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Abstract 

The Hardangervidda-Rogaland Block within southwest Norway is host to ~1.52-1.48 Ga 

continental building, and variable reworking during the ~1.1-0.9 Ga Sveconorwegian 

orogeny. Due to the lack of geochronological and geochemical data, the timing and tectonic 

setting of early Mesoproterozoic magmatism has long been ambiguous. This paper presents 

zircon U-Pb-Hf-O isotope data combined with whole-rock geochemistry to address the age 

and petrogenesis of basement units within the Suldal region, located in the centre of the 

Hardangervidda-Rogaland Block. The basement comprises variably deformed grey gneisses 

and granitoids that petrologically and geochemically resemble mature volcanic arc lithologies. 

U-Pb ages confirm that magmatism occurred from ~1521 to 1485 Ma, and conspicuously lack 

any xenocrystic inheritance of distinctly older crust. Hafnium isotope data range from 

εHf(initial) +1 to +11, suggesting a rather juvenile magmatic source, but with possible 

involvement of late Palaeoproterozoic crust. Oxygen isotope data range from mantle-like 

(δ18O ~5‰) to elevated (~10‰) suggesting involvement of low-temperature altered material 



(e.g. supracrustal rocks) in the magma source. The Hf-O isotope array is compatible with 

mixing between mantle-derived material with young low-temperature altered material 

(oceanic crust/sediments) and older low-temperature altered material (continent-derived 

sediments). This, combined with a lack of xenoliths and xenocrysts, exposed older crust, AFC 

trends and S-type geochemistry, all point to mixing within a deep-crustal magma-generation 

zone. A proposed model comprises accretion of altered oceanic crust and the overlying 

sediments to a pre-existing continental margin, underthrusting to the magma generation zone, 

and remobilisation during arc magmatism. The geodynamic setting for this arc magmatism is 

comparable to that seen in the Phanerozoic (e.g. the Sierra Nevada and Coast ranges 

batholiths), with compositions in the Suldal Sector reaching those of average upper 

continental crust. As within these younger examples, factors that drive magmatism towards 

the composition of the average continental crust include the addition of sedimentary material 

to magma source regions, and delamination of cumulate material. Underthrusting of 

sedimentary materials and their subsequent involvement in arc magmatism is perhaps a more 

widespread mechanism involved in continental growth than is currently recognized. Finally, 

the Suldal Arc magmatism represents a significant juvenile crustal addition to SW 

Fennoscandia. 
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Introduction 

The recycling of pre-existing continental crust, including sedimentary material, to arc 

magmas has long been recognised (e.g. Armstrong, 1971; Hildreth & Moorbath, 1988; Plank 

& Langmuir 1993). Numerous studies have sought to constrain whether continental crust has 

been recycled into the arc magmas in the mantle via subduction of sediments, or in the crust 

via assimilation and contamination (e.g. Hawkesworth et al., 1979; Thirlwall & Graham, 

1984; Gasparon et al., 1994). Both of these processes probably occur together within the same 

volcanic arc system; but to determine rates and volumes of continental recycling, as well as 

crustal architecture, it is necessary to discriminate how and where crust is recycled. End-

member processes comprise mantle recycling (i.e. source contamination) and intra-crustal 

recycling (i.e. crustal contamination); the latter can be broken down into infra-crustal 

recycling, whereby previously formed igneous crust (such as ancient underplated material) is 

recycled into the magma, and supracrustal recycling, whereby sedimentary material is 

recycled into the magma. Studies aiming at differentiating these processes have commonly 

combined radiogenic isotopes (e.g. Sr, Nd, Hf) with a stable isotope (i.e. O) (e.g. James, 1981; 

Davidson, 1985). More recently, studies have combined U-Pb, Hf and O isotopes measured 

within single zircon grains, and have demonstrated that both sedimentary and mantle material 

have been involved in the petrogenesis of a range of magma types in a variety of settings (e.g. 

I-type, Kemp et al., 2007; S-type, Appleby et al., 2009; A-type, Be’eri-Shlevin et al., 2009). 

Certain premises have been used in previous studies that recent research has shown to not be 

true, therefore adding further complexity to the understanding of petrogenetic processes from 

zircon Hf data. For example, subducted sediments that have a melt flux input to arc magmas 

will contribute to the Hf budget (e.g. Chauvel et al., 2009; Nebel et al., 2011), thus, both 

source and crustal contamination will affect the Hf signature of magmas; also, high melt and 

fluid flux from sediments and altered oceanic crust can lead to a contribution of δ18O 



(typically <2‰) from these sources into arc magmas (Bindeman et al., 2004; Martin et al., 

2011); thus, also negating the use of δ18O as a clear discriminator of source versus crustal 

contamination. 

 

The crystalline basement in SW Fennoscandia consists of various Palaeo- to Mesoproterozoic 

terranes (sensu lato) that comprise deformed plutonic and volcanic arc-like lithologies, that 

have been reworked during the Sveconorwegian (Grenvillian) and Caledonian orogenies (e.g. 

Gaál & Gorbatschev, 1987; Bingen et al., 2008a). The evolution of the ~1.7 to 1.5 Ga crust 

can be described by two end-member models: 1) Palaeoproterozoic crust underlies the entire 

region and has been recycled during younger magmatic episodes (Andersen et al., 2002b; 

2004a; 2009b), or 2) the various terranes represent accreted juvenile arcs with limited 

contribution from older material (Brewer et al., 1998; Åhäll & Connelly, 2008). Various 

isotope data point to a contribution from Palaeoproterozoic crust to both Gothian aged (~1.7-

1.55 Ga) and Sveconorwegian magmatism (1.2-0.93 Ga; Andersen, 1997; Andersen et al., 

2001; 2002b; 2004a; 2007b; 2009b; Andersen & Griffin 2004; Pedersen et al., 2009). In the 

Hardangervidda-Rogaland and Telemark Blocks, ~1.5 Ga units are widespread and are the 

oldest exposed crust currently dated (Bingen et al., 2005; 2008b; Pedersen et al., 2009), but 

are hitherto poorly understood. The present study combines whole-rock geochemical and 

zircon U-Pb, Hf and O data from Telemarkian-aged (~1.52-1.48 Ga; Bingen et al., 2008a) 

rocks in the Suldal region of southwest Norway (Fig. 1); the data are used to constrain the 

tectonic setting and petrogenesis of associated magmatism, and constrain the role that 

recycling of pre-existing crust has had in the formation of Telemarkian crust; this Proterozoic 

example of arc magmatism is compared to the Phanerozoic western US Cordillera, with 

similarities suggesting similar processes of continental crust formation existing since the mid-

Proterozoic.  



 

Geological Setting 

The Fennoscandian Shield comprises an Archaean core in the northwest; surrounding this are 

younger arcs and microcontinents that amalgamated during the Svecofennian orogeny at ~ 

2.1-1.9 Ga (Korja et al., 2006; Lahtinen et al., 2009). At ~1.85 Ga, a subduction zone initiated 

on the southwest margin (present-day position) of the continent, producing the 

Transcandinavian Igneous Belt (TIB; see Högdahl et al., 2004). The terranes to the southwest 

of the TIB that comprise the Southwest Scandinavian Domain (SSD), can be interpreted as 

forming in continental and island arcs along a long-lived subduction margin that progressively 

moved away from the Fennoscandian continent (Åhäll & Connelly, 2008) in a retreating 

accretionary orogen (Cawood et al., 2009).  

 

The SSD comprises crustal blocks (variably referred to as terranes and domains in the 

literature) aged ~1.69 to 1.48 Ga that progressively young to the west; here we conform to the 

nomenclature outlined in Andersen (2005). The Hardangervidda-Rogaland (HRB) and 

Telemark Blocks (TB) comprise the majority of crust west of the Oslo Rift (Andersen, 2005), 

and correlate to the Telemarkia terrane of Bingen et al. (2005, 2008a). So far, the oldest 

identified igneous unit within these blocks is the 1.55 Ga Åsen metatonalite (Pedersen et al., 

2009); this is the only unit older than 1.52 Ga, and its origin remains uncertain. The main 

continental growth episode within the HRB-TB is defined as 1.52-1.48 Ga (Bingen et al., 

2005b; 2008a), and is known from dating plutonic and volcanic orthogneisses from across the 

region. Other major tectonostratigraphic units within the HRB-TB include the volcano-

sedimentary ~1.5-1.35 Ga ‘Vestfjorddalen’ Supergroup (terminology of Laajoki et al., 2002). 

This has been suggested to be a continental rift basin that started forming at ~1.51 Ga, and by 

~1.35 Ga had extended into an epicontinental sea (Lamminen & Köykä, 2010); associated 



with extension was voluminous felsic volcanism (Tuddall Fm.) followed by voluminous basic 

magmatism (Vemork Fm.), with a suggested tectonic setting inboard of a subduction zone in a 

setting similar to the Granite-Rhyolite provinces in the mid-continental US (Slagstad et al., 

2009).  Other supracrustal sequences dated at 1260-1220 and 1170–1140 Ma are found across 

the HRB-TB, and are also related to extensional settings possibly inboard of a subduction 

margin (Bingen et al., 2002; Brewer et al,. 2004; Roberts et al. 2011). Early- to late-tectonic 

Sveconorwegian granitoids intrude the region and are dated between 1.05 and 0.93 Ga 

(Andersen et al., 2002a, 2007a; Bingen & van Breemen, 1998; Schärer et al., 1996; Slagstad 

et al., 2012; Vander Auwera et al., 2011). 

 

The origin of the HRB and TB (i.e. Telemarkia terrane of Bingen et al., 2005) is under debate, 

it may resemble an exotic crustal fragment accreted during the Sveconorwegian orogeny, a 

crustal fragment that originated further north along the Fennoscandian margin, or an 

indigenous part of the SW Fennoscandian crust (see Andersen, 2005 and  Bingen et al., 2005 

for discussion). Various sedimentary units that were deposited on these blocks between ~1.6 

and 1.1 Ga, contain Palaeoproterozoic and late Archaean detrital zircons (Åhäll et al., 1998; 

de Haas et al., 1999; Bingen et al., 2001, 2003; Andersen et al., 2004b); this suggests that 

during the Mesoproterozoic these blocks were located near to an older continental craton. 

Detrital zircons from the ‘Vestfjorddalen’ Supergroup feature a major peak at 1730 Ma and a 

lack of peaks between 1650-1500 Ma; this contrasts with the age of the Fennoscandian 

basement and is suggested to reflect an original location of the Telemark Block closer to the 

Laurentian craton rather than Fennoscandia (Lamminen & Köykkä, 2010). Whole-rock 

isotope and in-situ zircon isotope studies on Sveconorwegian magmatism indicate addition of 

an older crustal component that has a model age of >1.7 Ga, and a mantle component that is 

1.2 Ga and/or younger (Andersen et al., 2001; 2002b; 2007b; 2009b; Andersen & Griffin, 



2004; Pedersen et al., 2009). These data were used to suggest a 1.7-1.9 Ga TIB-like lower 

crust that extends under the whole of southern Norway (Andersen et al., 2009b), and also to 

imply an indigenous rather than exotic origin for the Telemark Block (Andersen et al., 2002b; 

2004a; Pedersen et al., 2009).  

 

Geology of the studied gneiss/granitoid complex 

Studied samples are from the Sauda and Suldal communes (Figure 1). The original mapping 

of the Sauda region by Sigmond (1975, 1978) defined three separate supracrustal belts and an 

inferred older gneiss complex. Recent mapping reveals that fine-grained lithologies probably 

representing supracrustal units are found throughout the region, and are inter-mingled with 

hypabyssal and coarse-grained plutonic lithologies. The petrology and field-relations are 

interpreted as representing the deformed mid- to supracrustal remnant of a volcanic arc 

terrane. The grey gneisses (sensu lato) that dominate exposures in the Sauda-Suldal regionare 

here named the Sauda Grey Gneiss Association (SGGA).  

 

The Sauda Grey Gneiss Association 

The SGGA is a heterogeneous complex of orthogneisses, comprising gabbro, diorite, 

granodiorite, granite and tonalite compositions, along with minor syenite. All lithologies are 

metamorphosed to amphibolite-facies with variable regression in greenschist-facies; however, 

the meta-prefix is omitted here for simplicity. The complex is dominated by fine to medium-

grained porphyritic grey gneisses. Some outcrops feature banding, commonly between 

aphyric and phyric units, likely representing volcanic tuff/ignimbrite/lava (i.e. supracrustal) 

layers. Medium-grained porphyritic gneisses likely represent hypabyssal/upper crustal 

intrusions. Within the Sauda-Suldal region, units with obvious paragneiss affinities were not 

observed. Magmatic enclaves are common within the SGGA, and are of variable lithologies. 



The most common are fine-grained mafic to felsic xenoliths within granodioritic gneisses, but 

also displayed are tonalitic/granitic enclaves in more mafic units, often interpretable as 

disaggregated veins/dykes. Some outcrops include evidence of magma mingling, the best 

example of this comprises aphyric granodioritic gneiss mingling with aphyric dioritic gneiss; 

margins between the two lithologies are rounded suggesting contemporaneous intrusion. 

Partial melting within the Grey Gneiss is evident in some outcrops, usually without large-

scale separation of leucosome and melanosome; however, in a few exposures leucosomes of 

tonalitic material have formed a network of cm-scale veins which are normally sub-parallel to 

the structural fabric. A few outcrops of fine-grained banded gneiss exhibit patch-leucosome 

formation, with new growth of hornblende within the leucosomes.  

 

Granitoids 

Weak to moderately deformed coarse-grained porphyritic granodiorites occur as sheets within 

the Grey Gneiss complex, ranging from metres to tens of metres in width. These are 

conformable to the fabric of the Grey Gneiss, and have a range of sharp to graded contacts 

into the Grey Gneiss lithologies. Undeformed bodies of porphyritic granite also occur; these 

have varying mafic content, grading from porphyritic biotite-hornblende granodiorites to 

porphyritic biotite granites, and probably represent zoned plutonic bodies. The distinction 

between ~1500 Ma plutonic bodies and those of Sveconorwegian (~1.05-0.95 Ga) age is 

unclear, as both deformed and undeformed examples of each exist; however, the latter often 

have reddish feldspar phenocrysts compared to the white-grey feldspar phenocrysts in the 

former.  

 

Timing of magmatism 



Previous age determinations have been made using a variety of methods, on thirteen meta-

volcanic and plutonic lithologies within the Sauda-Suldal region by Bingen et al. (2005); the 

zircon crystallization ages ranged from 1491 ± 5 to 1519 ± 12 Ma. New zircon ages were 

determined within this study on twelve different lithologies (see supplementary online 

material; figure 2), with ages ranging from 1485 ± 11 to 1521 ± 6 Ma.  

 

Zircon textures 

Separated zircons from the samples of this study have a range of morphologies, but are 

generally prismatic, oscillatory-zoned and elongate, as is typical of igneous zircons (e.g. 

Corfu et al., 2003). The more mafic lithologies (SA7-86 and ROG525) exhibit larger zircons 

which were fragmented during separation, and feature less distinct oscillatory-zoning or are 

sector zoned (see supplementary online material). Distinctive core and rim/overgrowth 

relationships are lacking in all samples. Discontinuities in zoning exist in some grains, but the 

style of zoning across these is similar, suggesting an origin related to replenishment of magma 

during crystallisation, as opposed to overgrowth on inherited zircons.  

 

Geochemistry 

Sauda Grey Gneiss Association 

The samples range from gabbro and diorite, through tonalite and granodiorite/dacite to 

granite/rhyolite. The geochemistry of the SGGA is calcic to calc-alkaline, metaluminous to 

weakly peraluminous, and displays a magnesian trend typical of Cordilleran arc magmas (see 

Figure 3). In Harker diagrams the SGGA displays broadly negative trends for Al2O3, TiO2, 

CaO, MgO, MnO, Fe2O and P2O5, and broadly positive trends for Na2O and K2O. Trends for 

Large Ion Lithophile elements (LILE) are scattered, but positive for Rb and Ba, and negative 



for Sr after ~65% SiO2. The transition metals (e.g. V; Figure 3) show negative trends. High 

Field Strength Elements (HFSE), e.g. Nb and Zr, show slightly positive trends but with 

considerable scatter. All Rare Earth Elements (REEs) show scattered positive trends, with 

considerably less scatter at <66-70% SiO2.  

 

In Primitive Mantle-normalised multi-element diagrams (Figure 4), all lithologies show 

enrichment in all elements relative to Primitive Mantle; the greatest enrichment is that of the 

LILE, and strong depletion relative to other elements is seen in Nb, Ta, Sr, P and Ti. In 

chondrite-normalised REE diagrams (Figure 4), all lithologies show LREE enrichment 

relative to MREE, LREE enrichment relative to HREE, and only slight MREE enrichment 

relative to HREE. In basaltic samples both small negative and positive Eu anomalies are 

exhibited; with increasing silica enrichment the Eu anomaly becomes progressively more 

negative. 

 

Granitoids 

The granitoids are porphyritic, granodioritic to granitic, calc-alkaline and metaluminous to 

weakly peraluminous (Figure 3). The majority of the samples plot in the ferroan field (Fe*; 

Figure 3); however, this does not definitively mean they have evolved from less-differentiated 

ferroan magmas, since at high silica content most magmas become enriched in Fe* (Frost et 

al., 2001). The granitoids have similar major and trace element contents to those in the 

SGGA. In Primitive Mantle-normalized multi-element diagrams (Figure 4) the granitoids 

display similar enrichment and depletions to those of the most evolved members of the 

SGGA. 

 

Petrogenesis 



The LILE enrichment and depletion in Nb, Ta, P and Ti are all characteristic of magmas 

produced in a supra-subduction zone setting. The HFSE enrichment in the SGGA is typical of 

continental arc magmas. This enrichment, which is not typically observed in intra-oceanic 

arcs, is often related to an enriched source, e.g. asthenospheric mantle as opposed to depleted 

mantle, and/or to crustal contamination (i.e. the ‘within-plate’ component; Pearce, 1983).  The 

large range from mafic to felsic compositions indicates that partial melting of pre-existing 

felsic crust did not form the SGGA, as the compositions would then be dominantly granitic. 

The differentiation trends, with various inflections in many elements, suggest fractional 

crystallisation played a significant role in magmatic differentiation of the SGGA and 

granitoids. The trends displayed are typical of POAM - Plagioclase, olivine (and/or 

orthopyroxene), clinopyroxene (and/or amphibole) and magnetite fractionation; such 

fractionation is typical in arc suites for the formation of andesitic compositions from mafic 

parent melts (Gill, 1981). According to the REE modeling of Brophy (2008), the slightly 

increasing LREE and constant HREE at intermediate compositions are compatible with 

amphibole-present basalt fractionation in the lower crust, and the enrichment in all REE at 

high silica content is compatible with mid-to upper-crustal fractionation of basalt where 

amphibole is not present.  

 

The geochemistry of the SGGA (and associated granitoids) indicates formation by fractional 

crystallisation of a basaltic parent melt, with multiple stages of fractionation occurring at 

different levels within the crust; partial melting of already crystallised lithologies would also 

have driven the upper crust to more felsic compositions. This scenario is compatible with a 

deep hot crustal zone setting (Annen et al., 2006). The geochemistry of the studied suites 

suggests formation in a volcanic arc, with the enrichment in HFSE, and range and abundance 

of evolved compositions being indicative of a mature island arc or continental arc (i.e. thick 



crustal pile). The term Suldal Arc is hereby used to refer to this volcanic arc setting at ~1500 

Ma.  

 

Hf isotopes in zircon 

Hafnium isotopes were measured in eleven samples from the SGGA and associated granitoids 

(see figure 5). Each sample has a mean value falling between CHUR and depleted mantle 

(DM); the total εHf range across the samples is from ~+1 to +11.  The range in εHf for each 

sample varies from ~1.5 to 6 epsilon units (MSWD 0.4 to 5), which is within analytical 

uncertainty for some samples (MM36631, MM36676, SA3-60, SA7-91; MSWD 0.4 to 1.4). 

Twenty of the analyses lack corresponding U-Pb data from the same zircon; however, the U-

Pb data from these samples suggest the zircons represent single igneous populations (see 

supplementary files), and therefore the intrusion age provides a robust estimate for the age of 

crystallisation of the zircons. The lack of anomalously low 176Hf/177Hfinitial in any of the 

samples suggests that none of the analyses were conducted on grains inherited from much 

older crust (e.g. >300 Myrs). Multiple Hf isotope analyses from the same zircon grain are 

within analytical uncertainty of each other, with the maximum variation within a single grain 

being no more than ~2 epsilon units; this indicates there may have been a lack of evolving 

heterogeneity in the host magmas, in contrast to some previous studies (Kemp et al., 2007; 

Appleby et al., 2008; Be’eri Shlevin et al., 2009). The data exhibit a subtle temporal 

correlation, with εHf decreasing through time (Figure 5); however, it should be noted that 

many of the ages have overlapping uncertainties, and the trend is not compelling.. The data do 

not exhibit a correlation between εHf and SiO2 (i.e. magma differentiation); intermediate 

lithologies exhibit the most evolved Hf signatures.  

 

Oxygen isotopes in zircon 



A subset of eight samples were analysed for δ18O (Figure 6). The average δ18O of each sample 

varies from +5.4 ± 0.9 to +8.7 ± 1.2 ‰. Five of the samples have variation which does not 

exceed analytical uncertainty (ROG525, SA3-04, SA3-60, SA7-86, SA7-91; MSWD = 0.7 to 

1.7), and two of the samples have slightly larger variation suggesting the host magma had a 

degree of heterogeneity (MM2235, MM2241; MSWD = 2.8 & 3.3). One sample (SA7-04) 

exhibits a significant range in δ18O (~4 ‰); zircons from this sample have been affected by 

lead-loss, has metamict and/or alteration textures visible in CL, and under normal light the 

zircons exhibit an opaque milky colour (see supplementary files). The sample was taken from 

near a contact to a Sveconorwegian intrusion which features hydrothermal mineralization; 

thus, it is suggested that the variation in δ18O within this sample may represent post-

crystallisation alteration. Where multiple δ18O ratios have been measured on the same zircon 

grain, there is variation of up to 1.0 ‰,  which is slightly outside of analytical uncertainty (± 

0.7 ‰);  these multiple analyses were not conducted on distinguishable growth zones, as such 

analyses were hampered by the limited availability of material to analyse. The oxygen isotope 

data do not exhibit a clear correlation with SiO2, nor do they exhibit a defined trend with age.   

 

Discussion 

Isotopic constraints on magma source 

The exposed basement in the Sauda-Suldal region is interpreted as representing a deformed 

mature volcanic arc (i.e. the Suldal Arc), with U-Pb ages indicating a lifespan from at least 

~1521 to 1485 Ma. The following section will discuss new and published isotopic data that 

shed light on the nature of the magma source to the Suldal Arc and associated ~1.5 Ga 

magmatism within the Hardangervidda-Rogaland and Telemark Blocks.. 

 



The range in εHf(T) from +1.1 to +11.3 is suggestive of involvement of older crust to the 

Suldal Arc magmatism, with model ages pointing to late Palaeoproterozoic crust (Figure 7). 

This is in accord with Andersen et al. (2002b; 2004b; 2009b) who postulate a deep crustal 

reservoir beneath the whole of southern Norway that is 1.7-1.9 Ga in age. The range in εHf(T) 

is slightly more evolved than in arc lithologies (granodiorite/tonalite) sampled from the 

Bamble-Lillesand and Kongsberg-Marstrand Blocks terranes to the east of the HRB (Figure 

7), suggesting either: 1) a greater input of a similar crustal component to the Suldal Arc 

magmatism, or 2) a change in the crustal component across strike. 

 

In Precambrian studies, evolved εHf(T)  is sometimes inferred to represent older crust being 

located at depth, i.e. intracrustal recycling (e.g. Bickford et al., 2008; Andersen et al. 2009b);  

however, in some modern arcs a deviation from depleted mantle in εHf(T), has been correlated 

to contamination within the mantle from subducted oceanic crust and the overlying 

terrigenous sediments, i.e. mantle recycling (e.g. Chauvel et al., 2009; Tollstrup et al., 2010; 

Nebel et al., 2011). Thus, although Hf isotopes can fingerprint crustal contamination within 

arc magmas, they alone do not allow the pathways of recycling to be determined, and thus 

also do not constrain unexposed crustal architecture. Deducing the pathways of contamination 

in arc magmas has been a long-standing topic (e.g. Hawkesworth et al., 1979; Thirlwall & 

Graham, 1984), such contamination pathways are distinguished as (1) source contamination, 

whereby subducted sediments impart a signature on the mantle and lead to an influence on the 

associated arc magmatism; and (2) crustal contamination, whereby mantle-derived magmas 

are influenced by the crust that they intrude, via assimilation and wall-rock interaction. In 

modern arcs, the combination of stable (i.e. oxygen) with radiogenic (i.e. Nd, Sr, Hf) isotopes 

has been used widely to discriminate contamination processes; in recent years, this has been 

applied to older arc magmas where whole-rock oxygen isotopes would be rendered unreliable 



due to alteration, by using in-situ zircon isotope analyses. The benefit of single mineral 

isotopes is that averaging of different sources in bulk whole-rock measurements is avoided, 

allowing for heterogeneous sources to be better fingerprinted (e.g. Peck et al., 2004; Lackey et 

al., 2005; Bolhar et al., 2006; Kemp et al., 2007).  

 

The traditional premise behind the use of oxygen isotopes is that the mantle is assumed to be 

a remarkably homogeneous oxygen isotope reservoir, with igneous zircons formed in 

equilibrium with the mantle having an average δ18O of 5.3 ± 0.3 ‰ (Valley et al., 1998). High 

magmatic δ18O values (>6.5‰) are attributed to melting or assimilation of sediments, altered 

volcanics, or other supracrustal rocks affected by low-temperature alteration, whereas low 

magmatic δ18O values (<5‰) are attributed to incorporation of material that has undergone 

high temperature alteration, e.g. lower oceanic crust (Valley et al., 2005). Oxygen isotopes 

have therefore been used to discriminate source contamination (mantle recycling) from crustal 

contamination (intracrustal recycling) (e.g. James, 1981; Davidson, 1985), using the premise 

that source contamination will lead to enriched radiogenic isotope signatures, but with oxygen 

isotopes retaining a mantle signature. The assumption of a homogeneous mantle reservoir has 

been hampered by recent research that has shown the existence of heterogeneity in mantle 

oxygen isotope signatures, this has been related to fluxing of high δ18O melt and/or fluids into 

the mantle from sediments and the upper part of the downgoing oceanic slab within 

subduction zones (Eiler et al., 2005; Portnyagin et al,. 2007; Auer et al., 2009; Johnson et al. 

2009; Martin et al. 2011); these studies have shown up to ~2 ‰ elevation above the mantle 

range in mafic melts, although most are typically <1 ‰. 

 

The spread of data within Hf-O isotope space can be used to help determine pathways under 

which different isotopic reservoirs have combined. Given that oxygen concentrations in 



sediments, crust and mantle are broadly similar, the shape of mixing/assimilation curves 

within Hf-O space is largely controlled by the Hf concentrations of the various components. 

The Suldal Arc data that comprise Hf and O isotopes measured within the same zircon, are 

plotted in Figure 8; the data form a broad array that can be loosely interpreted as mixing 

between two or more components, i.e. a mantle-like component and an older (low εHf) 

‘crustal’ component that has been altered at low-temperature (high δ18O). In previous studies 

on much younger magmatism, crustal/sedimentary end-members can be sampled directly (e.g. 

Vroon et al., 2001; Kemp et al., 2007; Nebel et al., 2011), allowing a greater confidence in 

mixing/assimilation calculations. In the present study there are no metasediments, xenoliths or 

exposed older crust within the region of the studied magmatism, thus, any crustal end-

members have to be estimated, and mixing/assimilation models remain speculative; however, 

they provide pertinent information  regarding the overall processes of crustal recycling. The 

crustal end-member modeled in figure 8 corresponds to the average εHf of metasediments 

exposed in the adjacent and slightly older Kongsberg-Marstand Block (see figure 1), which 

have deposition ages of ~1.5 Ga and slightly older.  These supracrustal rocks are a proxy for 

high δ18O sediments that may have been subducted beneath the Suldal Arc, or were deposited 

in surrounding basins and on any pre-existing crust. The crustal end-member also overlaps in 

εHf composition with the 1.7-1.9 Ga Transscandinavian Igneous Belt (TIB) that is exposed 

further east within Sweden, and is a proxy for the 1.7-1.9 Ga deep crustal reservoir underlying 

southern Norway hypothesised by Andersen et al. (2002b; 2009b). Figure 8a shows bulk-

mixing curves for mixing between depleted mantle and the crustal end-member with both 

upper- and lower-crustal Hf concentrations (5.3 and 1.9 ppm Hf respectively); in these cases 

the mixing curves fall below the majority of the data. The rather straight array exhibited by 

the data, instead suggests mixing between components that have similar Hf concentrations 

(i.e. enriched crust/mantle rather than depleted mantle), and the elevated δ18O of primitive 



compositions suggest introduction of a high δ18O component early on in magma 

differentiation, i.e. to the magma source region. To demonstrate this, figure 8b shows two 

mixing curves between a component that approximates old crust/sediments with high δ18O, 

and a component that approximates a mixed mantle/crustal source with moderately elevated 

δ18O. The latter component may comprise young altered sediments and/or oceanic crust, as 

well as depleted mantle that has been enriched by a high δ18O source; the data do not 

constrain the degree that each of these may have influences the magmas. In summary, the Hf-

O data indicate a mixture of enriched mantle, and low-temperature altered young and old 

components.  

 

Constraining contamination pathways 

Mixing and assimilation in magmas can occur at a variety of levels within a magmatic 

plumbing system; to determine where this has occurred in the Suldal Arc, a variety of 

evidence is examined. Upper crustal contamination (i.e. late-stage magmatic contamination) 

typically leaves xenoliths and/or xenocrysts of the host rock within intruding magmas. Within 

the Suldal Arc, xenoliths of sedimentary origin are absent; instead, xenoliths are of igneous 

origin and can be thought of as enclaves, thus, they are interpreted as evidence of magma 

mingling within the arc. Arc magmas that have assimilated older felsic crust/sediments 

typically contain inherited zircons that exhibit older U-Pb ages; although, the survival of 

inherited zircons is variable, and depends on factors including zircon size, magma 

temperature and magma chemistry (e.g. Watson & Harrison, 1983; Watson, 1996; Miller et 

al., 2003). There is no evidence of inheritance of distinctly older crust within the Suldal Arc 

(see figure 2). It could be argued that the Suldal Arc magmas have dissolved all xenocrystic 

zircons; however, there is a range in chemistry and crystallisation temperatures of the magmas 



sampled (zircon saturation temperature ranges from 717 to 861°C; see supplementary files), 

which would likely lead to zircons surviving in at least some of the lithologies. 

 

Assimilation in the upper crust (i.e. late-stage contamination) leads to trends that involve 

contamination indices increasing with those of magma differentiation (e.g. SiO2). In the 

Suldal Arc the Hf and O isotope data do not reveal traditional Assimilation Fractional 

Crystallisation (AFC) trends (figures 5 & 6), suggesting but not confirming that AFC did not 

control isotopic variations. Assimilation of altered material (i.e. high δ18O) such as sediments, 

will typically impart a signature on the whole-rock geochemistry of magmas; this has led to 

the S-type classification of granites that have involved sediments in their source (Chappell & 

White, 1974). The whole-rock geochemistry of the Suldal Arc lacks any S-type traits (e.g. 

elevated Al2O3 and low Na2O), suggesting igneous rather than sedimentary sources were 

dominant. It should be noted that previous studies have revealed sedimentary input to magma 

sources with no clear indication within the whole-rock geochemistry of granites (Kemp et al., 

2007). 

 

All of the evidence points to a deep-crustal input of the high δ18O components into the 

magma-generation zone. Through a deep-crustal mixing process, any sedimentary 

geochemical signature will be diluted with a mantle-derived geochemical signature. Also, a 

deep mixing zone means that zircons from any older felsic components are more likely to 

have been dissolved within the melts because this region will be hotter relative to the upper 

crust. From the mixing trends shown, the degree of contamination is high (>30%), requiring 

very high temperatures; thus, energy conservation constraints also point to a hot and thus deep 

crustal melting region. This leaves the remaining major question: how do low-temperature 



young and old components have a large degree of input into a deep-crustal magma-generation 

zone? 

 

Sedimentary recycling in arc magmas 

The emplacement of sedimentary material into the source region of an arc can occur through:  

1) subduction of sediments that lie upon the descending slab (and subsequent slab and 

sediment fluid-fluxing and/or slab melting), 2) underthrusting, underplating and/or 

relamination (Hacker et al.,2011) of sedimentary material to the base of the over-riding crust, 

or 3) by tectonic burial of sedimentary material that was deposited upon the over-riding crust. 

The latter process is difficult to envisage for the Suldal Arc, since some evidence of a former 

complex crustal architecture where sediments have been interleaved and buried within pre-

existing continental crust is expected to be preserved. Such a process can account for 

formation of granites within the Lachlan fold belt in SE Australia, where exposure of 

metasedimentary country rocks is abundant, and granites with high- δ18O are seen to intrude 

the country rock (Kemp et al., 2007; 2009). The first process is considered unlikely to be the 

sole cause, since this deeply subducted source should lead to much smaller degrees of 

contamination, and as yet has not been evidenced to produce such elevated oxygen signatures 

as seen in this example. The second process, i.e. underthrusting and underplating, is invoked 

in more modern continental arc settings, i.e. the Sierra Nevada & Coast Mountain Batholiths 

(Lackey et al., 2005; Wetmore & Ducea, 2011); in these examples, high-δ18O sediments and 

altered oceanic crust/plateau are subducted and underthrust during preceding arc magmatism, 

particularly during periods of enhanced subduction erosion, and are then remobilised during 

formation of the batholith. The underthrusting/underplating of continental material 

‘preconditions’ the lithospheric mantle region (Lackey et al., 2005), i.e. gives it an elevated 

oxygen signature. Such a scenario will lead to the following record: 1)  relatively primitive 



radiogenic isotope signatures indicating a young contaminant, 2) I-type geochemistry 

suggesting a mafic to intermediate contaminant, 3) a volumetrically significant degree of 

contamination, and 4) a contaminant that has experienced low-temperate alteration to produce 

high-δ18O. These are equally attributable to the Suldal Arc as they are in the western US 

examples, thus, a similar geodynamic process is postulated for the Suldal Arc (Figure 9). 

 

Although the exact mechanism that contributed high-δ18O material to the magma generation 

of the Suldal Arc cannot be uniquely determined from the available data, a model that is 

compatible with the data is that of accretion of young and juvenile material (i.e. oceanic crust) 

with overlying sediments of mixed age, to the pre-existing continental margin, underthrusting 

of this material to a deep-crustal/upper-mantle location, and mobilization via arc magmatism 

generated in a deep-crustal melting zone (Figure 9). From the current knowledge of the region 

and available data, it is unknown how much of the Hardangervidda-Rogaland Block 

comprised pre-existing continental substrate, or how much originated as accreted juvenile 

material; however, following the arguments outlined above for deep-crustal mixing, i.e. no 

zircon inheritance, no exotic xenoliths, and no exposed older crust, it is argued that any pre-

existing felsic substrate was volumetrically minor within the exposed region of the Suldal 

Arc.   

 

Continental growth 

The comparison between the Suldal Arc with batholiths of the western US cordilleran system 

is pertinent, because the latter provides an example of the dominant continental crust 

formation process that exists in the Phanerozoic (Lee et al., 2007); thus, crustal formation 

processes in the Proterozoic can be compared to those in the Phanerozoic, with implications 

for the uniformitarianism of plate tectonics through time, a theme that is still widely debated 



(e.g. Ernst, 2009; Hamilton, 2010; Shirey & Richardson, 2011). In the Phanerozoic example, 

building of the Sierra Nevada and Peninsular Range batholiths produced crust that is similar 

in composition to the average upper continental crust (Lee et al., 2007); the differentiation 

from basaltic parent magmas to felsic upper crust was aided by delamination of gabbroic and 

garnet pyroxenite cumulates and restites (Lee et al., 2006; 2007). Figure 10 shows a 

comparison between the average concentration of major and trace elements of the Suldal Arc 

compared to an average upper continental crust composition (UCC; Rudnick & Gao, 2003). 

The average Suldal Arc may be biased by sampling, since no correction for outcrop area, or 

estimated volume is taken into account; however, the 65% SiO2 of this average suggests it 

may be a suitable representation of the upper crust, given its similarity to the 66% of the 

average upper continental crust model. The multi-element pattern is remarkably similar, the 

only significant difference being that the Suldal Arc has elevated concentrations of middle to 

heavy REEs compared to UCC. This could be reconciled if the percentage of mafic to felsic 

compositions was under-represented in the sample set; however, from observations in the 

field this isn’t expected to be the case at the exposed crustal level. An alternative is that 

minerals that preferentially remove middle to heavy REE’s from evolving melts may have 

had less involvement in the Suldal Arc; for example, a thinner crustal pile would involve less 

garnet. Without data from lower crustal lithologies, this avenue is not explored; however, the 

similarity between the chemistry and isotope systematics of the western US batholiths and the 

Suldal Arc, and the ability to fit a comparable petrotectonic model between the two examples, 

suggests processes such as cumulate delamination are likely to have been involved in the 

older as well as the younger example.  

 

An additional process that helps drive magmatic compositions from parental mantle-like 

melts to that of the average continental crust, is the addition of sedimentary material to arc 



magmas; for example, in the Honshu arc system, mixing between partial melts of arc basalt 

with 30% melt contribution of metasediments, produces compositions of the Kaikomagatake 

pluton that are comparable to the average UCC (Saito et al., 2011). These metasediments are 

derived from the collisional nature of the arc, whereby the oceanic Izu-Bonin arc is colliding 

with the mature Honshu arc; thus, this setting is rather analogous to the western US 

batholiths, whereby formation of mature continental arc compositions occurs after accretion 

of juvenile oceanic arcs/terranes to the continental margin. This comparison between all of the 

examples discussed, suggests that processes such as crustal thickening and tectonic 

underthrusting may form integral parts in producing continental crust, and that similar crust-

forming processes may have been acting for at least the last 1500 Ma.  

 

The origin of the Hardangervidda-Rogaland and Telemark Blocks 

The evolution of the Suldal Arc postulated here (figure 9), represents the central part of the 

Hardangervidda-Rogaland Block, but is probably also an approximate representation of the 

origin of the Hardangervidda and Rogaland Vest-Agder regions to the north and south 

respectively (figure 1), since similar aged gneiss complexes are found in the region (T. 

Slagstad & M. Marker, unpublished data). Whether the petrogenetic and geodynamic scenario 

can be extended to the more easterly Telemark Block is currently unresolved, since there is a 

dearth of data from the older units within this region. Here, some constraints are discussed, 

but it is noted that these currently remain speculative. Exposed directly to the east of the 

Suldal Arc in the Telemark Block, the Tuddal Fm. comprises voluminous rhyolitic volcanism 

that is dated at ~1512 to ~1500 Ma (Dahlgren et al. 1990; Bingen et al., 2005).  This 

volcanism is suggested to have occurred inboard of a convergent margin in a similar scenario 

to the granite-rhyolite province of the US (Slagstad et al., 2009), which would fit with the 

model proposed here of east-dipping subduction under the Sauda-Suldal region. The Tuddal 



Fm. is hypothesised to have marked the onset of a continental rift- system that developed into 

an epicontinental sea (Lamminen & Köykkä, 2010); it can be envisaged that in these authors’ 

model, the Tuddal Fm. would have resulted from crustal anatexis as a consequence of rise of 

asthenospheric mantle to the base of the crust during lithospheric extension. However, the 

underthrusting of continent-derived material, as envisaged in figure 9, requires a 

compressional setting. Two scenarios can resolve this issue: 1) the geodynamic regime 

changed from compressional prior to 1510 Ma, to extensional after this time, or 2) the Tuddall 

Fm. formed in a compressional setting. The latter could be a viable process if the crustal 

anatexis that formed the Tuddall Fm. is linked to overthickening of the continental crust, 

delamination of a lower crustal root, and subsequent uprise of hot mantle; as this would occur 

in a strongly compressional regime within a subduction environment (e.g. DeCelles et al., 

2009). Given that the Tuddall Fm. was followed by voluminous basaltic magmatism and then 

sedimentation in a deepening basin, an extensional setting must have prevailed soon after 

1500 Ma, irrespective of the geodynamic regime prior to this time.  

 

Andersen et al. (2002b; 2009b) advocated older continental crust of 1.7-1.9 Ga age underlying 

all of SW Fennoscandia, and use this to argue that the blocks (terranes) of southern Norway 

(i.e. Hardangervidda-Rogaland, Telemark, Bamble-Lillesand, and Kongsberg-Marstrand) 

have always been part of the Fennoscandian Shield, rather than being exotic additions 

accreted during the Sveconorwegian orogeny; their data however do not extend as far west as 

the Suldal Arc studied here. The model presented here does not require older basement 

underlying the Sauda-Suldal region of the Hardangervidda-Rogaland Block, but does invoke 

remobilisation of material of this age from the subducting/accreting/underthrusting oceanic 

lithosphere and overlying sediments. Thus, it seems possible that the Suldal Arc was a 

juvenile block of crust that formed outboard of other crustal blocks within SW Fennoscandia 



that show evidence of an older crustal substrate. An alternative is that the isotopic signatures 

seen in other crustal blocks, that lead Andersen et al. (2002b; 2009b) to their conclusions 

about a substantial older crustal substrate, may in fact result from similar processes advocated 

for the Suldal Arc, i.e. underthrusting of continent-derived sediments into the deep-

crustal/mantle melting region. The 1.6-1.55 Ga calc-alkaline granitoids and gneisses of the 

Bamble-Lillesand and Kongsberg-Marstrand blocks have similar moderately juvenile isotopic 

signatures (Andersen et al., 2002b; 2004a), and thus seem likely candidates for continental arc 

rocks formed via processes similar to that of the Suldal Arc. If an accretionary orogen is 

envisaged for the 1.65-1.45 Ga period in SW Fennoscandia, as has been suggested by Åhäll & 

Connelly (2008), then one can imagine a collage of various immature volcanic arcs, ribbon 

continents, and continental arcs; all forming within the vicinity of the SW Fennoscandian 

margin, all originating as rifted fragments, and all possessing varying volumes of older crustal 

substrate. 

 

Conclusions 

A range of metaplutonic/volcanic lithologies sampled from the Sauda-Suldal region in SW 

Norway reveal a period of magmatism from 1521 to 1485 Ma; the petrology and 

geochemistry is typical of arc magmas that have evolved from mafic to felsic compositions 

through fractionation and arc maturation. Modeling of Hf-O isotopes is compatible with 

mixing between end-members that include mantle-derived material, young low-temperature 

altered material (oceanic crust/sediments) and older low-temperature altered material 

(continent-derived sediments). A lack of xenoliths and xenocrysts (inherited zircons), exposed 

older crust, AFC trends and S-type geochemistry, and the large degree of crustal/sedimentary 

material, all point to mixing within a deep-crustal magma-generation zone. A model 

consistent with all observations comprises accretion of altered oceanic crust and/or overlying 



sediments to a pre-existing continental margin, underthrusting to the magma generation zone, 

and remobilization during arc magmatism that is fluxed by subduction-driven dehydration 

melting of the mantle wedge. The addition of sedimentary material to arc magmas drives the 

compositions towards that of continental crust, as does the potential delamination of cumulate 

material that is likely to occur in this scenario. The geodynamic setting for this arc 

magmatism is comparable to that seen in more modern continental arcs (e.g. the Sierra 

Nevada, Peninsular and Coast Range batholiths), with compositions in the Suldal Arc 

reaching those of average upper continental crust. Underthrusting of sedimentary materials 

and their subsequent involvement in arc magmatism is perhaps a more widespread mechanism 

involved in continental growth than is currently recognised, this has been hindered by the fact 

that whole-rock geochemistry may not readily reveal such processes. The Suldal Arc 

magmatism represents a significant crustal addition to SW Fennoscandia; however, the data 

do not constrain whether such growth was occurring during an indigenous or exotic position 

to Proterozoic Fennoscandia.  
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Figures 

Figure 1. Geological map of the Suldal Sector, based on Sigmond (1975), and with additional 

unpublished mapping by the Geological Survey of Norway (T. Slagstad & M. Marker, 

unpublished data). Inset shows Proterozoic crustal blocks within southwest Fennoscandia. 

New U-Pb ages presented here are shown with the corresponding sample locations. 



 

 

Figure 2. A) Compilation of U-Pb ages from the Suldal Sector for Telemarkian (1520-1480 

Ma) magmatism. B) All in-situ U-Pb data for Telemarkian magmatism in the Suldal Sector 

plotted as a probability density plot; note the lack of >1550 Ma ages. 

 



 

 

Figure 3. Whole-rock geochemistry of Sauda Grey Gneiss Association and the associated 

granitoids from the Suldal Sector. Fe* = Fe-number (FeOt / (FeOt + Mg)), ASI = aluminium 

saturation index (Al/(Ca-1.67P+Na+K)), MALI = modified alkali-lime index (Na2O + K2O – 

CaO) (Frost et al., 2001). 



 

 



Figure 4. Multi-element primitive-mantle and chondrite-normalised diagrams (using values 

from Sun & McDonough, 1985), for the SGGA and granitoids from the Suldal Sector. 

 

 

Figure 5. Hf isotope data from the Suldal Sector; A) all data plotted against arbitrary values, 

B) average values plotted against whole-rock SiO2 and U-Pb age. 



 

 

Figure 6. O isotope data from the Suldal Sector; A) all data plotted against arbitrary values, B) 

all data averaged and recalculated to melt compositions (see text for explanation) and plotted 

against whole-rock SiO2 (Assimilation Fractional Crystallisation (AFC) trend is arbitrary).  

 

 

Figure 7. Hf isotope data for SW Fennoscandia plotted against U-Pb crystallisation age, 

published data from Andersen et al. (2002b; 2004b; 2009a); Depleted Mantle (DM) uses 

values of Griffin et al. (2000), the evolution of TIB crust uses a ‘crustal’ Lu/Hf ratio of 0.015; 

see text for explanation of mantle and crustal end-members. 



 

 

Figure 8. Hf and O isotope data plotted where measured on the same zircon. Depleted Mantle 

plotted at ~1.5 Ga using values of Griffin et al. (2000); the sedimentary end-members are 

discussed in the text. The curves in (A) represent mixing between mantle and crustal/sediment 

end-members using lower-crustal and upper-crustal Hf concentrations for the sediment end-

member, and represent source contamination (mantle recycling). The curves in (B) represent 

two–component mixing between an older sedimentary component, and a younger mixed 

mantle-crustal component that has mantle-like to moderately elevated δ18O. End-member 

concentrations based upon Simon & Lécuyer (2005), Salters & Stracke (2004) and Rudnick & 

Gao (2003). 



 

 

Figure 9. Hypothesised petrotectonic model for formation of the Suldal Arc magmatism, 

modified from Lackey et al. (2005); 1) Accretion of juvenile lithosphere and sediments to the 

pre-existing continental margin (this may have comprised oceanic arc material), 2) 

underplating and underthrusting of altered material to the deep-crust/upper-mantle, 3) 

subduction mobilizes this high-δ melting zone, 5) mafic to felsic arc magmas are derived from 

this deep-crustal magma-generation zone. 



 

 

Figure 10. Primitive-mantle normalised multi-element diagram for the average of the Suldal 

Arc data, compared with the average upper continental crust (UCC) of Rudnick & Gao 

(2003). 

 


