marine		and rubble. Last 10 cm flint rubble.	47 cm loss at base
			100		-	Chalk putty to 74.6. 74.6 to 76, soft, white chalk with trace fossils and orange staining in the	
	75			- 100mm 100mm 52 A 100mm		matrix. Between 75 – 75.35 chalk rubble in soft chalk putty matrix. Marl (?) at 75.75.	

¹¹

 $^{^{\}star}$ "Depth" does not take into account the inclination of the borehole and values are therefore drilled lengths not actual depths.

[1		1	·····	T		
Sample	Depth	Date	Core recovery %	Fracture	Graphic log	Descriptive log	Comments
	76		100			Finely crushed flint at top of run. 76 – 76.25 hard, orange – white chalk (hardground) with orange staining in the matrix passing into nodular chalk. Occasional trace fossils.	
	77		69	/	J-17	Moderately hard grey- white chalk with steeply inclined fracture plane with slickensides. Top 25 cm heavily fractured. 77.25 to 77.9 hard, grey-	
	78					white nodular chalk with incipient marl seams at 77.38 and 77.45. 77.9 to 78, flint rubble.	
	79					Heavily fractured creamy white chalk in chalk slurry (drilling induced?) Small marls at 78.35 and 78.85	92 cm loss at base
	80	22/6/99	100	/		Finely crushed orange- stained flint at top of run possibly indicating open or enlarged bedding plane fracture. Relatively massive creamy white chalk with	
	81				3	trace fossils and orange staining in the matrix passing into fractured chalk. Marl at 80.05. Passes into grey nodular chalk with trace fossils and orange staining. Small tabular flint at 81.6	
	82		59	break	<	Relatively hard, massive, orange-white chalk with trace fossils and orange staining in the matrix. Small nodular flint at 82.12	Drilling induced fractures?

¹²

 $^{^{\}star}$ "Depth" does not take into account the inclination of the borehole and values are therefore drilled lengths not actual depths.

Sample	83 84	Date	Core recovery %	Fracture	Graphic log	Descriptive	Comments 1.03 m loss at base
			100	~~~~~		Top 20 cm and between	
	85			HICAROLIPANII IIC. u		84.83 and 84.93 massive, blue nodular flint. Creamy white chalk. Between 84.95 and 85.1- grey-white nodular chalk passes into massive, hard orange-white chalk (hardground). Thin marls at 86.7 and 86.8. Orange	
M LEBALLISTAN	86				——————————————————————————————————————	staining and trace fossils.	
	87		1.77		<u>΄</u>	86.9 – hard grey-white nodular chalk with 1 cm thick marl at 87.3. Small blue flint at 87.45 Chalk and flint rubble to	
	88		of 2.5			87.9. 87.9 to 88.05 creamy white hardground with marl at 88.02. Passes into grey nodular chalk with orange staining in the matrix. 88.2 to end, finegrained chalk rubble (drilling induced?)	
	89						83 cm core loss assigned to base of run

British Geological Survey Fracflow July 1999

 * "Depth" does not take into account the inclination of the borehole and values are therefore drilled lengths not actual depths.

	1	T	тт		η	1	1
Sample	Depth	Date	Core recovery %	Fracture	Graphic log	Descriptive log	Comments
	90	23/6/99	87			Top 10 cm creamy white nodular chalk with small shell fragments passes into relatively massive nodular chalk with occasional small blue	
	91					nodular flints. At 91 m large bi-valve fossil. 91.3 blue nodular flint. 91.3 to end, grey chalk hardground.	27 cm loss
	92		78			92 to 92.2 large blue nodular flint. 92.2 to 92.4 hardground passes into nodular chalk. At 92.8, 2 to 3 mm thick marl band. Large flint at 93.6.	
	93				4	Towards run end passes into chalk rubble.	
113011	94			Munistra - Argunalada			67 cm loss
	95		92		0.00	Chalk rubble with small flint fragments up to 95.25. Relatively massive greywhite nodular chalk with 5 cm thick marl band at 95.5. Nodular chalk has marl-rich matrix.	
	96				C)	96 – 96.05 flint, passes into hard grey chalk with trace fossils and orange staining in the matrix. Relatively massive. At 97, Soft dark grey marl with localised orange staining	

British Geological Survey Fracflow July 1999

14

Samole	Depth 97	Date	Core recovery %	Fracture	Graphic log	Descriptive	Som loss
	98		96			97.5 – 98 creamy white chalk with orange stained matrix and occasional small flint fragments. 98 – 98.2 nodular grey chalk passing into soft, brown chalk rubble with a sand-like texture (high	
	99	24/6/99	100		02,04	silica content) Relatively massive, moderately hard grey- white nodular chalk to 99.9. 99.9 to 100, chalk and flint rubble (drilling induced?)	END OF
	100						BOREHOLE

British Geological Survey Fracflow July 1999

¹⁵

^{* &}quot;Depth" does not take into account the inclination of the borehole and values are therefore drilled lengths not actual depths.

Table A.4	Lithological log of core recovered from Lower Venson Vertical (LVV) borehole.

Sample	Depth	Date	Core recovery %	Fracture	Graphic log	Descriptive log	O Comments
0.5-0.8	0	28/6/99	32			0.5 to 0.8 reddy brown clay soil with flint fragments. 0.8 to 0.95 nodular flint in soft putty chalk. 0.95 to 1.3 very soft putty chalk	starts at 0.5 m. Only 80 cm core in first 2.5 m
0.8-1.3	4				a con see pionedia.		
	2						
3.0-3.5 3.5- 4.0	3		70		/ g	Orange-stained unstructured, very soft chalk with occasional flint fragments up to 4.0 m.	1.4 m recovery from 2 m interval
4.0-4.5	4			100 - 1		Deep brown-orange staining on irregular fracture surfaces.	
5.0-5.5 5.5-6.0	5	73			96	Very soft unstructured creamy white chalk with dark orange-brown heavily stained fine-grained chalk gravel at 5.45 m. 5.45-5.75 possible flow or recharge horizon.	2.2 m of 3 m core
6.0-6.5 6.5-7.0	6				1350 1350	Unstructured chalk rubble down to 6.1 m. 6.1 to end of run: soft, white blocky chalk with drilling induced fracturing. 5.8 to 6.0 extensive orange staining on fracture surfaces. Relatively thick clay drapes.	

			T	T		<u> </u>	Т
Sample 7.0-7.2	2 Depth	Date	Core recovery %	Fracture	Graphic log	Descriptive log	students O 80 cm core loss at base
8.0-8.5 8.5-9.0	8		60		0,0	Unstructured chalk rubble with flint fragments at 8.1, 8.6 and 8.7	1.8 m recovery from 3 m run
9.0-9.5 9.5-9.8	9			an est a distribution (A. S.		9.65-9.8 soft chalk putty	1.2 m core loss at base
	10						Dase
11.0-11.5 11.5-12.0	11		94		5.2	Soft white chalk with trace fossils and orange staining in the matrix. Blockily fractured (drilling induced?). 11.35-11.55 and 12.25-12.45 chalk	1.88 of 2 m
12.0-12.5 12.5-12.9	12					rubble. Fracture surfaces (11.35-11.55) orange- stained with Mn oxide spotting. Small broken flint fragments in rubble.	
	13		0				No core

eldwess 14.0-14.5 14.5-15.0	14 Depth	Date	Core cecovery %	Fracture	Graphic log	Soft creamy white chalk. 14 to 14.75 Blocky fractures (drilling induced?). 14.75-16.0 blocks of chalk in chalk putty (drilling induced). Flints at 15.4	Comments
15.5-16.0 16.0-16.5	16		88			As above with flint fragments at 17.1, 17.4 and 18.1	2.2 of 2.5 m run
17.0-17.5 17.5-18.0	17				0		
18.0-18.2	18				P		30 cm loss at
18.5-18.9	18.5 19	29/6/99	30		00	Flint. No chalk core	base
19.5-20.0	19.5	53				19.5-19.75 large, blue and nodular. Small flints at 19.9, 20.7. Between 20.15	1.6 of 3 m
20.5-21.1	20					and 20.5, and 20.8 and 21.05 moderately hard, creamy white chalk with trace fossils and orange staining in the matrix.	

	7	1		1	T		
Sample	Depth	Date	Core recovery %	Fracture	Graphic log	Descriptive log	Comments
	21				-		1.4 m loss at base
SOUTH AND	22	The state of the s					
22.5-23.0			65			22.5 to 22.65, 22.95, 23.35 and 23.55 large nodular blue flints.	1.3 of 2 m
23.0-23.4 23.4-23.8	23					Creamy white chalk with trace fossils and orange staining in matrix. Extensive drilling induced damage 22.5 to 23 & 23.5 to 23.8.	
	24		N Hari Ta Mandada A Arina 1 I Ini an				70 cm loss at end of run 20 cm
					Tours to be substituted by a state of a straight		recovery
	25		6		and the state of t		
	26						
	27						
			0				

	T		T				
Sample	Depth	Date	Core recovery %	Fracture	Graphic log	Descriptive	Comments
28.0-28.5 28.5-29.0	28		77			Soft creamy white chalk with trace fossils and orange staining in matrix. Flints at 28-28.1 and 29.4. Chalk blocky fractured –(drilling	2.3 m recovery from 3 m run
29.0-29.5 29.5-30.0	29					induced?) Last 15 cm – putty chalk	
	30			red richtum & was an arche	15 (2)	ten, e fina e en mort instructionaliste establishe financial establishe fina fina (instructionaliste establish	70 cm ?losses
31.0-32.0	31		88			Soft, crumbly creamy white chalk with trace fossils and orange staining in the matrix. Well-fractured (drilling induced?)	1.75 of 2 m
32.0-33.0	32					31.25-31.35 & 31.75-31.85 blue flint fragments. Mn spotting on fracture surface at 32.65 and at 32.1 and 31.4. 31.85 to 32.25 rubbly chalk. Last 10 cm rubbly putty chalk.	
33.0-34.0	33		84	272713414411171146		Chalk as above with significant orange-staining between 33.3 and 33.8. 34.4 -34.5 & 34.65 to 35.5 chalk rubble. Some platy shelly	2.1 of 2.5 m
34.0-35.0	34				1080 1080		

	···	·	~~~					
35.0-36.0	© Depth	30/6/99 Date	Core	Fracture	Graphic log	Occupation of the chalk with	students O 40 cm loss at base 2.75 of 3 m	
36.0-37.0	36				5	trace fossils and orange- staining in the matrix (esp. between 35.5 & 35.65, and 36.4 and 36.5). Horizontal (drilling induced?) fractures. Indistinct grey trace fossil at 36.21. 35.9 to 36.1 large platy shell fragments associated	When breaking core fractures along green grey coated marl surface.	
37.0	37				0,00	with Fe-staining. Orange-stained trace fossils at 36.6 and 38.15. Slightly harder, creamy- white fractured chalk (drilling induced		
38.0	38					fractures). 37.35-37.5 & 37.7 to 37.9 rubbly chalk and with shelly fragments 37.5-37.67 nodular chalk. 37.17-37.2 flaser marls. Less defined marls at 36.75, 37.35 & 37.27.	25 cm core loss at base	
			53	33 cm		Blue nodular flint	1.58 of 3 m	
	39						Core losses assigned to occur after the flint horizon. Core is very rubbly and	
40.5-41.5	40			To the state of th	25	Creamy-white rubbly chalk fragments (drilling induced?) Mn coating at 40.55. Some iron-stained fragments.	rubbly and probably represents material from the whole from the whole of the run interval.	
	41. 5		75		(41.5 to 42 large blue nodular flints	1.88 of 2.5 m	

		1	1		F	1	T
Sample	Depth	Date	Core recovery %	Fracture	Graphic log	Descriptive log	Comments
41.5-42.5	42					Orange-cream chalk (hardground) with large blue flint fragments at 41.7. Fractured (drilling induced). Trace fossils. 42.55-42.68 very large nodular flint. Chalk becomes slightly nodular.	
42.5-43.5	43				511 S		62 cm loss at base
44.0-45.0	44		57		200 g	Creamy white chalk with trace fossils. Hard chalk fragments in softer matrix. 44.42 to 42.65 rubbly putty chalk.	1.7 of 3 m
45.0-46.0	45					45.5 to 45.7 soft drilling induced putty chalk	1.3 m loss at
	46			No. 21 11 11 11 1			base
47.0-48.0	47		80		v	Large blue fractured flint to 47.1. Soft blocky- fractured (drilling induced) orange-stained chalk. Thin marls at 48.28 and 48.7 m	2.02 of 2.5 m
48.0-49.0	48						

ſ	T	1	1		γ		T
Sample	thded 4	Date	Core recovery %	Fracture	Graphic log	Descriptive log	Omments Oomments As cm core loss
50.0-51.0	50		97	14 201 1 8000 1		Creamy-grey chalk to 50.9 with blue nodular flint fragments at 49.7. 49.5 to 49.9 harder nodular chalk with orange-stained matrix. Thin marl at 50.37. Nodular chalk up to 51.2. 51.2 to end of run (drilling induced?) chalk putty with occasional flint fragments.	1.97 of 2 m
51.0-52.0	51				g bu		53 cm loss assigned at base
52.0-53.0	52		55		1.	52.2 to 52.4 flint rubble. Flint fragment at 53.5 m. Highly damaged drilling induced chalk putty to 52.85. Fractured chalk to end of run.	1.65 of 3 m
	53						
					(4 6 × 7		1.35 loss
54.0-55.0	54						
55.0-56.0	55	1/7/99	88			55 to 55.6 hard, creamy- white chalk (occasional fractures – drilling induced?) 55.6 to 55.95 soft chalk putty containing chalk and flint fragments. Blue nodular flint at 55.4.	1.75 of 2 m

		1	·		·	<u></u>	1
9 Samble 56.0-57.0	05 Depth	Date	Core recovery %	Fracture	(S) Graphic log	9 And the staining at 56.2.	Comments at 25 cm loss at
				*********			base
57.0-58.0	58		79		· · · · · · · · · · · · · · · · · · ·	25 cm of moderately hard creamy-white chalk passing into hardground. Orange-staining in matrix. Large blue flint fragments up to 57.8. Lens of grey siliceous-rich chalk at 57.6	1.57 of 2 m
36.0-38.0	50			:	<i>**</i>	and 58.5. Below 57.8 grey- white chalk. Trace fossils in matrix with small flint fragments at 58.3.	43 cm loss
59.0-60.0	59		82			Creamy-white, nodular fractured (drilling induced) chalk. Grey siliceous lenses and flint at 82.60. Chalk rubble 59.6-59.7. Thin grey marls/ trace	2.45 of 3
60.0-61.0	60				%	fossils between 59.7 and 59.9. 60-61 friable, nodular chalk with orange-staining in the matrix. Nodular blue flint 60.8-60.9.	
61.0-62.0	61					As above but less fractured.	65 cm loss at base
62.0-63.0	62		79		•	Creamy-white fractured (drilling induced) chalk with small broken flints at 62.1 and 62.6	2.37 of 3 m

	1		1		T		
Sample	Depth	Date	Core recovery %	Fracture	Graphic log	Descriptive log	Comments
63.0-64.0	63					Blocky, fractured friable chalk. Flaty flint and broken flint fragments at 63.25. Nodular flints at 63.65 and 64.1. From 63.7 to end chalk is friable and	
64.0-65.0	64					soft.	63 cm loss at base
65.0-66.0	65		67			Large blue fractured nodular flint in top 15 cm. Grey drilling induced putty chalk to 66 m.	1 of 1.5 m
66.0-67.0	66						50 cm loss at base
		2/7/99	91		υ ^γ .	Blocky grey chalk with orange-staining and trace fossils in matrix from 67.5 to 68.5. Marls at 66.78,	2.73 of 3 m flint snagged core barrel lining
67.0-68.0	67					66.85, 67.17 & 67.58. Four thin marls between 68.71 and 68.78. 5 cm thick marl at 68 m. Large nodular flint at 68.05 and small flints from 68.35	
68.0-69.0	68	and distribution on the Contraction of				to 68.45. Orange-staining in matrix of nodular chalk between 67.65 and 68.0.	
69.0-70.0	69			and the second s	. # 101.#. 12		27 cm loss at base
			81		000	Massive, nodular, hard white chalk with orange- staining and trace fossils	2.03 of 2.5 m

Sample 70.0-71.0	04 Depth	Date	Core recovery %	Fracture	Graphic log	in the matrix. Thin marls at 70.1 and at 71.55. Large blue nodular flint 69.9 to 70.05 and smaller blue flint at 71.05.	Comments
71.0-72.0	71			***************************************			47 cm loss at end of run.
72.0-73.0	72	5/7/99	100		ુંું	Creamy-grey moderately hard chalk. Relatively massive. 72.33-72.62 and 72.27-72.35 broken core with flint fragments. At 73.32 and 72.3 fracture surfaces with Mn spotting.	3 m of 3 m
73.0-74.0	73	14. F F 14.0478712 (6. 15. 16.406.11.11.1			-5°		
74.0-75.0	74			a partie de la constante de la		Top 3 cm – putty chalk. 74.03-74.45 hard, massive, fractured grey- white chalk. Flint at 74.25. 74.45-75 nodular chalk with orange-stained hardground. Augen in the nodular chalk.	
75.0-76.0	75		73		55	Creamy grey massive chalk, nodular after 75.1, with drilling induced fractures and putty between the fractures at 75.1 Marls at 75.56 (discontinuous), 75.77, 75.78 & 75.84	
76.0-77.0	76				<u>J</u>	75.99-76.03 broken horizon, 76.03-76.45 more fractured nodular chalk	55 cm loss

		·		·			1
9amble 77.0-78.0	77 Debth	Date	% Core recovery %	Fracture	Graphic log	Grey-cream, hard nodular chalk. Flint fragments at 77.3, 77.5, 77.7 & 77.82 (burrow). Chalk is very hard below 77.5 with some sandier clasts. Broken core between 77.29-77.35, 77.51-77.58 and 77.67-77.86.	77 to 79 m, 1.15 recovery of 2 m
	79		70			Rounded, nodular, hard, lightly orange-stained chalk clasts to 79.2 (hardground?). Greycream nodular chalk to 80.15.	1.4 m from 2 m
80.0-81.0	80				* 6 *	Mn spotting and grey calcite slickensides at 450 to core axis. Mn spots on smaller fracture at 79.94. 80.15 broken nodular flint. 80.25-80.30 broken flint band, below flint chalk fragments in a softer matrix. Harder grey (more siliceous?) band at 79.4.	60 cm loss
81.0-82.0	81	6/7/99				81-81.05, 5 cm thick grey marl. Creamy-white nodular chalk with broken softer sections between 81.23-81.4 and 81.7-81.8. Broken blue flint at 82.0 m.	1.2 of 2.5 m
82.0-83.0	82		Control of the Contro				30 cm loss
92.0.94.0	00		75			Nodular grey-white chalk with rubbly section (drilling induced) between 82.9 & 83.	0.75 of 1 m
83.0-84.0	83		60			83.5-83.73 – very hard rounded chalk fragments (possibly derived from unpreserved hardground). Blue flint fragments in	25 cm loss
British Geol	aiool	Currou			-	drilling induced rubble.	

	1				<u> </u>		1
Sample	Depth	Date	Core recovery %	Fracture	Graphic log	Descriptive log	Comments
84.0-85.0	84				574	Chalk blocks in broken chalk rubble and flint fragments especially between 84 & 84.1. Grey, more siliceous bands at	
85.0-86.0	85					83.8 and 84.05. Large blue flint fragments at 84.7. 1.2 m c loss (fragment)	
86.0-87.0	86			44 mae an 1994 (e. 1994)	A WHEN I LANGE TO A STATE OF THE STATE OF TH		
			80		00	Chalk rubble with flint fragments in the top 40 cm. Marl at 86.77. Dark grey very soft putty	1.6 m of 2 m
87.0-88.0	87				#	(drilling induced?) to end of run.	
88.0-89.0	88			or S. Stevenske Lieberg			40 cm loss
			80			Putty as above	1.6 of 2 m run
89.0-90.0	89						
90.0-91.0	90			***************************************	***************************************	ээлэ шээээл холгогчий хэглийн ханалан байн байг т	40 cm loss
	***********	7/7/99	27				0.8 of 3 m

Sample	Depth	Date	Core recovery %	Fracture	Graphic log	Descriptive log	Comments
91.0-92.0	91						2.2 m loss at base
92.0-93.0	92						
	93	And to be desired a substitute of the control of th			V (1830)		,
			0		******		No recovery
	94						
	95				Angles and		
	96				10 (M)		
	97		50			Chalk putty as above with some more massive, fractured grey chalk blocks.	1.5 m of 3 m

	·			T		3	
Sample 0.99.0	& Depth	Date	Core recovery %	Fracture	Graphic log	Descriptive log	Comments
96.0-99.0				da basa di ma hosa			1.5 m losses assigned to base of run
	99						END OF BOREHOLE
	100						
	Mandalana tanahan			VIII of Friedman in			
		44 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	* ************************************			***************************************			

Table A.5 Diary of the three packer tests performed on the Lower Venson Vertical (LVV) borehole.

Test 1 Interval tested 30.18-33.05 mbgl

Details	13 rods	Stick-up = $0.50i$	Stick-up =0.50m to top of threads					
		Stick-up = $0.42r$	n to join					
Time	WL	Datum	Transducer Event					
12:15	9.310	top of threads	6,6690					
12:25	9.310							
13:35			6.6651 Start inflating packers					
13:40	9.300		6.6673 Packers at 5 bars					
14:00	9.750		6.6725 Packers at 7 bars					
14:10	9.375		6.6737 Packers to 8 bars					
14:13	9.415							
14:17			6.6743 Packers at 8 bars					
14:18	9,395		6.6745 Top put on rods	Change in water level in annulus				
14:29	9,395		6.6745	$=$ \sim 7.5 cm lower				
14:30			Test started	Change in level in test interval =				
14:50	9.415		6.6603 Rate changed	~6 cm higher				
15:10	9,395		6.6697 Pump off					

Test 2 Interval tested 45.48-48.35 mbct

Details	21 rods	Stick-up =0.92	Stick-up =0.92m bottom of thread (join)					
		Stick-up =0.998	tick-up =0.998m top of thread					
Time	WL	Datum	Transducer	Event				
16:30	9,815	top of rod	9.0940					
16:36				Start inflating packers				
16:44	9,810	•	9,0948	Packers at 8 bars				
16:56	9.800	join	9,0979	Packers at 9 bars				
17:00			9.1003	Packers up to 10 bars	Change in water level in annulus			
17:10	9.815	join	9.1014	Packers stable 10 bars	=~8 cm lower			
17:15			9.1018	Test started	Change in level in test interval =			
17:30	9,835		9.0881	Rate increased	~4.5 cm higher			
18:00	9,850		9,0500	Test stopped				
18:10	9.810							
18:11			9,1040	Start deflating packers				

Test 3 Interval tested 75.98-78.85 mbgl

Details	36 rods	Stick-up =0.60m bottom of Stick-up =0.98m top of three	0 =0.60m bottom of thread (join) 0 =0.98m top of thread					
Time	WL	Datum Transducer						
12:25	9.430	join 13.8846						
12:30			Start inflating packers					
13:30	9,450	13.8874	Regulator will not give (need 13)	required pressure - only 11 bars				
13:40			Start pump					
13:44	9.490	18.8748		Change in level in test interval				
13:48	9.480	13.8736		during pumping = 9 cm				
13:55	9.485	13.8757	Sample taken, pump off	Change in level in borehole during pumping = 5 cm				

Table A.6 Results of packer tests giving calculated hydraulic conductivities for each of the packer tests.

Test 1	30.18-33.05 mbgl	Test 2	45.48-48.35 mbgl	Test 3	75.98-78.83 mbgl
Initial	6.6745 mA	Initial	9.1018 mA	Initial	13,8874 mA
Final	6.6604 mA	Final	9.0881 mA	Final	13,8757 mA
Rate	44.7 l/min	Rate	16.5 l/min	Rate	44,2 l/min
Drawdown	0.090 m	Drawdown	0.087 m	Drawdown	0.075 m
K	137.54 m/d	K	52.25 m/d	K	163,90 m/d
Initial	6.6745 mA	Initial	9.1018 mA		
Final	6.6697 mA	Final	9.05 mA		
Rate	11.7 l/min	Rate	44 l/min		
Drawdown	0.031 m	Drawdown	0,330106 m		
K	105.75 m/d	K	36.85 m/d		

Table A.7 Transmitter calibration

Transmitter reading	Transducer reading
mA	bars
3,8920	-0.01
4.4730	0.36
5.1275	0.77
5.5138	1.01
5.9839	1.31
6.3016	1.51
6.8867	1.87
7.5850	2.30
7.9267	2.52
8.3030	2.76
8.8750	3.11
9,3523	3.41
9.7009	3,63
10.3426	4.03
10.8479	4.34
11.2250	4,58
12,5021	5,38
13.2558	5.85
13,9214	6.27
14.6951	6.75
3.8922	-0.01